
Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/OJIM.2022.1234567

LArcNet: LIGHTWEIGHT NEURAL
NETWORK FOR REAL-TIME SERIES

AC ARC FAULT DETECTION
KAMAL CHANDRA PAUL∗, GRADUATE STUDENT MEMBER, IEEE, CHEN CHEN†,

MEMBER, IEEE, YAO WANG‡, MEMBER, IEEE, AND TIEFU ZHAO∗, SENIOR MEMBER,
IEEE

1Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223 USA
2Center for Research in Computer Vision (CRCV), University of Central Florida, Orlando, FL 32816 USA

3School of Electrical Engineering, Hebei University of Technology, Tianjin 300400, China

CORRESPONDING AUTHOR: Kamal Chandra Paul (e-mail: kpaul9@charlotte.edu).

ABSTRACT Detecting series AC arc faults in diverse residential loads is challenging due to variations in
load characteristics and noise. While traditional AI-based algorithms can be effective, they often involve
high computational complexity, limiting their real-time implementation on resource-constrained edge
devices. This paper introduces LArcNet (Lightweight Arc Fault Detection Network), a novel, lightweight,
and rapid-response algorithm for series AC arc fault detection. LArcNet combines a teacher-student
knowledge distillation approach with an efficient convolutional neural network architecture to achieve high
accuracy with minimal computational demand. This streamlined yet robust design makes LArcNet ideally
suited for resource-constrained embedded systems, achieving an arc fault detection accuracy of 99.31%.
The model is optimized and converted into TensorFlow Lite format to reduce size and latency, enabling
deployment on low-power embedded devices such as the Raspberry Pi and the STM32 microcontrollers.
Test results demonstrate LArcNet’s inference times of just 0.20 ms on the Raspberry Pi 4B and 3 ms on
the STM32H743ZI2, surpassing other leading models in operational speed while maintaining competitive
accuracy in arc fault detection.

INDEX TERMS Arc discharge, arc fault detection, artificial neural network, convolutional neural network
(CNN), deep learning, knowledge distillation, machine learning, series AC arc.

I. INTRODUCTION

ARC fault, characterized by the luminous discharge of
electricity, poses significant safety hazards. These faults

often arise from factors such as loose cable connections, wire
aging, insulation breakdown due to external intrusion, or
physical damage to cables. Capable of raising temperatures
beyond 5000oC, even at low currents ranging from 3 A
to 12 A, arc faults can lead to electrical fires, resulting in
property damage, injury, or even fatalities. In the United
States, arc fault is one of the leading causes of residential
fire hazards. A survey by Zebra found that 36.3% of fire
hazards are attributed to electrical issues [1], while the
Industrial Safety and Hygiene News reports over 30,000
arc flash incidents annually, leading to significant casualties
and hospitalizations. Standards set by entities like the
International Electrotechnical Commission (IEC), National
Electrical Code (NEC), and Underwriters’ Laboratories

(UL) mandate arc fault detection mechanisms in household
appliances for safety [2]–[4]. In the U.S., devices such as arc
fault circuit interrupters (AFCI) or arc fault detection devices
(AFDD) have been compulsory in households since 2002.

Arc faults are typically categorized into series and parallel
types as shown in Fig. 1. Parallel arc faults are relatively
easier to detect due to their high current characteristics,
unlike series AC arc faults, which are more challenging to
identify due to series impedance limitations and ambiguous
arc features. This complexity frequently leads to false alarms
or nuisance tripping, a problem exacerbated when certain
residential loads inherently draw current in a manner similar
to arc faults under normal operating conditions [5].

Conventional arc fault detection techniques primarily
utilize feature extraction from time or frequency domains,
and often integrate both approaches. One of these techniques
is the Fast Fourier Transform (FFT), which is employed

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Paul et al.: Preparation of Papers for IEEE OPEN JOURNALS

FIGURE 1. Types of arc faults- (a) series arc fault; (b) parallel arc fault (line-neutral); (c) parallel arc fault (line-ground).

to transform a signal from its original time domain into
the frequency domain. Another noteworthy method is the
Wavelet Transform (WT), which decomposes a signal into
its constituent wavelets, providing a detailed time-frequency
representation. A specialized variant of WT, the Discrete
Wavelet Transform (DWT), is tailored for analyzing discrete
or quantized data sets [6]–[9]. In addition, the Chirp Zeta
Transform (CZT) is utilized specifically for detecting series
AC arc faults. However, a common limitation of these
methods is their reliance on manual threshold adjustments,
which can lead to false positives under conditions of varying
load and environmental noise [10].

Due to their high classification accuracy, artificial
intelligence (AI) and machine learning (ML) algorithms
are increasingly researched for arc fault detection. A
variety of classification algorithms, including Support Vector
Machine (SVM), Particle Swarm Optimization combined
with Self-Organizing Map Neural Network, Recurrent
Neural Network (RNN), Learning Vector Quantization
Neural Network (LVQ-NN), Decision Tree-based Algorithm,
Random Forest, Backpropagation Neural Network, Artificial
Neural Network, and Convolutional Neural Network, have
been employed for arc fault classification, often coupled
with data preprocessing techniques [11]–[23]. Some of these
algorithms also possess the capability to classify load types
or groups where arc faults occur [12]–[14]. However, these
methods typically involve time domain, frequency domain,
or a combination of both for feature extraction prior to
data input into neural network models. Notably, many
studies do not report on the real-time applicability of these
models, or they exhibit runtimes too extensive for practical
implementation in lower-end commercial microcontroller
units (MCUs) [15]–[18], [20], [24]–[26]. For instance, Wang
et al. [27] employed a lightweight CNN architecture for
series arc fault detection in specific load types, but the low
sampling frequency of 2.5 kHz could potentially miss crucial
arc signatures in the input current signal. Additionally, the
use of 2D input matrix formation, through point-by-point
isometric mapping, introduces unnecessary computational
load, which could be streamlined to 1D time series data for
model simplification.

According to the International Electrotechnical
Commission (IEC) standard [2], recommended maximum
break times for a 230V power supply system are 1 s for
2.5 A current and 120 ms for 63 A load current, with
corresponding times for a 120 V system being 1 s for
5 A and 140 ms for 63 A load currents. In real-time
operation, considering data preprocessing, acquisition,
testing times, possible signaling delays, and circuit breaking
times, an effective arc fault detection system should detect
faults in less than 16.67 ms for a 60 Hz power supply
system, or less than 20 ms for a 50 Hz system. Models
that are too cumbersome in inference time compared to
data acquisition may miss critical samples, potentially
leading to undetected arc faults. Additionally, while
large-scale deep neural networks may excel in classification
due to over-parameterization and generalization, their
computational complexity necessitates substantial storage
space and memory. Pre-extraction of primary features adds
to this burden makes their deployment on resource-limited
edge devices challenging.

Therefore, the development of an efficient, lightweight
deep learning model for arc fault detection is essential.
Such models can be designed using efficient building
blocks like depthwise separable convolution blocks (as
seen in MobileNet, ShuffleNet, and EffNet) or through
model compression and acceleration techniques like
parameter pruning and sharing, low-rank factorization,
and transferred compact convolutional filters [28]–[30].
Knowledge distillation (KD) has recently garnered attention
for its ability to transfer knowledge from larger, more
complex networks to smaller, simpler ones, resulting in
highly efficient and lightweight models [31], [32].

This paper proposes a CNN-based series AC arc fault
detection algorithm that combines a lightweight CNN
architecture with a teacher-student knowledge distillation
technique. This model achieves high accuracy in arc
fault detection. It is optimized using the TensorFlow
Lite (Lite-RT) tool, resulting in a reduced binary size
suitable for implementation in resource-limited edge
devices. The performance of the optimized model is
evaluated on Raspberry PI 4B and STM32H743ZI2 devices,

2 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

TABLE 1. Brief database of different load groups

Load Groups Loads Total Samples

Resistive type loads (RE) Electrical heater, electric iron, incandescent lamps, electric kettle 12675

Motor loads (MO) Capacitor start motor, vacuum cleaner, electric hand tool (drill) 6373

Power Electronics-enabled and SMPS loads (PESMPS) Switch-mode power supply loads, dimmer (thyristor type) 7411

Gas discharge lamp (GDL) loads Halogen lamps, fluorescent lamps 3692

Total number of samples 30151

demonstrating its practicality and real-time operational
capability.

The key contributions of this work are as follows:

1) This article proposed LArcNet, an ultra-fast &
lightweight AI algorithm, to detect series AC arc faults
using raw current data collected from a test bench
as per the IEC62606 standard. This model combines
a teacher-student knowledge distillation method with
an efficient CNN architecture, achieving a high fault
detection accuracy of 99.31%.

2) The model avoids the pitfalls of traditional bottleneck
designs to ensure low computational cost. To
optimize and enhance LArcNet for real-time use
on resource-constrained devices, model compression
strategies including knowledge distillation and
mixed precision training were applied. These
adaptations, alongside TensorFlow Lite optimization
significantly minimized LArcNet’s memory usage and
computational load. The optimized LArcNet model
demonstrated an inference time of only 0.20 ms in
Raspberry Pi 4B and 3 ms in STM32H743ZI2 MCU
making it highly suitable for real-time fault detection
in embedded systems.

3) The proposed model is designed to detect arc faults
and identify the load types associated with these faults.
It achieves an 8-class load classification accuracy of
98.85%.

The rest of this paper is arranged as follows. Section
II provides a brief overview of the data collection method
and arc characteristics. The methodology and architecture of
the proposed LArcNet model are illustrated in section III.
Experimental settings and implementation details have been
depicted in section IV. Experimental results, discussions,
and hardware implementation have been provided in section
V. Comparison of the proposed model with state-of-the-art
models has been discussed in section VI. Section VII
concludes this paper and indicates the future research
prospect.

II. ARC FAULT DATABASE
A. DATA COLLECTION AND DESCRIPTION OF THE
DATABASE
The data for this study was collected from a test bench
designed following the IEC62606 standard [2], featuring a

FIGURE 2. Arc fault generation unit consisting of a stationary electrode
and a movable electrode.

microcontroller-based Arc Data Acquisition (DAQ) board.
Arc faults were initiated using an arc generator (Fig. 2) with
graphite and copper electrodes, as well as a cable specimen.
Current sensing was done through a current transformer (CT)
within a 220 V, 50 Hz power system. The dataset comprises
30,151 samples divided among four major load types, each
sampled at 83.33 kHz and subsequently downsampled to
10 kHz, resulting in 200-point 1D time series data per
sample normalized via Min-Max scaling. Additionally, 2,266
samples, including arc fault, normal, and transient conditions
across various load types, were added for training and testing
the model.

Arc faults were realistically generated to reflect common
issues like loose connections and insulation failures.
Resistors were added to comply with IEC62606 power
specifications. The loads were categorized into four types:
Resistive (RE), Motor (MO), Power Electronics-Enabled and
Switch-mode Power Supplies (PESMPS), and Gas Discharge
Lamps (GDL). Resistive loads exhibit near-sinusoidal
currents, motors display high inrush currents, PESMPS
include broad harmonic content from devices like dimmers
and computers, and GDL pertains to various lamps. The
dataset is detailed in Table 1. Arcing currents are labeled
with even numbers and normal currents with odd numbers
for precise identification of load type as well as an arc.

VOLUME , 3

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Paul et al.: Preparation of Papers for IEEE OPEN JOURNALS

FIGURE 3. Visualization of normal & arcing currents of a) resistive, b)
electric drill, c) thyristor type dimmer, d) switch-mode power supply, and
e) halogen lamp loads.

FIGURE 4. T-SNE projection of arc fault data (all load categories) in the
frequency domain.

B. CHARACTERISTICS OF ARC FAULTS AND
VISUALIZATION OF DATA
Arcing currents have distinct features compared to
normal load currents, including waveform distortions,

reduced amplitude, increased high-frequency harmonics, and
shorter conduction angles. These characteristics can vary
significantly between different load types, and some normal
currents (e.g., from dimmers) may resemble arcing currents
(e.g., from heaters), complicating identification. The unique
attributes of arcing include prolonged stagnation periods and
intensified waveform distortions, which are illustrated in Fig.
3 comparing normal and arcing currents.

To analyze arc fault data more thoroughly, Fast Fourier
Transformation (FFT) was applied at a 40 kHz sampling
rate to capture high-frequency details. Using t-Distributed
Stochastic Neighbor Embedding (T-SNE), the data was
visualized in a lower-dimensional space to maintain data
point relationships. This visualization, depicted in Fig. 4,
reveals a complex distribution of arcing and normal currents,
emphasizing the challenge of establishing a definitive
threshold for their distinction in the frequency domain.

DW 3x1

1x1x Ch/2

2x1x Ch + 1D stride

a) An EffNet block

DW 5x1 + MP

1x1x Ch/2

2x1x Ch + 1D stride

DW 1x3 + 1D MP

DW 3x3 + stride

1x1x Ch

b) An ArcNet-Lite block

DW 3x1 + stride

1x1x Ch

c) A MobileNet block
(for 2D data)

d) A Mobile-ArcNet block
(for 1D data)

DW 3x1

1x1x Ch/2

2x1x Ch + 1D stride

a) An EffNet block

DW 5x1 + MP

1x1x Ch/2

2x1x Ch + 1D stride

DW 1x3 + 1D MP

b) DADNet block

5x1x Ch + MP

a) Conventional CNN
 block

DW 5x1 + MP

1x1x Ch/2

2x1x Ch + 1D stride

b) PADNet-Lite block

DW 3x1

1x1x Ch/2

2x1x Ch + 1D stride

c) EffNet block

DW 5x1 + MP

1x1x Ch/2

2x1x Ch + 1D stride

DW 1x3 + 1D MP

b) Mobile-ArcNet
Block

d) LArcNet Block

5x1x Ch

DW 5x1 + stride

1x1x Ch

a) Conventional CNN
block

FIGURE 5. Neural network model building blocks a) conventional CNN, b)
Mobile-ArcNet [29], c) EffNet [30] and d) LArcNet. ‘DW’, ‘MP’ & ”Ch”
denote depthwise convolution, Max Pooling, and number of filters,
respectively.

III. PROPOSED METHODOLOGY
This section elaborates on the fundamental building block
of LArcNet, architecture and methodology underlying the
proposed LArcNet model. LArcNet integrates advanced
design strategies from both efficient neural network
architectures, such as EffNet [30] and network compression
techniques including knowledge distillation. The LArcNet
model is constructed using the knowledge distillation method
and a series of LArcNet blocks (as shown in Fig. 5d),
each with specific number of filters. This hybrid approach
combines the strengths of these methods to optimize
performance and reduce computational load. The model is
compared against a baseline CNN model constructed using
conventional CNN blocks (Fig. 5a) and the Mobile-ArcNet
model which was constructed following the MobileNet
architectural block (Fig. 5b).

A. BUILDING BLOCK OF THE PROPOSED MODEL
The LArcNet model employs an efficient network
architecture inspired by the EffNet block [30] as illustrated
in Fig. 5c. The building block of LArcNet is depicted in

4 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

5

Figure 4: The framework of teacher-student model for knowledge distillation

Proposed ArcNet-Lite Model: Our proposed ArcNet-

Lite model has its architectural building blocks similar to
that of Efficient-ArcNet building blocks. However, the
ArcNet-Lite uses the teacher-student knowledge distillation
technique of a deep neural network to make the proposed
model extremely lightweight. In the knowledge distillation
technique, there is a large teacher network that generally su-
pervises a small student network which mimics the teacher
network to achieve comparable or even superior perfor-
mance. There are three main components in the KD model
namely knowledge, teacher-student architecture, and distil-
lation of the knowledge. A generic framework of the teacher-
student model for knowledge distillation is depicted in Er-
ror! Reference source not found.. ArcNet-Lite used re-
sponse-based knowledge. The proposed model ArcNet-Lite
consists of a strong teacher model and a comparatively
weaker student model. The teacher model is stronger so that
it can gain as much information as possible from the data.
The knowledge is then distilled and transferred to the student
model which has a very simpler architecture however, the
main body structure (number of CNN and FC layers) of the
student model is similar to that of the teacher model. The
student model has a reduced number of filters and neurons
in the corresponding layers of the teacher model.

In the ArcNet-Lite model, the output layer has the ‘softmax’
function which converts the logits of each class, 𝑧, into a
probability, 𝑝 by comparing the logits of each class with
other logits.

𝑝 =

∑ ೕ

ೕ

 (1)

where T is the temperature. The value of T is usually set to
1. If the value of T is increased to a higher value, we get a
softer distribution of probability over other classes. The
teacher model is trained with a transfer set by setting a high
value of T in its softmax function. The knowledge is then
transferred to the distilled model by training it using a soft

target distribution in the transfer set for each case. For known
correct labels of all or part of the transfer sets, this technique
can be improved by training the distilled model by using a
weighted mean of 2 objective functions to generate the exact
labels. The first objective function, the cross-entropy having
soft targets in the distilled model, is computed by using the
same high temperature as used by the teacher model for soft
target. The 2nd objective function is the cross-entropy with
the correct labels which is computed by using the same logits
as used in the softmax function of the distilled model. The
temperature, however, is now set to 1. The cross-entropy
gradient dC/dzi of the distilled model can be expressed as

ఋ

ఋ

=
ଵ

்
(𝑝 − 𝑞) =

ଵ

்
൭

ൗ

∑

ೕ
ൗ

ೕ

−

ೠ
ൗ

∑
ೠೕ

ൗ
ೕ

൱ (2)

here, ui denotes the logits of the teacher model, and qi indi-
cates the probabilities of the soft targets with transfer train
temperature of T. For high temperature equation (2) can be
approximated as given below:

ఋ

ఋ

≈
ଵ

்
ቆ

ଵା
௭

்ൗ

ேା∑
௭ೕ

்ൗೕ

−
ଵା

௨
்ൗ

ேା∑
௨ೕ

்ൗೕ
ቇ (3)

Assuming the logits to have zero-mean for each transfer case
where, ∑ 𝑧 = ∑ 𝑢 = 0 , equation (3) can be simplified
further to:
ఋ

ఋ

≈
ଵ

ே்మ (𝑧 − 𝑢) (4)

Given that the logits are zero-mean for each transfer case,
the distillation is considered equivalent to minimize ½(zi-vi)2

in the high limit of the temperature T. The distillation pays
very less attention to logits matching at low values of the
temperature. Therefore, the loss function of the teacher
model is completely unconstrained for training and could be
noisy. Furthermore, a negative value of the logits furnishes

K
no

w
le

dg
e

Data

Transfer Distill

Knowledge Transfer Student Model
Teacher Model

FIGURE 6. The framework of teacher-student model for knowledge distillation.

Fig. 5d. Designed to minimize computational complexity,
the LArcNet block begins with a pointwise convolution
layer, followed by depthwise convolution and Max Pooling
in the subsequent sub-layer. This configuration significantly
reduces computational demands and the number of trainable
parameters compared to traditional CNN structures. Notably,
the pointwise convolution layer uses half the number of
filters typically found in standard CNN models. The
depthwise separable layer, sized 5x1, maintains the initial
filter count and is followed by a 1D Max Pooling layer
with a pool size of 2x1. The subsequent 2x1 convolutional
layer employs the full filter count with a 1D stride of
2. Diverging from MobileNet’s design, LArcNet avoids
stringent bottleneck structures, leading to a lighter model.
Focused on 1D time-series data, LArcNet omits certain
sub-layers from the EffNet block. Experiments demonstrated
that a 5x1 kernel size in the depthwise sub-layer achieves
a better balance between computational demand and
performance efficiency than the 3x1 size.

B. KNOWLEDGE DISTILLATION ALGORITHM
The proposed LArcNet model was constructed from
sequential LArcNet blocks and incorporates the
teacher-student knowledge distillation (KD) technique.
This method serves as a model compression strategy for
deep neural networks, enhancing the model’s efficiency
significantly. Knowledge distillation is predicated on
a paradigm where a larger, more complex teacher
network imparts knowledge to a smaller student network.
The student network strives to emulate the teacher
network’s functionality, often achieving comparable, if not
superior, performance. The KD technique is composed
of three fundamental elements: the knowledge itself,
the teacher-student architectural framework, and the
distillation process. A generalized schematic of the
teacher-student configuration for knowledge distillation has
been illustrated in Fig. 6. The proposed LArcNet model
employs response-based knowledge, featuring a robust
teacher model paired with a less complex student model.

The strength of the teacher model ensures a comprehensive
extraction of information from the dataset. This knowledge
is subsequently refined and imparted to the student model,
which, despite its simpler architecture, retains the core
structural framework of the teacher model, including the
convolutional neural network (CNN) and fully connected
(FC) layers. However, the student model differentiates itself
by reducing the number of filters and neurons in these
layers. The distilled student model, representing LArcNet,
was then deployed for arc fault detection.

Within the LArcNet architecture, the output layer employs
a ’softmax’ activation function. This function transforms
the logits, denoted as zi, corresponding to each class into
normalized probabilities, represented as pi. It accomplishes
this by exponentiating each logit, followed by normalization,
which involves dividing the exponentiated logit of a given
class by the sum of exponentiated logits for all classes.
This comparative process ensures that the probabilities of
all classes sum up to one, thereby providing a probabilistic
interpretation of the model’s outputs. pi is expressed as
follows,

pi =
e

zi
T∑

j e
zj
T

(1)

where, the term T denotes the temperature parameter
within the softmax function. Typically, T is assigned a
default value of 1. However, an increase in T results
in a ”softer” probability distribution across the classes,
effectively smoothing the output probabilities. The teacher
model undergoes training with a transfer set, utilizing an
elevated value of T within its softmax function to generate
softened class distributions. This approach facilitates the
transfer of knowledge to the student model, which is trained
using this softened probability distribution as a target for
each instance in the transfer set.

For instances where the correct labels are known within
the transfer set, the efficacy of this technique can be
augmented by training the student model with a weighted
average of two distinct objective functions. The first

VOLUME , 5

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Paul et al.: Preparation of Papers for IEEE OPEN JOURNALS

objective function is the cross-entropy with the softened
targets produced by the teacher model, calculated at the
elevated temperature used to soften the probabilities. The
second objective function is the cross-entropy with the actual
labels, computed using the logits from the softmax function
of the student model at the standard temperature of T = 1.

Suppose the comprehensive teacher model yields a
softened probability denoted by qi and possesses logits
labeled as ui. The cross-entropy loss in this framework can
be expressed as follows:

C(x) = −
∑
i

qi(x) log pi(x) (2)

where, x is the input feature. The cross-entropy gradient
∂C
∂zi

, of the distilled model [31], [33] can be expressed as

∂C

∂zi
=

∂

∂zi

(
−
∑
i

qi log pi

)

= −qi
1

pi

(
∂pi
∂zi

)
= −qi

1

pi

∂

∂zi

(
e

zi
T∑

j e
zj
T

)

= −qi
1

pi

 1
T e

zi
T

∑
j e

zj
T − 1

T

(
e

zi
T

)2
(∑

j e
zj
T

)2

= −qi
1

pi

1

T

 e
zi
T∑

j e
zj
T

−

(
e

zi
T∑

j e
zj
T

)2

=
1

T
(pi − qi)

=
1

T

(
e

zi
T∑
je

zj
T

− e
ui
T∑
je

uj
T

)

(3)

where, ui represents the logits derived from the teacher
model, while qi signifies the softened target probabilities
calculated at a transfer training temperature T . When
employing a high temperature setting, the gradient of the
cross-entropy loss with respect to the logits, zi, can be
approximated as follows:

∂C

∂zi
≈ 1

T

(
1 + zi

T

N +
∑

j
zj
T

−
1 + ui

T

N +
∑

j
uj

T

)
(4)

Under the assumption of zero-mean logits for each transfer
case as per Hinton et al. [31], where

∑
j zj =

∑
j uj = 0,

equation (4) simplifies to:

∂C

∂zi
≈ 1

NT 2
(zi − ui) (5)

With the logits assumed to have zero mean for each
transfer case, the process of distillation becomes analogous
to minimizing the squared error 1

2 (zi − ui)
2 in the

high-temperature limit of T . At lower temperatures, the
model’s focus on matching logits diminishes. Consequently,

the teacher model’s loss function is not explicitly constrained
during training, which may introduce noise. Moreover, logits
with negative values provide insightful information about the
knowledge encoded by the teacher model.

C. NETWORK ARCHITECTURE OF THE PROPOSED
MODEL
The LArcNet model architecture includes both a teacher and
a student network, each featuring three LArcNet blocks and
three fully connected (FC) layers. The teacher network uses
256, 512, and 512 filters across its blocks, with FC layers
of 128, 64, and 8 neurons, respectively. However, the final
model—referred to as LArcNet—is the student network,
optimized for deployment. This student network, designed
for efficiency, uses fewer filters—16, 32, and 32—and has
FC layers with 64, 32, and 8 neurons to balance performance
and simplicity without sacrificing accuracy Fig. 7 and Table
2 depict their architectures data flow respectively.

An aggressive bottleneck for data flow through a network
can lead to a significant reduction of important features,
which may negatively impact smaller, deep models. The
LArcNet model addresses this by minimizing computational
complexity and kFLOPs, achieved through an efficient block
design and knowledge distillation to reduce the number
of trainable parameters. Unlike the Efficient-ArcNet model,
which has a bottleneck factor of 4 (highlighted in red in
Table 2), the LArcNet student model limits the bottleneck
factor to a maximum of 2 (highlighted in green), promoting
smoother data flow and enhanced efficiency. This approach
enables the use of narrower models without compromising
the retention of critical feature information.

IV. EXPERIMENTAL SETTINGS AND IMPLEMENTATION
DETAILS
This section details the experimental setup and
implementation of the LArcNet model. The dataset
was split into training, testing, and validation sets in a
75:15:10 ratio, with labels converted to OneHot encoding.
Model inputs consisted of raw current data sampled at
10 kHz, normalized using Min-Max normalization.

The model training used mixed precision, with 16-bit
half-precision for data processing and 32-bit single-precision
for weight updates and loss scaling. Both the teacher and
student models were trained over 300 epochs with a batch
size of 100, utilizing an Adam Optimizer with learning rate
of 0.001. Parameters for the distillation process included
an alpha value of 0.5 and a temperature of 20, which
provided nuanced guidance and helped prevent overfitting.
The training and validation accuracies and losses for both
models were closely monitored, as depicted in Fig. 8. The
training and validation trendlines closely align, indicating no
overfitting.

Baseline and Mobile-ArcNet models underwent 250
epochs of training with an adaptive learning rate strategy
starting from 0.001, adjusted based on validation loss. Both

6 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

KD Teacher & Student Network for ArcNet-Lite (IEEE TIA)

ArcNet-Lite (Teacher Model)

Max Pooling 2x1 1D Depthwise Convolution;
filters=Ch/2 @ 5x1

Flatten
1D Pointwise Convolution;
filters=Ch/2 @ 1x1

128
64

200x1
Input

1D Convolution with stride of 2;
filters=Ch @ 2x1

 8
Output

a) Teacher network

200x128 49x256 49x256 11x512 11x256 1x512

Ch=256 Ch=512 Ch=512

64

32
200x1
Input

 8
Output

b) Student network

200x8 49x16 49x16 11x32 11x16 1x32

Ch=16 Ch=32 Ch=32

64 32
200x1
Input

 8
Output

b) Student network

200x8 49x16
49x16 11x32

11x16 1x32

Ch=16 Ch=32 Ch=32
FIGURE 7. Architectures of LArcNet (a) teacher and (b) student networks featuring three LArcNet blocks each. Blocks include a pointwise convolution
with Ch/2 filters, a 5x1 depthwise convolution, a 2x1 Max Pooling layer, and a 2x1 convolution with Ch filters, ending with three fully connected layers,
the last containing 8 neurons.

TABLE 2. Network architecture of LArcNet (student model) compared with Baseline, Mobile-ArcNet, and Efficient-ArcNet models. FC (64,32,8) indicates

three fully connected layers with 64, 32, and 8 neurons, targeting 8 output classes for four load groups. ‘dw’ and ‘mp’ represent depthwise convolution

and Max Pooling layers. Efficient-ArcNet features a bottleneck factor of 4 (red), while LArcNet’s bottleneck factor is up to 2 (green).

Baseline Mobile-ArcNet Efficient-ArcNet [13] LArcNet (Proposed)

Layers Params Layers Params Layers Params Layers Params

5x1x96 + mp of 2 576 5x1x96 + mp of 2 576
1x1x48
dw 5x1 + mp of 2
2x1x96 + stride of 2

96
2592
9,312

1x1x8
dw 5x1 + mp of 2
2x1x16 + stride of 2

16
112
272

5x1x128 + mp of 2 61,568
dw 5x1 + stride of 2
1x1x128

12,896
16,512

1x1x64
dw 5x1 + mp of 2
2x1x128 + stride of 2

9,208
4,480

16,512

1x1x16
dw 5x1 + mp of 2
2x1x32 + stride of 2

272
352

1,056

5x1x128 + mp of 2 82,048
dw 5x1 + stride of 2
1x1x128 + mp of 4

17,152
16,512

1x1x64
dw 5x1 + mp of 2
2x1x128 + stride of 2

4,480

16,512
8,256

1x1x16
dw 5x1 + mp of 2
2x1x32 + stride of 2

528

352
1,056

FC (64,32,8) 17,4440 FC (64,32,8) 41,568 FC (64,32,8) 10,600 FC (64,32,8) 4,456

Total Params 318,016 107,016 79,048 8,472

models used a batch size of 100, a patience parameter of 10,
and a reduction factor of 0.1 for learning rate adjustments.

All models were trained using TensorFlow with Keras,
employing “categorical crossentropy” as the loss function
and ReLU in the convolution layers. The output layers used
the “softmax” activation function. Mixed-precision training
involved converting data samples to 16-bit floating points for
efficiency. Extensive hyperparameter tuning optimized the
model’s performance.

The experimental circuit diagram for offline analysis of
arc fault detection and implementation using Raspberry Pi
4B along with a few test loads are shown in Fig. 9. The
model is also tested on the STM32H743ZI2 platform.

V. EXPERIMENTAL RESULTS AND DISCUSSION
This section presents the experimental results of the LArcNet
model along with the Baseline and Mobile-ArcNet models.

VOLUME , 7

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Paul et al.: Preparation of Papers for IEEE OPEN JOURNALS

epoch train_loss train_acc val_loss val_acc
1 1.9241 0.2796 1.9159 0.279
2 1.9137 0.2805 1.9151 0.279
3 1.913 0.2805 1.9151 0.279
4 1.9126 0.2805 1.9131 0.279
5 1.5994 0.4003 1.2141 0.516
6 0.9195 0.6448 0.7599 0.725
7 0.5076 0.8055 0.5001 0.813
8 0.3315 0.8753 0.2673 0.897
9 0.2262 0.9191 0.1929 0.925

10 0.2136 0.9257 0.1666 0.945
11 0.1385 0.9501 0.1529 0.948
12 0.1362 0.9503 0.1601 0.947
13 0.1108 0.9603 0.1162 0.959
14 0.1086 0.963 0.1244 0.958
15 0.102 0.9638 0.1455 0.953
16 0.0834 0.9713 0.1222 0.957
17 0.1142 0.963 0.0983 0.965
18 0.0588 0.9796 0.1104 0.963
19 0.0673 0.9781 0.1071 0.967
20 0.0699 0.9767 0.092 0.971
21 0.0699 0.9783 0.0806 0.972
22 0.0612 0.98 0.0867 0.976
23 0.0653 0.9773 0.2286 0.93
24 0.0832 0.9719 0.0909 0.969
25 0.06 0.9805 0.1988 0.947
26 0.0809 0.9731 0.1716 0.95
27 0.0539 0.9819 0.0797 0.977
28 0.0543 0.9831 0.1048 0.971
29 0.0479 0.9842 0.1093 0.968
30 0.0508 0.9824 0.1183 0.967
31 0.0529 0.9827 0.1278 0.962
32 0.0769 0.9754 0.0824 0.974
33 0.0408 0.9864 0.0767 0.982
34 0.04 0.9862 0.0959 0.976
35 0.0548 0.9826 0.0861 0.974

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

0 100 200 300

Ac
cu

ra
cy

Epoch

Training Accuracy

Validation Accuracy

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 50 100 150 200 250 300

Lo
ss

Epoch

Training Los

Validation Loss

(a) Teacher model: training and validation accuracy

epoch train_loss train_acc val_loss val_acc
1 1.9241 0.2796 1.9159 0.279
2 1.9137 0.2805 1.9151 0.279
3 1.913 0.2805 1.9151 0.279
4 1.9126 0.2805 1.9131 0.279
5 1.5994 0.4003 1.2141 0.516
6 0.9195 0.6448 0.7599 0.725
7 0.5076 0.8055 0.5001 0.813
8 0.3315 0.8753 0.2673 0.897
9 0.2262 0.9191 0.1929 0.925

10 0.2136 0.9257 0.1666 0.945
11 0.1385 0.9501 0.1529 0.948
12 0.1362 0.9503 0.1601 0.947
13 0.1108 0.9603 0.1162 0.959
14 0.1086 0.963 0.1244 0.958
15 0.102 0.9638 0.1455 0.953
16 0.0834 0.9713 0.1222 0.957
17 0.1142 0.963 0.0983 0.965
18 0.0588 0.9796 0.1104 0.963
19 0.0673 0.9781 0.1071 0.967
20 0.0699 0.9767 0.092 0.971
21 0.0699 0.9783 0.0806 0.972
22 0.0612 0.98 0.0867 0.976
23 0.0653 0.9773 0.2286 0.93
24 0.0832 0.9719 0.0909 0.969
25 0.06 0.9805 0.1988 0.947
26 0.0809 0.9731 0.1716 0.95
27 0.0539 0.9819 0.0797 0.977
28 0.0543 0.9831 0.1048 0.971
29 0.0479 0.9842 0.1093 0.968
30 0.0508 0.9824 0.1183 0.967
31 0.0529 0.9827 0.1278 0.962
32 0.0769 0.9754 0.0824 0.974
33 0.0408 0.9864 0.0767 0.982
34 0.04 0.9862 0.0959 0.976
35 0.0548 0.9826 0.0861 0.974

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

0 100 200 300

Ac
cu

ra
cy

Epoch

Training Accuracy

Validation Accuracy

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 50 100 150 200 250 300

Lo
ss

Epoch

Training Los

Validation Loss

(b) Teacher model: training and validation lossEpoch Train_Acc Student_lossDistillation_LossVal_Acc Val_Loss
1 0.6432 0.9469 0.0137 0.6697 1.1762
2 0.7104 0.7748 0.0205 0.7496 0.7317
3 0.7475 0.6677 0.024 0.7687 0.6492
4 0.7825 0.5822 0.0254 0.8209 0.4101
5 0.8141 0.5066 0.026 0.837 0.447
6 0.8387 0.4476 0.0252 0.8614 0.3129
7 0.8507 0.4182 0.0243 0.8651 0.2453
8 0.8612 0.3859 0.0242 0.8885 0.2492
9 0.875 0.3561 0.0239 0.8736 0.2834

10 0.8761 0.3461 0.0236 0.8571 0.1547
11 0.884 0.3279 0.0234 0.8898 0.3791
12 0.8914 0.3113 0.0231 0.8928 0.295
13 0.8975 0.2919 0.0236 0.9066 0.1779
14 0.9023 0.2812 0.0232 0.8816 0.4392
15 0.9027 0.2756 0.023 0.9165 0.3136
16 0.9056 0.2719 0.0229 0.9215 0.2183
17 0.9125 0.2486 0.0231 0.9195 0.2387
18 0.9201 0.2312 0.0231 0.9122 0.2555
19 0.9118 0.2547 0.0225 0.8878 0.6965
20 0.9169 0.2383 0.0217 0.9139 0.3685
21 0.9233 0.2232 0.0222 0.9221 0.2834
22 0.9242 0.2188 0.0218 0.9195 0.1059
23 0.9272 0.2086 0.0222 0.9324 0.155
24 0.9301 0.205 0.0216 0.9258 0.2103
25 0.9286 0.2069 0.0214 0.9393 0.1187
26 0.9327 0.1975 0.0211 0.9317 0.1114
27 0.9329 0.1941 0.0206 0.9274 0.2701
28 0.9304 0.1962 0.0205 0.9284 0.1438
29 0.9367 0.1877 0.0207 0.94 0.2874
30 0.9384 0.1784 0.0201 0.9456 0.1234
31 0.9432 0.1673 0.0205 0.9416 0.1206
32 0.9389 0.1793 0.0203 0.9215 0.3137
33 0.9452 0.1671 0.0202 0.9416 0.5722
34 0.9406 0.1705 0.02 0.9122 0.6689
35 0.9476 0.1552 0.0198 0.9426 0.2127

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300

Ac
cu

ra
cy

Epoch

Training Accuracy

Validation Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

Lo
ss

Epoch

Training Los

Validation Loss

(c) Student model: training and validation accuracy

Epoch Train_Acc Student_lossDistillation_LossVal_Acc Val_Loss
1 0.6432 0.9469 0.0137 0.6697 1.1762
2 0.7104 0.7748 0.0205 0.7496 0.7317
3 0.7475 0.6677 0.024 0.7687 0.6492
4 0.7825 0.5822 0.0254 0.8209 0.4101
5 0.8141 0.5066 0.026 0.837 0.447
6 0.8387 0.4476 0.0252 0.8614 0.3129
7 0.8507 0.4182 0.0243 0.8651 0.2453
8 0.8612 0.3859 0.0242 0.8885 0.2492
9 0.875 0.3561 0.0239 0.8736 0.2834

10 0.8761 0.3461 0.0236 0.8571 0.1547
11 0.884 0.3279 0.0234 0.8898 0.3791
12 0.8914 0.3113 0.0231 0.8928 0.295
13 0.8975 0.2919 0.0236 0.9066 0.1779
14 0.9023 0.2812 0.0232 0.8816 0.4392
15 0.9027 0.2756 0.023 0.9165 0.3136
16 0.9056 0.2719 0.0229 0.9215 0.2183
17 0.9125 0.2486 0.0231 0.9195 0.2387
18 0.9201 0.2312 0.0231 0.9122 0.2555
19 0.9118 0.2547 0.0225 0.8878 0.6965
20 0.9169 0.2383 0.0217 0.9139 0.3685
21 0.9233 0.2232 0.0222 0.9221 0.2834
22 0.9242 0.2188 0.0218 0.9195 0.1059
23 0.9272 0.2086 0.0222 0.9324 0.155
24 0.9301 0.205 0.0216 0.9258 0.2103
25 0.9286 0.2069 0.0214 0.9393 0.1187
26 0.9327 0.1975 0.0211 0.9317 0.1114
27 0.9329 0.1941 0.0206 0.9274 0.2701
28 0.9304 0.1962 0.0205 0.9284 0.1438
29 0.9367 0.1877 0.0207 0.94 0.2874
30 0.9384 0.1784 0.0201 0.9456 0.1234
31 0.9432 0.1673 0.0205 0.9416 0.1206
32 0.9389 0.1793 0.0203 0.9215 0.3137
33 0.9452 0.1671 0.0202 0.9416 0.5722
34 0.9406 0.1705 0.02 0.9122 0.6689
35 0.9476 0.1552 0.0198 0.9426 0.2127

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300

Ac
cu

ra
cy

Epoch

Training Accuracy

Validation Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300

Lo
ss

Epoch

Training Los

Validation Loss

(d) Student model: training and validation loss
FIGURE 8. Training and Validation Accuracy and Loss for teacher and student models. The left figures show the accuracy metrics, while the right
figures display the loss metrics for both models over the training epochs.

A. EXPERIMENTAL RESULTS
In addition to testing the LArcNet model, other comparative
lightweight and baseline models were also verified using the
same dataset. LArcNet FFT model has the same architecture
as the student model except it has frequency domain
data as input. All models were trained on the same
dataset. The Baseline model, comprising only conventional
convolutional blocks, has the highest number of trainable
parameters and limited computational efficiency, despite
the inclusion of Max Pooling layers. Conversely, the
Mobile-ArcNet model has a higher parameter count (107.2k)
compared to LArcNet and was not trained using knowledge
distillation. The student model of LArcNet, however, utilized
the knowledge distillation technique, benefiting from the
comprehensive teacher model. The LArcNet student model
features the smallest number of trainable parameters among
the models, totaling only 8.4k. Both the Raspberry Pi 4B
and the STM32H743ZI2 microcontrollers were used model
implementation.

The kFLOPS (kilo floating-point operations per second)
were estimated for each model to assess computational
complexity. FLOPs is a measure of the performance of
a computer system. It is used to estimate the amount
of computational resources it requires to perform a

certain task. Higher FLOPs values correspond to more
complex computations. In comparison to the Baseline
model, the Mobile-ArcNet model requires only 24%
of the computational resources (0.24 factor), while the
LArcNet model requires just 1% (0.01 factor), with a total
computational load of only 182.27 kFLOPs. These results
indicate that the proposed LArcNet model has the lowest
computational complexity, making it highly lightweight.
Detailed results are presented in Table 3.

Accuracy-wise, LArcNet achieved the highest arc fault
detection accuracy of 99.31%. The baseline model scored
the lowest in arc fault detection at 99.22% (Table 3).
The Load classification and arc fault classification accuracy
using the LArcNet model is depicted in the confusion
matrix (Table 4), highlighting the accuracy for 8-class
classifications of different load groups and misclassification
percentages. Even-numbered labels indicate arc faults, and
odd-numbered labels normal currents. The GDL loads
demonstrated the lowest accuracy due to their characteristics,
where normal currents can resemble arc faults, leading to
significant misclassification. Approximately 10.23% GLD
arcs are mistakenly classified as resistive arcs. Overall binary
classification accuracy for arc fault detection was calculated

8 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

TABLE 3. Experimental results of LArcNet and other models. Runtime is evaluated in Raspberry PI 4B.

Modela 8 Class Accuracy (%) Arc Classification
Accuracy (%)

Trainable
Params

kFLOPs Factor Runtime (ms)

KD Teacher 99.14 99.25 1013.83 k 35,977.4 1.87 *

Baseline 98.96 99.22 318.63 k 19205.4 1 3.27

Mobile-ArcNet 99.00 99.29 107.02 k 4542.93 0.24 1.43

LArcNet FFTc - 94.63 14.62 k 379.52 0.02 1.00b

SVM Model - 99.20 - - - 15

LArcNet (Proposed)d 98.85 99.31 8.4 k 182.27 0.01 0.20
a All models are optimized using Lite-RT optimization tool. Data normalization per sample takes only 0.8µs.
b Time taken to perform FFT per sample is 0.67 ms and inference time is 0.33 ms
c Input to the model is 1D data in the frequency domain (40 kHz)
d Input to the model is raw data with Min-Max normalization.

* Didn’t implement in MCU due to heavy computational cost (kFLOPS).

TABLE 4. Confusion matrix for 8 class classification using LArcNet model. Correctly predicted percentage values are diagonal bold face numbers. Even

numbered labels are arc classes and odd numbered labels represent normal classes.

Predicted Class

Label 0 1 2 3 4 5 6 7

Tr
ue

C
la

ss

Resistive

loads

0 97.63% 1.74% 0.47% 0% 0% 0% 0% 0.16%

1 0.47% 99.29% 0% 0% 0% 0% 0% 0.24%

Motor Loads
2 0.35% 0% 98.25% 0.70% 0.35% 0% 0.35% 0%

3 0% 0% 0% 100% 0% 0% 0% 0%

Power electronics &

SMPS loads

4 0.23% 0% 0.46% 0% 97.23% 2.08% 0% 0%

5 0% 0% 0% 0% 0% 100% 0% 0%

Gas Discharge

lamps

6 10.23% 0% 0% 1.14% 0% 0% 87.50% 1.14%

7 0% 0% 0% 0% 0% 0% 0% 100%

by summing correctly classified arc faults and dividing by
the total number of test samples.

Precision, recall, and binary classification accuracy for
arc and normal current samples were determined without
considering load classification. The precision and recall
matrix of the LArcNet model, presented in Table 5, was
derived from Table 4. High precision and recall values
indicate the model’s practicality and low rate of false
positives.

The teacher model, with over 1,013 k trainable parameters
and an 11 MB file size, serves as a robust, high-accuracy
benchmark, achieving approximately 99.14% accuracy for
load classification and 99.25% accuracy for arc fault
classification. The smaller, distilled student model, with only
8.4 k parameters and a file size of about 90 kB, demonstrates
the effectiveness of knowledge distillation, achieving an
impressive 99.31% accuracy for arc fault classification.
The primary benefit of knowledge distillation is creating a
high-performance, lightweight model that operates efficiently
on resource-limited devices, such as edge processors.

While the teacher model achieves high accuracy, it
is computationally intensive and unsuitable for real-time
or embedded applications due to its large size and
high complexity. The distillation process transfers critical,
high-level feature representations from the teacher to the
student model, enabling the student to approximate the
teacher’s performance with a fraction of the computational
resources. This transfer allows the student model to maintain
high accuracy in arc fault detection while being deployable
in environments where storage, memory, and computational
capacity are constrained, which would not be feasible with
the teacher model alone.

Furthermore, experiments exploring additional
simplifications of the student model reveal that while
some runtime gains are achievable, they come at the
cost of a significant drop in accuracy, falling to around
95%. Thus, the teacher-student approach with knowledge
distillation represents an optimal solution, providing a
compact, deployable model that retains high accuracy, a
critical requirement for real-world applications.

VOLUME , 9

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Paul et al.: Preparation of Papers for IEEE OPEN JOURNALS

(a) Experimental diagram

(b) Pictures of a few test loads
FIGURE 9. Experimental platform of arc fault detection and a few test
loads.

The LArcNet model adopts a streamlined yet highly
efficient structure, designed to leverage knowledge
distillation for enhanced arc fault detection. It includes
a large and comprehensive teacher model that excels at
capturing arc features with high accuracy, allowing the
student model to achieve a similar level of performance
while remaining lightweight. The Mobile-ArcNet model
retains its original first layer without a depthwise layer,
whereas LArcNet replaces this first layer with more efficient
design blocks, significantly reducing computational load.
Additionally, the model incorporates a bottleneck factor of
2, which optimizes data flow and reduces computational
complexity. LArcNet uses pointwise and depthwise
separable convolutions with a moderate bottleneck to reduce
kFLOPs, creating a compact, accurate model for series AC
arc fault detection. This design lowers computational costs

and runtime, making it ideal for real-time, resource-limited
applications.

TABLE 5. Precision, recall, and accuracy of LArcNet

Predicted Class

A
ct

ua
l

C
la

ss Arc Normal Total
Arc 1413 25 1438

Normal 6 3069 3075
Total 1419 3094 4513

Precision 99.58%
Recall 98.26%

F1 Score 98.92%
Overall accuracy 99.31%

B. MODEL OPTIMIZATION AND HARDWARE
IMPLEMENTATION
TensorFlow Lite (Lite-RT) [34], an open-source deep
learning framework, offers tools for running TensorFlow
models on low-power edge devices, such as microcontrollers
and mobile devices with limited resources. Lite-RT enables
model optimization to achieve reduced binary size and
latency. The student model of LArcNet has been optimized
using Lite-RT, resulting in a substantial decrease in binary
size (from 600 kB to 49 kB) and enhanced efficiency for
edge device operations. The optimization and conversion to
a Lite-RT model were conducted using TensorFlow’s Python
API.

The optimized LArcNet model was implemented on
a Raspberry Pi 4B to assess its performance. This
process involved loading the Lite-RT model, initializing the
interpreter, and allocating tensors to set up the model’s
input and output specifications. The model was then tested
using all test samples, with performance measured across
five runs. Results are presented in Table in Table 6. The
average inference time per sample for the optimized LArcNet
model was notably swift, at just 0.20 ms. This optimization
process did not compromise accuracy. The recorded test time
encompasses sample retrieval, Min-Max normalization, label
fetching, and sample testing. Fig. 11 provides a graphical
comparison of runtime and accuracy across different models,
illustrating that LArcNet surpasses other models in runtime
efficiency. Additionally, the variance in runtime across five
runs was low (average variance of 0.00296), indicating
consistent performance.

Parallel to LArcNet, the Baseline, Mobile-ArcNet, and
LArcNet FFT models were also optimized and their
inference times were assessed. Table 3 summarizes the
inference time per sample for these models. LArcNet
demonstrates superior performance in both accuracy
and runtime, confirming its suitability for real-time
practical implementation in commercial MCUs. The runtime
assessments were based on testing samples covering
one cycle of power frequency, underscoring the model’s
efficiency for real-time applications.

10 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

TABLE 6. Runtime per sample for LArcNet model using Raspberry Pi 4B MCU.

Sl. No. Average runtime (ms) Largest runtime (ms) Smallest runtime (ms) Variance of Runtime

1 0.201 1.24 0.199 0.0004

2 0.20 1.176 0.2 0.0002

3 0.202 1.201 0.199 0.0003

4 0.199 1.300 0.2 0.0004

5 0.203 1.258 0.198 0.00035

Average 0.20 1.217 0.198 0.000365

Upon deployment of the proposed model on the
STM32H743ZI2 MCU, the system utilizes 57.17 kB of flash
memory and 13.04 kB of RAM, demonstrating a compact
footprint suitable for embedded applications. The model’s
complexity is quantified at 95,544 Multiply-Accumulate
Cycles (MACC), reflecting its computational demand. On
average, one sample inference takes about 3 ms (see Table 7),
underscoring the model’s capability to perform in real-time
scenarios. These metrics highlight the model’s efficiency
and compatibility with resource-constrained environments,
emphasizing its potential for integration into real-time
systems where memory and processing power are limited.
No compression techniques were applied in this instance,
yet the model maintains a balance between performance
and resource usage, confirming its practical applicability in
such settings. Analysis of these deployment characteristics
has been completed, affirming the model’s readiness for
operational use.

TABLE 7. Runtime comparison of LArcNet model in different platforms.

Model Platform Average runtime (ms)

LArcNet Raspberry PI 4B 0.2

LArcNet STM32H743ZI2 3

C. TESTING WITH EXPANDED DATA CLASSES
The proposed LArcNet model was evaluated using an
expanded set of load classes, including diverse electrical
devices such as power drills, blow heaters, vacuum cleaners,
electric kettles, jigsaws, food processors, computers, Dolce
Gusto espresso machines, multifunctional printers, and
pumps. This data was derived from the study cited in [35]
and supplemented with additional data collected for this
research. A total of 2,146 new samples (1,042 arc and 1,104
normal) were added to the database for training, testing, and
evaluation. Additionally, 120 samples of transient condition
data were tested using the proposed model. The evaluation
results are summarized in Table 8. When tested with this
comprehensive dataset, the model achieved an accuracy
of 98.17%. Furthermore, under transient conditions with a
limited sample set, the model successfully detected arc faults
with an accuracy of 97.88%. These results underscore the
robustness of LArcNet in handling a variety of operational
scenarios and load conditions.

TABLE 8. Results of LArcNet model with expanded classes of data.

Data condition Samples
Accuracy

(%)

All classes 4942 98.17

Transient condition 120 97.88

D. RESULTS USING SUPPORT VECTOR MACHINE
ALGORITHM
As a part of this study, a Support Vector Machine (SVM)
with a radial basis function (RBF) kernel was employed
to classify the dataset. Hyperparameter optimization
was conducted using GridSearchCV, which systematically
evaluates a predefined grid of hyperparameters to identify
the best-performing configuration. The SVM model was
trained and evaluated using 2-fold cross-validation, focusing
on optimizing the C and gamma parameters. The results
indicated that the optimal hyperparameters were C = 100
and gamma = 0.1, resulting in a cross-validation accuracy
of 99.16%. When applied to an independent test set, the
model achieved an accuracy of 99.20%, indicating that the
model’s performance on unseen data is consistent with the
cross-validation results. These findings suggest that the SVM
with an RBF kernel can also be well-suited for the binary
classification task. The learning curve as shown in Fig. 10
demonstrates that the SVM model is not overfitted with
these hyperparameter settings. On Raspberry PI 4B model
the SVM model takes around 15 ms (see Table 3) to infer
a sample. In terms of inference time it is higher than the
proposed LArcNet model.

VI. COMPARISON OF ARC FAULT DETECTION METHODS
This section provides a comprehensive comparison of
LArcNet with other recent methodologies in AC arc fault
detection, as shown in Table 9. Reference [12] initially
reported the longest runtime among the compared techniques
at 31 ms per sample due to a lack of optimization. This
method was optimized in this study, reducing its runtime
significantly to 2.64 ms, demonstrating potential efficiency
gains through optimization. Other studies, such as those in
References [15] and [38], reported good arc fault detection
accuracies (98.70% & 94.30%, respectively). However, they
do not provide comprehensive implementation details on
low-end commercial MCUs which is crucial for practical
applications. SAFNet [27] employs a 2D input that increases

VOLUME , 11

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Paul et al.: Preparation of Papers for IEEE OPEN JOURNALS

TABLE 9. Comparison of attributes with prior methods. The best results are boldfaced.

Model
Samples
Tested

Accuracy (%)
Trainable
Params

kFLOPs
Sampling Rate

(kHz)
Runtime

(ms)
Implementation

Device

SAFNet [27] 4950 99.44 593.32 k 12202.24 2.5 26.48 Jetson Nano

ArcNet [12] 4513 99.47 189.64 k 18209.5 10 31 Raspberry PI 3B

RF-DNN [36] 1759 97.5 - - 10 18.95 TMS320F28335

HTFNN [14] 1000 99.00 - - - 3 STM32F407ZG

FCNN [37] - 98.05 - - 5 6.38 Jetson Nano

LightGBM [11] 2400 97.06 - - - 300 Jetson Nano

LArcNet (Ours) 4513 99.31 8.4 k 182.27 10
0.20 Raspberry PI 4B

3.00 STM32H743ZI2

FIGURE 10. Learning curve of SVM model to check overfitting.

FIGURE 11. Comparison of accuracy & runtime of different models.

the computational load, resulting in a slower inference time
of 26.48 ms per sample compared to LArcNet. It also takes
more than 2.26 MB memory space which is unsuitable for
low-end MCUs. Additionally, SAFNet’s testing on the Jetson
Nano, which has superior GPU capabilities compared to
the Raspberry Pi 4, focuses on a single load type, limiting

its applicability compared to LArcNet’s multi-load capacity.
Reference [11] proposed a method with lower accuracy and a
higher computational burden when implemented on a similar
platform as LArcNet.

In contrast, LArcNet not only identifies various load
groups but also detects arc faults across four major
load groups with an accuracy of 99.31%. It achieves
a remarkably low runtime of only 0.2 ms per sample.
This efficiency results from LArcNet’s triple simplification
approach: architectural optimization to reduce computational
load, model compression via knowledge distillation to
enhance performance, and Lite-RT optimization to decrease
binary size and latency. This comprehensive strategy makes
LArcNet highly suitable for real-time applications in
resource-constrained environments. Contemporary arc fault
detection methods are also compared in Fig. 11. Overall,
LArcNet stands out as a leading solution in arc fault
detection, offering a good balance between high accuracy
and low computational demand, making it ideal for practical
implementation in edge devices.

VII. CONCLUSIONS
In this study, an innovative and ultra-fast algorithm
for high-performance arc fault detection, LArcNet,
was proposed. LArcNet combines an efficient network
architecture with advanced model compression techniques.
Using a teacher-student knowledge distillation approach,
it processes raw current inputs to detect arc faults with
minimal computational complexity and high efficiency.
Its lightweight yet robust structure achieves arc fault
detection accuracies comparable to traditional models like
Baseline CNN and Mobile-ArcNet. The model attains a load
classification accuracy of 98.85% and an arc fault detection
accuracy of 99.31%. While traditional CNN-based models
may offer similar accuracy, they do so at a significantly
higher computational cost compared to LArcNet.

Converting LArcNet into a TensorFlow Lite model
significantly reduced its binary size and latency, making it
ideal for real-time applications. When tested on a Raspberry
Pi 4B and an STM32 MCU, the optimized LArcNet model

12 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

demonstrated inference times of just 0.20 ms and 3 ms per
sample, respectively. This efficiency underscores LArcNet’s
suitability for commercial deployment and its effectiveness
in detecting series AC arc faults. Additionally, the model
can identify specific load types associated with arc faults.
With a low memory footprint and minimal computational
demands, LArcNet is well-suited for implementation on
cost-effective commercial microcontrollers, providing an
economical solution for arc fault detection.

Overall, LArcNet achieves high accuracy with
significantly reduced inference times, making it highly
suitable for resource-constrained embedded systems. Future
work will focus on enhancing LArcNet’s adaptability
to handle unknown load scenarios, further increasing
its robustness and applicability across a wider range of
real-world conditions.

REFERENCES
[1] T. Covington, “House FIre Statistics and Facts in 2020,” Apr 2021.

[Online]. Available: https://tinyurl.com/bdzne7rt
[2] I. E. Commission et al., “General requirements for arc fault detection

devices; IEC 62606,” International Electrotechnical Commission:
Geneva, Switzerland, 2017.

[3] UL1699, “Standard for Safety Arc Fault Circuit-Interrupter,”
Underwriters Laboratories Inc., 2017.

[4] NEC, “National Electrical Code Handbook, 2014 ed.” National Fire
Protection Association, 2014.

[5] G. Artale, A. Cataliotti, V. Cosentino, and G. Privitera, “Experimental
characterization of series arc faults in ac and dc electrical circuits,”
in 2014 IEEE International Instrumentation and Measurement
Technology Conference (I2MTC) Proceedings. IEEE, 2014, pp.
1015–1020.

[6] Y. Wang, F. Zhang, S. Zhang, and G. Yang, “A novel diagnostic
algorithm for ac series arcing based on correlation analysis of
high-frequency component of wavelet,” COMPEL-The international
journal for computation and mathematics in electrical and electronic
engineering, 2017.

[7] D. O. Anggriawan, A. E. Rheinanda, M. K. Khafidli, E. Prasetyono,
and N. A. Windarko, “Series arc fault breaker in low voltage
using microcontroller based on fast fourier transform,” EMITTER
International Journal of Engineering Technology, vol. 9, no. 2, pp.
239–251, 2021.

[8] P. Qi, S. Jovanovic, J. Lezama, and P. Schweitzer, “Discrete wavelet
transform optimal parameters estimation for arc fault detection in
low-voltage residential power networks,” Electric power systems
research, vol. 143, pp. 130–139, 2017.

[9] M. K. Khafidli, E. Prasetyono, D. O. Anggriawan, A. Tjahjono, and
M. H. R. A. Syafii, “Implementation AC series arc fault recognition
using mikrokontroller based on fast Fourier transform,” in 2018
International Electronics Symposium on Engineering Technology and
Applications (IES-ETA). IEEE, 2018, pp. 31–36.

[10] W. Chi-Jui, C. Yung-Sung, C. Hui-Hsiang, and S. Wen-Yuan,
“Investigation and Test of Arc Fault Circuit Interrupter Applied
to Electric Power Circuits and Devices in Taiwan,” Journal of
Occupational Safety and Health, vol. 20, no. 1, pp. 116–124, 2012.

[11] Y. Meng, Q. Yang, S. Chen, Q. Wang, and X. Li, “Multi-branch ac arc
fault detection based on iceemdan and lightgbm algorithm,” Electric
Power Systems Research, vol. 220, p. 109286, 2023.

[12] Y. Wang, L. Hou, K. C. Paul, Y. Ban, C. Chen, and T. Zhao,
“ArcNet: Series AC Arc Fault Detection Based on Raw Current
and Convolutional Neural Network,” IEEE Transactions on Industrial
Informatics, 2021.

[13] K. C. Paul, T. Zhao, C. Chen, Y. Ban, and Y. Wang, “Efficient-ArcNet:
Series AC Arc Fault Detection using Lightweight Convolutional
Neural Network,” in 2021 IEEE Energy Conversion Congress and
Exposition (ECCE). IEEE, 2021, pp. 1327–1333.

[14] Y. Wang, F. Zhang, X. Zhang, and S. Zhang, “Series AC Arc Fault
Detection Method Based on Hybrid Time and Frequency Analysis and

Fully Connected Neural Network,” IEEE Transactions on Industrial
Informatics, vol. 15, no. 12, pp. 6210–6219, 2018.

[15] W. Li, Y. Liu, Y. Li, and F. Guo, “Series Arc Fault Diagnosis and
Line Selection Method Based on Recurrent Neural Network,” IEEE
Access, vol. 8, pp. 177 815–177 822, 2020.

[16] J. Jiang, W. Li, Z. Wen, Y. Bie, H. Schwarz, and C. Zhang, “Series Arc
Fault Detection Based on Random Forest and Deep Neural Network,”
IEEE Sensors Journal, 2021.

[17] M. A. Abdulrachman, E. Prasetyono, D. O. Anggriawan, and
A. Tjahjono, “Smart detection of AC series arc fault on home voltage
line based on fast Fourier transform and artificial neural network,” in
2019 International Electronics Symposium (IES). IEEE, 2019, pp.
439–445.

[18] J. E. Siegel, S. Pratt, Y. Sun, and S. E. Sarma, “Real-time Deep
Neural Networks for internet-enabled arc-fault detection,” Engineering
Applications of Artificial Intelligence, vol. 74, pp. 35–42, 2018.

[19] X. Han, D. Li, L. Huang, H. Huang, J. Yang, Y. Zhang, X. Wu,
and Q. Lu, “Series Arc Fault Detection Method Based on Category
Recognition and Artificial Neural Network,” Electronics, vol. 9, no. 9,
p. 1367, 2020.

[20] N. Qu, J. Chen, J. Zuo, and J. Liu, “PSO-SOM neural network
algorithm for series arc fault detection,” Advances in Mathematical
Physics, vol. 2020, 2020.

[21] N. Qu, J. Zuo, J. Chen, and Z. Li, “Series arc fault detection of indoor
power distribution system based on LVQ-NN and PSO-SVM,” IEEE
Access, vol. 7, pp. 184 020–184 028, 2019.

[22] K. C. Paul, L. Schweizer, T. Zhao, C. Chen, and Y. Wang, “Series AC
Arc Fault Detection Using Decision Tree-Based Machine Learning
Algorithm and Raw Current,” in 2022 IEEE Energy Conversion
Congress and Exposition (ECCE), 2022, pp. 1–8.

[23] X. Ning, D. Sheng, J. Zhou, Y. Liu, Y. Wang, H. Zhang, and X. Lei,
“Arc effnet: A novel series arc fault detection method based on
lightweight neural network,” Electronics, vol. 12, no. 22, p. 4617,
2023.

[24] Y. Liu, G. Yang, and H. Wang, “Series arc fault detection under
vibration condition based on nmmb,” Sensors, vol. 24, no. 3, p. 959,
2024.

[25] J. Jiang, Z. Wen, M. Zhao, Y. Bie, C. Li, M. Tan, and C. Zhang, “Series
Arc Detection and Complex Load Recognition Based on Principal
Component Analysis and Support Vector Machine,” IEEE Access,
vol. 7, pp. 47 221–47 229, 2019.

[26] R. Jiang and Y. Zheng, “Series arc fault detection using regular signals
and time-series reconstruction,” IEEE Transactions on Industrial
Electronics, vol. 70, no. 2, pp. 2026–2036, 2022.

[27] Z. Wang, S. Tian, H. Gao, C. Han, and F. Guo, “An on-line detection
method and device of series arc fault based on lightweight cnn,” IEEE
Transactions on Industrial Informatics, 2023.

[28] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 6848–6856.

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[30] I. Freeman, L. Roese-Koerner, and A. Kummert, “Effnet: An efficient
structure for convolutional neural networks,” in 2018 25th IEEE
International Conference on Image Processing (ICIP). IEEE, 2018,
pp. 6–10.

[31] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[32] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation:
A survey,” International Journal of Computer Vision, vol. 129, no. 6,
pp. 1789–1819, 2021.

[33] Wikipedia, “Knowledge distillation,” Jan 2023. [Online]. Available:
https://en.wikipedia.org/wiki/Knowledge distillation

[34] Google, “Introducing LiteRT: Google’s high-performance runtime
for on-device AI, formerly known as TensorFlow Lite.” [Online].
Available: https://ai.google.dev/edge/litert/models/convert tf

[35] F. Ferracuti, P. Schweitzer, and A. Monteriu, “Arc fault detection
and appliances classification in AC home electrical networks using
recurrence quantification plots and image analysis,” Electric Power
Systems Research, vol. 201, p. 107503, 2021.

VOLUME , 13

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Paul et al.: Preparation of Papers for IEEE OPEN JOURNALS

[36] J. Jiang, W. Li, Z. Wen, Y. Bie, H. Schwarz, and C. Zhang, “Series
arc fault detection based on random forest and deep neural network,”
IEEE Sensors Journal, vol. 21, no. 15, pp. 17 171–17 179, 2021.

[37] A. Tang, Z. Wang, S. Tian, H. Gao, Y. Gao, and F. Guo, “Series
Arc Fault Identification Method Based on Lightweight Convolutional
Neural Network,” IEEE Access, 2024.

[38] Y. Wang, F. Zhang, and S. Zhang, “A new methodology for
identifying arc fault by sparse representation and neural network,”
IEEE Transactions on Instrumentation and Measurement, vol. 67,
no. 11, pp. 2526–2537, 2018.

KAMAL CHANDRA PAUL(GS’21) is currently a
postdoctoral fellow at the Department of Electrical
and Computer Engineering, University of North
Carolina at Charlotte (UNCC), USA, where he
completed his PhD in 2024. He received his
bachelor’s degree in Electrical and Electronic
Engineering (EEE) from Khulna University of
Engineering and Technology (KUET) in 2009 and
obtained his MS degree in Electrical Engineering
from the Ingram School of Engineering, Texas
State University, USA in 2018. He previously

served as a faculty member at the Department of EEE, International
University of Business Agriculture and Technology (IUBAT), and as a
lecturer in the Department of EEE at World University of Bangladesh. His
research interests encompass AC and DC arc fault protection, battery fault
diagnostics, data science, and the application of machine learning in power
electronics and renewable energy systems.

CHEN CHEN(M’18) is an assistant professor
at the Center for Research in Computer Vision,
University of Central Florida. He received the
Ph.D. degree from the Department of Electrical
Engineering, University of Texas at Dallas in
2016 where he received the David Daniel
Fellowship (Best Doctoral Dissertation Award).
His research interests include computer vision,
efficient deep learning, and federated learning.

He is an Associate Editor of IEEE Transactions
on Circuits and Systems for Video Technology

(T-CSVT), Journal of Real-Time Image Processing, and IEEE Journal on
Miniaturization for Air and Space Systems.

YAO WANG(M’16) was born in Hebei, China,
in 1981. He received the B.S., M.S., and
Ph.D. degrees in electrical engineering from the
Hebei University of Technology, Tianjin, China,
in 2006, 2009, and 2012, respectively. He is
currently an Associate Professor with the State
Key Laboratory of Reliability and Intelligence
of Electrical Equipment, School of Electrical
Engineering, Hebei University of Technology. He
has authored or coauthored more than ten technical
articles. His current research interests include

intellectualization of electrical apparatus and fault diagnosis of electrical
apparatus.

TIEFU ZHAO(S’06–M’10–SM’12) received the
B.S. and M.S. degrees from Tsinghua University,
Beijing, China, in 2003 and 2005, respectively,
and the Ph.D. degree from North Carolina State
University, Raleigh, in 2010, all in electrical
engineering.

From 2010 to 2016, he was with Eaton
Corporation Research & Technology, Milwaukee,
WI. Since 2016, he has been an Assistant
Professor of Electrical and Computer Engineering
and an Associate of the Energy Production and

Infrastructure Center (EPIC) with the University of North Carolina at
Charlotte, Charlotte, NC, USA. He has published over 40 papers in refereed
journals and international conference proceedings. He has 12 patents
awarded. His current research interests include solid state transformer, solid
state circuit protection, wireless power transfer, wide bandgap device based
power conversion, power electronics reliability and fault detection. Dr. Zhao
has served as an Associate Editor for the IEEE Journal of Emerging and
Selected Topics in Power Electronics (JESTPE).

14 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of Industry Applications. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJIA.2024.3522364

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

