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ABSTRACT System level simulation of neuro-memristive circuits under variability are complex and follow a
black-box neural network approach. In realistic hardware, they are often difficult to cross-check for accuracy
and reproducible results. The accurate memristor model prediction becomes critical to decipher the overall
circuit function in a wide range of nonideal and practical conditions. In most neuro-memristive systems,
crossbar configuration is essential for implementing multiply and accumulate calculations, that form the
primary unit for neural network implementations. Predicting the specific memristor model that best fits
the crossbar simulations to make it explainable is an open challenge that is solved in this article. As the
size of the crossbar increases the cross-validation becomes even more challenging. This article proposes
predicting the memristor device under test by automatically evaluating the /-V behavior using random forest
and extreme gradient boosting algorithms. Starting with a single memristor model, the prediction approach is
extended to memristor crossbar-based circuits explainable. The performance of both algorithms is analyzed
based on precision, recall, fl1-score, and support. The accuracy, macro average, and weighted average of both
algorithms at different operational frequencies are explored.

INDEX TERMS Extreme gradient boost (XGBoost) predictor, memristor models, memristor crossbar,

pinched hysteresis, random forest predictor.

I. INTRODUCTION

Memory resistors are a class of devices abbreviated as
memristors [1]. It is the fourth basic circuit element that
functionally relates the charge and linkage flux. Their prop-
erties differ from the other three fundamental devices by
their nonvolatile memory effect, pinched hysteresis loop,
scalability, programming capability, and compatibility with
CMOS technology. It memorizes the latest attained conduc-
tance value even if the power supply is OFF. Due to these
features, the application of memristors is wide in range,
like in-memory computing, logic, neuromorphic computing,
etc.

There are several models of memristors [2]. While design-
ing the circuits, a mathematical model is used to show the
behavior of the memristor [3], [4]. Compared to the behavior
of physical devices, the model should be sufficiently accurate,
simple, and computationally efficient. In addition, the model
should be general so that it can be suitable for different tech-
nologies. The wide usage of different memristor models for

circuit simulations makes them flexible for a wide range of
applications. While using the models [5] in large circuits for
high-end applications, it is challenging to cross validate.
Finding the efficient solution to several complex computa-
tional problems, evolving hardware neuromorphic computing
architectures offer promising solutions. Memristors mimic
synapses in neural network implementations, which change
resistance state according to the applied voltage and memorize
the latest attained resistance state. Like a matrix, the cross-
bar arrangement of memristors with selector transistors along
rows and columns mimics weighted summation operations
in neural network models. It offers different high-density ar-
chitectures to implement the synaptic connections and neural
network models. For this, the hardware circuit implementa-
tions based on different memristor models demand deciding
the appropriate selection of these models to get maximum per-
formance. In this proposed work, memristor models used in
the circuit simulations within a black box are predicted using
machine learning based on the dataset of pinched hysteresis.
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This method has significant industrial applications in im-
plementations of different neural network models, pattern
recognition, in-memory computations, etc., by enabling iden-
tification of proper memristor models suitable for specific
computations that helps to optimize the neuromorphic sys-
tems. The tasks like image classification, language processing,
speech recognition, and robotics are flexible to be imple-
mented with neuro memristive arrays with proper memris-
tor models. The decision-making process while using large
datasets in different fields like finance, health care, manu-
facturing industries, and edge computing applications using
smart sensors and IoT can use this neuromorphic computing
architectures. Choosing proper memristor models that can
have high performance to specific applications is essential
for having higher degree of accuracy in computations. This
proposed approach provides proper cross-validation and pre-
diction of memristor models so that the usage of those models
with proper mapping to the application demands can be done.

This article focuses on explaining neuro-memristive cir-
cuits and systems through a cross-validation of the simula-
tions, irrespective of the complexity of the model. Memristors
represent a broad class of devices that can be modeled using
a broad set of device models. This problem is very different
to that of MOSFETs, where only one type or minor variant
of the device is modeled. Over time, even if models are
standardized for memristors, there will be a need to perform
cross-validations as being a class of devices, several com-
binations of variability make system modeling complex and
inaccurate. The conventional system of verifying the simu-
lation results of emerging memristive devices that are yet to
mature, using the experimental results, is replaced here to
address the challenges associated with the accurate modeling
due to different variability. Even though many models are
emerging, the scientific community always needs to com-
promise for different properties associated with the physical
devices like threshold voltage, state variable motion, area of
hysteresis, different responses for different input stimuli, etc.,
due to the wide range of variability among this broad class
of devices. This reverse engineering approach addresses the
complexity of estimating the accuracy and functional behavior
of physical characterization data due to the abovementioned
issues. This proposed approach is helpful as more and more
memristive devices are discovered.

A large majority of research using machine learning is for
device modeling. However, this work diverges from this trend
in applying machine learning in an entirely new application,
where conventionally, cross-validation of simulation results
is only done through experimental verification. This is an
approach to cross validate the simulations using a machine
learning approach.

The motivation of this work is to develop a technique for
explaining neuro-memristive circuits and systems by validat-
ing circuit simulations done with emerging device models.
Most memristor devices are difficult to model accurately due
to device-to-device and cycle-to-cycle variability. Some ex-
amples of memristor models, their properties, device level,
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and simulation level challenges are illustrated in Table 1.
Under such circumstances, the circuits built with idealistic
models result in large output errors. Furthermore, as the de-
vices have a range of variability, the experimental results are
also difficult to conclude in estimating the desired functional
behavior and accuracy of the design logic. This necessitates a
simulation-based approach to cross-validate the functionality
and accuracy of circuit designs with memristors.

Modeling memristive devices is significantly more complex
than MOSFETs because memristors are devices with diverse
material compositions, modes of operations, and structures.
MOSFETs have relatively uniform structure and operation,
making them feasible for standardized models like the Berke-
ley short-channel IGFET model. The memristor field is
heterogeneous and includes various devices with different op-
eration mechanisms. For example, the resistive random access
memory, in which conductance states switch depending upon
the formation and rupturing of conductive filament. Phase
change memory (PCM), in which conductance states change
according to change in state from crystalline to amorphous.
Spin-transfer torque RAM in which the conductance state
changes according to changes in the magnetic state due to
the spin-transfer torque effect. The resistive switching and
storage mechanisms are different for these devices. Hence,
the behavior of memristive devices cannot be analyzed using
a unified model. Detailed modeling approaches are needed to
model this wide range of resistive switching mechanisms like
ion migrations, magnetic effects, phase transitions, etc. For
MOSFETS, the relationship between the electrical characteris-
tics and the physical structure modeling approaches in CMOS
devices is comparatively simple.

CMOS devices show linear behavior in their operational
regions, whereas memristive devices are nonlinear devices
that change their resistance based on the previous states or
history of current and voltage. In amplifiers, the linear re-
gion operation of CMOS devices is used, and the memristors
are used in applications like mimicking neural computations,
neural synapses, etc, where nonlinear behaviors are advanta-
geous. The CMOS behavior is described using three different
equations corresponding to different regions of operations,
whereas memristor models have state-dependent resistance
values, and hence, the behavior is described using state-
variable equations connecting the voltage—current relationship
and internal state variable. Memristors are dynamic since their
resistance is dependent on the previous state. Hence, the re-
sistance will change over time based on the device’s voltage
and current history. Hence, memristors are dynamic in na-
ture, whereas the CMOS devices exhibit stable and predictive
behavior in circuit simulations. Leakage current effects also
need to be considered in CMOS circuits.

Several mathematical models are needed for memristive
circuit simulation and analysis. Cross-validation must be done
across various device types and operating conditions that re-
quire complexity in the modeling process. Hence, this work
emphasises the cross-validation of memristor models that con-
tinuously need to be refined and modified, which cannot be
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TABLE 1. Properties and Challenges of Different Memristor Models

Memristor Models

Properties and Challenges

Joglekar and Biolek

There are a lot of discrepancies while comparing the results with the data obtained through physical
characterization. When pulse-wave form is applied, in the positive regime, when conductivity increases,
the size of the hysteresis loop increases, which is opposite to the trend seen in the characterization data.

Air Force Research Lab (AFRL) and
metal-insulator-metal (MIM)

Correlate more closely to the characterization data, and there is a strong connection to the physical
mechanisms within the device. For alternative voltage inputs, the results will not match the
characterization data. Significant updation is needed with different device structures because these
models are specific to a single fabricated device.

Hyperbolic Sine Models and the
University of Michigan Model

The properties like the Schottky barrier at a metal-oxide interface and the diffusion of ions are
modelled. Have a stronger correlation to physical memristor characterization data. These models
describe the memristor functionalities in a more generalized and accurate way. However, they hardly
correlate to the physical hardware.

Other generalized models

Less theoretical correlation to the physical mechanisms. Many models will not consider the threshold
voltage of the physical memristor device. Unless the voltage across the memristor exceeds this
threshold voltage, the hysteresis will not be seen. The state variable motion depends on the applied
voltage’s magnitude and polarity. This implies that the dynamics of Oxygen vacancy expansion and
compression are different. Most models have the equivalent state variable motion in positive and
negative directions, which is not true in actual cases.

unified like a more stable modeling environment of CMOS-
based models.

Through this new approach, we propose that estimating the
device model followed by using those models to build circuits
can lead to better estimates in cross-validating the accuracy
of circuit-level simulation results. Reverse engineering the
model from circuit design using the proposed approach also
leads to an efficient way to account for a wide range of device
variability.

The programming mechanism also differs in different de-
vices. Hence, proper programming methodology must be
followed for different devices mapping neural weights. Pre-
dicting the models from the simulations will help develop the
necessary programming strategies to tune the weights with
minimum error, which will help reduce the relative current
error and increase accuracy.

While doing the hardware implementation of neural net-
works, memristive crossbars emulate the weighted summation
operations using the multiply and accumulate (MAC) oper-
ation carried in between input voltages to the crossbar and
conductance values to which the memristors are programmed.
The output current read through the columns of the crossbar is
equal to the MAC result. Computations are performed within
the memory array, enhancing speed, and energy efficiency.
How precisely the weights are mapped to the conductance
states will determine the accuracy. Minimum deviation from
the target weight values should be ensured during mapping.

In edge computing applications in which the tasks per-
formed are specific, the memristor models need to be familiar
prior to use in those applications. Under different scenarios,
selecting the memristive devices that are suitable for specific
tasks helps optimize performance in different edge computing
applications.

Prediction of models from simulations helps to improve the
programming strategies, which differ among various memris-
tive devices. This device-specific programming helps provide
fine-tuning by properly mapping weights that will enhance
neural network performance and offer accurate computations,
reducing relative current errors.
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FIGURE 1. (a) HP ion drift model implementation illustrated in material
physics. (b) Sandwich structure having two Pt electrodes, TiO, and TiO,_x.

The rest of this article is organized as follows. Section II
gives an introduction. Section II comprises the background
of this article. Section III details the proposed model predic-
tion approaches in the single memristor model and models in
memristive crossbar arrays, followed by the analysis method-
ology and the results and discussion. Finally, Section IV
concludes this article.

Il. BACKGROUND
Most memristor models selected for this work are based on
the memristor equations of the HP memristor model.

A. HP MEMRISTOR ION-DRIFT MODEL
The principle of resistance switching between two extreme
values, Ron and Roff, the device’s lowest and highest re-
sistance, makes them mathematically flexible to model in
different ways. The HP memristor model, an example of a
metal—insulator-metal (MIM) device, is shown in Fig. 1.
When the Pt electrodes are excited externally, as shown
in Fig. 2, the oxygen ions present in the doped region
will drift to the undoped region under the influence of
the electric field. This process will cause a shifting of the
boundary between these two regions. This displacement in
the boundary will cause a change in the resistance value
also. If the structure is entirely covered by TiO;_, it is
in its low-resistance state or maximum conductive (Ryy). If
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FIGURE 2. (a) Detailed device level structure of the HP memristor model.
W is the width of the doped region, and D is the total device length. (b)
Total resistance will be the effective resistance of the low-resistance
region (doped region) and the high-resistance region (undoped region) .

the structure is entirely covered by 7O, it is in its high-
resistance state (R,rs) or minimum conductive. The mem-
ristance is given by, M(q) = Ronw(t)/D + Rog(1 — w(t)/D).
The relation between the voltage and current is given by
V(t) = (Ronw(t)/D + Rogt(1 — w(t)/D))i(t). Here w(t) is the
width of the doped region, and D is the total width of the
doped and undoped regions. The width w(t) is affected by i
by, dw/dt = pyRoni(t)/D. Here 1, is the dopant mobility.
w(t) = UyRonq(t)/D 4+ wq. Here, q(t) is the charge injected
in the time 7.

The dw/dt is the dynamic state variable, the drift velocity
of the Oxygen vacancies. The integration of the expression
UyRong(t)/D gives the value of w(t). Even g(f) = 0, the
integrated output will equal a constant. This implies that
even if the current flow is zero, the charge is constant, and
resistance remains unchanged. The principle of nonvolatility
satisfies here. Based on the migration of ions, the value of w
varies between 0 and D. The drifting of the boundary region
is interpreted by different window functions and equations
that give different mathematical models of memristors. While
modeling different memristors, state variable equations are
substituted with the equation x(#) = W(#)/D. The state variable
becomes a normalized quantity whose value lies between O
and 1. x(r) = 0 for the minor conductive state and x(t) = 1 for
the most conductive state. Window functions limit the motion
of the state variable between 0 and 1.

B. MEMRISTIVE CROSSBAR ARRAY

In a crossbar architecture [6], [7], memristors are arranged
in a matrix form, as shown in Fig. 3. Each row and column
intersection consists of a memristive device [8] and a selector
CMOS. The figure shows a 3-D crossbar array in which 2-D
crossbar arrays are stacked vertically. Word lines (WL) in a
crossbar are used to activate or deactivate selectors. Voltage
values above the threshold voltage of transistors are applied
through word lines to activate selectors. Source lines are used
to feed the input voltages, and bit lines are used to read output
currents. The output currents are the results of the MAC op-
eration [9] between the input voltage and conductance of the
memristive device.
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FIGURE 3. Memristor-crossbar architecture. (a) 3-D architecture of a
memristive crossbar array obtained by stacking three layers of 2-D
memristive crossbar array. (b) Memristor and selector pair. (c) Circuit
connection showing the selector transistor and memristor in a crossbar
array with WL (Word line), BL (Bit line), and SL (Source line); viy1, Vinzs Vinss
and output currents iy, iz, is. Selector devices that need to be activated are
applied with an input voltage greater than the threshold voltage. The
Conductance of the memristor is denoted as g, for the mth row and nth
column. The conductance of the selector transistor is given by gr.

The equation of the MAC operation is given by

J
ij =) Vigk; (1
k=1

where i; is the output current, vy is the input voltage, and gy ;
is the conductance of the crossbar node.

C. ENSEMBLE LEARNING—RANDOM FOREST AND
EXTREME GRADIENT BOOSTING

Ensemble learning techniques combine different learning al-
gorithms to make more accurate predictions. Predictions from
individual learning models are aggregated to form the final
prediction. These algorithms efficiently handle nonlinearity
and interactions and provide feature-importance, flexibility,
and robustness to overfitting. Since the data collected for this
study is susceptible to overfitting the model and shows a
nonlinear relationship, we are focusing on the following two
ensemble learning techniques.

Random forest [10], [11] is an ensemble prediction algo-
rithm having a combination of tree predictors. The majority
vote of all individual trees determines the final prediction
of the input vector. Each tree casts one vote for the most
frequently occurring class. In random forest, the Gini index,
which measures the degree of impurity of an attribute to dif-
ferent classes, is used as an attribute selection measure.

For a given training set 7', selecting one case randomly and
assigning to a class C;, the Gini index is expressed by

D (G T/ITINF(C) TH/ITI) )
JF#l
where f(C;, T)/|T| is the probability that the selected case
belongs to class C;. To reduce the complexity of the tree and
to prevent overfitting, pruning is used [12]. It removes the
branches of the tree that do not contribute to accuracy, and
the remaining branches are grown to the maximum.
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Algorithm 1: Pseudocode for XGBoost Classifier.

Training on the data

Training data (Xin, Yirain)» Number of boosting rounds
(num_rounds), maximum depth of each tree
(max_depth), learning rate (eta), subsample ratio of
training instances (subsample), and column
subsample ratio of features (colsample_bytree)
XGBoost model

Procedure:

Initialize model with a constant value: model =
initial_prediction_value;

for round < 1 num_rounds do

gradients = -gradient_of_lossuain,

model .predict (Xerain) )

weak_model = fit_weak_model (Xtrain,

gradients, max_depth,
colsample_bytree);

update = eta *
weak_model .predict (Xcrain):
model = model + update;

Return: XGBoost model (model);

Prediction using the trained model

XGBoost model, Test data (X_test) Predicted class
labels for X_test

Procedure:

predictions = model.predict (Xcest)

Return: predictions;

In this approach, input voltages and the corresponding out-
put currents are the features. Based on this data, the random
forest prediction algorithm splits nodes to generate new trees
and identifies the respective models.

The extreme gradient boosting (XGBoost) [13] is a scalable
and efficient application of the gradient boosting framework.
A weight will be assigned for each observation. This weight
will be adjusted after training the predictor. The weight of the
correctly classified observations is decreased, and misclassi-
fied observations are increased. Using the observations with
modified weights, the subsequent predictor is trained, and the
process is repeated to create a highly accurate model. The
sum of prediction score f;(X;) of all trees gives the estimated
output y;of the gradient boosting tree model

K
Ji=>_ filX). fr el 3)
k=1
where I" is the space of the regression tree, K is the number
of regression trees, and X; is the features corresponding to
sample L.

This approach proposes estimating the device model and
using those models to build circuits to get better estimates
in cross-validating the accuracy of circuit-level simulation re-
sults. Reverse engineering the model from circuit design also
leads to an efficient way to account for a wide range of device
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variability. A workflow of the proposed approach is shown in
the Fig. 4.

Here, nine memristor models are simulated in Spice. Each
model is simulated with an input voltage of four different
frequencies (0.5, 1, 5, and 10 Hz). The graph obtained by
plotting the input voltage versus the logarithmic scale of out-
put current gives nine different pinched hystereses, as shown
in Fig. 5. This output data are collected for each model and
prediction is performed using random forest and XGBoost
techniques. For random forest, the parameters are trained with
100 trees for each dataset for the different frequencies applied.
The prediction results for these nine models with four dif-
ferent frequencies of input voltages using random forest and
XGBoost algorithms are analyzed by the factors precision,
recall, f1-score, and support. The two prediction approaches,
accuracy, macro average, and weighted average, are compared
for different frequencies.

To calculate precision, recall, and fl-score, the following
parameters are calculated from the confusion matrix [14],
[15]. A confusion matrix is a tabular way of representing the
performance of the prediction algorithm

® True positive (TP): Values predicted as positive and it is

true.

® True negative (TN): Values predicted as negative and it

is true.

e False positive (FP): Values predicted as positive and it is

false.

® False negative (FN): Values predicted as negative and it

is false.

Precision is found using the following equation:

Precision = TP/(TP+FP)
Recall is calculated by the following equation:
Recall = TP/(TP+FN).
F1-score is measured using the equation

Fl1-score = (2¥Recall*Precision)/(Recall+Precision).
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FIGURE 5. BIOLEK: Biolek Model, UMM: University of Michigan Model, IDEAL: Ideal Memristor Model, JOGLEKAR: Joglekar Model, GHSM: General
Hyperbolic Sine Model, AFRLM: Air Force Research Lab Model, PRODOMAKIS: Prodromakis Model, PCM: Phase Change Memory, IMTMS: Insulator to
Metal Transition Memristive Systems, Pinched hysteresis of nine memristor models with (a) 0.5 Hz input voltage frequency, (b) 1 Hz input voltage
frequency, (c) 5 Hz input voltage frequency, and (d) 10 Hz input voltage frequency.

For performing prediction in a memristive crossbar instead
of a single memristor, memristors are arranged row and
columnwise in different dimensions (2 x 2, 4 x 4, 8 x 8 and
16 x 16). The simulated spice data of different input volt-
ages through rows and different output currents through
the columns are used to predict using random forest and
XGBoost. Performance is analyzed based on the factors of
precision, recall, fl-score, and support. The accuracy, macro
average, and weighted average of the two prediction ap-
proaches are compared for different crossbar dimensions.

D. RANDOM FOREST ALGORITHM ON MEMRISTOR DATA

A random forest algorithm is used for prediction and regres-
sion problems. It combines multiple decision trees to form a
forest. To predict, a random subset of the input data and a
random subset of the input features are used to train each de-
cision tree. Aggregation of the decisions of all trees gives the
final decision of prediction. Here, we use a technique known
as bagging that reduces overfitting and improves accuracy by
combining the predictions of multiple decision trees formed
from bootstrapped training data samples. The pseudocode for
random forest is given in Algorithm 1.
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E. XGBOOST ALGORITHM ON MEMRISTOR DATA

The XGBoost algorithm is an ensemble learning method that
combines the predictions of multiple weak models to produce
a stronger prediction. Decision trees are base learners for the
XGBoost or eXtream gradient boosting prediction. It controls
overfitting by using a more regularized model. This makes it
more accurate and faster than traditional gradient boosting.
The pseudocode for XGBoost is given in Algorithm 2.

IIl. RESULTS AND DISCUSSION
The nine memristor models with four different frequencies
used for the prediction are shown in Fig. 5. The predictor may
not capture the relevant information if the number of features
is too small. If the number of features is too large, the predictor
may overfit the training data, leading to poor generalization
performance. Since we are only using two features, input volt-
age and output current, the predictor highly depends on the
data. In the dataset, different models show similar readings of
input voltage and output current (at the pinched point). Here,
the overall data are set into 70% of training data and 30% of
test data.

The initial dataset is split for training and testing. The test-
ing dataset contains randomly selected data for each model.
After training to predict the model, this testing dataset is
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TABLE 2. Performance Analysis of Random Forest Predictor on Single Memristor Circuit Simulations

M&"{‘)ﬁ;i‘” 05 Hz | Hz SHz 10 Hz
precision | recall | fl-score | support | precision | recall | fl-score | support | precision | recall | fl-score | support | precision | recall | flI-score | support
BIOLEK 0.75 0.80 0.77 426 0.92 0.84 0.88 427 0.71 0.86 0.78 1306 0.85 0.84 0.85 1366
UMM 0.66 0.94 0.78 298 0.73 0.89 0.80 462 0.72 1.00 0.83 1423 0.94 0.81 0.87 1348
IDEAL 0.93 0.93 0.93 338 0.97 0.99 0.98 633 1.00 1.00 1.00 950 1.00 1.00 1.00 1393
IMTMS 0.88 0.89 0.89 170 0.93 0.95 0.94 321 1.00 0.97 0.98 1123 0.96 0.99 0.98 2271
JOGLEKAR 0.78 0.74 0.76 565 0.93 0.91 0.92 932 0.82 0.66 0.73 1342 0.86 0.84 0.85 1302
GHSM 0.93 0.76 0.84 214 0.97 0.90 0.93 404 1.00 0.86 0.93 1236 0.84 0.93 0.88 1348
PCM 0.71 0.40 0.51 138 0.72 0.66 0.69 456 1.00 0.51 0.68 756 0.91 0.93 0.92 1380
AFRLM 0.98 0.98 0.98 1227 1.00 0.99 0.99 2509 1.00 1.00 1.00 13105 1.00 1.00 1.00 28767
PRODOMAKIS 0.88 0.82 0.85 439 0.97 0.98 0.97 431 1.00 1.00 1.00 1382 1.00 1.00 1.00 1377
TABLE 3. Performance Analysis of XGBoost Predictor on Single Memristor Circuit Simulations
Mmgg‘" 0.5 Hz 1 Hz S Hz 10 Hz
precision | recall | fl-score [ support | precision | recall | fl-score | support | precision | recall | fl-score | support | precision | recall | fl-score | support
BIOLEK 0.72 0.71 0.71 431 0.86 0.74 0.80 415 0.61 0.87 0.72 1334 0.87 0.94 0.91 1349
UMM 0.91 0.98 0.94 301 0.98 0.86 0.91 418 1.00 1.00 1.00 1437 0.99 1.00 1.00 1335
IDEAL 0.91 0.86 0.88 380 0.95 0.97 0.96 626 1.00 1.00 1.00 913 1.00 1.00 1.00 1360
IMTMS 0.69 0.90 0.78 165 0.76 0.90 0.82 339 0.97 0.76 0.85 1069 0.95 0.97 0.96 2245
JOGLEKAR 0.75 0.73 0.74 565 0.85 0.81 0.83 904 0.75 0.56 0.64 1354 0.95 0.84 0.89 1380
GHSM 0.99 0.99 0.99 190 1.00 1.00 1.00 412 1.00 1.00 1.00 1198 1.00 1.00 1.00 1312
PCM 0.95 0.80 0.87 148 0.87 0.98 0.92 467 1.00 0.99 0.99 724 1.00 0.99 1.00 1348
AFRLM 0.98 0.96 0.97 1223 0.99 0.98 0.98 2603 1.00 1.00 1.00 13308 1.00 1.00 1.00 28852
PRODOMAKIS 0.76 0.78 0.77 412 0.90 0.97 0.93 391 0.99 1.00 1.00 1286 1.00 1.00 1.00 1371

Algorithm 2: Pseudocode for Random Forest Classifier.
Training on the data
Training data (Xqain, Yirain), NUmMber of trees
(num_trees), max depth of each tree (max_depth)
Random forest model
Procedure:
Initialize an empty list to store the trees: forest
[1;
for i < 1 num_trees do subset_X,
random_subset (Xtrain, Ytrain)
tree build _decision_tree (subset_ X,
subset_vy, max_depth);
forest.append(tree);
Return: Random Forest model (forest);

subset_vy

Prediction using the trained model
Random Forest model, Test data (X_test) Predicted
class labels for X_test

Procedure:
Initialize an array to store the predictions:
predictions = [];

for each tree in forest do prediction

predict_with_tree(tree, X_test);
predictions.append (prediction);
Return: Majority vote of predictions;

used as input. After testing both algorithms in various data,
the performance is visualized using a confusion matrix and
analyzed using the parameters precision, recall, and f1-score
based on the support for each model. Precision is the ratio of
the number of true positives to the number of elements labeled
to belong to the positive class. The ratio between the number
of true positives and the total number of elements that belongs
to the positive class that gives recall and f1-score is calculated
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by taking the harmonic mean of precision and recall. Support
represents the number of samples of true responses lying in
the class. The overall performance is evaluated using accu-
racy, macro average, and weighted average. In macro average,
all classes equally contribute to the final averaged matrix, and
in weighted average, each class’s contribution to the average
is weighted by its size.

The random forest prediction technique in which the pa-
rameters are trained with 100 trees is used to perform
prediction. Tables 2 and 3 show the performance analysis of
the random forest and XGBoost predictors for these nine mod-
els with four different frequencies of input voltages analyzed
by the factors precision, recall, fl-score, and support using
the confusion matrix shown in Figs. 6 and 7, respectively.
Most of the models give high accuracy while using both pre-
diction techniques. Support is a significant factor considering
the prediction parameters for individual memristor models.
Depending on the support, both algorithms show varying
performance parameters but are still well enough to identify
the model successfully. The comparison of overall accuracy,
macro average, and weighed average of random forest and
XGBoost for single memristor models at four different fre-
quencies 0.5, 1, 5, and 10 Hz are illustrated by the Fig. 8. The
performance of both approaches enhances with frequency.
Maximum accuracy is achieved at a higher frequency. This
implies that even though there are similar points in the dataset,
the two predictors can produce a better accuracy in predicting
or identifying the model.

Even though the overall prediction has good accuracy in
most cases, it would be better to fine-tune the dataset since
the data contains similar values from the pinched area of the
I-V curve. In memristor models, the pinched region gives
the voltage and current data as zero. Every memristor model
will have this region, an essential condition for being in the
class of memristors. Such training with a dataset excluding
the pinched area may improve the predictions. Also, we can
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FIGURE 6. Random forest prediction confusion matrix for single
memristor simulation for (a) 0.5-Hz input voltage frequency, (b) 1-Hz input
voltage frequency, (c) 5-Hz input voltage frequency, and (d) 10-Hz input
voltage frequency.
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FIGURE 7. XGBoost prediction confusion matrix for single memristor

simulation for (a) 0.5-Hz input voltage frequency, (b) 1-Hz input voltage

frequency, (c) 5-Hz input voltage frequency, and (d) 10 Hz input voltage
requency.

combine results from multiple algorithms to enhance the pre-
diction.

The performance analysis of random forest prediction and
XGBoost prediction for 2 x 2 crossbar, 4 x 4 crossbar, 8 x 8
crossbar, and 16 x 16 crossbar based on the confusion matrix
shown in the Figs. 9 and 10 are illustrated in the Tables 4-7,
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FIGURE 8. Accuracy, macro average, and weighted average while using
Random forest and XGBoost for single memristor models at frequencies
0.5, 1,5, and 10 Hz.
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FIGURE 9. Random forest prediction confusion matrix for memristor
crossbar array simulation of (a) 2 x 2 crossbar array, (b) 4 x 4 crossbar
array simulation, (c) 8 x 8 crossbar array, and (d) 16 x 16 crossbar array.

respectively. According to the performance parameters, sup-
port plays a significant role in predicting the model. Since the
data from each model are close enough for higher prediction
accuracy, more input data points are required for higher ac-
curacy. Accuracy, macro average, and weighted average are
compared for the two prediction approaches for the above four
dimensions, as shown in Fig. 11. Random forest and XGBoost
gave more than 80% overall accuracy in four cases. In some
cases, random forest performed better than the XGBoost al-
gorithm. But this can vary depending on the input data. Both
approaches perform well enough to predict the model in most
cases.
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TABLE 4. Performance Analysis of Random Forest and XGBoost Algorithm
on 2 x 2 Crossbar

Memristor

Model Random Forest XGBoost
precision | recall | fl-score [ support | precision | recall | fl-score [ support

BIOLEK 0.58 0.49 0.53 51 0.64 0.60 0.62 286
UMM 1.00 0.95 0.97 114 0.94 0.92 0.93 293
IDEAL 0.71 0.72 0.72 47 0.84 0.83 0.83 297
IMTMS 0.90 0.93 0.91 176 0.92 0.90 0.91 311
JOGLEKAR 0.50 0.52 0.51 58 0.71 0.60 0.65 310
GHSM 1.00 0.96 0.98 51 0.99 1.00 1.00 306
PCM 0.93 0.97 0.95 71 0.92 0.99 0.96 243
AFRLM 0.95 1.00 0.97 90 0.93 0.99 0.96 283
PRODOMAKIS 0.78 0.78 0.78 50 0.82 0.94 0.88 304

TABLE 5. Performance Analysis of Random Forest and XGBoost Algorithm
on 4 x 4 Crossbar

M;Z‘)S:ior Random Forest XGBoost
precision | recall | fl-score [ support | precision | recall | fl-score [ support

BIOLEK 0.64 0.76 0.69 193 0.65 0.62 0.63 313
UMM 0.98 0.95 0.97 195 0.96 0.87 0.91 302
IDEAL 0.88 0.97 0.92 150 0.85 0.85 0.85 255
IMTMS 0.98 0.90 0.94 225 0.97 0.90 0.94 294
JOGLEKAR 0.76 0.62 0.68 219 0.61 0.63 0.62 295
GHSM 0.99 1.00 1.00 196 1.00 1.00 1.00 297
PCM 0.98 1.00 0.99 189 0.91 1.00 0.95 276
AFRLM 0.97 0.99 0.98 196 0.95 0.98 0.96 284
PRODOMAKIS 0.95 0.98 0.96 181 0.88 0.94 0.90 300

A. VARIABILITY ANALYSIS

The proposed work focuses on memristive devices which are
emerging and yet to mature. Modeling those devices with
higher accuracy is challenging due to different variabilities
like cycle-to-cycle, device-to-device, defective points in the
array, etc. Memristor is not a single device; several devices fall
under the broad category of memristors. Hence, the problem is
more complex than models which are CMOS-based. Because
of the mentioned issues, memristive circuits with idealistic
models can have output errors.
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TABLE 6. Performance Analysis of Random Forest and XGBoost Algorithm
on 8 x 8 Crossbar

M;In(l:;;zior Random Forest XGBoost
precision | recall | fl-score [ support | precision | recall | fl-score [ support

BIOLEK 0.58 0.59 0.58 95 0.53 0.69 0.60 149
UMM 0.98 0.90 0.93 96 0.98 0.89 0.94 161
IDEAL 0.69 0.56 0.62 43 0.79 0.35 0.49 54
IMTMS 0.99 0.93 0.96 123 0.99 0.92 0.95 163
JOGLEKAR 0.54 0.57 0.55 93 0.55 0.50 0.52 161
GHSM 1.00 1.00 1.00 47 1.00 1.00 1.00 61
PCM 0.90 1.00 0.95 76 0.84 0.98 0.91 110
AFRLM 0.94 0.95 0.95 107 0.90 0.90 0.90 137
PRODOMAKIS 0.89 0.97 0.93 88 0.88 0.94 0.91 156

TABLE 7. Performance Analysis of Random Forest and XGBoost Algorithm
on 16 x 16 Crossbar

*Mlc\e/ln;;lzior Random Forest XGBoost
precision | recall | fl-score [ support | precision | recall | fl-score [ support
BIOLEK 0.56 0.65 0.60 96 0.62 0.71 0.66 153
UMM 1.00 0.91 0.95 95 0.96 0.87 0.91 148
IDEAL 0.77 0.40 0.53 57 0.60 0.42 0.49 57
IMTMS 0.96 0.96 0.96 97 1.00 091 0.95 139
JOGLEKAR 0.53 0.45 0.49 109 0.57 0.52 0.54 161
GHSM 1.00 1.00 1.00 44 1.00 0.99 0.99 86
PCM 0.91 1.00 0.95 82 0.88 0.97 0.92 131
AFRLM 0.87 0.97 0.92 95 0.90 0.94 0.92 159
PRODOMAKIS 0.84 0.99 0.91 103 0.82 0.93 0.87 133
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FIGURE 11. Accuracy, macro average, and weighted average while using
random forest and XGBoost for crossbar architectures of dimensions
2x2,4x4,8x8,and 16 x 16.

Variability in memristors can be analyzed by considering
the change in the conductance states in the device and crossbar
level. The variability can be induced by changing the conduc-
tance states of the memristive devices in the crossbar. The
analysis can be done by evaluating changes in the column’s
current measured through the crossbar columns. Since our
dataset contains the input voltages to the crossbar rows and
output currents from the crossbar columns, to analyze the
impacts of changed crossbar column currents in predicting
the memristor models, the relative current error after inducing
variability in conductance states needs to be considered.

There are two test cases for the same: Case 1: G4V x G
and Case 2: G — V x G. Here, V is the variability percentage,
and G is the actual conductance.

The simulations are done for conductance variations with
three variability percentages: 20%, 30%, and 40%. The con-
ductance values of the memristive devices in the crossbar
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TABLE 8. Accuracy Obtained After Inducing Variabilities of 20%, 30%, and
40%

- Accuracy Accuracy
Dimension ;{’222'3(137:))’ (Random (XGBoost)
Forest)(%) | (%)

4 x4 0 90 86
+20 79 76

-20 78 79

+30 81 81

-30 i 79

+40 77 75

-40 81 77

8 x8 0 84 81
+20 80 79

-20 83 79

+30 75 77

-30 81 81

+40 78 78

-40 82 31

16 x 16 0 81 82
+20 77 75

-20 81 78

+30 79 77

-30 82 79

+40 81 78

-40 81 30

are changed by inducing the abovementioned percentages of
variabilities. This updated dataset contains the input voltages,
updated current values are again fed to the classifier, and clas-
sification reports are analyzed. Table 8 details the impact of
these induced variabilities in predicting the memristor models
using the random forest and XGBoost algorithms.

When we consider memristive devices in crossbars in a
neuro system, like a neural network implementation, these
changes in conductance states and relative current error, which
gives the difference between ideal and measured column cur-
rents, are more important, which impacts the accuracy of
implementations. Due to ageing effects, the Ron and Ropr
values may get changed. This corner analysis shows the
impacts of relative current error on the accuracy of neural
network implementations. In neural network implementa-
tions, weights are mapped to conductance values to perform
MAC, equivalent to weighted summation. Hence, the accu-
racy depends on how accurately the weights are mapped to
conductance states. If more conductance states are available,
the weights will be mapped more precisely, and the accuracy
attained will also be higher. Ageing of memristors will cause
the vanishing of different conductance states, which will cause
degradation in accuracy due to a lack of precise mapping.
The relative current error gives the impact of variability in
the neural system. When Ry increases and Ropp decreases,
the number of available conductance states decreases, and
mapping of weights cannot be done precisely, which leads to
degradation in the accuracy. When Ron decreases and Ropp
increases, more conductance states will be available; hence
relative current error decreases.

Due to different variabilities, it is difficult to estimate the
functional behavior and accuracy of the experimental results.
The simulation-based approach is used to cross-validate mem-
ristor circuit designs regarding accuracy and functionality to
address the above issue. A wide range of variabilities in the
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devices are addressed using this reverse engineering approach,
which is useful today and for the long term as more and more
memristive devices are discovered.

IV. CONCLUSION

The proposed work classifies and predicts the memristor
models used in circuit simulations with only available data
of inputs and outputs. The efficient hardware neuromorphic
computing systems for different industrial applications can be
implemented with higher degree of performance by choosing
memristor models that suit specific applications. Exploring
other advanced classifiers for prediction and cross-validation
can enlarge the boundaries for industrial applications in which
this explainable AI approach can be used. In this article, we
propose two ensemble learning techniques, random forest and
XGBoost, to cross validate circuit simulations for different
models of memristors. These proposed prediction models esti-
mate the memristor model from a circuit simulation’s voltage
and current measurements. In the detailed examinations, we
found that the predictive models could perform with high
accuracy in various configurations of the circuit design simu-
lations. The final analysis is based on the accuracy, precision,
and fl-score obtained from the confusion matrix. The input
voltage frequency was a key component in the accuracy of the
prediction models. The prediction model’s accuracy increased
with frequency. In various crossbar simulations, the prediction
models performed with high accuracy. In some cases, random
forest was able to perform better than XGBoost. From the final
analysis, we concluded that random forest and XGBoost work
well given large homogeneous training data and are relatively
robust to outliers.

The proposed prediction methods cross validate the mem-
ristor circuit simulations, ensuring accurate results concerning
the memristor model. This method helps precisely analyze the
circuit’s -V characteristics and reverse engineering the circuit
only from the output measurements. When there is confusion
on which memristor model should be used for a desired input
and output, this cross-validation system can be successfully
implemented to explain the black-box mystery.
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