
Received 1 June 2024; accepted 12 August 2024. Date of publication 21 August 2024;
date of current version 13 September 2024. The review of this article was arranged by Associate Editor Luis Ribeiro.

Digital Object Identifier 10.1109/OJIES.2024.3447001

Toward Semantic Event-Handling for Building
Explainable Cyber-Physical Systems

GERNOT STEINDL 1 (Member, IEEE), TOBIAS SCHWARZINGER 1, KATRIN SCHREIBERHUBER 2,
AND FAJAR J. EKAPUTRA 2

1Institute of Computer Engineering, Research Unit Automation Systems, Technical University Wien, 1040 Vienna, Austria
2Institute for Data, Process and Knowledge Management, Vienna University of Economics and Business, 1020 Vienna, Austria

CORRESPONDING AUTHOR: GERNOT STEINDL (e-mail: gernot.seindl@tuwien.ac.at).

This work was supported in part by the Austrian Research Promotion Agency FFG through research project SENSE under Grant 894802 and in part by TU Wien
Bibliothek for financial support through its Open Access Funding Programme.

ABSTRACT In the context of cyber-physical systems (CPS), understanding system behaviors is crucial for
ensuring reliability, efficiency, and trust. However, due to the increasing complexity of the modern CPS, gain-
ing such understanding is becoming more challenging. In this article we provide a foundation for explaining
system behavior through detected system events. To this end, the article proposes a technology-agnostic,
semantic event-handling module to address the challenge of enhancing explainability within CPS. This mod-
ule is designed to be part of the common architecture for Explainable CPS and, therefore, can be integrated
seamlessly into existing CPS frameworks by providing different interfaces to access detected events. Two
case studies in the smart building and smart grid domain are carried out to demonstrate the feasibility and
efficacy of the approach, utilizing an open-source software stack for the prototypical implementation. A
qualitative evaluation of the proposed approach, based on the ISO/IEC 25010:2023, was used to analyze
the software design. Our evaluation result shows that the semantic event-handling module is appropriate as
a generic approach to handling events within a CPS. The module becomes a foundation for incorporating
explainability into the system, which is needed as a foundation to ensure human trust and enable informed
decision-making.

INDEX TERMS Cyber-physical systems (CPSs), event detection, semantic web.

I. INTRODUCTION
A cyber-physical system (CPS) represents the convergence
of the digital and the physical world, which is changing the
way we interact and manage complex systems in various
domains, such as manufacturing, energy, or buildings. These
integrated systems combine computational capabilities with
physical components to make those systems and processes
smarter, more efficient, and easier to handle.

What differentiates CPSs from classical embedded sys-
tems that can also interact with their physical environment
is the spatial distribution and networking capability within
CPSs. Networking capabilities are needed to connect various
components of a CPS. Frequently, this is founded on (Indus-
trial) Internet of Things technologies. The spatial and logical
distribution, together with dynamic and adaptable system be-
havior, increase the complexity of such CPS. Thus, for human

operators, it is getting more challenging to understand the
behavior of the underlying system, which increases the need
for experienced operators. However, finding experienced op-
erators can be challenging as they are not always readily
available. Therefore, the increasing complexity reduces the
understandability and trust in CPS, which led to the intro-
duction of the explainable cyber-physical system (ExpCPS)
concept [1].

The goal of explainability in this context is to ensure that
the insights and decisions made by the CPS are interpretable,
and transparent, enhancing the overall reliability and effec-
tiveness of the system. However, explainability in this context
is not an absolute characteristic of a CPS, as many intricate
aspects influence the users’ perception of the system. [2]

Nevertheless, the system’s state and interactions with
the surrounding environment must be observed, stored, and

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

928 VOLUME 5, 2024

https://orcid.org/0000-0002-9035-9206
https://orcid.org/0009-0003-1433-2049
https://orcid.org/0000-0003-1815-8167
https://orcid.org/0000-0003-4569-2496
mailto:gernot.seindl@tuwien.ac.at

processed to provide a solid foundation for any generated
explanation. Events encapsulate the occurrences or changes
within the system, acting as critical indicators of its dynamic
behavior. A simple definition for an event is: “Anything that
happens, or contemplated as happening” [3].

Keeping track of the events within a system is important
to provide a solid foundation for explanations of its behav-
ior. As a result, events are crucial in ExpCPS due to their
role in tracking and understanding state changes, enabling the
monitoring and processing necessary for comprehending the
system behavior. Thus, solutions must be provided that enable
detecting and processing every relevant event within the CPS.
But, only storing events in a CPS is not sufficient. To harness
the full potential, adding semantic context to these events is
crucial for designing, deploying, monitoring, and adapting
CPSs [4], and especially for creating ExpCPS [1]. The se-
mantic enrichment of events enhances their interpretability,
allowing for a more profound understanding of the system’s
behavior. Semantic annotations provide meaningful labels and
relationships, transforming raw event data into comprehensi-
ble information. This semantic layer forms a foundation for
developing ExpCPS frameworks. However, the existing land-
scape of event-handling architectures within CPS still shows
a notable gap due to the unavailability of simple, adaptable,
and generic frameworks. Moreover, the current frameworks
commonly overlook incorporating semantic context, a criti-
cal element necessary for building ExpCPS. The absence of
semantics within these architectures limits their capability to
provide meaningful insights and explanations for CPS be-
haviors. This problem hinders the development of ExpCPS
because researchers have no reusable concepts for semantic
event handling that would allow them to focus solely on the
explainability capabilities of a system.

Thus, the overall research aim is to streamline the de-
velopment of ExpCPS by providing versatile and generic
concepts that facilitate the creation and management of Ex-
pCPS frameworks. In this work, we want to establish a generic
architecture for semantic event handling in ExpCPS that
targets simplicity and adaptability while also integrating se-
mantic contexts. Such an architecture forms the foundation for
ExpCPS, enabling comprehensive system observations and
fostering enhanced transparency, and interpretability within
complex CPS environments.

To reach that goal, in this work, we answer the following
research question: What are the design characteristics of a
semantic event-handling architecture capable of managing
simple and complex events to establish a foundational frame-
work for ExpCPS?

To answer that question, a literature review is conducted
to understand the principles of ExpCPS architectures and
already applied event-handling architectures for CPS. Based
on that, the fundamental principles, challenges, and design
considerations associated with event handling in ExpCPS are
identified. Those insights were used to propose a semantic
event-handling architecture that is evaluated by case studies
in the smart grid and smart building domain. The case studies

analyzed the event-handling architecture employed, focusing
on their ability to manage simple and complex events. There-
fore, a prototype for the semantic event-handling framework
is implemented. The case studies are used to validate the
feasibility and extract insights into how these architectures
contribute to the establishment of foundational frameworks
for ExpCPS. In addition, a qualitative evaluation of the
proposed software architecture is conducted, based on the
ISO/IEC 25010:2023 standard.

With regard to the stated research question, our work helps
to advance the development of ExpCPS by providing the fol-
lowing contributions.

1) An ExpCPS architecture including a minimal set of
components essential for effective operation, based on
insights from existing literature in the field.

2) Details for the “semantic event-handling module” as
part of the ExpCPS architecture, designed to enhance
event processing in ExpCPS.

3) A prototypical implementation of the proposed ar-
chitecture, leveraging Semantic Web Technologies, to
demonstrate its feasibility in real-world scenarios.

4) A qualitative evaluation of the approach based on the
ISO/IEC standard, offering insights into the effective-
ness and usability of the proposed ExpCPS architecture
and semantic event-handling module.

II. RELATED WORK
In this section, we provide an overview of the concepts of the
relatively young research area of ExpCPS and its relation to
event handling. Furthermore, event-handling approaches that
have been applied in CPS are described, especially those that
incorporate semantic approaches, as this has been shown to be
a notable requirement for providing context in ExpCPS.

A. EXPLAINABILITY IN CPS
The overarching goal of explainability is to provide answers
to “why something happens” [5]. This is a key feature for
humans to build trust in systems that impact their lives, which
is often the case in CPS (e.g., buildings or energy systems).

Sadeghi et al. [6] discussed the growing necessity for sys-
tems to explain their behavior, particularly in the context of
complex technologies, such as machine learning and self-
adaptation. In this article, we introduce a taxonomy aimed
at categorizing the diverse needs for explanations based on
various reasons. This article’s key contributions include the
taxonomy of explanation needs, the associated explanation
cases, and the identification of influencing factors determin-
ing the necessity of explanations. Similar to our work, this
article’s primary focus is enhancing user interaction with the
system through improved explanations. This means that the
original system behaviour is not understandable, desirable, or
expected by a user as defined by Gregor and Benbasat [7].

CPS development faces different challenges in terms of
complexities. In [8], various complexity facets concerning the
type of system, the environment as well as organizational
aspects are identified. The difficulty in understanding a system

VOLUME 5, 2024 929

STEINDL ET AL.: TOWARD SEMANTIC EVENT-HANDLING FOR BUILDING EXPLAINABLE CYBER-PHYSICAL SYSTEMS

is identified as one of the consequences of these complex
facets. In our approach, we offer a framework to make CPS
more understandable, especially concerning the complexity
facets of heterogeneity in sensors, properties, and behaviors,
as well as size and computability-related facets concerning a
large number of units and interactions in a complex CPS. Our
framework aims to process event data effectively to make data
more accessible to humans, reducing information overload
and increasing understandability, considering limited memory
capacity and bounded rationality as human limitations.

In the realm of interpretable machine learning, which is
a related field to ExpCPS, different approaches have al-
ready been proposed. A taxonomy for these methods that
enable the interpretation of machine learning models, that is
structured around the outcomes of interpretation methods is
provided in [5]. It distinguishes between model-specific and
model-agnostic approaches, as well as local and global inter-
pretations. Another survey on explainable anomaly detection
for Industrial Internet of Things (IIoT) provides a similar
taxonomy [9]. The authors specifically focus on explaining
abnormal behavior within an IIoT system because, as they
stated, anomaly detection is essential for real-time monitor-
ing, including decision-making in dynamic, heterogeneous,
and large-scale IIoT infrastructure. In this article, the authors
only focus on approaches that apply to machine learning.
They mainly distinguish between intrinsic interpretable ma-
chine learning models, such as linear regression, decision
trees, or Naive Bayes Classifier, and model-agnostic methods,
such as local interpretable model-agnostic explanations [10],
Anchors [11], and Sapley Additive Explanations [12].

However, for enhancing the explainability of CPS, these
machine learning approaches have drawbacks as they do not
consider the impact of the physical and virtual context, which
affects its behavior [1]. Therefore, they propose that such
ExpCPS need different approaches for providing meaning-
ful explanations. Furthermore, an enrichment with additional
context information using semantic technologies is proposed.
An example of how such semantic technologies can be ap-
plied in ExpCPS is presented in [13], where the authors show
the essential role of causality knowledge in ExpCPS. This
article introduces a two-level abstraction of causality, namely
abstract and concrete causality, and outline how SPARQL
queries can infer concrete causality from the query results.
The method’s utility is demonstrated in a smart grid scenario,
illustrating its potential to streamline the incorporation of
causality knowledge into CPS.

A general architecture for ExpCPS is essential due to
the increasing complexity of these systems, which often in-
volve intricate interconnections between digital and physical
components. A standardized architecture provides a system-
atic and unified framework for incorporating explainability
features across diverse CPS applications. Furthermore, a
general architecture facilitates consistency in implementing
explainability mechanisms, easing the integration of novel ap-
proaches, and fostering interoperability. One example of such

a general architecture is presented in [13]. Aryan et al. [13]
proposed a knowledge graph-based framework for creating
explainable cyber-physical energy systems (CPES) in the con-
text of smart grids. The framework utilizes an ontology to
model and link data from various sources and employs graph-
based algorithms to generate explanations from events. The
document presents a simulated demand response scenario to
demonstrate the applicability of the framework. The scenario
also involves aspects outside the electricity grid, such as data
from weather services and the energy market. The framework
provides an explanation that traces the root causes of an event
and considers the aggregation relationship of causes. Integrat-
ing various data and knowledge is identified as a key challenge
in building an explainable CPES.

Another framework is shown in [14]. In this case, the
authors outline a vision for addressing the challenge of un-
derstanding and comprehending the behavior and decisions of
complex CPS. The proposed solution is called the Monitor,
Analyze, Build, Explain (MAB-EX) framework, which is an
adaption of the Monitor, Analyze, Plan, Execute, Knowledge-
base (MAPE-K) approach that was introduced in [15] for
self-adaptive systems. The MAB-EX framework is designed
to create self-explainable systems that answer questions about
their past, current, and future behavior in real time. The frame-
work operates in four stages: monitor and analyze system
behavior, build an explanation using explanation models, and
convey this explanation to stakeholders in a suitable man-
ner. Importantly, the framework acknowledges the potential
for learning new explanations by updating the explanation
models when the system detects new and unexplainable
behavior.

Looking at both approaches, it is apparent that proper event
handling is crucial in such ExpCPS frameworks for several
critical reasons as follows.

1) Events represent dynamic changes, occurrences, or trig-
gers within the system, serving as essential indicators
that demand an explanation.

2) In an ExpCPS, understanding the causes and effects
of events is foundational to providing transparent and
interpretable explanations for the system’s behavior.

3) Effective event handling ensures that a framework is
able to monitor, analyze, and respond to events in real-
time.

4) Event handling is crucial for identifying anomalies,
learning from new behaviors, and updating explanation
models accordingly.

Thus, by providing proper event-handling capabilities, a
framework can offer various stakeholders a clear and contex-
tually rich explanation, fostering trust, usability, and reliabil-
ity in these complex and dynamic systems.

For this reason, we focus in our work on the event-handling
part in such systems to provide a solid foundation for im-
plementing ExpCPS frameworks. In the next section, we
elaborate on existing event-handling approaches in CPS and
how they have to be adapted for ExpCPS.

930 VOLUME 5, 2024

B. EVENT HANDLING ARCHITECTURE IN CPS
Molina et al. [16] presented an event-driven architecture for
CPS. They identified several requirements for CPS event-
handling architecture, such as interoperability, flexibility,
low coupling, and asynchrony. Consequentially, the authors
advocate for an event-driven architecture applying the
publish-subscribe communication pattern. The proposed ar-
chitecture focuses primarily on scalability, error correction,
and consistency, aligning with the complex demands of CPS.
A similar event-driven architecture approach, based on a bro-
ker technology is presented in [17]. López [17] proposed
a real-time event-based platform for developing digital twin
applications.

However, a notable gap exists in both approaches regarding
considering semantics in conjunction with events. Even if they
show the suitability of broker technology for event handling
and exchange within a framework, they neglect the semantic
aspects, which is important to provide context for explainabil-
ity [1].

An approach that takes context into consideration is pre-
sented in [18]. Verma et al. [18] introduce an innovative
approach to complex event processing (CEP) in smart en-
vironments, addressing the limitations of classical complex
event detection engines. They consider the spatial relation-
ships among sensors and acknowledge the dynamic impact
of temporal changes in sensor data. They show the effec-
tiveness in enhancing smart environments by providing a
more context-aware approach to CEP. Therefore, they intro-
duced the concept of detecting so-called atomic events, which
were afterward processed by the CEP engine. This two-step
approach provides additional flexibility for event detection.
However, the authors applied a feature extraction algorithm
in combination with a convolutional neural network. This
approach requires labeled training data, which is often not
available especially before or during commissioning. In ad-
dition, expert knowledge cannot be incorporated to detect
atomic events within the sensor data.

A more semantic-based approach is presented in [19], in
which an ontology-based language and approach for event
description and detection was introduced. It provides rich
expressiveness as language and can act as an intermediate
representation for transformations between different event de-
scription languages used in various CEP engines. However,
the presented ontology focuses only on the representation
of complex events and does not capture any domain knowl-
edge. Such use of domain knowledge and and its application
is presented in [20], which introduces an ontology for for-
malizing knowledge related to condition-monitoring tasks in
manufacturing processes. The ontology is composed of three
modules: manufacturing, context, and condition monitoring.
The applicability of the ontology is shown with a use case of
bearing conditions in rotating machinery. They applied rule-
based reasoning to infer operating states and error severity,
which initiates further condition-monitoring activities. The
approach showcases the benefits of rule-based reasoning, that
incorporates expert knowledge.

Another semantic approach is presented in [21], where
the authors used stream reasoning for real-time detection of
situations that may lead to failures in manufacturing pro-
cesses. It enriches sensor data with contextual information
to enhance real-time situation detection. The use of stream
reasoning enables real-time processing and supports decision-
making based on continuous data streams and background
knowledge. The authors introduce a general framework archi-
tecture that integrates contextual knowledge, user experience,
and semantics in manufacturing and production processes.

A follow-up paper [22] from the same authors presents an
extension of the framework that provides a hierarchy of situ-
ations for decision-making, enabling the identification of ac-
tions to correct abnormal behavior to prevent process interrup-
tions. As in their first work, their framework leverages ontolo-
gies and knowledge bases to create a machine-interpretable
representation of manufacturing knowledge to enable effec-
tive condition monitoring, diagnosis, and decision-making.
However, the approach is also tailored towards stream reason-
ing. It neglects the problem of detecting the events themselves
in a discrete or continuous signal that is produced by sensors.
As already mentioned, detecting such events is not trivial, but
also crucial for generalizing this approach.

In summary, the literature shows that proper event detec-
tion and handling is vital for creating ExpCPS. Using event
brokers is a common technique to handle events within an ar-
chitecture, because of the decoupling between event producers
and consumers. It has also been shown that using semantic
models to capture domain knowledge for context-aware ex-
planations and facilitating effective event detection methods
is crucial. A two-stage event detection approach introduces
additional flexibility to apply different techniques at certain
levels, e.g., combining rule-based or model-based detection
with stream reasoning. These findings are used in the fol-
lowing section for the design of a generic event-handling
architecture that is a foundational part of an ExpCPS.

III. THE EXPCPS ARCHITECTURE
Based on the architectures found in the literature, the main
components are identified that are necessary to create a Ex-
pCPS. It should be noted, that for providing the full feedback
loop to the physical entity of an ExpCPS, as suggested for the
MAB-EX framework [14], more modules would be needed.
However, if only explanations have to be provided and the
system is not acting autonomously, the modules as depicted
in Fig. 1 are sufficient. The modules are structured based
on the layers defined by the Reference Architecture Model
Industry 4.0 (RAMI 4.0) [23]. The RAMI 4.0 layers help to
structure the different modules of such an ExpCPS based on
a functional view. These modules are now explained in more
detail.

Physical entity: The physical entity represents the physical
part of an CPS. It is usually distributed in nature. The integra-
tion into the cyber-space is done by using various sensors (and
actuators), which are networked by communication systems.
We are not showing those integration and communication

VOLUME 5, 2024 931

STEINDL ET AL.: TOWARD SEMANTIC EVENT-HANDLING FOR BUILDING EXPLAINABLE CYBER-PHYSICAL SYSTEMS

FIGURE 1. Common modules for an ExpCPS architecture.

details in Fig. 1 as they are not critical for understanding the
ExpCPS architecture as a whole. Therefore, we only depicted
the data flow from the physical entity to the information layer.

The subsequent information layer consists of two modules:
1) the data source and 2) the semantic model.

IIoT data source: Because of their distributed nature,
data in a CPS is usually provided through an IIoT infras-
tructure. The available communication systems are often
domain-specific. Some examples are OPC Unified Archi-
tecture servers or MQTT brokers in the industrial domain.
Another example could be a BACnet server in the building
domain. In addition, more recent concepts, like an asset ad-
ministration shell instance, could also occur as a source for
data. Next to these domain-specific technologies, IIoT plat-
forms that abstract the underlying communication technology
and typically provide web-based interfaces are also in place.
Such platforms typically provide database connectors to store
incoming values persistently. These time-series databases can
also be directly used to access current and historical data.
The data that is produced by these platforms or other avail-
able services can also be virtual. This means that the data
are not measured but calculated or predicted. The minimal
requirements for the data sources are that they provide an
endpoint with an application programming interface (API)
through which the data can be retrieved. Typically, the data are
structured as a value with its corresponding timestamp. The
contextualization of the data is performed after the extraction
within the semantic event-handling module and with the help
of the information stored in the semantic model. This provides
a semantic abstraction layer for data integration similar to the
one proposed in [24].

Semantic model: A semantic model is needed to provide
context to data and events. This model describes certain
aspects of the domain, like concept hierarchies and their

relations, to model a virtual representation of the physical
asset. The semantic model provides the general data schema to
store system-specific assets in a knowledge graph. The model
is used to retrieve information about assets, such as available
entities, data sources, and mappings for the integration pro-
cess. Other modules can use the information that is provided
by the semantic model.

A variety of technologies can be employed to implement
a semantic model. The suitability of different technologies
and standards, such as graph databases, NGSI-LD [25], or
a more general knowledge modeling language, such as the
W3C standards resource description framework (RDF) [26]
and web ontology language (OWL) [27], will depend on the
semantic expressiveness that is needed and the available tool-
ing support.

Semantic event-handling module: Within the functional
layer various modules can be located. One essential func-
tionality is the detection of events within the CPS and the
contextualization of those events. This is performed by the
semantic event detection module. As this module is the focus
of this work, it is explained in more detail in the next section
(Section IV).

Explainibility module: This module uses the semantic
model as well as the events that are detected to provide ex-
planations to various users of the CPS. It uses the semantic
model to provide context and find the root cause for certain
events. A detailed description of the module implementation
is not in the scope of this article but will be provided to a
limited extent in our evaluation.

Business process integration: On the business layer the
ExpCPS has to be integrated into various business processes,
e.g., a maintenance process. Usually, these processes perform
some kind of user interaction with the ExpCPS where expla-
nations are provided to the user of the system. Depending
on the use case, different human–machine interfaces (HMIs)
can be applied. One possible use case that we are currently
working on is the utilization of a so-called chatbot that pro-
vides explanations interactively based on the findings of the
explainability module.

It is important to note that the proposed ExpCPS architec-
ture can be constructed on top of the legacy CPS, provided
that the proper interfaces to the available IIoT data sources
and other services are provided. Consequently, the explain-
ability feature can be implemented alongside existing services
within the CPS. As previously stated, if the full MAB-EX con-
cept should be implemented, which means the system takes
autonomous decisions based on the identified events and ex-
planations, the feedback to the physical entity has to be closed
via additional modules that are capable of communicating,
e.g., with a CPS control service. Depending on the legacy CPS
architecture, this can increase the integration effort. However,
in any case the semantic event-handling module implements
the interface to the underlying system and the rest of the
modules that are needed for providing explainability. Thus,
this module will be explained in more detail in the next
section.

932 VOLUME 5, 2024

FIGURE 2. Details of the semantic event-handling module showing its
internal components.

IV. SEMANTIC EVENT-HANDLING MODULE
The idea behind the semantic event-handling module that is
presented in this section is to provide a technology-agnostic
and domain-independent solution that can be seamlessly inte-
grated with various ExpCPS architectures, offering versatility
in its application. Its primary objective is to provide a semantic
event-handling solution, including event detection, contextu-
alization, and storing, that can be easily implemented in CPSs
across various domains, regardless of a specific technology
stack.

Fig. 2 shows the internal structure of the semantic event-
handling module that consists of several functional compo-
nents. In addition, the adjacent modules from the lower layer
(semantic model and IIoT data source) are also depicted as
the semantic event-handling module has to interact with them.
The functional components from the semantic event-handling
module are explained in more detail in the following:

Semantic data ingestion: This component has to perform
two main tasks. First, depending on the data source, the
module has to poll for new incoming data or register if a
publish/subscribe communication mechanism is supported by
the data source. Second, the data sources provide the incoming
data and events in heterogeneous formats. Thus, the module
has to normalize this information and perform mappings into
concepts that are described in the semantic model. This allows
a seamless integration of semantic data into further process-
ing. Predefined mapping languages, such as the RDF mapping
language (RML) [28], can simplify this process. Also, the nec-
essary information to access various IIoT data sources, such
as the endpoint type, its address, and how to access the infor-
mation, is also stored in semantic model. Those data source
descriptions can follow open standards, like those specified
by Web of Things [29].

Event broker: Internally, the events are distributed by a
so-called event broker. This approach enables decoupling the

various modules within the semantic event-handling module.
Thus, components that provide certain functionality can easily
be added or removed, depending on the application use case.
Furthermore, the event broker provides an easy-to-use inter-
face that other modules within the whole ExpCPS architecture
can easily connect to at run-time. They only need to register by
the broker via the event interface. Afterward, those modules
can extend the functionality of the ExpCPS.

Simple event detection: This component is responsible for
detecting events within the data provided by the data ingestion
component. There are two ways of doing that, depending on
the use case. The first one is the rule-based approach, using
logical rules that are defined externally by a domain expert or,
in some cases, could be semi-automatically generated based
on the information from the semantic model. Such simple
rules could be, for example, a simple threshold violation or
one signal exceeding another. Depending on the used rule
engine and supported logic, more sophisticated rules can be
defined, e.g., using signal temporal logic (STL).

The second approach is model-based to describe the dy-
namic behavior of the physical part. This is needed for use
cases where simple rules are not sufficient because of the
complexity of the problem. The incorporated models can be
divided into three general categories: white-box, gray-box, or
black-box models. White-box models are physics-based and
represented mainly by partial differential equations. Mostly,
these models are too complex and many parameters are not
known exactly. Black-box models are purely data-driven. Ma-
chine learning is a common technique to create such models.
Enough already available run-time data are crucial to capture
the dynamic of the physical part. Problems can occur if they
are applied under conditions that have not been captured or
represented in the training data. Gray-box models are based on
physical principles, but certain parameters are identified based
on historical run-time data. Thus, they need a higher modeling
effort but are usually more accurate in situations not seen in
the training data or where less training data are available.
Generally, every type of model can be deployed within the
semantic event-handling module as long as an appropriate
run-time environment is provided. Standards already exist that
can simplify this process. The functional mock-up interface
standard [30] is one example that enables the integration of
third-party models as it defines the model interface and al-
lows the encapsulation of the whole model within a so-called
functional mock-up unit.

Complex event detection: This component is used to detect
specific patterns within the stream of already detected simple
events, with regard to time and space. An example of a such
complex event is that the simple event EA occurs within 5 min
after the simple event EB occurs, which will trigger the event
EC . CEP engines may incorporate temporal logic for detecting
event sequences and causality. When predefined conditions or
patterns are met, a complex event is sent to the event broker,
which then can trigger further actions or only be logged for
later analysis. The necessity of such CEP is very use-case-
specific. Because of the decoupling of the modules through

VOLUME 5, 2024 933

STEINDL ET AL.: TOWARD SEMANTIC EVENT-HANDLING FOR BUILDING EXPLAINABLE CYBER-PHYSICAL SYSTEMS

the event broker, the complex event detection component can
be added if needed without further changes within the seman-
tic event-handling module.

Semantic event log: Events that are detected by the simple
event detection or the complex event detection component
must be logged to be accessible for other applications. Addi-
tional functionality can be provided by other services within
the CPS based on the semantic event log. An example, next to
generating explanations within a ExpCPS, could be process
mining of the events to build a behavior model of the phys-
ical system or detect discrepancies between existing models
and reality. The difference between the semantic event log
and a conventional event log is using semantic technology
to provide additional context. The detected event is linked
with concepts usually described in the semantic model of the
ExpCPS. Note that this does not mean that a simple event
table could not be used as an implementation (e.g., for per-
formance or compatibility reasons). An approach of how such
a simple table could also be enriched with context is the
usage of ontology-based data access to map the event table
at run-time [31]. Another way of creating a semantic event
log could be linked data event streams [32]. Independent from
the implementation details, a log interface, which is usually
provided as APIs, has to be provided to other services to gain
access to the information.

V. EVALUATION
This section presents a prototype implementation of the pro-
posed event-handling service described in Section IV. In the
context of this work, the implementation aims to achieve two
things. First, it helps to illustrate the concepts by instantiating
the architecture with concrete technologies. Second, applying
the prototype to two concrete use cases will demonstrate the
approach’s feasibility. Lastly, the section also presents a qual-
itative evaluation of the architecture’s quality characteristics
using the ISO/IEC 25010:2023 standard [33] as an outline.

A. USE CASE DESCRIPTION
For the evaluation, two independent use cases are specified
that are explained here in more detail.

1) SMART BUILDING
Fig. 3 depicts parts of a schematic drawing representing a floor
in a smart office building use case. There is a large conference
room (Room_A) with one thermometer in it (T_A). Occupants
can control the desired room temperature using the set point
T_set. The room houses a heating unit to react to changes in
the room temperature. The controller can regulate the heating
unit by setting P_el between 0 and 100 %. The conference
room is equipped with two large windows that can be opened
by occupants to allow fresh air into the room. The central
server room of the building is situated on the opposite side
of the conference room. This room houses the computers
that operate the Building Management System (BMS) and
Energy Management System (EMS). Furthermore, the EMS

FIGURE 3. Smart building use case with available data points.

can access an external weather service via an API to obtain
the current outside temperature. The aforementioned weather
service is periodically queried and represented as a virtual
sensor within the semantic event detection system (T_Out).

The objective of this use case is to detect whether the
window was left open after a meeting in the conference room
during the heating period. This circumstance causes the build-
ing to operate inefficiently, resulting in a higher energy bill for
the operators. Different event sequences may indicate the open
window. We will consider the following scenario to show the
feasibility of the event detection architecture.

1) Room A Cold ERC: The rule-based event detection trig-
gers an event indicating the room is cold. Detecting this
involves both temperature sensors and the current set
point.

2) High Power Consumption EHP: The model-based event
detection triggers an event indicating that the power
consumption is abnormally high. In this use case, the
model estimates a maximum power input to the heater,
given the set point and the outside temperature.

3) Open Window EOW: After observing the previously
mentioned events, the complex event detection trig-
gers an event that points toward an open window. This
reasoning step includes ensuring the absence of other
events. For example, an increase in the set point could
explain a similar pattern. However, the system can
distinguish between these events because the complex
event detection ensures an absence of an event that indi-
cates a set point increase.

In addition to the open window, other events from the BMS
and the EMS may be relevant to provide a suitable explana-
tion. For example, suppose the conference room is booked
for a meeting. The BMS signals an event when the meeting
begins. During that meeting, attendees might want to get
fresh air into the room and open the window. Consequently,
an increase in power consumption from the heater is to be
expected, in order to maintain the room at the desired setpoint

934 VOLUME 5, 2024

FIGURE 4. Smart grid use case with available data points.

temperature. However, if the same window open event is trig-
gered after the EMS signals the event that the building has
transitioned its operational state to night mode, it is likely
that the window is not being opened intentionally. In that
case, an alert should be displayed to the facility management
explaining why they have to check on the conference room.
Both systems, the EMS and BMS can easily hook into the
semantic event-handling module via the event interface and
start publishing events.

The system stores all previously mentioned events in the
semantic event log. Each event published on the event broker
contains semantic annotations that declare the source of the
event. By analyzing these annotations over multiple connected
events, users can identify that the open window event fired
because of a drop in room temperature and high heater usage.
While this use case is intentionally simple, it showcases how
the different components interconnect.

2) SMART GRID
Fig. 4 shows a schematic representation of a smart e-charging
garage for electric vehicles (EVs). The grid operator imposes
an operating envelope on the charging facility, which is a
power demand limit on the charging facility overall. The
garage consists of two charge points as well as a battery, which
can be used to perform peak shaving at critical times to avoid
the violation of the operating envelope. Each charge point
has a sensor attached to it to measure the active power (AP)
consumed by the charger. The battery has a sensor measuring
the AP and a sensor measuring the state of charge (SOC)
of the battery. In addition, the operating envelope sensor
(OpEnv)indicates the current demand limit imposed on the
system.

In this use case, we aim to detect high charging events
and operating envelope violations. High charging means that
the charging demand of the charge points is higher than the
operating envelope limit. This does not pose a problem as
long as the access demand can be met by the installed battery.
However, if the battery fails to provide the required extra
power, an envelope violation occurs. Detecting the associated
events in this use case is important to provide an explanation
to a grid operator about why such a violation has occurred. In
order to allow for such an explanation, the following events in
the system need to be detected:

FIGURE 5. Concrete implementation of the event-handling module as
proof of concept.

1) Battery depleted EBD: An event indicating the battery is
depleted is triggered by the event detection framework.
The SOC of the battery is monitored to detect this event.

2) HighEVCharging EHC: An event indicating that a cer-
tain e-charger is charging at higher power than the
operating envelope would allow the garage to demand
from the grid. The AP of the EV charger and the current
operating envelope setpoint are considered to detect this
event.

3) EnvelopeViolation EEV: An event indicating the viola-
tion of the operating envelope setpoint. The violation is
detected by comparing the sum of all consumers inside
the e-charging garage (battery AP, charger 1 AP, charger
2 AP) to the operating envelope.

After storing all detected events in the semantic event log,
the trace of events can be used to trigger an alert if an envelope
violation was detected as well as create an explanation of
why this violation occurred. Such an explanation is useful
to the facility operator of the garage to examine potential
weaknesses of their garage, but it could also be interesting
to the grid operator to understand more in-depth why their
imposed limits were violated and whether the facility operator
could have prevented it.

B. PROOF OF CONCEPT IMPLEMENTATION
In this proof of concept implementation, only open-source
software tools and frameworks were used to realize the
proposed semantic event-handling module. The concrete im-
plementation with the used tools is depicted in Fig. 5. It has
to be noted that it only shows one possible realization of our
generic framework to showcase the functionalities. Following
our previous work in the CPS domain [34], [35], we mainly
use semantic web technology standards, but the generic archi-
tecture is not limited to them. The source code of the prototype

VOLUME 5, 2024 935

STEINDL ET AL.: TOWARD SEMANTIC EVENT-HANDLING FOR BUILDING EXPLAINABLE CYBER-PHYSICAL SYSTEMS

and a Docker Compose file to run the scenario, are provided
on GitHub.1

Event broker: The event broker functionality was imple-
mented by using MQTT with the Eclipse Mosquitto broker,2

ensuring efficient and reliable event distribution. In the pro-
totype, all components publish events in RDF serialized in
the Turtle format to the event broker. This convention allows
for transmitting semantic metadata straightforwardly, as each
message is an Resource Description Framework (RDF) graph.
Because these graphs should leverage ontologies defined in
the semantic model, each involved party can understand the
transmitted semantics of the data. As a result, each event can
include additional context, like its source (e.g., Rule A), eas-
ily. The semantic event log can then make use of this auxiliary
information. Enabling this ability makes this approach to data
exchange crucial in the proposed event detection architecture.

Data ingestion: The data ingestion component obtains sen-
sor readings from heterogeneous data sources and maps them
into the common data format used on the event broker. We will
demonstrate this concept by reading the sensor values from
an InfluxDB3 instance. InfluxDB is a versatile time-series
database well-suited to manage timestamped data for real-
time event handling and analysis efficiently. In the prototype,
all sensors publish their readings to the InfluxDB. It is the
job of the data ingestion component to query the semantic
model for relevant sensors and their data source. The service
must start obtaining updates from the sensor readings for
each found entity. How the service facilitates these updates
largely depends on the nature of the data source. This problem
is purely an implementation issue, as the semantic model
explicitly defines the characteristics of the data source. The
data ingestion service must publish each observed data point
on the event broker as RDF graph. The prototype uses the
MQTT topic events/sensors to publish the observations. An
example of such RDF data that is published for the smart
building use case is shown in Listing 3. In the prototype, the
mapping rules between the raw sensor readings and the RDF
graph are hard-coded in the data ingestion module. To further
increase the flexibility of this approach, the module could
use general-purpose RDF mapping ontologies. One example
is RML,4 which is currently released as a W3C draft. This
approach ensures that the data ingestion implementation can
cater to the requirements of a wide range of industries.

Semantic model: The semantic web technology is an inte-
gral part of the prototype implementation. In this technology
stack, concepts and entities are identified by uniform resource
identifiers (URIs). Users can use prefixes to abbreviate long
URI strings. Table 1 lists all namespace prefixes used in this
work. In Fig. 6, the conceptual representation of the devel-
oped SENSE Ontology is shown. Classes and properties that
are irrelevant for the proof of concept in the context of this

1[Online]. Available: https://github.com/semanticsystems/semantic-event-
handling

2[Online]. Available: https://mosquitto.org/
3[Online]. Available: https://www.influxdata.com/
4[Online]. Available: https://rml.io/specs/rml/

TABLE 1. Used Namespace Prefixes

FIGURE 6. SENSE Ontology used for the event handling proof of concept.

article are excluded from the figure. The SENSE Ontology is
an extension of the SOSA Ontology,5 a lightweight general-
purpose ontology to represent the interaction between entities
in cyber-physical systems [36]. The SENSE extension of
SOSA is mainly concerned with modeling events, their causal
relations, and their detection. Therefore, events are modeled
as results of sosa: Observations and sosa: Procedures are used
to describe the applied event detection algorithm, as shown in
Fig. 6.

For the proof of concept, especially the sensors and their
connections are important to be represented in the semantic
model. Each sosa:Sensor (i.e., T_A) in a system observes
an sosa:ObservableProperty (i.e., temperature) and is hosted
by a Platform (i.e., Room_A). An sosa:Observation is cre-
ated when an event detection procedure (i.e., ruleBasedE-
ventDetectionColdRoom), which is implemented at a sensor
(i.e., Room_A) has detected an Event (i.e., roomColdE-
vent123).

For the storage of the semantic model and the semantic
event log, GraphDB,6 a triple store, was employed, enabling
the association of events with semantic context.

Simple event detection: The simple event detection registers
itself to the MQTT topic events/sensors. Thus, it receives
incoming new values that are relevant to its operation. As
these updates are RDF triples, the service can construct an

5[Online]. Available: https://www.w3.org/TR/vocab-ssn/
6[Online]. Available: https://www.ontotext.com/products/graphdb/

936 VOLUME 5, 2024

https://github.com/semanticsystems/semantic-event-handling
https://github.com/semanticsystems/semantic-event-handling
https://mosquitto.org/
https://www.influxdata.com/
https://rml.io/specs/rml/
https://www.w3.org/TR/vocab-ssn/
https://www.ontotext.com/products/graphdb/

RDF graph as a union of all received triples. This technique al-
lows seamless integration into other approaches that leverage
semantic web technology. The system overwrites old values
from a sensor with a new observation to prevent the graph
from growing indefinitely. The simple event detection service
uses this graph to query the current sensor values. We will
refer to this data structure as observation graph.

One approach to rule-based event detection, that is im-
plemented in the prototype, is using the shapes constraint
language (SHACL), as defined by the W3C. SHACL rules7

provide sufficient expressiveness for calculations and com-
paring values. These capabilities allow the detection of, for
example, the average temperature of a thermal zone drop-
ping 4 ◦C below the set point. However, formulating more
complex concepts, such as time constraints, is cumbersome.
These restrictions pose no problem in this context because the
prototype uses Shapes Constraint Language (SHACL) only
for simple event detection. For the implementation, a Python
SHACL engine8 is used to create event triples from the ob-
servation graph. The system connects the detected event to
the rule that triggered the event to enable tracing the reason
behind an event instance. Furthermore, the timestamp of the
sensor observation is attached to the event.

The model-based event detection component within the
semantic event-handling module offers a versatile approach
for detecting anomalies in a CPS. Various implementation
strategies could be applied, with one potential method uti-
lizing regression models for anomaly detection, which the
prototype uses to demonstrate its principle functionality. The
smart building use case demonstrates model-based event de-
tection by using a simple regression model, that is trained on
historical data.

Complex event detection: Contrary to simple event de-
tection, complex event detection looks beyond the system’s
current state to detect trends. Furthermore, complex events
sometimes rely on the absence of other events. For example,
building operators expect higher-than-usual power usage if the
occupants recently increased the set point of the thermal zone
by a few degrees. Cao et al. [20] demonstrated that stream
reasoning is an apt approach for detecting more complex event
patterns while relying on knowledge from a semantic model.
The presented prototype leverages stream reasoning over the
simple event stream to detect the possibility of an open win-
dow. The prototype executes a C-SPARQL [37] query over
the simple event stream to implement this behavior. Other im-
plementations could also leverage CEP systems to implement
this module.

Semantic event log: A separate GraphDB instance is used
to implement the semantic event log. This instance stores all
detected events sent via the event broker. The SPARQL API is
used as an interface to retrieve the stored event information.
The sensor values are not stored, to reduce the number of

7[Online]. Available: https://www.w3.org/TR/shacl-af/
8[Online]. Available: https://github.com/RDFLib/pySHACL

LISTING 1. Instantiation of the smart building use case in the semantic
model.

TABLE 2. InfluxDB Database Schema With Converted Timestamp for
Readability.

nodes in the semantic event log and are already available in
the time series database.

1) SMART BUILDING IMPLEMENTATION
The SENSE ontology (cf., Fig. 6) provided the generic data
model required to represent event handling data in the CPS
domain based on the SOSA ontology [36]. For specific use
cases, however, additional domain-specific ontologies might
be necessary.

It is the case for the smart building use case, where the
prototype uses the Brick [38] ontology to define the structure
of the building in a precise manner. Listing 1 shows an excerpt
of the semantic model, which is in line with Fig. 3. First,
the example defines a building that consists of a single room
Room_A (Lines 1 and 2). This room has one temperature
sensor (T_A) (Line 9) and is part of an heating, ventilation,
and air conditioning (HVAC) zone with a set point T_set
(Lines 4–6). Furthermore, the Listing shows that the tem-
perature sensor T_A published its readings in Celsius (Line
17). Lastly, there is a virtual sensor defined that is used for
the complex open window event EOW (Lines 19 and 20). A
virtual sensor is required because the system cannot associate
this event with a single regular sensor. This is contrary to,
for example, associating a :RoomAColdEvent ERC with the
temperature sensor T_A. This example shows how RDF and
Brick can be used to model the building use case. Naturally,
operators can apply these capabilities to other domains using
other ontologies.

VOLUME 5, 2024 937

https://www.w3.org/TR/shacl-af/
https://github.com/RDFLib/pySHACL

STEINDL ET AL.: TOWARD SEMANTIC EVENT-HANDLING FOR BUILDING EXPLAINABLE CYBER-PHYSICAL SYSTEMS

LISTING 2. Mapping rule that defines the source of values for the Sensor
T_A.

LISTING 3. Example of a sensor measurement published to the event
broker.

Table 2 shows the data schema as the sensor values are
stored in the database. Each sensor is configured to write
its readings into the measurement room. Furthermore, each
sensor has a configured unique field. The sensors use these
two values to publish their readings into the InfluxDB.

The semantic model defines which sensors exist and where
they publish their readings. In this prototype, the model links
each sensor with the InfluxDB instance that hosts the sensor’s
readings. Listing 2 shows an example of such a link. Using a
suitable ontology, the semantic model may provide additional
information on the data source instance (e.g., IP address) and
the published data (e.g., temperature unit). This additional
information is not shown here.

The example outcome of the data ingestion is shown in
Listing 3. It depicts a measurement that is published as a
RDFgraph with additional context information on the event
broker. This particular example shows a setpoint change of
(:T_set) with its observation timestamp and the observed
new value.

Listing 4 shows a SHACL rule (ERC) from the prototype
that is used for the simple event detection. The rule detects
whether the sensor :T_A falls more than 4 ◦C below the set
point (Line 25). This circumstance triggers an event that the
room is cold. We want to highlight that SHACL can support
more complex rules. The rule engine can evaluate rules not
only on individuals [e.g., :T_A (Line 4)] but on whole classes
of nodes. For example, a single SHACL rule can detect tem-
perature drops in all thermal zones of a building. This article
does not showcase such rules, as its focus is on the overall
architecture of the event detection system.

Next to the rule-base approach, also a simple model-
based event-detection has been implemented for that use case.
Therefore, a regression model is trained with artificial data.
In a real-life application, such a black-box model would have
been trained with historical data instead and could use more
sophisticated algorithms, such as neural networks, etc. The
structure of this model is depicted in Fig. 7. It uses the val-
ues :T_set, :T_out as input variables for the regression
and estimates an upper bound for the :P_el variable. If the
actual value of :P_el exceeds the predicted upper bound,
the system triggers an event to the event broker. While this

LISTING 4. Simple SHACL rule for detection of the room cold event ERC.

FIGURE 7. Regression model for the model-based event detection
implementation, used to detect the high power consumption event EHP .

LISTING 5. Interface definition of a the simple regression model.

is a toy example, more sophisticated and realistic models can
similarly be integrated into the system.

The automated deployment of models requires information
about the model’s interface and the corresponding input and
output values. In addition, contextual information provides
additional value for model management and usage. Fortu-
nately, the semantic model can incorporate both, provided
there are apt ontologies. While established ontologies for de-
scribing simulation models exist, the prototype implements
just a minimal version to keep the description as simple as
possible.

Listing 5 shows one possible way of defining the regres-
sion model within the semantic model, based on the SOSA
ontology. This snippet defines the model’s inputs and which
event shall be triggered if the actual P_el exceeds the pre-
dicted value. The model-based event detection instantiates
and continuously evaluates the model on the observed data.
How the service might implement this procedure depends on

938 VOLUME 5, 2024

LISTING 6. Simplified C-SPARQL query for detecting the open window
event EOW.

the model type? All events detected by the model refer to
its URI in the semantic model, thus facilitating traceability.
While the prototype implements the model evaluation directly,
a more sophisticated implementation could define the model
parameters in the knowledge base and automatically deploy
the model to the event detection service.

It is important to note that the showcased regression algo-
rithm represents just one plausible approach for model-based
anomaly detection, serving as a basic demonstration in this
context. It is beyond the scope of this article to investigate
various approaches here rather than show the principle of a
model-based event detection module.

Listing 6 depicts a simplified version of the C-SPARQL
query that is used for complex event detection. Again, the
resulting event is interconnected with the Uniform Resource
Identifier (URI) of the query that triggers the event (Line 7).
Furthermore, the example highlights that the query includes
ensuring the absence of an event, as the system will not trigger
an open window event EOW if the set point was increased
recently. Note that such queries may also use the static data
from the semantic model, which truly showcases the power of
this approach. Again, the focus of this article is to showcase
its integration into the bigger picture, not to demonstrate the
full potential of the employed technology. In our example,
the users want to know why the power consumption of the
heater was higher than expected. One explanation is the open
window event EOW, which was thoroughly discussed in this
section. Another explanation could be that the thermostat on

FIGURE 8. Exploring high power consumption events.

the heater is temporarily faulty, thus causing the heater to
heat the room way beyond the set point T_set. The complex
event detection service could detect this by looking for a hot
room event ERH instance in conjunction with a high power
consumption event EHP instance. This pattern would provide
an alternative explanation for the high power consumption. To
find a suitable explanation for a user, the semantic event log
can now be explored. Fig. 8 visualizes parts of the semantic
event log for our example. Based on the entries, the users are
able to gain insights and deduce possible explanations for the
behavior of an CPS, based on causality chains.

To find a possible explanation for our example, a user starts
by listing all high power consumption events EHP instances
to gain insights into the power consumption behavior of the
building. The user may see a complex event related to the
event instance. For example, there is an open window event
EOW or alternatively a faulty thermostat eventinstance with a
s:causallyRelated relationship. These relations within
the events can be used to explain a reason why the power
consumption was high in this particular instance. With this
example it should be clear how the integration of automatic
explanation generation algorithms can be developed that are
based on this architecture. However, doing this is beyond this
article’s scope, as we only seek to demonstrate this architec-
ture’s ability to advance explainability in CPS.

2) SMART GRID IMPLEMENTATION
The structure for the proof of concept implementation for
the smart grid use case is defined according to the SENSE
Ontology, as shown in Fig. 6. In Listing 7, an excerpt of the
semantic model is shown representing the system as shown in
Fig. 4. It consists of the two e-chargers and a battery (Lines
1–5).

VOLUME 5, 2024 939

STEINDL ET AL.: TOWARD SEMANTIC EVENT-HANDLING FOR BUILDING EXPLAINABLE CYBER-PHYSICAL SYSTEMS

LISTING 7. Instantiation of the smart grid use case in the semantic model.

The sensor data are sent to and stored in a timeseries
database. Each sensor in the system is configured to write its
measurement values to a unique field. The active power sen-
sors send a value of the current active power to the database
every minute. In the semantic model, all sensors of the system
are defined as well as where they publish their readings. An
example of a link between a sensor and its dedicated time-
series database instance has been shown in the smart building
use case (Listing 2, Table 2)

Listing 8 depicts a SHACL rule for detecting an envelope
violation event EEV of the whole charging garage. The rule
implements this by gathering the AP from both chargers and
the battery module (Lines 17–25). In addition, the current en-
velope is referenced (Lines 26–28). If the sum of the chargers
and the battery is greater than the envelope, the system must
issue an envelope violation event (Line 29). Note that the AP
of the battery is positive while charging and negative while
discharging energy. Thus, the battery can prevent an envelope
violation by discharging energy to the garage.

Listing 9 depicts an envelope violation event EEV, which
was detected by a rule-based envelope violation detection
procedure as it is published and stored in the semantic event
log. The example shows the observation of the event, with the
related rule that triggered the event, an observation timestamp
and the observed value as well as the unit of the value (Lines
10 and 11).

Listing 10 shows a possible implementation of the high
charging event detection EHC. This event is fired if a single
charger consumes more power than the envelope offers. Con-
trary to the other SHACL rules demonstrated in this work,
this rule is a class rule. This is indicated by the sh:targetClass
predicate instead of sh:targetNode (Line 3). The SHACL en-
gine will apply this rule to every instance of the class :Charger.
This feature allows users to detect all high charging events
with a single rule instance, thus greatly reducing the number

LISTING 8. SHACL rule for detecting an envelope violation event EEV of the
garage.

LISTING 9. Example of an envelope violation event EEV in the smart grid
use case.

of rules. Class rules often require the use of the $this built-in
so that users can refer to the current node.

The detected events are stored in the semantic event log
and are the basis for further evaluation of the system, such as
analyzing why the envelope violation occurred. Manually, this
analysis can be performed by querying all relevant event types
in the system that co-occurred with the event to be analyzed
in order to show a domain expert possible reasons for an
event. In this use case, a user is interested in possible reasons
for an envelope violation at the garage level. In Fig. 9, the
events and their potential causal relation are shown. A high
charging event is detected by the event detection procedure,
which potentially causes an envelope violation that is detected
by another procedure at the same time. The causal relation is
currently based on domain knowledge.

940 VOLUME 5, 2024

LISTING 10. SHACL rule for detecting high charging event EHC of any
charger.

FIGURE 9. Exploring high power consumption events.

In future work, the detected events can be the input for
a more advanced explanation engine to enable more com-
plex and potentially automated explanations of events in the
system.

C. QUALITATIVE SOFTWARE DESIGN EVALUATION
The ISO/IEC 25010:2023 standard [33] defines a quality
model for software products and gives nine relevant char-
acteristics. Furthermore, each characteristic is subdivided
into subcharacteristics. This section discusses whether the
presented architecture can promote the implementation of
high-quality software products. We use the nine quality

characteristics as an outline to structure the discussion. This
approach aims to cover diverse quality aspects to identify
potential shortcomings of the architecture. This discussion
concerns the proposed architecture rather than the prototype
developed in the feasibility study. In this section, phrases in
cursive always refer to the mentioned quality characteristics,
while phrases in quotes are direct citations from the standard.

Functional suitability covers whether the product can meet
the “stated and implied needs of intended users” when the
software product runs under the specified conditions. In this
context, the need is i) monitoring the system for any occur-
ring events, ii) communicating the detected events to another
system (e.g., user interface), and iii) supporting another sys-
tem in generating explanations. The architecture relies on the
event detection services for i), thus delegating this respon-
sibility to their implementations. The architecture supports
these activities as the implementations can easily publish new
events. Readers can find a discussion on the expressivity of
the employed stream reasoning formalism C-SPARQL in [39].
If an even more expressive solution is required, users can
employ a more powerful formalism or even a hand-crafted
complex event detection solution. Point ii) is addressed by
the event interface and the semantic event log. External ap-
plications can easily register to the unfiltered event stream or
the semantic event log, which might do additional process-
ing before publicizing the events. Lastly, iii) must still be
evaluated by an explanation approach built on the proposed
architecture. However, the implemented prototype showcases
how the event graph can support explainability in CPS. The
power of the RDF representation allows the published events
to be self-descriptive, thus encouraging interoperability across
system boundaries.

Performance efficiency contains subcharacteristics that ar-
gue about the capability to “perform its functions within
specified time and throughput parameters.” In the event detec-
tion context, this means detecting many events per time unit
with low detection latency. By separating the detection mech-
anism between simple events (evaluation per relevant sensor
reading) and complex events (evaluation per relevant triggered
event), we aim to increase throughput as the simple event
detection can use a more simple and efficient rule engine. Fur-
thermore, the complex event detection is likely triggered less
frequently as there are fewer simple events than sensor up-
dates. However, empirical experiments with real-life systems
must still provide evidence to support these hypotheses. Note
that these experiments will require performance optimizations
in the implementation, as the purpose of the proof of concept
was to demonstrate the architecture’s feasibility. Teymourian
et al. [40] proposed relevant techniques for optimizing the
integration of background knowledge and streaming data in
semantic event processing. Furthermore, the event broker is a
possible system bottleneck, as all messages must flow through
it. However, to mitigate this issue, users can use scalable
message brokers (e.g., Apache Kafka9). Horizontal scaling

9[Online]. Available: https://kafka.apache.org/

VOLUME 5, 2024 941

https://kafka.apache.org/

STEINDL ET AL.: TOWARD SEMANTIC EVENT-HANDLING FOR BUILDING EXPLAINABLE CYBER-PHYSICAL SYSTEMS

might be relevant in event detection services when monitor-
ing large systems. While we currently have no architectural
support for distributing the rules to multiple instances, the
architecture can be extended in this direction, especially if the
system deploys rules automatically. Lastly, the system does
not guarantee detection latencies.

Compatibility covers the “exchange of information with
other products” and coexistence with other systems. The pro-
posed architecture promotes interoperability between systems
by using a formalized event representation in RDF using fit-
ting ontologies. This technique allows the published events
to be self-descriptive, thus encouraging interoperability across
system boundaries.

Interaction capability refers to the exchange of “informa-
tion between a user and a system via the user interface.”
We avoid discussing this aspect because the event detection
system does not interact with users.

Reliability covers performing the “specified functions [...]
for a specified period of time without interruptions and fail-
ures.” Most aspects of this characteristic relate to the thoughts
on scalability. Each component must be implemented with re-
dundant instances to achieve high reliability. A mechanism of
the horizontal scaling of the event detection services has yet to
be considered in the architecture and is thus missing. Whether
this is necessary is dictated by the context of the CPS. Lastly,
one subcharacteristic is recoverability; this includes the ca-
pability to “re-establish the desired state of the system” after
service interruption. Achieving the “desired state of the sys-
tem,” i.e., detecting events, may take a long time, as there
is no central notion of state. Each event detection service
builds its observation graph by listening to the appropriate
topics. In the event of a service restart, a sensor that rarely
publishes its value may inhibit the event detection due to an
incomplete observation graph at the event detection services.
Additional mechanisms would be necessary to enhance this
subcharacteristic in the proposed architecture.

Security covers the capability to “protect information and
data” and to “defend against attack patterns.” First, the ar-
chitecture assumes that (write) access to the semantic model,
the event broker, the semantic event log, the event detec-
tion services code, and the sensor sources (e.g., InfluxDB) is
only possible for authorized and trusted parties. Restricting
access to the event broker is critical, as attackers could ob-
serve every published event and inject malicious values into
the system. The event interface provided by the architecture
is an additional attack vector in this context. Authentication
and authorization mechanisms are therefore crucial and are
commonly supported by brokers. However, in the prototype
this security mechanisms are not used to reduce the additional
overhead in the implementation.

Maintainability covers the “capability of a product to be
modified by the intended maintainers.” On the one hand,
the proposed architecture promotes maintainability as it is
very modular, and the components are reusable in different
contexts and domains, especially if the system deploys rules
and models automatically. Furthermore, the interface via the

message bus allows isolated testing of modules while restrict-
ing possible side effects to other parts of the system if the
sent messages are not changed. However, on the other hand,
the distributed nature of the architecture makes it inherently
more complex than monolithic approaches. This complexity
manifests manifold. Proper integration tests require running
multiple systems. Debugging the application requires tracing
the message flow between various systems. While maintainers
can address the latter point by looking into the semantic event
log, bugs that prevent this from happening are challenging to
track. Another complication when analyzing the system is the
distributed state and the timing behavior of sensor data and
event flows.

Flexibility is the “capability of a product to be adapted
to changes in its requirements, contexts of use, or system
environment.” Many subcharacteristics (e.g., use on different
hardware) depend on the concrete implementation. However,
the communication between the modules is very flexible due
to the expressiveness of the used RDF graphs. Event detec-
tion services can add supplementary information by adding
triples to the published RDF graph. Furthermore, this ap-
proach is compatible with other rule engines or model-based
approaches, given that there is an apt ontology for describing
them. However, installing implementations of this architecture
may require more work than a monolithic approach due to
their distributed nature. The scalability subcharacteristic is
again related to the thoughts on redundancy made earlier.

Safety covers the capability of a product to “avoid a state
in which human life, property, or the environment is endan-
gered.” Such circumstances can happen if operators rely on an
implementation of this architecture for safety-critical events.
As the architecture does not guarantee detection latencies,
implementations without further assurances are unsuitable for
safety-critical contexts.

VI. DISCUSSION
The presented general architecture for ExpCPS, which fol-
lows the RAMI 4.0 layers, as shown in Section III, provides
a set of minimal viable modules that are necessary to pro-
vide explainability to CPS. However, we are neglecting the
feedback loop to the physical system that most CPSs have in
place. Following the MAPE-K approach also for ExpCPS as
proposed in the literature, we only target the Monitoring and
Analysis part, in which the explanation happens. That means
we are not concerned about how the system further handles the
explanations, to make decisions and act on the physical system
autonomously. In our case, we are just providing explanations
to the user. We do that to reduce complexity and focus on the
central part of our contribution, namely, the semantic event
handling. Nevertheless, extending this general architecture by
further components that would close the loop is possible and
necessary for some use cases.

The semantic event-handling module provides a clear struc-
ture of the necessary components that must be implemented.
It provides a technology-agnostic framework that can be fol-
lowed to provide a solid foundation for building ExpCPS.

942 VOLUME 5, 2024

The used technology stack can be adapted to specific use
cases. For example, the rule-based event detection could use
simple if/then rule engines or use more sophisticated ones
like, e.g., an signal temporal logic (STL) engine that provides
more expressiveness if needed, or they can even be combined.
The same holds for the other components within the semantic
event-handling module.

Such a flexible combination is possible because of the
proposed broker-based approach, which also introduces a sep-
aration of concerns between components within the semantic
event-handling module, e.g., between simple and complex
event detection. This makes our approach very flexible as
components are decoupled and can be exchanged or added
easily. This also enables containerization that allows hori-
zontal and vertical scalability. However, it also introduces
additional complexity that comes naturally with most dis-
tributed system approaches. Debugging can be especially
tricky as developers must track messages across different pro-
cesses.

One key feature of our approach is using a semantic
model within the architecture to provide additional context
to detected events. This is inherently important for deriving
explanations and facilitates interoperability with other mod-
ules. Maintaining the semantic model introduces overhead.
However, this additional work can be partly automated if
engineering artifacts, e.g., a building information model, is
available as a starting point for the semi-automatic instanti-
ation. The semantic model is not intended to be used directly
by users but instead used transparently in the back end.

The semantic event-handling module provides two main
interfaces. The first one is via the semantic event log, which
can be used for analysis of the past or explanations that are
needed for certain events in retrospect. The second interface
is directly provided by the event broker, which enables access
to the events for the explanation module and potentially other
modules at run-time.

The evaluation based on the case study with the imple-
mented prototype showed the feasibility of the proposed se-
mantic event-handling module. Especially the use of Semantic
Web technology for the implementation, like RDF/OWL
within the semantic model as well as in the exchanged
messages provides benefits regarding extensibility and inter-
operability. Even if only simple approaches for rule-based
and model-based event detection were implemented, they
could be easily replaced with more sophisticated methods,
like STL or models based on neural networks. Also, the
Mosquito Broker is usually not sufficient for industrial de-
ployment. Other enterprise-grade brokers should be used for
a productive system that provides the needed performance
and supports various security features we are not addressing
in our prototypical implementation because of the overhead.
However, these brokers typically support authentication and
authorization at different granularity levels. Furthermore, our
implementation lacks a solid fault and error handling strategy,
as its purpose is only to show the feasibility of our approach.
This holds also for performance optimization, as this is out

of the scope of this work. Also, currently, we are not fully
utilizing the semantic model as the single source of truth.
Some of the model information that is stored in the semantic
model is also hard-coded in the model implementation itself.
The reason is to reduce the implementation effort. However, it
does not influence the presented concept.

The qualitative evaluation of our approach was carried out
based on the ISO/IEC 25010:2023 quality model and showed
that our design caters to most of the nine characteristics. Here,
mainly maintainability can be an issue, which is in the nature
of the distributed approach that it can be more complex than
in a monolithic approach.

VII. CONCLUSION AND FUTURE WORK
In this article, we propose a technology-agnostic, seman-
tic event-handling component that can be integrated into a
general ExpCPS architecture to provide a foundation for
explainability. We provide the fundamental design character-
istics that are necessary for such a semantic event-handling
module, like a semantic model to provide context, an event
broker for communication, and components for rule-based,
model-based, and complex event detection. The case studies
in the domain of smart building and smart grid demonstrate
the feasibility of a prototypical implementation, based on an
open-source software stack and are used for the evaluation
of the proposed approach, in combination with the ISO/IEC
25010:2023 quality characteristics.

In future work, we will enhance the approach’s function-
ality, efficiency, and applicability in real-world scenarios,
especially in combination with algorithms for automatic
explanation generation. Therefore, we focus on the semi-
automatic generation of rules for the Simple Event Detection
module, based on information derived from the semantic
model, streamlining the rule generation and deployment pro-
cess. In addition, the integration of more sophisticated rule
logic, such as Signal Temporal Logic (STL), will be in-
vestigated to improve the system’s ability to detect events
accurately. In addition, the incorporation of a cosimulation
runtime environment for model-based event detection would
increase the flexibility and adaptability of the system. Further-
more, a comparison of various semantic technologies, with a
particular focus on performance evaluation, is required. The
establishment of benchmarks and recommendations would
greatly facilitate the implementation of the proposed architec-
ture. Finally, the iterative refinement of the prototype based
on feedback and empirical testing in real-world applications
is essential to validate its effectiveness, identify potential re-
finements, and ensure its suitability for diverse use cases and
environments.

REFERENCES
[1] S. S. Jha, “An overview on the explainability of cyber-physical sys-

tems,” in Proc. Int. FLAIRS Conf., 2022, pp. 1–4, doi: 10.32473/flairs.
v35i.130646. [Online]. Available: https://journals.flvc.org/FLAIRS/
article/view/130646

VOLUME 5, 2024 943

https://dx.doi.org/10.32473/flairs.v35i.130646
https://dx.doi.org/10.32473/flairs.v35i.130646
https://journals.flvc.org/FLAIRS/article/view/130646
https://journals.flvc.org/FLAIRS/article/view/130646

STEINDL ET AL.: TOWARD SEMANTIC EVENT-HANDLING FOR BUILDING EXPLAINABLE CYBER-PHYSICAL SYSTEMS

[2] D. Bohlender, F. J. Chiyah Garcia, M. Köhl, C. Menghi, and
A. Wortmann, “On explainability and its characterization,” Ex-
plainable Software for Cyber-Physical Systems (ES4CPS): Report
from the GI Dagstuhl Seminar 19023: Jan. 06-11 2019, Schloss
Dagstuhl / Edited By: Joel Greenyer; Malte Lochau; Thomas Vogel,
pp. 4–7, 2019, doi: 10.18154/RWTH-2020-01625. [Online]. Available:
http://publications.rwth-aachen.de/record/782047/files/782047.pdf

[3] D. Luckham and W. R. Schulte, “Event processing glossary–Version
2.0,” Event Process. Tech. Soc. (EPTS), 2011. [Online]. Available:
https://complexevents.com/2011/08/23/event-processing-glossary-
version-2/

[4] C. Talcott, “Cyber-physical systems and events,” in Softw.-Intensive
Syst. and New Comput. Paradigms, M. Wirsing, J.-P. Banâtre,
M. Hölzl, and A. Rauschmayer, Eds. Berlin, Germany: Springer,
2008, pp. 101–115. [Online]. Available: http://link.springer.com/10.
1007/978-3-540-89437-7_6

[5] C. Molnar, Interpretable Machine Learning: A Guide for Making
Black Box Models Explainable, Victoria, BC, Canada: Leanpub,
2022.

[6] M. Sadeghi, V. Klos, and A. Vogelsang, “Cases for explainable
software systems: Characteristics and examples,” in 2021 IEEE
29th Int. Requirements Eng. Conf. Workshops, 2021, pp. 181–187,
2021, doi: 10.1109/REW53955.2021.00033. [Online]. Available: https:
//ieeexplore.ieee.org/document/9582300/

[7] S. Gregor and I. Benbasat, “Explanations from intelligent systems: The-
oretical foundations and implications for practice,” MIS Quart., vol. 23,
no. 4, 1999, Art. no. 497, doi: 10.2307/249487. [Online]. Available:
https://www.jstor.org/stable/249487?origin=crossref

[8] M. Törngren and U. Sellgren, “Complexity challenges in development
of cyber-physical systems,” in Principles of modeling: Essays dedicated
to Edward A Lee on the occasion of his 60th birthday, Cham, Switzer-
land: Springer, pp. 478–503, 2018.

[9] Z. Huang and Y. Wu, “A survey on explainable anomaly detection for
Industrial Internet of Things,” in 2022 IEEE Conf. Dependable Secure
Comput., 2022, pp. 1–9, doi: 10.1109/DSC54232.2022.9888874.

[10] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?”:
Explaining the predictions of any classifier,” in Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1135–1144,
doi: 10.1145/2939672.2939778.

[11] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision
model-agnostic explanations,” in Proc. AAAI Conf. Artif. Intell., 2018,
pp. 1527–1535, doi: 10.1609/aaai.v32i1.11491. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/11491

[12] S. M. Lundberg et al., “A unified approach to interpreting model
predictions,” in Adv. in Neural Inf. Process. Syst., I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, Eds. Red Hook, NY, USA: Curran Associates, Inc., 2017, [On-
line]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/
file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

[13] P. R. Aryan et al., “Explainable cyber-physical energy systems based on
knowledge graph,” in Proc. 9th Workshop Model. Simul. Cyber-Phys.
Energy Syst., 2021, pp. 1–6, doi: 10.1145/3470481.3472704.

[14] M. Blumreiter et al., “Towards self-explainable cyber-physical sys-
tems,” in 2019 ACM/IEEE 22nd Int. Conf. Model Driven Eng.
Languages Syst. Companion, 2019, pp. 543–548, [Online]. Available:
https://ieeexplore.ieee.org/document/8904796/, doi: 10.1109/MODEL-
S-C.2019.00084.

[15] “An architectural blueprint for autonomic computing,” IBM, Armonk,
NY, USA, Tech. Rep., Jun. 2005. [Online]. Available: https://users.cs.
fiu.edu/∼sadjadi/Teaching/Autonomic%20Grid%20Computing/CIS-
6612-Summer-2006/AC-Blueprint-WhitePaper-V7.pdf

[16] J. Moreno Molina, J. Ferrer Garcia, and C. Kuchkovsky Jimenez,
“Archer: An event-driven architecture for cyber-physical systems,” in
2018 IEEE/ACM Int. Conf. Utility Cloud Comput. Companion, 2018,
pp. 335–340. [Online]. Available: https://ieeexplore.ieee.org/document/
8605801/, doi: 10.1109/UCC-Companion.2018.00077.

[17] C. E. B. López, “Real-time event-based platform for the development of
digital twin applications,” Int. J. Adv. Manuf. Technol., vol. 116, no. 3-4,
pp. 835–845, 2021, doi: 10.1007/s00170-021-07490-9.

[18] R. Verma, J. Brazauskas, V. Safronov, M. Danish, I. Lewis, and R.
Mortier, “RACER: Real-time automated complex event recognition in
smart environments,” in Proc. 29th Int. Conf. Adv. Geographic Inf. Syst.,
2021, pp. 634–637, doi: 10.1145/3474717.3484270.

[19] M. Ma, L. Liu, Y. Lin, D. Pan, and P. Wang, “Event description and
detection in cyber-physical systems: An ontology-based language and

approach,” in 2017 IEEE 23rd Int. Conf. Parallel Distrib. Syst., 2017,
pp. 1–8, doi 10.1109/ICPADS.2017.00012.

[20] Q. Cao, F. Giustozzi, C. Zanni-Merk, F. D. B. D. Beuvron, and C. Reich,
“Smart condition monitoring for industry 4.0 manufacturing processes:
An ontology-based approach,” Cybern. Syst., vol. 50, no. 2, pp. 82–96,
2019, doi: 10.1080/01969722.2019.1565118.

[21] F. Giustozzi, J. Saunier, and C. Zanni-Merk, “Abnormal situations in-
terpretation in industry 4.0 using stream reasoning,” Procedia Comput.
Sci., vol. 159, pp. 620–629,2019, doi: 10.1016/j.procs.2019.09.217
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S1877050919314012

[22] F. Giustozzi, J. Saunier, and C. Zanni-Merk, “A semantic frame-
work for condition monitoring in industry 4.0 based on evolv-
ing knowledge bases,” Semantic Web, vol. 15, pp. 1–29, 2023,
doi: 10.3233/SW-233481.

[23] R. Heidel, Industrie 4.0: The Reference Architecture Model RAMI
4.0 and the Industrie 4.0 Component. Berlin, Germany: Beuth Verlag
GmbH, 2019.

[24] D. Schachinger, W. Kastner, and S. Gaida, “Ontology-based abstraction
layer for smart grid interaction in building energy management sys-
tems,” in 2016 IEEE Int. Energy Conf., 2016, pp. 1–6, doi: 10.1109/EN-
ERGYCON.2016.7513991.

[25] Context information management (CIM); NGSI-LD information model.
RGS/CIM-006v121, European Telecommunications Standards Insti-
tute, Sophia Antipolis, France 2023.

[26] G. Klyne, “Resource description framework (RDF): Concepts and ab-
stract syntax,” 2004. [Online]. Available: http://www.w3.org/TR/rdf-
concepts/

[27] “OWL 2 web ontology language document overview (second edition)
- W3C recommendatio,” World Wide Web Consortium, 2012. [Online].
Available: https://www.w3.org/TR/owl-overview/

[28] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and
R.van de Walle, “RML: A generic language for integrated RDF map-
pings of heterogeneous data,” in Proc. 7th Workshop Linked Data Web,
Apr. 2014. [Online]. Available: http://ceur-ws.org/Vol-1184/ldow2014_
paper_01.pdf

[29] Q.-D. Nguyen, S. Dhouib, J.-P. Chanet, and P. Bellot, “Towards a
Web-of-Things approach for OPC UA field device discovery in the
industrial IoT,” in 2022 IEEE 18th Int. Conf. Factory Commun. Syst.,
2022, pp. 1–4, doi: 10.1109/WFCS53837.2022.9779181.

[30] “Functional mock-up interface specification, STD.” Accessed: Sep. 2,
2024. [Online]. Available: https://fmi-standard.org/docs/3.0.1

[31] O. Corcho, F. Priyatna, and D. Chaves-Fraga, “Towards a new
generation of ontology based data access,” Semantic Web, vol. 11,
no. 1, pp. 153–160, 2020, doi: 10.3233/SW-190384 [Online]. Available:
https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.
3233/SW-190384

[32] P. Colpaert, “Linked data event streams,” 2023. [Online]. Available:
https://w3id.org/ldes/specification

[33] ISO Central Secretary, “Systems and software engineering–systems
and software quality requirements and evaluation (SQuaRE) – Prod-
uct quality model, international qrganization for standardization Std.,”
Nov. 2023. [Online]. Available: https://www.iso.org/standard/78176.
html

[34] M. Sabou, S. Biffl, A. Einfalt, L. Krammer, W. Kastner, and F. J.
Ekaputra, “Semantics for cyber-physical systems: A cross-domain per-
spective,” Semantic Web, vol. 11, no. 1, pp. 115–124, 2020.

[35] G. Steindl and W. Kastner, “Transforming OPC UA information mod-
els into domain-specific ontologies,” in 2021 4th IEEE Int. Conf. Ind.
Cyber- Phys. Syst., 2021, pp. 191–196.

[36] K. Janowicz, A. Haller, S. J. Cox, D. Le Phuoc, and M. Lefrançois,
“SoSA: A lightweight ontology for sensors, observations, samples, and
actuators,” J. Web Semantics, vol. 56, pp. 1–10, 2019.

[37] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,
“C-SPARQL: A continuous query language for RDF data streams,” Int.
J. Semantic Comput., vol. 4, no. 1, pp. 3–25, 2010.

[38] B. Balaji et al., “Brick: Towards a unified metadata schema for
buildings,” in Proc. 3rd ACM Int. Conf. Syst. Energy-Efficient Built
Environments, 2016, pp. 41–50.

[39] H. Stuckenschmidt, S. Ceri, E. D. Valle, and F. V. Harmelen, “Towards
expressive stream reasoning,” in Semantic Challenges Sensor Netw.,
2010.

[40] K. Teymourian, M. Rohde, and A. Paschke, “Fusion of background
knowledge and streams of events,” in Proc. 6th ACM Int. Conf. Distrib.
Event-Based Syst., 2012, pp. 302–313, doi 10.1145/2335484.2335517.

944 VOLUME 5, 2024

https://dx.doi.org/10.18154/RWTH-2020-01625
http://publications.rwth-aachen.de/record/782047/files/782047.pdf
https://complexevents.com/2011/08/23/event-processing-glossary-version-2/
https://complexevents.com/2011/08/23/event-processing-glossary-version-2/
http://link.springer.com/10.1007/978-3-540-89437-7_6
http://link.springer.com/10.1007/978-3-540-89437-7_6
https://dx.doi.org/10.1109/REW53955.2021.00033
https://ieeexplore.ieee.org/document/9582300/
https://ieeexplore.ieee.org/document/9582300/
https://dx.doi.org/10.2307/249487
https://www.jstor.org/stable/249487{?}origin=crossref
https://dx.doi.org/10.1109/DSC54232.2022.9888874
https://dx.doi.org/10.1145/2939672.2939778
https://dx.doi.org/10.1609/aaai.v32i1.11491
https://ojs.aaai.org/index.php/AAAI/article/view/11491
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://dx.doi.org/10.1145/3470481.3472704
https://ieeexplore.ieee.org/document/8904796/
https://dx.doi.org/10.1109/MODELS-C.2019.00084
https://dx.doi.org/10.1109/MODELS-C.2019.00084
https://users.cs.fiu.edu/~sadjadi/Teaching/Autonomic%20Grid%20Computing/CIS-6612-Summer-2006/AC-Blueprint-WhitePaper-V7.pdf
https://users.cs.fiu.edu/~sadjadi/Teaching/Autonomic%20Grid%20Computing/CIS-6612-Summer-2006/AC-Blueprint-WhitePaper-V7.pdf
https://users.cs.fiu.edu/~sadjadi/Teaching/Autonomic%20Grid%20Computing/CIS-6612-Summer-2006/AC-Blueprint-WhitePaper-V7.pdf
https://ieeexplore.ieee.org/document/8605801/
https://ieeexplore.ieee.org/document/8605801/
https://dx.doi.org/10.1109/UCC-Companion.2018.00077
https://dx.doi.org/10.1007/s00170-021-07490-9
https://dx.doi.org/10.1145/3474717.3484270
https://dx.doi.org/10.1109/ICPADS.2017.00012
https://dx.doi.org/10.1080/01969722.2019.1565118
https://dx.doi.org/10.1016/j.procs.2019.09.217
https://linkinghub.elsevier.com/retrieve/pii/S1877050919314012
https://linkinghub.elsevier.com/retrieve/pii/S1877050919314012
https://dx.doi.org/10.3233/SW-233481
https://dx.doi.org/10.1109/ENERGYCON.2016.7513991
https://dx.doi.org/10.1109/ENERGYCON.2016.7513991
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/owl-overview/
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
https://dx.doi.org/10.1109/WFCS53837.2022.9779181
https://fmi-standard.org/docs/3.0.1
https://dx.doi.org/10.3233/SW-190384
https://www.medra.org/servlet/aliasResolver{?}alias=iospress&doi=10.3233/SW-190384
https://www.medra.org/servlet/aliasResolver{?}alias=iospress&doi=10.3233/SW-190384
https://w3id.org/ldes/specification
https://www.iso.org/standard/78176.html
https://www.iso.org/standard/78176.html
https://dx.doi.org/10.1145/2335484.2335517

GERNOT STEINDL (Member, IEEE) received the
B.S. and first M.S. degrees in electrical engineering
from Technical University Wien, Vienna, Austria,
in 2013, the second M.S degree in building tech-
nology from the University of Applied Science
Burgenland, Eisenstadt, Austria, in 2016, and the
Ph.D. degree in computer science from Technical
University, in 2021.

From 2015 to 2018, he was a Researcher with
Research Burgenland GmbH. In 2018, he joined
the Institute of Computer Engineering, Technical

University Wien as a Predoc Researcher. Since 2022, he has been a Postdoc
Researcher with the Research Unit Automation Systems, Technical Uni-
versity Wien. His research interests include Industrial Internet of Things,
semantics in automation systems, and digital twins.

TOBIAS SCHWARZINGER received the B.Sc. and
M.Sc. degrees in computer science in 2020 and
2023, respectively, from TU Wien, Vienna, Aus-
tria, where he is currently working towrad th Ph.D.
degree in informatics with the Institute of Com-
puter Engineering.

Since 2023, he has been an University Assis-
tant with TU Wien. His research interests combine
ideas from knowledge engineering and formal
methods in the context of cyber-physical systems.

KATRIN SCHREIBERHUBER received the bach-
elor’s degree in business, economics, and social
sciences from WU Wien, Vienna, Austria, in 2019,
and the master’s degree in data science with TU
Wien, Vienna, in 2023.

There, she focused on Machine Learning, Vi-
sual Analytics and Semantic Technologies. Since
2023, she has been a Research Assistant with WU
Wien. Her research focuses on semantics-enabled
explainability of cyber-physical systems in the con-
text of smart grids and smart buildings.

FAJAR J. EKAPUTRA received the bachelor’s
degree in informatics and master’s degree in elec-
trical engineering from the Institut Teknologi Ban-
dung, Bandung, Indonesia, and the doctorate de-
gree in informatics from TU Wien,Vienna, Austria,
in 2018.

He is currently an Assistant Professor with
the Institute for Data, Process, and Knowledge
Management, WU Wien, Vienna. He has coau-
thored more than 70 peer-reviewed scientific pub-
lications and actively involved in research com-

munities as scientific and organizing committees in various top-tiered
conferences, such as ISWC, ESWC, SEMANTiCS, and EKAW. His re-
search interest is mainly in the semantic web, knowledge (graphs) en-
gineering, and their interaction with machine learning approaches, and
applying such hybrid semantic web and machine learning systems in var-
ious application domains, including cyber-physical systems and materials
engineering.

VOLUME 5, 2024 945

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

