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ABSTRACT This article proposes an integration between a graph framework for circuit representation and a
Graph neural network (GNN) model suitable for different machine learning (ML) applications. Furthermore,
the paper highlights design steps for tailoring and using the GNN-based ML model for converter performance
predictions based on converter circuit level and internal parameter variations. Regardless of the number
of components or connections present in a converter circuit, the proposed model can be readily scaled to
incorporate different converter circuit topologies and may be used to analyze such circuits regardless of the
number of components used or control parameters varied. To enable the use of ML methods and applications,
all physical and switching circuit properties including operating mode, components and circuit behavior
must be accurately mapped to graph representation. The model scalability to other circuit types and different
connections and circuits elements is also tested, while being studied in the most common DC-AC inverter
in grid connected systems including filter and filterless configurations. The filtered and filterless DC-AC
inverter circuits are used to evaluate the model, scoring R2 greater than 99% in most cases and a mean square
error (MSE) tending to zero.

INDEX TERMS Electric circuit, bond graph, graph neural networks (GNN), machine learning (ML).

I. INTRODUCTION
Artificial intelligence has been incorporated in the form of
deep learning (DL) models in a wide range of disciplines.
In particular, the use of recurrent neural networks (RNN)
for sequential processing and convolutional neural networks
(CNN) in electrical and renewable energy applications has
been gaining momentum [1], [2]. Recently, graph neural net-
works (GNN), which model patterns in graph-structured data,
have seen a surge in popularity; these networks are particu-
larly advantageous for representing electrical circuit structure,
as graphs are a natural data format for expressing such infor-
mation.

In [3], GNNs were proposed as suitable alternatives to
shallow methods or mathematical optimization techniques for
circuit optimization/classification needs and multiple appli-
cations (e.g., transistor sizing, capacitor value optimization),
with the general outline in Fig. 1. [4], [5] used a reinforce-
ment learning (RL) agent to select optimal parameters via

rewarding based on figure of merit (FOM) when circuits
were represented as graphs (nodes/edges refer to compo-
nents/wires, each transistor embedded with a vector). Ref. [6]
used differential neural network (DNN) for mapping a circuit
to its corresponding transfer function, but applicable only
for a specific topology. Ref. [7] combined feature maps of
nodes via GNN to simulate a distributed circuit’s electro-
magnetic properties. Ref. [8] used DeepGEN for predicting
ladder and two-stage operational amplifier circuits with up
to 10 branches, but lacked description of connection type
and other elements, e.g., frequency, phase shift. Ref. [9] used
GNN to identify symmetry constraints in analog circuits and
proposed extending it to other constraints. Refs. [10] repre-
sented elements as heterogeneous multi-graphs and set four
types of edges. Refs. [3], and [4], [5] used graph models
to represent circuits, and [6], [7], [8], [9], [10] leveraged
GNNs for circuit optimization/classification needs, RL-based
selection of optimal parameters, transfer function mapping,
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FIGURE 1. GNN general architecture and operation principle.

electromagnetic simulation and symmetry constraints identi-
fication, respectively. GNNs are not only capable of quickly
training on graphs, but also generalizing to large datasets, and
learning order permutation invariant representations from the
graph modeling approaches, but they have also been applied
to circuit design [7], [11], [12], though structure-based predic-
tions in switching converter circuits have yet to be addressed.
In [13], a comparative review of different research attempts
in mapping circuits to ML domain including circuit repre-
sentation techniques was presented. Additionally, the three
possible circuit representation techniques listing their advan-
tages and disadvantages were highlighted, while proposing a
graph framework for representing electric circuit as graphs
with unified node and edge features assignment that is gener-
alizable to continuous and switching circuits alike. Moreover,
a dataset generation algorithm capturing circuit performance
in a standardized data format was introduced, allowing for the
the training of any ML model using circuit graph data. Fur-
thermore, a classifier problem applied to multiple converter
topologies including resonant and DC-DC converters in CCM
or DCM was presented. In this paper the same GNN based
framework is leveraged and used for regression ML task,
including performance evaluation of the model behavior when
subjects to severe input variations like topology and parameter
variations. Moreover, a study of the ability of the proposed
graph framework to accommodate such severe variations and
their effect on scalability and usability as well as on time
and space complexity of the GNN based model is introduced.
From applications point of view, the study offers and explain
how to utilize the graph framework for hot and interesting
topics like AI circuit generation and real time parameter esti-
mation. Finally, the study shows some limitations that affects
the performance, with some open research tracks that can be
addressed in the future.

II. SIMULATORS & ANALYTICAL MODELS VS ML MODELS
ML models can be extremely useful to predict the solution of
a converter behavior when simulators or analytical models are
not sufficient/beneficial. Some of the reasons why simulators
or analytical models may have limitations are:

1) Simulators or analytical models are too complex or
computationally expensive to run, especially for large-
scale or high-dimensional systems (high circuit order,

number of components... etc). ML models can act as
emulators or surrogate models that can approximate the
behavior of the system with much less computational
cost and time.

2) Simulators or analytical models may rely on simpli-
fying assumptions by designer that may not hold in
reality. Additionally, they may not account for all the
nonlinear, dynamic, stochastic, and complex phenom-
ena that occur in real-world systems, or require a lot of
computational resources, data, and parameters that may
not be easily obtained or varied. However, ML models
can learn from data and incorporate prior knowledge or
physical laws to improve the accuracy and robustness of
the predictions.

When utilizing ML models and integrating it with the pro-
posed framework for circuit prediction, the following benefits
are gained:
� Speed and scalability: Proposed ML model combined

with proposed graph framework can provide fast and
accurate instant predictions for a wide range of circuit
topologies and parameters, without requiring complex
mathematical derivations or simulations [14], [15]. This
point will be discussed in details in Section VI

� Flexibility and adaptability: ML models can handle
different control schemes, component variations, and op-
erating conditions without changing the circuit structure
or adding components to change the control scheme.
This is not the case in analytical models, where the
analytical model has to be altered on controller com-
ponents are to be added to simulate a change in control
scheme [15].

� Generalization and transferability: ML models can learn
from a limited number of training examples and gen-
eralize to unseen data, and also transfer the learned
knowledge to other related tasks or domains [16], [17].

� Integration of multi-domain physics: The proposed
graph framework is based on bond graph representation,
allowing for integration of different physical domains
like mechanical, chemical, and electrical domains and
properties when representing electric circuits [18], [19],
[20], [21].

The following contributions are proposed and addressed in
this paper as:
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FIGURE 2. Switching cell and its bond graph representation.

� Providing a systematic and a mathematical formulation
for building any GNN model (regardless or the model
layers, number of neurons or type of GNN used) in-
tended for circuit dynamics prediction tasks or any other
ML tasks.

� An investigation of the generalization and applicability
of the graph framework and model performance and its
adaptability to other circuit variations like:
- Multi-variable dynamics prediction tasks.
- Variation in circuit structure.
- Circuit components, input source, output load varia-

tions.
- Controller modulation and control scheme variations.

� A mathematical breakdown of the time and space com-
plexities in terms of number of nodes and features,
allowing for the calculation of the running time and
memory needed and the predetermination of required
hardware for running the GNN model.

� A statistical analysis of the model behavior including
error, fitting analysis and the model generalization ca-
pability.

� An experimental validation of the proposed framework
accuracy and usability implemented on a physical three-
phase DC-AC converter circuit.

III. CIRCUIT REPRESENTATION IN ML DOMAIN
This work proposes converter dynamics predictions based
on the physical connection and operating circumstances of
a converter, based on circuits to machine learning (ML) do-
main mapping approach published in [13], [22], [23]. Bond
graph modeling with switching circuit representation is used

FIGURE 3. One-leg of the three-phase inverter bond graph in Fig. 5(b).

to transform circuits to graphs, from which a graph dataset is
created.

A. BOND GRAPH FOR GRAPHICAL CIRCUIT
REPRESENTATION
Electric circuits are to be modelled using bond graph circuit
representation, in which junctions represent connections that
connect to components and energy is exchanged between
system components and junctions. One-junctions represent
series connections, where the flow variable (e.g. current in
an electrical circuit) is the same for all connected compo-
nents while the effort variable (e.g. current in an electrical
circuit) is conserved. On the other hand, zero-junctions rep-
resent parallel connections where the effort variable is the
same for all connected components while the flow variable
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is conserved. Continuous circuit representation along with
switching circuits and switching cells are discussed in [13],
[22], [23], and briefly discussed in this paragraph that will
focus on switching circuits since continuous circuits are the
special case of the more general case switching circuits [24].
Different switching circuits representation techniques were
developed, however in this work, switched power junctions
technique is to be utilized due to analytical and physical rea-
sons of causality assignment and discontinuities mentioned
in [25], [26]. Switching cells are to be modelled as 1 s and
0 s connections governed by its control variable D (analogous
to duty cycle in circuits analogy), which links point (C) with
Point (A) and (B) via the control variable (D) as shown in
Fig. 2. Every SPST is represented as a 1s-junction with two
flow determining bonds. The physical realization is complete
when the current interruption, when the SPST switch is turned
OFF, is depicted as one flow decider bond modelled as a
zero value current source (Is) and the other flow decider bond
still linked to the system. Fig. 5 shows the graph represen-
tation of three phase inverter circuit with and without filter
configurations.

B. GRAPH NEURAL NETWORKS
Graph neural networks (GNNs) are a form of neural networks
that operate on graph-structured data, such as social networks,
molecular graphs, or knowledge graphs, and consists of three
main components: node features, edge features, and graph
features as shown in Fig. 1. Node features are the attributes of
the nodes in the graph, while edge features are the attributes of
the edges in the graph, such as weights or types. Edge indices
or adjacency matrix define the nodes that are linked together.
Graph features are the global attributes of the graph as a
whole, such as performance or density. GNNs learn to update
the nodes, edges, and graph features by aggregating the infor-
mation within the local neighborhood of each node or edge.
The output of a GNN can be either the updated node, edge,
or graph features, or a prediction based on them after being
processed by an additional function. To feed an electric circuit
represented as a bond graph to a GNN, the node, edge, and
graph features are to be defined, so that GNNs learn updated
node, edge, and graph features by applying neural network
layers that aggregate information from the local neighborhood
of each node or edge. The prediction can be compared with
the ground truth values obtained from the circuit simulation
or measurement, and the loss function can be used to train the
GNN parameters.

C. TRANSFER LEARNING APPLICABILITY
Transfer learning is a technique that leverages the knowledge
learned from one domain or task to another domain or task in
order to save time and resources from having to train multiple
machine learning models from scratch to complete similar
tasks. In principle, transfer learning can be applied to any
GNN model, yet it is of great importance to apply transfer
learning when it is applicable, since not in all cases proves
usefulness like:

� When access to new data is not always available or inac-
cessible[27].

� In the case of a small dataset and the model is a deep
neural network, which require large dataset [27].

� When the intended ML task for source and target are
similar, the performance of the target network can be
improved [28].

� In the case of discrepancy between data domains and
distributions [29].

Overall, none of the mentioned cases where transfer learn-
ing is useful or encouraged, hence it is concluded that transfer
learning is doesn’t help with training or generalization in this
case.

D. FEATURE ASSIGNMENT PROCESS
The circuit graphs undergo in a feature extraction process
so that the final graphs has embedded features like the one
shown in Fig 2, which shows a graph representation of single
pole double throw (SPDT) switching network. Node features,
which are attributes or properties of each node, are to be
assigned for every graph node, representing properties such
as the type and value of the component. Like wise, edge
features represent circuit attributes or properties mapped as
graph edge, such as the duty cycle. One-Hot encoding [30] is
used to define the node type, which is a way of representing
categorical data using binary values, and is used when de-
scribing and differentiating between different node types or
categories. The node and edge features assignment process
can be described as following:
� Nodes representing circuit elements and sources (de-

picted as blue node in bond graphs), such as resistors,
capacitors, inductors, current or voltage sources, the
node features are a stack of the one-hot encoding of the
node type and the analog value of the element value,
indicating the node type and magnitude.

� Same concept is applied to zero current valued current
source connected to switched 1-s or 0-s junctions to
represent the current interruption in the switch as per
bond graph terminology. The node features are combi-
nation of the one-hot encoding of the node type plus the
analog value of the element value. This analog value can
include different controller parameters like the modula-
tion index or frequency, since they can control how the
often the current is interrupted in the switched branch
by the means of zero current over time. This allows for
different modes of operation and controller schemes for
the circuit.

� For nodes representing zero or one junctions in bond
graph, one-hot encoding of the node ID plus the switch
current or voltage value (Isw) obtained from simulation
are concatenated all together. Since switched zero or
one junction are the general cases of ordinary zero or
one junction [31], they are assigned the same ID either
for zero or for one junction. Other switch parameters or
properties like Cds or Rds.. etc can be added to the feature
vector.
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� Duty cycle, indicating the ratio of the ON to the total
time period (Ts), is to be represented as and edge feature
with a continuous value from 0 to 1.

It is to be noted that the size of feature matrix is not fixed,
and the number of analog features that can be included in
the feature matrix are not either. Other values that represent
circuit properties that are not mentioned can be also included
in the feature matrix. This is indicated by (xx) value in the
feature matrix, and it is up to the model designer of how to
set these values. However, all feature vectors must have the
same size so that the feature matrix is consistent. With the
mentioned structure of feature vector, the feature matrix is
compatible with the scalability and usability requirements that
are discussed later in this paper. This mixture of node and edge
feature assignment allows for a more representative features
and hence better model performance on the dataset. In the final
stage of this work, the graph dataset is to be fed to a graph
neural network (GNN) model to obtain circuit predictions for
three phase converter circuits.

# Node Feature Matrix∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2
3
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5
6
7
8
9

10
11
12

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vs

1
0
1s
Is

0s
1s
Is

0
1
R
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V I L R C 1 0 Val1 Val2 . . .

1 0 0 0 0 0 0 Vs xx xx
0 0 0 0 0 1 0 Ix xx xx
0 0 0 0 0 0 1 V s xx xx
0 0 0 0 0 1 0 Isw1 Rds Cds

0 1 0 0 0 0 0 F M xx
0 0 0 0 0 0 1 Vph xx xx
0 0 0 0 0 1 0 Isw2 Rds Cds

0 1 0 0 0 0 0 F M xx
0 0 0 0 0 0 1 −Vs xx xx
0 0 0 0 0 1 0 Iph xx xx
0 0 0 1 0 0 0 R xx xx
0 0 0 0 0 0 1 Vgnd xx xx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

E. THREE-PHASE INVERTER FEATURE ASSIGNMENT
One leg (phase) of the three-phase inverter bond graph shown
in Fig. 3 is used as an example, where the nodes are numbered
and the features are assigned accordingly. The node features
consisting of the mentioned one-hot encoding and the analog
values corresponding to the nature of the element are assigned
to every node and is shown in equation (1), where Vgnd is the
ground voltage, which is equal to zero. Switch characteristics
like Rds and Cds representing the drain-source resistance and
capacitance respectively are also included as features. Isw1 and
Isw2 are the switch current, Vph and Iph are the phase voltage
and current, while Ix is the voltage source (Vs) current. F and
M are the frequency and the modulation index. By extending
this methodology and assigning features to the whole bond
graph, a final graph with features annotated can be obtained
and is shown in Fig. 4.

IV. MODEL SCALABILITY & USABILITY INVESTIGATION
Scalability is defined as the capability of the prediction model
to handle increasing circuit complexity in terms of order

FIGURE 4. Three-phase inverter bond graph in Fig. 5(b) after features have
been assigned.

TABLE 1. Dataset Circuit Parameters Range

(number of inductive and capacitive elements) or connection
complexity, without introducing model structural changes to
adapt input dataset changes. In other words, a scalable model
allows for any circuit order, any number of active or passive
components as well as any number of connections in circuit
to be fed as a dataset to the model. In this paper, scalability is
tested by:
� Subjecting the model to complex input circuits like three

phase inverter and its variants of even more circuit
components (and hence more nodes) while the model
structure is kept fixed. The aim is to test the model’s
response to an increasingly large circuit dataset to de-
termine how well it can perform on a larger input circuit
size.

� Scaling up the complexity of prediction by increasing
number of predicted variables obtained from model out-
put from single variable to multi-variable regression
problem.

Additionally, the model is tested for usability, which
is defined as a measure of how flexible the model is for
user input/parameter changes, including adaptations to hard-
ware/control variables changes by accommodating the growth
of data and input size. A usable model offers an interactive,
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FIGURE 5. Three phase DC-AC inverter circuit with R-load and its equivalent graph: (a) & (b) No Filter, (c) & (d) with LC-filter.

FIGURE 6. Regression model structure.

easy to use and intuitive technique for feeding circuit as in-
put and offers a standard for manipulating hardware changes
and control parameters/schemes changes. The paper shows
model’s usability by demonstrating the model prediction ca-
pability when
� Load (R), source (Vin) and switching frequency (F )

changes.
� Parasitic components variation like Rds, Cds.

� Different control parameter are varied as well as model
response to control scheme variation.

Lastly, the model’s ability to accurately predict is a main
concern when assessing a regression model. The model’s pre-
dictive capabilities are tested by comparing its predictions to
known results obtained from simulations and analyzing resid-
uals. The paper analyse the model performance according to
multiple aspects:

992 VOLUME 5, 2024



FIGURE 7. Model prediction percentage error when the inverter is feeding
an R-load.

FIGURE 8. Time and space complexity of the proposed model.

� Comparing recorded simulation results to predictions,
allowing for a mathematical analysis of how well the
model can predict a known outcome.

� Analyzing residuals allows for investigating the differ-
ence between the predicted and the simulated outcomes.

� Provide histograms about the error distribution along
different prediction variables and versus parameter vari-
ations, which helps to identify if the model is failing to
account for parameter variations.

A. SCALABILITY AND USABILITY OF BOND GRAPHS
Bond graph modelling achieves scalability and usability by
combining graphical, modular, hierarchical, and dynamical
modelling properties to model complex physical dynamic sys-
tems in a unified methodology, which is explained as follows:

� BG can handle multiple energy domains (mechanical,
electrical, thermal and chemical) seamlessly and consis-
tently, using the same set of elements and variables.

� BG utilizes the concept of power bonds to connect differ-
ent elements and represent the bi-directional exchange of
energy between them, which abide to the conservation of
mass and energy laws in the system.

� BG allows the integration of thermodynamics to incor-
porate the effects of entropy, heat transfer, and chemical
reactions in any physical system, enabling the modelling
of non-linear and irreversible phenomena in power sys-
tems.

� BG inherently supports modularity, allowing for sys-
tem decomposition/recombined into/from smaller sub-
systems that are modelled independently, which eventu-
ally facilitates the integration of multi-physical domain
models.

B. GRAPH NEURAL NETWORK SCALABILITY
In a wide range of applications, Graph Neural Networks
(GNN) are a powerful tool for representing non-Euclidean
data. The complex structural links seen in graphs are captured
by GNNs and are further processed to apply a trained task.
They may thus be used to classify whole networks in a single
step. GNNs can be trained to predict trends from the global
structure, or perform classification tasks across whole net-
works in a single step. There are many variants of GNNs like
GCN [32], GAT [33]), GraphSAGE [34], R-GCN [35]). GCNs
have capability to capture complex relationships between
nodes in a graph and achieve better prediction accuracy [32],
generalize to unseen data, and accommodate nodes of varying
degree of connectivity. GNNs can achieve scalability when
circuits are fed as graphs by inherently applying the following
techniques:
� Message passing: which allows GNNs to propagate in-

formation between nodes and edges, where each node
updates its representation by aggregating messages from
self to neighbors, allowing for capturing self and neigh-
borhood information and eventually overall global struc-
ture of the graph.

� Permutation invariant functions: where the order of the
nodes in the graph is not of importance and doesn’t affect
the operations performed on graph input, allowing for
handling of graphs of different sizes and orders without
changing graph architecture or parameters.

� Attention mechanisms: which assigns different weights
to the messages from different node neighbors, based on
relevance and importance. This can help GNNs focus on
the most informative parts of the graph, and reduce the
noise and redundancy from less relevant connections.

V. REGRESSION MODEL FOR CONVERTER DYNAMICS
PREDICTION
This section presents a proposed GNN based model applied
to DC-AC inverter circuits in order to obtain predictions
based on circuit topology and component values. Multiple
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FIGURE 9. (a) Actual vs prediction in line voltage and efficiency outputs, (b) Efficiency prediction when parasitic resistance and capacitance vs the
change along the switching frequency range.

case studies including single and multi-variable regression
problems are shown, including obtaining predictions of the
most essential outputs of any converter, namely line voltage
and efficiency, with the potential to scale up to include many
more variables. The model is to be fed a dataset that contains
circuit data after being transformed into its graph forms and
assigned node and edge features, as well as information about
the prediction targets, obtained from simulations.

A. REGRESSION MODEL STRUCTURE
The neural network model takes converter circuits in graph
forms (G), node features (X ) expressing element type and el-
ement value, adjacency matrix (A), edge features (Z) as input,
and outputs the predicted variables (Y ) with output vector size

being the number of predicted variables (C). The mathemati-
cal representation of the regression model and the propagation
of graph features across layers are given by (2)–(7).

Y = Regression(X, A, Z ) (2)

Where

X ∈ RN×din (3)

Y ∈ RC×1 (4)

GCN (k) : RN×din �→ RN×d (5)

k ∈ {0, 1, .., k − 1}
GMR : RN×d �→ R1×d (6)
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FIGURE 10. Model percentage prediction error distributions when
subjected to: (a) Resistance variations, (b) Frequency variations, (c)
Capacitance variations, while (d) is the overall model response to
variations.

FIGURE 11. Multi-variable SPWM controlled Inverter prediction error (%).
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FIGURE 12. Multi-variable prediction output for DC-AC inverter with LC filter: (a) Line voltage prediction, (b) efficiency prediction, where M is the
modulation index.

FC : R1×d �→ R1×C (7)

Mathematically, this initial embedding function is represented
by (8). The aggregation layer has multiple Graph Convolu-
tion Networks (GCN) that performs multiple message passing
leaps to collect information about neighbouring nodes and
keeps updating the latent dimensional vector with dimension
d, which is mathematically represented as in (9).

X (0) = E (X ) (8)

X (k+1) = σ
(

D̂− 1
2 ÂD̂− 1

2 X k�k
)

(9)

x′
i = �� ∑

j∈N (v)∪{i}

e j,i√
d̂ j d̂i

x j (10)

where �k is a weight matrix for the k-th neural network layer
and σ is a non-linear activation function like the rectified
linear unit (ReLU), Â= A + I, where I is the identity matrix
and D̂ is the diagonal node degree matrix of Â. This allows

the GCN to scale well, because the number of parameters in
the model is not tied to the size of the graph. The node-wise
formulation of feature update is given by (10), where d̂i =
1 +∑

j∈N (i) e j,i denotes the edge weight e j,i from source
node j to target node i.

Fig. 6 shows a block diagram of obtaining predictions from
circuits using a regression model. The model utilizes three
GCN layers to exchange messages across nodes. The output is
fed to the global mean readout (GMR) layer, which averages
the processed node and edge features to an output dimension
of d . The two fully connected (FC) linear layer is trained
to linearly transform the averaged graph vector to desired
output predictions by minimizing the mean square error loss
function. According to the universal approximation theorem,
FC layers may estimate any function without any limitation
on the structure [36]. Equations (1)–(6) express the regression
model mathematics, while (11)–(12) are used to express the
two-layer FC layer mathematically, where w0 & wn are the
bias and weight, respectively, while x is the input to the linear
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FIGURE 13. Experimental setup used to record experimental data.

layer, N is the number of neurons, and sigma is the activation
function.

f (1) (x) = σ

(
w

(1)
0 +

N∑
n=1

w(1)
n xn

)
(11)

f (2) ( f (1) (x)
) = w

(2)
0 +

U1∑
i=1

w
(2)
i f (1)

i (x) (12)

f (x) = max(αx, x) (13)

B. DYNAMICS PREDICTION CASE STUDIES
To demonstrate the model’s ability to handle different con-
verter circuits, the paper presents multiple case studies with
various circuit parameters, including hardware components
(such as an LC filter), controller schemes (such as square
and sinusoidal PWM), and various system variables variations
(such as load, frequency, modulation index and input source).
The paper conducts experiments on a DC-AC inverter with
different combinations of these parameters, and observes how
the model performs under these changes. The model training
uses a dataset of circuit graphs with different parameters and
their true outputs, and tries to fit the output without memoriz-
ing the data (overfitting).

C. DATASET DATA RANGE
The dataset range must include the control and circuit pa-
rameter changes in an inclusive and expressive manner for
an accurate output estimation by the proposed regression
model. Generally, selected algorithms should have the poten-
tial to accommodate minimum and maximum values in the
datasets. Additionally, the range of the datasets should effec-
tively match the purpose of the machine learning model. If the
dataset ranges are too narrow, the model may only be able to
react to changes in parameters and will not be able to predict

the output correctly, which may become a limiting factor. On
the other hand, if the data ranges are too wide, the model may
become too generalized, and its accuracy may suffer due to
incorrect predictions. The range of the utilized datasets in all
cases studies including circuit and control parameters repre-
sented as node and edge features are listed in Table 1. The
variables ranges [resistance (R), inductance (L), voltage(V),
Parasitic resistance (Rds), inductance (Ls) and capacitance
(Cds) and frequency (F)] are selected based on true values
obtained from datasheets of several circuit components.

VI. RESULTS ANALYSIS
Histograms shown in Fig. 7 highlights the prediction error
across multiple prediction scenarios when inverter connected
to resistive load with and without LC filter. The histograms
also include the scenario where multiple prediction output is
required. It is shown that the model can attain high prediction
accuracy, while maintaining prediction error percentage less
than 10%.

A. PREDICTION ACCURACY EVALUATION
The coefficient of determination (R-squared) is a statistical
measure of how well a model captures the variability of a
dependent variable, expressed as the percentage of variation
explained by the model. The (14) shows the formula for the
coefficient of determination, with RSS is the sum of squares
of residuals and TSS is the total sum of squares. In general,
higher R-squared values denote a better fit of the model to the
observed data, indicating smaller differences between the true
values and the predicted values. The R-squared score recorded
by proposed model when applied to the testing dataset is
99.49%. Moreover, in Fig. 9(a), the ground truth values ob-
tained from simulation (solid line) and the predicted values
for selected prediction targets (line voltage and converter ef-
ficiency) are shown. The model exhibits high stability and
adaptability in terms of its complex predictions, responding
to variations in frequency, drain-source resistance and ca-
pacitance, which are the main factors affecting both outputs.
Detailed model analytics and in depth circuit variable- predic-
tion accuracy analysis is given.

R2 = 1 − RSS

TSS
= 1 −

∑
i

(yi − ŷi )2

∑
i (yi − ȳi )2

(14)

where, yi = observed value, ŷi = predicted value, ȳi = mean
of observed values.

B. CIRCUIT COMPLEXITY INVESTIGATION
In bond graph notation, when the circuit complexity is in-
creased, i.e more components are added or a more complex
circuit is considered, the number of connection junctions as
well as the number of component nodes consequently change.
The same concept applies to GCNs and hence the prediction
model can accommodate more complex circuit representa-
tions. This is shown when the model accommodated the three
phase DC-AC inverter circuit and its including the parameters
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FIGURE 14. Scope measurements samples of DC-AC inverter operating under different loads,frequencies and supply voltages: (a) 50 V -50� - 10 Khz, (b)
50 V -50� - 20 Khz, (c) 100 V -50� - 10 Khz, (d) 100 V -50� - 20 Khz, (e) 150 V -60� - 10 Khz, (f) 150 V -60� - 20 Khz.

and the load variations. In order to To quantify the model
ability to handle more prediction outputs and more complex
circuits, model performance metrics are to be used as judge-
ment factors. Some possible metrics are:
� Accuracy: Evaluation of the GNN model prediction per-

centage, by using one of the most common evaluation
metrics like F1-score, accuracy, precision or R2.

� Computational scalability: Computational effort evalu-
ation of model’s performance,number of parameters or
memory usage against the increase in graph nodes and
feature sizes without compromising the accuracy or per-
formance.

Given G as the circuit graph, E as the number of edges, N as
the number of nodes, and F as the feature vector length, the
computational effort can be broken down to time and space
complexities and are calculated as:
� Time complexity: O(3(E + NF 2) + (N + 128N ) +

128 × 128 + 128 × 128 + 128 × 2)
� Space complexity: O(N + E + NF + 128 + 128 +

128 + 2)
Fig. 8 shows the time and space complexity of the pro-

posed model. (O) is the order of magnitude which defines the
complexity growth proportional to the graph input size and

TABLE 2. Predication Model Performance Across Multiple Case Studies

number of features assigned for every node. A comparison
table shown in Table 2 shows the percentage change in fitting
accuracy across the testing cases the model has been through.

The prediction error mean and standard deviation are cru-
cial for its performance as these defining metrics highlight
the accuracy of the model’s predictions. A low error mean
(μ) and standard deviation (σ ) typically indicate a high-
performing model, whereas a high error μ and σ indicate a
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FIGURE 15. Experimental Vs predicted converter efficiency at different
frequencies: (a) 10 KHz, (b) 20 Khz. (c) Model prediction Percentage error
visualization. —: Practical efficiency �: Predicted efficiency.

low-performing model. Keeping both performance metrics in
low values is necessary for optimal performance.

C. CIRCUIT & CONTROL PARAMETERS SENSITIVITY
ANALYSIS
Model performance when subjected to parameter variations is
analysed to determine the model accuracy and error response
to parameter values, and quantify their effect the results. The
primary goal of this analysis is to assess how the model
accounts for multiple circuit parameter variations as well as
control parameter variations and their effect on the output.

Fig. 9(a) shows the ground truth values (Y) obtained from sim-
ulations versus predicted (Ŷ ) outputs of the model, namely,
line voltage and efficiency. The straight line represents the
ideal case of the model having 100% accuracy, while the dots
represents the predicted output at this instant. R2 score value
of 99.93% for predicting line voltage and 99.72% for predict-
ing efficiency was validated for the model output. Moreover,
Fig 9(b) presents the individual visualization of each input
variable vs the model prediction and its effect on the multi-
variable regression output. Histograms of the prediction error
percentage distribution across the multi-variable regression
model including mean and standard deviation for each circuit
parameter are discussed in details in the next subsections.

1) CIRCUIT PARAMETERS VARIATION (HARDWARE
VARIATION)
Two types of variations are tested with the proposed re-
gression model, namely hardware and controller parameter
variations. Hardware variation are when circuit component
values are changed, which is a real life equivalent of changing
resistor values of replacing a mosfet with a lower parasitic
one. The histogram in Fig. 10(a) indicates error distribution
in efficiency prediction when exposed to changes in load
resistance across dataset range. The overall performance of
the model was highly accurate, as indicated by the minimal
prediction error. Furthermore, the error illustrated in Fig. 10(c)
is minor when parasitic capacitance is changed. Although the
values ranges of the predicted outputs are different and vary
significantly, the model was able to accurately obtain predic-
tion with less than ±2 % error shown in the histograms across
all parasitic resistance and capacitance range.

2) CONTROL PARAMETERS VARIATIONS
Controller parameters are changed like modulation scheme
and frequency, which in real world applications are controlled
by digital controllers running in real-time and require soft-
ware changes. The proposed regression model can accurately
predict the converter behaviour under these changes.
a) Switching Frequency Variation: Frequency is an impor-
tant factor for converter operation mode, which is actively
managed by a digital controller in real-time, depicted as
a node feature when represented in the circuit graph. In
Fig. 10(b), the variance in efficiency prediction error is rel-
atively low, with almost no changes across frequency range.
On the other hand, when looking into line voltage prediction,
the same pattern is observed, yet the prediction errors are
comparatively higher, with a higher variance, due to the higher
output range.
b) Modulation Scheme Variation: Sinusoidal Pulse Width
Modulation (SPWM) is widely used to control the output
voltage and frequency of DC-AC inverters, which involves
modulated pulses generated according to a sinusoidal ref-
erence signal with predetermined amplitude and frequency.
Fig. 11 shows the filtered (using LC filter) inverter output
predictions and the corresponding prediction error, which is
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TABLE 3. Experimental Setup Components

relatively low across variable variations of drain source resis-
tance and capacitance (Rds,Cds) and modulation index (M).
Fig. 12 shows the predicted line voltage and efficiency across
mentioned variables. Despite the irregular slope change be-
tween predicting the line voltage and the efficiency, the model
was able to adapt to variations and obtain minimal error pre-
dictions.

VII. EXPERIMENTAL VERIFICATION
In this section, the accuracy of the proposed GNN model and
graph framework for predicting the performance of converter
circuits based on their topology and parameters is validated.

A. EXPERIMENTAL SETUP AND METHODOLOGY
A three-phase DC-AC inverter circuit identical to the case
study in Fig. 5(a) is used for verification, while hardware and
software variations are applied to the system. The converter
circuit exhibits two system variation, namely hardware varia-
tions like load resistance variations and source voltage level
variations, and control variations like switching frequency
variations. The components of the experimental setup as well
as their values and variation ranges are listed in Table 3.
Two data sources are used for the experiments: simulated
data generated from simulation model that emulates the ex-
act practical and environmental circumstances, and measured
data obtained from practical experiments at different converter
operating points.

1) SIMULATED DATA
The simulated data are generated by using the published
LTspice model available in [37] running on LTspice circuit
simulator, allowing for the capturing of converter circuits be-
havior and response at different scenarios and splitting the
data into training and test sets by 70% to 20% ratio respec-
tively. The graph representations of the converter circuits are
constructed by using the bond graph modelling technique, as
described in Section III. Node and edge features are assigned
to represent the circuit elements and parameters, while the
same graph structure is used for different scenarios and pa-
rameter variations in the experiment.

2) MEASURED DATA
The measured data are obtained by using a hardware setup
consisting of a three-phase DC-AC inverter connected to an
R-load as shown in Fig. 13. Data are collected individually
and independently of other variables, i.e earch variable is var-
ied separately while other variables are kept constant. Fig. 14
shows sample points of the recorded output data of the DC-AC
inverter operation under variable input voltage, load resistance
and frequency.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In this case study, the GNN model is tested on predicting the
line voltage and efficiency of a three-phase DC-AC inverter
connected to an R-load, as a function of a single input vari-
able. The predictions of the GNN model are compared with
the ground truth experimental values. The predictions and the
ground truth values are plotted in Fig. 15(a) and (b), which
shows the model predictions at 10 and 20 KHz frequencies.
Fig. 15(c) shows the overall percentage error of the model
expressed as percentage error at two different operating fre-
quencies, indicating that the model can explain most of the
variance in the data. Generally, the model is able to predict
the converter efficiency within +0.5% to -2%, and to extract
the converter behavior and efficiency based on the variation
of hardware components and controller signals.

VIII. CONCLUSION AND FUTURE RESEARCH
The manuscript showed predictions based on three phase DC-
AC inverter under multiple operation scenarios, control signal
and component values in multiple study cases for the purpose
of assessment. By representing the converter circuit as graphs
and applying GNNs, the regression model was able predict
circuit performance information as well as identify the type of
circuit. The model has proved its ability to be utilized in any
circuit configuration or connection and its ability to include
any number of circuit elements including passive and active
ones. The motioned tests were conducted at different control
parameters as well as different circuit components and con-
nections, and verified experimentally against those variations.
The proposed GNN model as well as the graph framework
were built with generalization and scalability in mind, making
it an excellent candidate for solving multiple circuit analysis,
control and design problems as follows:
� Converter design optimization: Proposed GNN model

can be used to optimize the converter design parameters,
such as component values, input source, output load,
control parameters, and schemes.

� Converter state detection and diagnosis: Component
failures, short circuits, open circuits, CCM and DCM
converter mode,..., etc can be predicted and identified
based on the converter performance.

� Instant simulator: Proposed model can be used to simu-
late the converter performance and dynamics instantly
once trained, without requiring any circuit simulation
software.
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� Real-time parameter estimation and monitoring: Pro-
posed model can be further reduced and optimized to
work on microcontrollers as in [38].

� AI generated circuits: Proposed graph framework can be
used to generate new and novel converter circuits for do-
main specific applications based on generative artificial
networks with the help of generative AI models.
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