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ABSTRACT Transient stability assessment (TSA) is critical to the reliable operation of a power system
against severe fault conditions. In practice, TSA based on deep learning is preferable for its high accuracy
but often overlooks challenges in maintaining data privacy while coping with network topology changes.
This article proposes an innovative focal loss-based multihead attention convolutional network (FLACON)
for accurate post-disturbance TSA under both symmetrical and asymmetrical smart grid faults. The pro-
posed approach effectively incorporates cross-domain deep federated transfer learning (FTL) to leverage
local operating data for TSA in a decentralized fashion. By introducing convolutional layers alongside
multi-head attention mechanisms, the FLACON framework significantly improves learning efficiency across
geographically distributed datasets. To address the challenge of class imbalance, the model integrates a
balance factor-enhanced focal loss function. The FTL architecture enables decentralized model training
across various clients, thus preserving data privacy and reducing the burden of communication overhead.
To avoid the constant adjustment of hyperparameters, the FLACON employs an inductive transfer learning
approach for hyperparameter tuning of the pre-trained model, markedly decreasing training time. Extensive
experiments on datasets from the IEEE 39-bus system and the IEEE 68-bus system demonstrate FLACON’s
exceptional accuracy of 98.98% compared to some competitive alternatives.

INDEX TERMS Federated transfer learning (FTL), multihead attention (MHA) mechanisms, power grid
faults, symmetrical and asymmetrical faults, transient stability assessment (TSA).

NOMENCLATURE

Vector/Matrix

W∗
k Trainable weight matrices for key.

W∗
q Trainable weight matrices for query.

W∗
v Trainable weight matrices for value.

Xin Input embeddings.
� Global model parameters.
Ck Client nodes.
K Key matrix in attention mechanism.

Qu Query matrix in attention mechanism.
Va Value matrix in attention mechanism.

Variables

δmax Maximal phase angle discrepancy.
θ Bus angle.
F Frequency.
P Active power.
Q Reactive power.
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t Time variable.
V Bus voltage.
x State variables of the system in Rn.

Abbreviations

3 PB Three phase balanced fault.
Acc Accuracy.
ANN Artificial neural network.
CNN Convolutional neural network.
CPU Central processing unit.
DL Deep learning.
DLL Double line to ground fault.
DTL Deep transfer learning.
F1 F1-score.
FFN Feedforward neural network.
FL Federated learning.
FN False negative.
FP False positive.
FTL Federated transfer learning.
GPU Graphics processing unit.
HFL Horizontal federated learning.
IL Inference latency.
LL Line to line fault.
LSTM Long short term memory.
MCS Monte Carlo simulations.
MHA Multihead attention.
PDF Probability distribution function.
PMUs Phasor measurement units.
Prec Precision.
R Recall.
RAM Random access memory.
ReLU Rectified linear unit.
SLG Single line to ground fault.
t-SNE t-Distributed stochastic neighbor embedding.
TL Transfer learning.
TN True negative.
TP True positive.
TSA Transient stability assessment.
TSI Transient stability index.

I. INTRODUCTION
The rapid shifts in renewable portfolio standards lead to
unprecedented changes in the power infrastructure, caus-
ing fluctuations in energy generation [1]. These fluctuations,
along with the integration of power electronic devices, chal-
lenge system stability and grid control. The grid instability can
cause system collapse within seconds, often due to changes
in generator output power and power angles. As it is widely
stipulated, sufficiently accurate transient stability assessment
(TSA) is pivotal to avoid loss-of-synchronism and ultimately
blackouts [2]. When subjected to severe disturbances, such
as grid faults, real-time TSA evaluates a power system’s
ability to recover after a severe malfunction. TSA models
promote the system’s ability to withstand possible large dis-
turbances [3]. Nonetheless, the stability of power systems is

associated with a substantial array of differential-algebraic
equations that present challenges for direct integration into
optimization models for system operations [4]. When uncer-
tainties are factored in, the resulting optimization model can
become exceedingly complex and high-dimensional. Tradi-
tional model-based analytical approaches fall short in these
scenarios, particularly as the integration of a significant
quantity of renewable energy resources into the intelligent
cyber-physical grid progresses.

Data-driven methodologies, especially those employing
deep learning (DL) have made significant strides in predicting
stability status under various grid conditions [5]. However,
the majority of the existing artificial neural network (ANN)
architectures employ a database stored at a centralized power
system control center leading to a single point of control
and decision-making [6]. This centralized approach can be
impractical due to the computational burden and vulnerability
to privacy exposure associated with transmitting sensitive in-
formation from distributed phasor measurement units (PMUs)
to a central processing facility [7]. While existing data-driven
models are capable of detecting instabilities, they frequently
fail to account for the distributed nature of power grids and the
localized characteristics of data arising from geographically
dispersed regions [8]. Centralized models also suffer from
substantial delays in real-time prediction due to the over-
heads associated with large-scale data transmission, storage,
and analysis [9]. Federated learning (FL) has been proposed
to promote a decentralized approach to model training [10].
However, it often presupposes that data is independently and
identically distributed, which does not hold for PMU data.
This assumption overlooks the unique data distributions in-
herent to specific regions, influenced by their operational grid
characteristics. Consequently, regional changes in data distri-
bution can lead to a degradation of model performance when
applied globally, necessitating frequent retraining of models
for local accuracy—an often time-prohibitive task for rapid,
short-term instability predictions [11].

The transient stability of power systems has been thor-
oughly studied in the literature. For instance, Hijazi et al. [12]
proposed a one-to-one transfer learning (TL) for TSA amidst
changing topologies. The integration of 1-D convolutional
neural network (CNN) and long short term memory (LSTM)
to form a ConvLSTM model acknowledges the spatial-
temporal intricacies of PMU measurements but omits asym-
metrical faults. Moreover, the occurrence of rare yet critical
events in real-world scenarios is much underrepresented
than in normal operating conditions leading to imbalanced
datasets, in which the proposed model did not perform ade-
quately. To address this gap, a recent study in [13] offered a
novel corrective for this imbalance, enhancing LSTM efficacy
by using multiple layers. Nevertheless, concerns linger over
computational efficiency and potential overfitting. Moreover,
the asymmetrical faults that are most frequently occurring in
real power systems are neglected. Li et al. [14] addressed
sample collection hurdles via an instance-transfer extreme
learning machine. Unfortunately, the leap from simulation
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results to real-world application remains vast, compounded
by latency issues inherent in centralized data processing crit-
ical to TSA’s timeliness. Across these studies, the pursuit of
robust, adaptable, and swift TSA methodologies is palpable,
but the convergence of theory with the on-the-ground realities
of power systems demands further development [15]. Despite
obvious advances, the design of neural network structures still
lack a solid theoretical foundations, as transient stability land-
scape is constantly evolving, requiring neural network models
to be continually updated and adapted to reflect these changes.

To enhance the model’s adaptability to significant shifts in
topologies or operational conditions, this study introduces an
active TL approach. To the best of the author’s knowledge,
this article offers the first attempt to solve the TSA task
in a coupled approach where TL-based TSA and horizon-
tal federated learning (HFL) are simultaneously computed.
In summary, the main contributions of this article are listed
as follows.

1) A novel TSA method based on a multifaceted
architecture that synergizes the strengths of CNNs and
multihead attention (MHA) mechanisms is introduced.
The proposed method uniquely relies on the MHA
mechanism to boost the model generalization in solving
the TSA problem under both symmetrical and asymmet-
rical faults in power systems.

2) A customized focal loss based on an α-balanced variant
is designed to deal with the category-imbalanced prob-
lem in transient stability classification. This approach
adjusts the focus dynamically, improving model sen-
sitivity and specificity for minority classes which are
critical in predicting instability within power systems.

3) An effective federated deep neural network is proposed
to conserve the privacy-preserving characteristics of
TSA in a decentralized manner. By addressing the TSA
challenge of privacy exposure, this work is the first
attempt, to our knowledge, to employ HFL with deep
transfer learning (DTL) to model focal loss-based mul-
tihead attention convolutional network (FLACON), pre-
senting an architecture based on HFL (HFL-FLACON).
The growing complexity and interconnectivity of power
grids render them susceptible to failure at single crit-
ical junctures and to potential security breaches. The
proposed model demonstrated its efficiency and trust-
worthiness through a HFL environment, ensuring that
failures in other areas do not affect the operation of local
data analysis.

4) A highly efficient DTL-based fine-tuning method is
employed to further improve the scalability of models
trained by the HFL algorithm when the power system
undergoes enduring topological changes, which is novel
in TSA methodologies. This method enables the model
to quickly adjust to new operating conditions without
extensive retraining, ensuring continuous reliability and
responsiveness of TSA applications. Furthermore, it
compensates for inadequate model generalization, en-
abling application to other power systems.

The rest of this article is organized as follows. Section II
provides detailed discussions about the problem statement of
TSA. The proposed architecture is outlined in Section III. In
Section IV, the results from the simulation case studies are
explained. Finally, Section V concludes this article.

II. PROBLEM FORMULATION
The dynamics of power systems can be encapsulated by
stochastic differential and algebraic equations expressed as

ẋ = f (x, y) (1)

0 = g(x, y) (2)

x = {xi|i = 1, 2, . . . , n}, x(t0) = x0 (3)

y = {yb|b = 1, 2, . . . , m}, yb = [|yb|,∠θb]T . (4)

The state variables, represented by x ∈ Rn, evolve according
to a set of differential equations, and their initial conditions are
denoted by x0. The time variable t spans an interval [t0, T ].
The algebraic variables, symbolized by y, include the states
of the system. Assuming the availability of both raw PMU
measurements and PMU-derived dynamic state characteristics
at generator buses, the following five types of quantities are
considered as the raw inputs for TSA: voltage magnitude
(V ), voltage angle (θ ), frequency (F ), active power (P), and
reactive power (Q). The values of V , θ , and F are collected
from terminal buses throughout the network while P and Q
are associated with generation units and are measured at the
output of these units. These quantities are denoted collectively
as {V, θ, F, P, Q}. The functions f (x) and g(x) encapsulate
the system’s nonlinear differential and algebraic equations,
respectively, with n and m being the number of generators
and buses. The transient stability status is determined based on
the maximal phase angle discrepancy δmax, which is extracted
from the state vector x. The interrelation of state vector x
and the algebraic variable vector V is given by the nonlinear
differential-algebraic system of equations as

x(t0 + �t ) = x0 +
∫ t0+�t

t0

f (x,V, t ) dt (5)

0 = g(x(t0 + �t ),V (t0 + �t ), t ). (6)

The largest phase angle difference |δmax| is determined as

|δmax| = max
{|δi(t ) − δ j (t )| ∀i, j ∈ {1, . . ., n}, t ∈ [t0, T ]

}
(7)

where |δmax| denotes the utmost phase angle variation be-
tween any two generators over the given time span. This
measure is crucial for linking the system’s stability status to
the phase angle differences among the generators. The tran-
sient stability index (TSI) is a widely recognized metric for
gauging the transient stability of power systems. The TSI is
calculated as follows [16]:

TSI = 100 × 360 − δmax

360 + δmax
(8)
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where δmax is the peak rotor angle difference between any two
generators throughout dynamic simulations. A TSI exceeding
zero signifies system stability and is denoted by a label of 1,
while a negative TSI indicates potential instability, which is
marked with a label of −1. The TSI is formulated as [16]

y =

⎧⎪⎨
⎪⎩

1 (Stable), TSI > 0

−1 (Unstable), TSI ≤ 0

Unknown otherwise.

(9)

The transient stability evaluation function M(·), which cor-
relates TSI with the state vector ζ = [Pu

R, PL, QL, PG]T , can
be articulated as T SI = M(ζ ), where Pu

R, PL, QL, and PG
correspond to the stochastic active power of renewable gen-
erations, such as photovoltaic and wind systems, the active
power of loads, the reactive power of loads, and the active
power of generators, respectively. To investigate the effects
of uncertainty on system stability, Monte Carlo simulations
are utilized to sample a multitude of potential outcomes Y =
{TSI1, TSI2, . . . , TSIN } based on a probability distribution
function (PDF) associated with the uncertain factors from the
sample space X = {ξ1, ξ2, . . . , ξN }.

TSA-based DL primarily aims to determine the system’s
stability status by analyzing transient responses shortly after
disturbances. The process can be formally described as

M : 	 → ŷ ∈ {Stable, Unstable} (10)

where 	 encompasses the complete set of transient responses
recorded by devices, such as PMUs, and ŷ denotes the pre-
dicted transient stability status. The accuracy of M is critically
dependent on the precision with which 	 captures the sys-
tem’s transient behavior, implying that definitive stability
evaluations are contingent upon accurate post-fault data.

This study leverages the capabilities of the PowerWorld
simulator’s transient stability module to conduct detailed sim-
ulations of symmetrical and asymmetrical grid faults. By
varying model configurations based on the fault type, the
simulator enables precise adjustments in impedance calcula-
tions, which are essential for diagnosing and simulating the
specific impacts of different fault conditions on the power
system. This approach ensures that each type of fault is ac-
curately represented in terms of its effect on the system’s
impedance characteristics, focusing particularly on positive
sequence faults, as illustrated in Fig. 1. The figure displays the
sequence network driving point impedances, Z0 and Z2, across
four different fault scenarios. For the three-phase balanced
(3 PB) fault, Z2 is utilized as the sequence impedance. In the
single line to ground (SLG) fault, Z2 and Z0 are combined with
the fault impedance, Zfault, which is calculated as three times
the fault impedance value. The line to line (LL) fault simply
uses Z2 combined with Zfault. Lastly, the double line to ground
fault incorporates Z2 and Z0, again multiplied by three times
Zfault, demonstrating how each type of fault requires specific
adjustments in the impedance modeling to accurately reflect
the fault conditions in the power system.

FIGURE 1. Effective impedance models for different types of electrical
faults.

III. PROPOSED ARCHITECTURE
This section delves into the innovative structural designs that
underpin the proposed approach to tackle the TSA problem.

A. CONVOLUTIONAL MHA NETWORK
A training dataset Di = {Bi

j,Ci
j} is established, where Bi

j

represents the input batch and Ci
j the corresponding labels.

Within this framework, a CNN model processes each input Bi
j

to transform it into a k-channel signal. This transformation is
defined by

Bi
j

1-D CNN−−−−−→ (Bi
j, N )(1), . . . , (Bi

j, N )(k). (11)

Here, Bi
j,k ∈ RN×m denotes each channel of the CNN output,

which serves as an embedded representation for the subse-
quent transformer layers. Each channel resulting from the
convolution encapsulates localized features of the input data.
These are extracted through the application of convolutional
filters K , where K = {K1, K2, . . . , Kj} and each Kn ∈ R1×4.
The convolution operation can be formulated as

S1 = φ
(

BN
(

K ∗ Bi
j

)
+ K

)
(12)

where ∗ denotes the convolution operation. φ signifies the ac-
tivation function, specifically the rectified linear unit (ReLU).
This function introduces nonlinearity to the network and S1

represents the activated feature map output of the 1-D CNN.
The transformation of the signal through the network lay-
ers, including self-attention and feedforward neural network
(FFN) layers, can be generalized as

S′
i (t ) = Si(t − 1)′ + Attention

(
Si(t − 1)′

)
+ FFN

(
Si(t − 1)′

)
. (13)

Here, S′
i (t ) represents the output of the t th transformer block

for the ith sample. The attention function is computed through
a MHA mechanism, and FFN denotes the position-wise FFN.
The MHA mechanism can be further expanded as follows:

Attention(Qu, K,Va) = softmax

(
QuKT

√
dk

)
Va. (14)

Here, Qu, K, and Va are the query, key, and value matrices
derived from the input, and dk is the scaling factor based on
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the dimensionality of the keys. These matrices are generated
from the input embeddings, Xin, through a series of linear
transformations. The inputs, denoted as Xin, are projected into
different subspaces through three linear transformations to
obtain queries Qu, K , and Va with a trainable weight matrices,
specifically W∗

q , W∗
k , and W∗

v , respectively. These projections
are expressed as follows:

Qu = dense(Xin) = XinW∗
q (15)

K = dense(Xin) = XinW∗
k (16)

Va = dense(Xin) = XinW∗
v . (17)

Finally, the FFN within each Transformer block applies two
linear transformations with a ReLU function as

FFN(x) = max(0, xW1 + b1)W2 + b2 (18)

where W1 and W2 represent the weight matrices for the
first and second linear transformations, respectively. The
vectors b1 and b2 correspond to the bias terms for these
transformations.

B. FEDERATED TRANSFER LEARNING (FTL)
DTL integrated into FL paradigms presents a groundbreaking
approach to achieving TSA. The initiation of this sophisti-
cated learning cycle involves the distribution of the global
model parameters, denoted as �, to a selected ensemble of
client nodes Ck

K
k=1. Each client Ck engages in rigorous local

optimization epochs as

wk
t+1 = wt − η∇�(wt ; Dk ) (19)

where wk
t+1 are the updated local weights at client Ck , η rep-

resents the learning rate, and ∇�(wt ; Dk ) denotes the gradient
of the loss function � with respect to the weights wt based
on the local data Dk . This local optimization is a critical step
that enables each node to individually adapt to the specific
characteristics of its data while contributing to the collec-
tive learning objective. Subsequently, these local updates are
securely transmitted and aggregated on a central server to
update the global model. The aggregation process is a
weighted sum where each client’s contribution is proportional
to its data volume as

wt+1 = wt −
K∑

k=1

|Dk|∑K
j=1 |D j |

�wk
t+1 (20)

where �wk
t+1 = η∇�(wt ; Dk ) is the product of the learning

rate and the gradient of the loss function for client Ck , and |Dk|
is the size of the local dataset. This federated update ensures
that the global model, �t+1, reflects a comprehensive learning
trajectory shaped by the collective experience of all nodes as

�t+1 = �t − η

(
K∑

k=1

|Dk|∑K
j=1 |D j |

∇�(�t ; Dk )

)
. (21)

The iterative nature of this process refines the model’s capac-
ity to predict grid stability with each epoch, leveraging the

distributed computation for both scalability and privacy. The
DTL is further enhanced by the transformer encoder’s capabil-
ity to process sequential data with self-attention mechanisms,
captured by the transformer encoder function τ applied to
the input data X as X ′ = τ (X ;�transformer), where �transformer
includes the parameters of the MHA and feedforward lay-
ers within the transformer encoder. The proposed method
leverages HFL, wherein the dataset D = {D1, D2, . . . , Dn} is
partitioned horizontally across n clients. Each client possesses
a subset Di that shares the same feature space yet contains
distinct samples. In this framework, every client indepen-
dently trains a local model Mi with parameters φi on their
respective dataset Di to minimize a loss function �(Di, φi ).
The objective of this decentralized approach is to update
the global model parameters φ through an aggregation func-
tion A(φ1, φ2, . . . , φn), thereby iteratively refining the global
model over T rounds or until convergence. To better articulate
the HFL process, we integrate and reformulate the update
mechanism as follows:

φ(t+1) = A
(
φ

(t )
1 , φ

(t )
2 , . . . , φ(t )

n

)
. (22)

Here, φ(t+1) signifies the global model parameters updated
for the subsequent iteration t + 1, where A(·) represents the
aggregation function. This function synthesizes the updated
parameters φ

(t )
i from each client i at the current iteration t ,

with the goal of achieving convergence through T iterative
rounds. This aggregation process is vital for enhancing the
model’s ability to predict grid stability effectively by pooling
the strengths of local models trained on diverse subsets of the
overall dataset.

C. PROPOSED MODEL
The FLACON network is designed for TSA in power sys-
tems [17]. The model adeptly captures both localized and
extended patterns within sequences, ensuring a nuanced un-
derstanding of temporal dynamics. At the initial stage, convo-
lutional layers process the input data. For an input sequence
X , a series of convolutional operations are applied through
layers {Conv1Dk}N

k=1, where N represents the number of such
layers. These operations are defined as

Yk = f (Wk ∗ X + bk ). (23)

Here, ∗ represents the convolutional operation, Wk is the ker-
nel, bk is the bias, and f is the ReLU activation function.
Subsequently, the Transformer encoder layers, through the
self-attention mechanism, process the resultant feature maps.
Within the MHA framework, each attention head hi computes
as

headi = Attention
(

QuW Qu
i , KW K

i ,VaW Va
i

)
. (24)

The outputs from all attention heads are concatenated and then
linearly transformed as

O = Concat (head1, . . . , headh)W O. (25)
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FIGURE 2. (a) DTL (b) MHA mechanisms in domain-adaptive CNN-MHA
model.

Each Transformer encoder layer incorporates these attention
computations, alongside FFNs, normalization, and skip con-
nections as

H ′ = LayerNorm(X + MultiHead(Qu, K,Va)) (26)

O′ = LayerNorm(H ′ + FFN(H ′)). (27)

The network employs a focal loss function during optimiza-
tion to concentrate learning. In essence, the FLACON is
primed for tasks where the discernment of complex temporal
sequences is crucial. By adopting a decentralized approach,
it eliminates the need for central data aggregation, thereby
mitigating concerns over privacy and computational effi-
ciency. The FL aspect of FLACON allows for localized model
training on distributed datasets, ensuring that the unique
characteristics of regional data are captured and utilized ef-
fectively. This approach reduces the latency associated with
centralized data processing and enhances the responsiveness
of the system to dynamic grid conditions. Moreover, the inte-
gration of TL enables the model to benefit from pretrained
MHA network as seen in Fig. 2. The TL through adaptive
fine-tuning provides a head start in learning and adapts more
rapidly to the unique features of electrical grid data.

The MHA mechanism allows for a more nuanced un-
derstanding of the relationship between different regions of
the input data, providing insights into how specific features
influence the overall stability assessment. The FLACON ar-
chitecture also addresses class imbalance through a balance
factor-based focal loss function, enhancing the model’s ability
to learn from underrepresented classes in the dataset. This fea-
ture is particularly beneficial for TSA, where certain types of
faults may occur infrequently but have significant implications
for grid stability.

In the training of the model, a focal loss function, denoted
as �focal, is employed to effectively address the challenge of
class imbalance [18], which is a common issue in TSA. This
specialized loss function is designed to fine-tune the model’s
sensitivity toward rare yet critical fault events. The �focal

is expressed as

�focal(y, ŷ;α, γ )

= −α(1 − ŷ)γ log(ŷ) − (1 − α)ŷγ log(1 − ŷ) (28)

where y represents the true label, ŷ denotes the predicted
probability, α serves to balance the significance of positive
and negative classes, and γ aims to lessen the loss contri-
bution from straightforward examples, thereby concentrating
training efforts on more challenging cases.

Further expanding on �focal framework, we define the
ground truth class as y ∈ {+1,−1}, with p representing
the estimated probability for the class labeled y = 1. For
ease of explanation, the posterior probability pt is introduced
as follows:

pt =
{

p if y = 1

1 − p if y = −1.
(29)

By adjusting the weight of each sample’s contribution to
the total loss based on the classification error, the re-
vised focal loss function is given by LFocal(pt ) = −αt (1 −
pt )γ log(pt ) [19]. Here, αt and γ continue to play crucial
roles. αt adjusts the balance between classes, while γ acts
as a focusing parameter that modulates the loss, reducing the
impact of easily classified examples and thus directing the
model’s focus toward misclassified or hard-to-classify sam-
ples. The local models fi(x) are trained on the local data of
each operator, and then the models are aggregated to form a
global model F (x) using FL techniques. The global model
is then used for TSA across the entire power system. For
notational convenience, the FL environment is computed as

fi(x) =
Ni∑

j=1

wi jh j (x;φi j ) (30)

F (x) =
K∑

i=1

wi fi(x) (31)

FL:w(t+1)
i = w

(t )
i − η∇Li

(
w

(t )
i , F (t )

)
(32)

where fi(x) is the local model at operator i, wi j is the weight
of tree j in the ensemble for operator i, h j (x;φi j ) is the jth
decision tree in the ensemble with parameters φi j , F (x) is the
global model, K is the number of power system operators, wi

is the weight of operator i in the global model, η is the learning
rate, Li(wi, F ) is the loss function for operator i with weights
wi and global model F .

Fig. 3 illustrates the schematic of the FL approach used for
TSA. These clients represent different nodes within a power
grid or distributed computing systems that handle local data
processing. The clients are also responsible for hyperparam-
eter optimization, which, once refined, are sent back to the
central server. This iterative process ensures that the local
models are not only well-tuned to their specific datasets but
also contribute to the optimization of the global model through
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FIGURE 3. Flowchart of the Proposed Approach for TSA.

FIGURE 4. Proposed FLACON-based FTL.

FIGURE 5. Methodology of this study.

parameter aggregation. Fig. 4 depicts the architecture of a
FTL-based FLACON model for TSA. As seen in the figure,
the framework involves various clients (Client 1 to Client n),
each working under different conditions but on the same TSA
task and IEEE topology. The architecture includes a target
domain with a different IEEE topology and working condi-
tions. This suggests that the global model’s learned features
can be transferred to a new domain that shares the same TSA
task but has different characteristics. The training process of
the proposed algorithm is summarized in Algorithm 1. The
algorithm operates iteratively until it meets the predefined
requirements.

Fig. 5 encompasses several key processes for TSA using the
FLACON model. The process starts with the generation of N
transient cases {(Xn, yn)}N

n=1. These cases are then subjected
to time-domain simulations, where the dynamics of the power
system response over time are analyzed. The outcomes of
these simulations are stored in a raw database containing var-
ious parameters such as voltage (V), power (P), and reactive
power (Q). These data are then fed into the FLACON model
through a FL framework. The final output of the model is the
prediction results, which assess the transient stability of the
power system under different conditions. Simulation results

Algorithm 1: FTL-Based FLACON Training Process.
1: Input: Distributed datasets {Dk} across clients {Ck}
2: Initialize global model parameters �

3: Define model architecture with Conv1D, MHA, and
Dense layers

4: Conv1D layer: Xconv = ReLU(Conv1D(X ))

5: MHA layer: Xmha = softmax( QuKT√
dk

)Va

6: Dense layer: Xdense = σ (Wd X + bd )
7: Focal loss: Lfocal(y, ŷ) = −α(1 − ŷ)γ log(ŷ)
8: Define fine-tuning with DTL: Xnew = DTL(Xold, Dnew)
9: for each client Ck in parallel do

10: Initialize local model with parameters φk from �

11: Segment data into sequences Dk,seq using sliding
window

12: Divide Dk,seq into Dk,train = {(Sk,train
i , yk,train

i )},
validation Dk,val = {(Sk,val

i , yk,val
i )}, and testing

Dk,test = {(Sk,test
i , yk,test

i )}
13: end for
14: repeat
15: for each client Ck in parallel do
16: Train local model on Dk,train using focal loss and

optimizer Adam
17: Evaluate local model on Dk,val
18: Calculate gradients ∇Lk (φk ) with respect to �focal
19: end for
20: Aggregate gradients ∇L(�) = ∑

k ∇Lk (φk ) on the
server

21: Update global model parameters � using aggregated
gradients

22: Apply fine tuning to adapt the global model to new
data distribution Dnew

23: Broadcast updated � to all clients Ck

24: until convergence or maximum number of iterations
reached

25: Output: Global trained model with fine-tuned
parameters optimized for TSA in distributed settings

demonstrate that the entire process can be completed within a
few cycles across various test systems, assuming PMU delays
are disregarded.

D. ONLINE ASSESSMENT
Based on the discussions in Sections III-A–III-C, the
FLACON model is trained in advance in the offline mode
for enabling real-time TSA. During online monitoring, the
proposed algorithm continuously processes incoming pseu-
domeasurements of {V, θ, F, P, Q} from PMUs and relevant
dynamic state estimation from individual generators, mak-
ing immediate stability predictions. The model parameters
are dynamically updated using both mini-batch and periodic
full updates to ensure relevance and accuracy. This approach
leverages the robustness of the FLACON architecture and the
efficiency of FL ensuring that the model adapts swiftly to
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Algorithm 2: Real-time TSA-Based FLACON.
1: Input: Real-time data {St } from PMUs
2: Initialize model parameters � from pre-trained global

FLACON model
3: Online Data Processing:
4: while new data St received do
5: Pre-process St (e.g., normalization, feature

extraction)
6: Predict stability using current model parameters:

yt = FLACON(St ,�)
7: Display or record the prediction yt

8: Quick Update Check:
9: if data batch sufficient for mini-batch update then

10: Update � using mini-batch gradient descent with
focal loss:

11: � = � − η∇Lfocal(�, Smini-batch)
12: Reset mini-batch data collector
13: end if
14: Periodic Full Model Update:
15: if time for periodic update then
16: Collect larger set of recent data Dupdate
17: Retrain model on Dupdate to refine �

18: Update global model parameters and redistribute
if in federated setting

19: end if
20: end while
21: Output: Continuously updated model parameters �,

real-time stability predictions

new data and changing grid conditions, providing an effective
solution for real-time TSA. Algorithm 2 provides a detailed
step-by-step process for implementing the FLACON model
in real-time, incorporating both mini-batch updates for swift
adaptation and periodic full updates for comprehensive model
refinement.

The proposed algorithmic approach ensures that the FLA-
CON model remains up-to-date and accurate, leveraging the
benefits of FL to efficiently process and learn from incoming
data streams. Fig. 6 outlines the implementation of the FLA-
CON model, incorporating both offline training and online
application procedures. This setup ensures that the FLACON
model, through continuous updates and real-time data pro-
cessing, remains accurate and responsive to changing grid
conditions, thereby providing an effective solution for real-
time TSA. The robust architecture of FLACON coupled with
the efficiency of HFL facilitates rapid adaptation to new data
and dynamic grid conditions, underscoring the model’s appli-
cability in practical settings.

IV. CASE STUDY
This section demonstrates the feasibility and effectiveness
of the proposed method through multiple simulation results.
Two bus systems with different scales are discussed: IEEE
39-bus and 68-bus power systems. Both systems and transient

FIGURE 6. Block diagram of the proposed FLACON-based TSA.

contingencies were modeled in PowerWorld Simulator (Ver-
sion 23). All simulations in this article are implemented on
a computer with an Intel Core i7-9750H 4.5 GHz CPU and
16 GB RAM. The proposed method and comparative models
are implemented using Python version 3.7.1 with TensorFlow
framework. All comparison results are based on 10 repeated
simulation trials for each IEEE bus system to obtain a mean
value of recognition metrics.

A. DATA SOURCE
The asymmetrical fault scenarios encompassed instances
where a single line, two lines, or both lines and the ground
were compromised across various segments of the transmis-
sion lines (comprising 25%, 50%, and 75% of their total
length). The premise of this investigation is the rectification
of all faults within 12 cycles by severing the connection of the
affected line or the busbar. During each unique fault scenario,
the simulation was conducted over a span of 10 s, and the
integration was measured in steps of 0.01 s. The assessment of
the system’s stability was carried out upon completion of each
simulation. When the faults were isolated, measurements,
such as bus voltages, angles, and frequencies, constituted a
1-D initial input feature. The resulting simulation data bank
designated 50% of the stable scenarios and 25% of the un-
stable ones for training purposes. The rest, which amounts to
25%, were earmarked for validation purposes.

The t-distributed stochastic neighbor embedding (t-SNE) is
used to map the high-dimension space into a 2-D space. Fig. 7
illustrates the 2-D projection using the t-SNE algorithm for
the tested IEEE bus systems.

Fig. 7 illustrates that the stable and unstable samples are in-
terspersed in the original feature space. However, in Fig. 7(a),
we can see that the samples gradually separate into two
distinct clusters. This separation leads to visually identify
unstable cases in the representation space as compared to the
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FIGURE 7. 2-D visualization of sampling strategy behaviors with t-SNE.
(a) 39-bus system and (b) 68-bus system.

FIGURE 8. Rotor angle response for varying fault severities: (a) Definitively
stable case with less severe fault, (b) marginally stable case with very
severe fault, and (c) transient unstable case.

FIGURE 9. Synchronous generator rotor angle dynamics on the IEEE
68-bus system, where bus 3 experienced a SLG fault leading to an unstable
contingency.

original feature space. As we can see from Fig. 7(b), there
is a considerable overlap among samples, resulting in difficult
separability of the samples. This shows that the model training
is challenging to avoid any overfitting issues with topological
changes.

Fig. 8(a) and (b) demonstrates the rotor angle of genera-
tors for less severe and more severe stable scenarios when
the New England 39-bus system has suffered a short-circuit
fault, respectively, while Fig. 8(c). illustrates an unstable sce-
nario when the New England 39-bus system has suffered a
short-circuit fault on the critical bus. To better understand the
dynamic response of the power system to different types of
faults, Fig. 9 illustrates the rotor angle instability in the IEEE
68-bus system when an SLG fault occurs at bus 3 and the fault
is cleared after 0.12 s. According to the figure, the angle vari-
ations show a dramatic and continuous increase or decrease in
angle, ultimately resulting in a loss of transient stability as the
SLG fault influences the synchronization of the generators.
When rotor angle instability occurs, the divergence of the

FIGURE 10. Case analysis of a stable contingency on the IEEE 68-bus
system, where bus 6 experienced a 3 PB fault.

FIGURE 11. Time-domain simulation results on the IEEE 39-bus system:
(a) bus voltages with a 3 PB fault on bus 10, (b) generator active power
variations with LL fault on bus 10, (c) rotor speed variation with a 3 PB
fault on bus 20, and (d) generator reactive power with a 3 PB fault on
bus 36.

generators’ rotor angles widens over time. Fig. 10 displays
a scenario where a 3 PB fault occurs at bus 6, also within
the IEEE 68-bus system and the fault is cleared after 0.12 s.
In Fig. 10, the angles post-disturbance trajectory display fluc-
tuations initially but tend to stabilize and converge toward a
steady state, suggesting that the system remains stable and the
generators are able to maintain synchronization post-fault.

Time-domain simulations are performed for the IEEE
39-bus system using PowerWorld software and depicted in
Fig. 11. Fig. 11(a) displays the bus voltages when a 3 PB
fault occurs at bus 10, maintaining relatively stable voltages
with minor fluctuations. Fig. 11(b) illustrates generator ac-
tive power variations, which exhibit significant spikes and
variability in response to an LL fault on bus 10, indicat-
ing unstable power output during the fault. Fig. 11(c) shows
the rotor speed variations under a 3 PB fault on bus 20,
where speeds oscillate within a narrow range, suggesting a
moderate impact on generator stability. Finally, Fig. 11(d) de-
picts the generator’s reactive power in response to a 3 PB fault
on bus 36, with the power levels showing slight undulations
but remaining generally stable. Together, these graphs provide
insights into how different types of faults impact the stability
and performance of the power system components.
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FIGURE 12. One-line diagram for (a) IEEE 39-bus system and (b) IEEE
68-bus system.

B. EVALUATION MEASURES
In the current study, the efficiency of the introduced technique
is assessed through several metrics including accuracy (Acc),
precision (Prec), recall (R), and F1-score (F1). These met-
rics were derived from the model’s counts of accurate and
inaccurate predictions: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). The equations that
define these metrics are altered as [20]

Acc = TP + TN

TP + TN + FP + FN
× 100% (33)

Prec = TP

TP + FP
× 100% (34)

R = TP

TP + FN
× 100% (35)

F1 = 2 × Precision × Recall

Precision + Recall
× 100%. (36)

C. SIMULATION RESULTS
In this section, the experimental results are derived from sim-
ulations conducted on the widely recognized New England
39-bus system, frequently showcased in TSA studies [21]. As
shown in Fig. 12(a), the one-line schematic of the proposed
system comprises 10 power generators, 19 load points, 12
transformers, and 34 power transmission lines. To evaluate
the topology changes from the source to target domains, the
IEEE 68-bus test system is used and displayed in Fig. 12(b).
This system has 16 synchronous generators, 86 transmission
lines, and 5 areas, which represent the reduced News England
test system linked with the New York power system [22].
Table 1 provides a high-level overview of the FLACON’s
configuration. According to the table, the Transformer block
includes layers, such as layer normalization, MHA, and two
dense layers with intervening dropout to prevent overfitting as
shown in Fig. 2(b).

Fig. 13 displays the training and validation loss and ac-
curacy over epochs for a transferred model. According to
Fig. 13, the training and validation loss drop sharply in the
initial epochs, which indicates rapid learning. A steep de-
cline in loss suggests that the model is effectively learning
patterns from the data. Both training and validation accuracy
quickly reach high levels and remain stable throughout the

TABLE 1. Summary of the FLACON Model Architecture

FIGURE 13. Accuracy and loss of the transferred model.

remaining epochs. This rapid improvement suggests that the
model quickly learns to capture the essential features relevant
to the task of stability assessment in the initial training phase.
High accuracy on validation data suggests that the model’s
predictions are mostly correct and it has learned the under-
lying patterns in the data well. The model’s performance is
stable across different subsets of the data, implying reliable
predictions when applied to unseen measurement data.

Table 2 summarizes the performance of the FLACON
model under different federated client configurations. With
a single client, the model achieves an accuracy of 98.98%
and a recall of 98.03%. As the number of clients increases
to four, the accuracy slightly decreases to 98.96% and further
dips to 98.56% accuracy with six clients. An eight-client setup
results in a lower accuracy of 98.46% and a recall of 99.06%,
indicating a potential tradeoff between model performance
and client number. On average, the FLACON model maintains
a high accuracy of 98.97% and a recall of 98.48% across con-
figurations, showcasing robustness in federated settings and
illustrating that an increase in the number of clients can lead
to variations in performance, with a two-client configuration
yielding the best results.
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TABLE 2. Performance Metrics for FLACON Model Across Different Client Configurations

TABLE 3. Source Metrics in Source and Target Domains

Table 3 presents a comparative analysis of the FLACON’s
performance in both source and target domains across two
client configurations within a FTL framework for electrical
TSA. In the source domain, Client 1 achieves an accuracy
of 86.90%, a precision of 78.43% resulting in an F1-score of
87.91%. Interestingly, the same client shows a significant im-
provement in the target domain, with accuracy and precision
nearly perfect at 98.98% and 99.94%, respectively, recall at
98.03%, and an F1-score of 98.97%. Client 2 exhibits a lower
performance in the source domain with an accuracy of 82.37%
and precision of 72.99%, but like Client 1, sees substantial
gains in the target domain, achieving near-perfect accuracy
and precision at 99.87% and 99.94%, respectively, along with
a recall of 99.81% and an F1-score of 99.87%. These results
underscore the effectiveness of FTL in enhancing model per-
formance from source to target domain. The inference latency
(IL) is the amount of time it takes for a model to process input
and return an output. The IL directly impacts the speed at
which a DL model can analyze data and provide insights or
decisions. It can be expressed as L = Tout − Tin, where L, Tin
and Tout represent the IL, the time at which an input data point
enters the model and the time at which the output is produced
by the model, respectively. In our TSA application, the aver-
age IL is measured over multiple data points to get a more
accurate understanding of the model’s performance. This can
be defined as Lavg = 1

n

∑n
i=1(Touti − Tini ), where Lavg and n

represent the average IL and the total number of data points.
Touti and Tini denote the times at which the output is produced
and the input is received, respectively, for the ith data point.

Fig. 14 illustrates two key performance indicators for the
FLACON model in a real-world scenario: IL (a) and graphics
processing unit (GPU) load (b). Fig. 14(a) shows the time
taken for the model to make a prediction (inference) for each
instance. According to the figure, the IL is quite erratic, with
a lot of variability between different instances. The variability
could be due to several factors, such as differing input data
complexities and background computational tasks. Fig. 14(b)
shows the percentage of GPU utilization during the inference
process. The GPU load appears to be increasing in a step-like

FIGURE 14. (a) Model IL/time, and (b) graphics processing unit load for
different instances.

fashion, which may suggest that the model’s computational
demands increase with more instances being processed, or
it could be a result of how the inference batches are being
managed. The GPU load not being at or near 100% could also
mean that there is still computational headroom to increase the
batch size for inferences, potentially reducing inference time
through parallel processing.

This study benchmarks four DL architectures: LSTM,
CNN, ANN, and CNN-LSTM models. Using a random search
method for hyperparameter optimization, the LSTM and CNN
models feature layers with units/filters ranging from 32 to
128, incorporating dropout rates of 0.5. The ANN model uses
two dense layers and a dropout of 0.5, while the CNN-LSTM
model integrates CNN and LSTM layers for enhanced feature
extraction. All models employ the Adam optimizer and bi-
nary crossentropy loss functions. Moreover, all the compared
models use 50 epochs for their training phase and early stop-
ping function on the validation set for optimal accuracy and
reliable assessment. Furthermore, multiple recent emerging
TSA models on the IEEE 68-bus system from the litera-
ture are exploited in the comparative study including random
forest LSTM (RF-LSTM) [23], graph inception neural net-
work (GINN) [24], and ensemble support vector machines
(SVMs) [25].

Table 4 shows the performance results of the classifiers
for the TSA. Overall, the FLACON model excels with near-
perfect accuracy at 99.87% and an F1-score at 99.09%, likely
benefiting from its attention mechanism’s ability to focus on
different sequence parts. Conversely, the simple ANN strug-
gles significantly, with an accuracy of 47.51%, underscoring
its inadequacy for the TSA task. Meanwhile, the CNN and
CNN-LSTM models show mixed results; the former bal-
ances precision and recall reasonably well, while the latter’s
high precision at 81.47% is diminished by a low F1-score
at 46.21%, suggesting a recall deficiency. The RF-LSTM
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TABLE 4. Performance Comparison of Different Methods on the IEEE
68-Bus System

FIGURE 15. Flowchart of model comparison based on the accuracy and
precision metrics.

model exhibits strong performance metrics with an accuracy
of 98.98% and an F1-score of 95.14%, though it does not sur-
pass FLACON. Similarly, the GINN closely rivals FLACON,
delivering an accuracy of 98.40%, precision of 99.27%, and
an F1-score of 99.02%, showing only a slight lag in accuracy.
In addition, ensemble SVMs maintain robust performance as
well, with all metrics above 97%, yet they still fall short of
FLACON’s results. The proposed FLACON model surpasses
all the existing methods by a significant margin.

Fig. 15 provides a visual representation of various mod-
els’ performance based on accuracy and precision metrics.
According to the figure, the FLACON model leads with near-
perfect scores in both accuracy and precision, closely mirrored
by the GINN and RF-LSTM models, which also exhibit high
performance in both metrics. Overall, this comparative anal-
ysis clearly highlights the superiority of FLACON, GINN,
RF-LSTM, and ensemble SVMs in terms of these two critical
metrics.

For the TSA classification problem, the FLACON model is
compared with other benchmarks from the recent literature.
The competitive models include the hierarchical DL machine
(HDLM) [26], fault cluster (FC) [27], supervised learning of
overcomplete dictionaries-based LSTM (SLODL) [28], su-
pervised learning of overcomplete dictionaries-based CNN
(SLODC) [28], and heatmap representation-based CNN
(RCNN) [29]. Table 5 presents the accuracy and training time
comparison with previous studies.

According to Table 5, the FLACON model achieves an
exceptionally high accuracy of 99.87%. The HDLM is the
next best performer at 99.25%, followed closely by SLODL at
99.09%. The proposed model outperforms other models, such

TABLE 5. Accuracy and Training Time Comparison With Previous Studies

FIGURE 16. Accuracy versus percentage of data used.

as the FC and SLODC, at 97.37% and 99.01%, respectively.
This high accuracy highlights FLACON’s robustness and ad-
vanced feature extraction capabilities by integrating focal loss
and attention mechanisms, making it highly effective in TSA.
Moreover, the FLACON model demonstrates a significant
advantage in training time, requiring only 4.951 min. This is
substantially faster than all other methods. The next fastest is
RCNN at 7.80 min. Notably, SLODL has an extremely long
training time of 1841.68 min (about 30.7 h). The proposed
FLACON model not only demonstrates superior accuracy
and short training time but also introduces advanced features.
These features address critical issues, such as decentralized
training, overlooked by the benchmark models in dynamic and
privacy-sensitive smart grid environments. Fig. 16 depicts the
model sensitivity to data size.

From Fig. 16, the model accuracy generally improves with
an increase in data usage, peaking at 99.11% when 90% of
the data are utilized. However, there is a notable exception at
40% data usage where accuracy dips to 95.46%, suggesting
that at certain thresholds, the model may require more data to
maintain or improve its predictive performance. The highest
accuracies are achieved with smaller (10%–20%) and larger
(60%–90%) data portions, indicating that the model can per-
form well both with limited data and as more data becomes
available.

V. CONCLUSION
This study introduced FLACON-based TSA framework by
harnessing the synergy of CNN and MHA mechanisms, forti-
fied by FTL. The integration of a focal loss function tailored
to balance the class distribution enhances the robustness of
the proposed FLACON model, enabling it to deliver high
predictive accuracy in the complex domain of TSA under
symmetrical and asymmetrical grid faults. The decentralized
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training approach, pivotal in preserving data privacy and min-
imizing communication overhead, represented a significant
advancement over traditional centralized DL methods. The
inductive TL methodology further refines the FLACON by
streamlining the hyperparameter tuning process, which results
in a considerable reduction in training time without com-
promising the model’s performance. Empirical evaluations,
conducted using the New England 10-machine 39-bus testing
system and the IEEE New York/New England 68-bus sys-
tem, underscore the model’s superior accuracy, which peaks
at 98.98%, highlighting its efficacy. The FLACON model,
therefore, stands as a scalable, efficient, and secure solution,
offering notable improvements in TSA. Future work focuses
on solving other types of grid instabilities and exploring the
model interpretability for computer-aided stability analysis.

REFERENCES
[1] D. Arnold et al., “Adaptive control of distributed energy resources for

distribution grid voltage stability,” IEEE Trans. Power Syst., vol. 38,
no. 1, pp. 129–141, Jan. 2023.

[2] N. Hatziargyriou et al., “Definition and classification of power system
stability revisited & extended,” IEEE Trans. Power Syst., vol. 36, no. 4,
pp. 3271–3281, Jul. 2021.

[3] Y. Cheng, N. Yu, B. Foggo, and K. Yamashita, “Online power
system event detection via bidirectional generative adversarial net-
works,” IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4807–4818,
Nov. 2022.

[4] M. Savastianov, K. Smedley, and J. Cao, “Power system recovery
from momentary cessation with transient stability improvement,” IEEE
Trans. Power Syst., vol. 39, no. 4, pp. 6014–6025, Jul. 2024.

[5] M. S. Massaoudi, H. Abu-Rub, and A. Ghrayeb, “Navigating the land-
scape of deep reinforcement learning for power system stability control:
A review,” IEEE Access, vol. 11, pp. 134298–134317, 2023.

[6] T. Su, Y. Liu, J. Zhao, and J. Liu, “Probabilistic stacked denois-
ing autoencoder for power system transient stability prediction with
wind farms,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3786–3789,
Jul. 2021.

[7] W. Y. B. Lim et al., “Decentralized edge intelligence: A dynamic re-
source allocation framework for hierarchical federated learning,” IEEE
Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 536–550, Mar. 2022.

[8] A. Ahmed, S. Basumallik, A.K. Srivastava, Y. Wu, and S. Choudhury,
“Federated synchrophasor data prediction, aggregation and inference
using deep learning: A case of proactive control for short-term stability,”
IEEE Trans. Power Del., vol. 39, no. 2, pp. 823–834, Apr. 2024.

[9] M. Massaoudi, A. Ghrayeb, M. Begovic, and T. Huang, “Leveraging
explainable extremely randomized trees model for poisoning attack
detection in power grid stability assessment,” in Proc. 4th Int. Conf.
Smart Grid Renewable Energy, 2024, pp. 1–6.

[10] C. Ren et al., “QFDSA: A quantum-secured federated learning system
for smart grid dynamic security assessment,” IEEE Internet Things J.,
vol. 11, no. 5, pp. 8414–8426, Mar. 2024.

[11] C. Ren, T. Wang, H. Yu, Y. Xu, and Z. Y. Dong, “EFedDSA: An effi-
cient differential privacy-based horizontal federated learning approach
for smart grid dynamic security assessment,” IEEE Trans. Emerg. Sel.
Topics Circuits Syst., vol. 13, no. 3, pp. 817–828, Sep. 2023.

[12] M. Hijazi, P. Dehghanian, and S. Wang, “Transfer learning for transient
stability predictions in modern power systems under enduring topolog-
ical changes,” IEEE Trans. Autom. Sci. Eng., early access, Jun. 1, 2023,
doi: 10.1109/TASE.2023.3277536.

[13] Q. Chen, H. Wang, and N. Lin, “Imbalance correction method based on
ratio of loss function values for transient stability assessment,” CSEE J.
Power Energy Syst., early access, May 6, 2022, doi: 10.17775/CSEE-
JPES.2021.00290.

[14] F. Li, Q. Wang, Y. Tang, Y. Xu, and J. Dang, “Hybrid analytical and
data-driven modeling based instance-transfer method for power system
online transient stability assessment,” CSEE J. Power Energy Syst.,
early access, Apr. 30, 2021, doi: 10.17775/CSEEJPES.2020.03880.

[15] J. Kim, H. Lee, S. Kim, and J. H. Park, “Transient stability
assessment using deep transfer learning,” IEEE Access, vol. 11,
pp. 116622–116637, 2023.

[16] G. Wang et al., “A physical mechanism enabled neural network
for power system dynamic security assessment,” CSEE J. Power
Energy Syst., early access, Jun. 27, 2023, doi: 10.17775/CSEE-
JPES.2022.08800.

[17] K. Wang, J. He, and L. Zhang, “Attention-based convolutional neural
network for weakly labeled human activities’ recognition with wearable
sensors,” IEEE Sensors J., vol. 19, no. 17, pp. 7598–7604, Sep. 2019.

[18] J. Tian et al., “Synergetic focal loss for imbalanced classification in
federated xgboost,” IEEE Trans. Artif. Intell., vol. 5, no. 2, pp. 647–660,
Feb. 2024.

[19] S.-Y. Wang, Z. Qu, and L.-Y. Gao, “Multi-spatial pyramid feature and
optimizing focal loss function for object detection,” IEEE Trans. Intell.
Veh., vol. 9, no. 1, pp. 1054–1065, Jan. 2024.

[20] M. Massaoudi, S. S. Refaat, A. Ghrayeb, and H. Abu-Rub, “Short-term
dynamic voltage stability status estimation using multilayer neural net-
works,” in Proc. IEEE Texas Power Energy Conf., 2023, pp. 1–6.

[21] P. Sun, L. Huo, X. Chen, and S. Liang, “Rotor angle stability prediction
using temporal and topological embedding deep neural network based
on grid-informed adjacency matrix,” J. Modern Power Syst. Clean En-
ergy, vol. 12, no. 3, pp. 695–706, May 2024.

[22] J. Ma, S. Wang, Y. Qiu, Y. Li, Z. Wang, and J. S. Thorp, “Angle
stability analysis of power system with multiple operating conditions
considering cascading failure,” IEEE Trans. Power Syst., vol. 32, no. 2,
pp. 873–882, Mar. 2017.

[23] X. Zhang et al., “Power system transient stability control method based
on deep learning hybrid model,” in Proc. IEEE/IAS Ind. Commercial
Power System Asia, 2021, pp. 1447–1451.

[24] S. K. Azman, Y. J. Isbeih, M. S. El Moursi, and K. Elbassioni, “A
unified online deep learning prediction model for small signal and tran-
sient stability,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4585–4598,
Nov. 2020.

[25] Y. Zhou, J. Wu, Z. Yu, L. Ji, and L. Hao, “A hierarchical method for
transient stability prediction of power systems using the confidence
of a svm-based ensemble classifier,” Energies, vol. 9, no. 10, 2016,
Art. no. 778.

[26] L. Zhu, D. J. Hill, and C. Lu, “Hierarchical deep learning machine for
power system online transient stability prediction,” IEEE Trans. Power
Syst., vol. 35, no. 3, pp. 2399–2411, May 2020.

[27] S. M. Mazhari, N. Safari, C. Chung, and I. Kamwa, “A hybrid fault
cluster and thé venin equivalent based framework for rotor angle stabil-
ity prediction,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5594–5603,
Sep. 2018.

[28] R. T. Dabou, I. Kamwa, J. Tagoudjeu, and C. F. Mugombozi, “Super-
vised learning of overcomplete dictionaries for rapid response-based
dynamic stability prediction,” IEEE Trans. Power Syst., vol. 37, no. 6,
pp. 4912–4924, Nov. 2022.

[29] A. Gupta, G. Gurrala, and P. Sastry, “An online power system stability
monitoring system using convolutional neural networks,” IEEE Trans.
Power Syst., vol. 34, no. 2, pp. 864–872, Mar. 2019.

MOHAMED MASSAOUDI (Member, IEEE) re-
ceived the Ph.D. degree in electronics engineering
from the National Institute of Applied Sciences
and Technology (INSAT), University of Carthage,
Carthage, Tunisia, in 2022.

He has eight years of hands-on experience
in applying deep learning and machine learning
strategies to tackle real-world problems. During
his work with Texas A&M University at Qatar,
Doha, Qatar, he is the Lead Author of more than 40
peer-reviewed journal and conference publications

and one book chapter. His research interests include machine learning and
deep learning techniques for power system stability, energy management,
cybersecurity in smart grids, and innovative prediction models.

Dr. Massaoudi was the recipient of the Outstanding Student Research Ex-
cellence Award in 2021, the Thomas W. Powell’62 and Powell Industries Inc.,
Fellowship award in 2024, and the Richard E. Ewing Award for Excellence in
2024 for his research contributions. His h-index is 13 and his work has been
cited more than 800 times.

VOLUME 5, 2024 265

https://dx.doi.org/10.1109/TASE.2023.3277536
https://dx.doi.org/10.17775/CSEEJPES.2021.00290
https://dx.doi.org/10.17775/CSEEJPES.2021.00290
https://dx.doi.org/10.17775/CSEEJPES.2020.03880
https://dx.doi.org/10.17775/CSEEJPES.2022.08800
https://dx.doi.org/10.17775/CSEEJPES.2022.08800


MASSAOUDI ET AL.: FLACON: A DEEP FTL-ENABLED TSA DURING SYMMETRICAL AND ASYMMETRICAL GRID FAULTS

HAITHAM ABU-RUB (Fellow, IEEE) received
the Ph.D. degree in electrical engineering from the
Technical University of Gdansk, Gdansk, Poland,
in 1995, and the Ph.D. degree in humanities from
Gdansk University, Gdansk, in 2004.

He has worked with many universities in many
countries including Poland, Palestine, USA, Ger-
many, and Qatar. Since 2006, he has been with
Texas A&M University at Qatar. For five years,
he was the Chair of the Electrical and Computer
Engineering Program with Texas A&M University

at Qatar, Doha, Qatar, and is currently working as the Managing Director of
Smart Grid Center. He has authored or coauthored more than 600 journal and
conference papers, five books, and six book chapters. He has supervised many
research projects on smart grid, power electronics converters, and renewable
energy systems. His main research interests include electric drives, power
electronic converters, renewable energy, and smart grid.

Dr. Abu-Rub was the recipient of many prestigious national and interna-
tional awards and recognitions, such as the American Fulbright Scholarship
and the German Alexander von Humboldt Fellowship. He is the Coeditor-in-
Chief for IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.

ALI GHRAYEB (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from The Univer-
sity of Arizona, Tucson, AZ, USA, in 2000.

He is currently a Professor with the Department
of Electrical and Computer Engineering, Texas
A&M University at Qatar, Doha, Qatar. Prior to
his current position, he was a tenured Profes-
sor with the Electrical and Computer Engineering
Department, Concordia University, Montreal, QC,
Canada. He has coauthored two books and au-
thored or coauthored more than 250 journal and

conference papers. His research interests include wireless and mobile com-
munications, physical layer security, massive MIMO, visible light communi-
cations, smart grid, artificial intelligence and machine learning. Dr. Ghrayeb
was an Instructor or Co-Instructor in many technical tutorials at several major
IEEE conferences, the Executive Chair of the 2016 IEEE WCNC Confer-
ence, a Member of the IEEE ComSoc Conferences Council, the IEEE GITC
Committee, and the IEEE WCNC Steering Committee. He was in different
editorial capacities on a number of IEEE transactions journals. He is currently
with the IEEE ComSoc Awards Committee.

266 VOLUME 5, 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


