
Received 5 July 2024; accepted 6 August 2024. Date of publication 8 August 2024;
date of current version 16 August 2024. The review of this article was arranged by Associate Editor María Dolores Valdés Peña.

Digital Object Identifier 10.1109/OJIES.2024.3440578

Explainable Model Prediction of Memristor
SRUTHI PALLATHUVALAPPIL (Graduate Student Member, IEEE), RAHUL KOTTAPPUZHACKAL,

AND ALEX JAMES
School of Electronic Systems and Automation, Digital University Kerala, Trivandrum, Kerala 695317, India

CORRESPONDING AUTHOR: ALEX JAMES (e-mail: apj@ieee.org)

This work was supported by the university research grants of Ministry of Electronics and Information Technology, Government of India, and Department of IT and
Electronics, Government of Kerala.

ABSTRACT System level simulation of neuro-memristive circuits under variability are complex and follow a
black-box neural network approach. In realistic hardware, they are often difficult to cross-check for accuracy
and reproducible results. The accurate memristor model prediction becomes critical to decipher the overall
circuit function in a wide range of nonideal and practical conditions. In most neuro-memristive systems,
crossbar configuration is essential for implementing multiply and accumulate calculations, that form the
primary unit for neural network implementations. Predicting the specific memristor model that best fits
the crossbar simulations to make it explainable is an open challenge that is solved in this article. As the
size of the crossbar increases the cross-validation becomes even more challenging. This article proposes
predicting the memristor device under test by automatically evaluating the I–V behavior using random forest
and extreme gradient boosting algorithms. Starting with a single memristor model, the prediction approach is
extended to memristor crossbar-based circuits explainable. The performance of both algorithms is analyzed
based on precision, recall, f1-score, and support. The accuracy, macro average, and weighted average of both
algorithms at different operational frequencies are explored.

INDEX TERMS Extreme gradient boost (XGBoost) predictor, memristor models, memristor crossbar,
pinched hysteresis, random forest predictor.

I. INTRODUCTION
Memory resistors are a class of devices abbreviated as
memristors [1]. It is the fourth basic circuit element that
functionally relates the charge and linkage flux. Their prop-
erties differ from the other three fundamental devices by
their nonvolatile memory effect, pinched hysteresis loop,
scalability, programming capability, and compatibility with
CMOS technology. It memorizes the latest attained conduc-
tance value even if the power supply is OFF. Due to these
features, the application of memristors is wide in range,
like in-memory computing, logic, neuromorphic computing,
etc.

There are several models of memristors [2]. While design-
ing the circuits, a mathematical model is used to show the
behavior of the memristor [3], [4]. Compared to the behavior
of physical devices, the model should be sufficiently accurate,
simple, and computationally efficient. In addition, the model
should be general so that it can be suitable for different tech-
nologies. The wide usage of different memristor models for

circuit simulations makes them flexible for a wide range of
applications. While using the models [5] in large circuits for
high-end applications, it is challenging to cross validate.

Finding the efficient solution to several complex computa-
tional problems, evolving hardware neuromorphic computing
architectures offer promising solutions. Memristors mimic
synapses in neural network implementations, which change
resistance state according to the applied voltage and memorize
the latest attained resistance state. Like a matrix, the cross-
bar arrangement of memristors with selector transistors along
rows and columns mimics weighted summation operations
in neural network models. It offers different high-density ar-
chitectures to implement the synaptic connections and neural
network models. For this, the hardware circuit implementa-
tions based on different memristor models demand deciding
the appropriate selection of these models to get maximum per-
formance. In this proposed work, memristor models used in
the circuit simulations within a black box are predicted using
machine learning based on the dataset of pinched hysteresis.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/836 VOLUME 5, 2024

https://orcid.org/0000-0002-7447-2495
https://orcid.org/0000-0001-5655-1213
mailto:apj@ieee.org

This method has significant industrial applications in im-
plementations of different neural network models, pattern
recognition, in-memory computations, etc., by enabling iden-
tification of proper memristor models suitable for specific
computations that helps to optimize the neuromorphic sys-
tems. The tasks like image classification, language processing,
speech recognition, and robotics are flexible to be imple-
mented with neuro memristive arrays with proper memris-
tor models. The decision-making process while using large
datasets in different fields like finance, health care, manu-
facturing industries, and edge computing applications using
smart sensors and IoT can use this neuromorphic computing
architectures. Choosing proper memristor models that can
have high performance to specific applications is essential
for having higher degree of accuracy in computations. This
proposed approach provides proper cross-validation and pre-
diction of memristor models so that the usage of those models
with proper mapping to the application demands can be done.

This article focuses on explaining neuro-memristive cir-
cuits and systems through a cross-validation of the simula-
tions, irrespective of the complexity of the model. Memristors
represent a broad class of devices that can be modeled using
a broad set of device models. This problem is very different
to that of MOSFETs, where only one type or minor variant
of the device is modeled. Over time, even if models are
standardized for memristors, there will be a need to perform
cross-validations as being a class of devices, several com-
binations of variability make system modeling complex and
inaccurate. The conventional system of verifying the simu-
lation results of emerging memristive devices that are yet to
mature, using the experimental results, is replaced here to
address the challenges associated with the accurate modeling
due to different variability. Even though many models are
emerging, the scientific community always needs to com-
promise for different properties associated with the physical
devices like threshold voltage, state variable motion, area of
hysteresis, different responses for different input stimuli, etc.,
due to the wide range of variability among this broad class
of devices. This reverse engineering approach addresses the
complexity of estimating the accuracy and functional behavior
of physical characterization data due to the abovementioned
issues. This proposed approach is helpful as more and more
memristive devices are discovered.

A large majority of research using machine learning is for
device modeling. However, this work diverges from this trend
in applying machine learning in an entirely new application,
where conventionally, cross-validation of simulation results
is only done through experimental verification. This is an
approach to cross validate the simulations using a machine
learning approach.

The motivation of this work is to develop a technique for
explaining neuro-memristive circuits and systems by validat-
ing circuit simulations done with emerging device models.
Most memristor devices are difficult to model accurately due
to device-to-device and cycle-to-cycle variability. Some ex-
amples of memristor models, their properties, device level,

and simulation level challenges are illustrated in Table 1.
Under such circumstances, the circuits built with idealistic
models result in large output errors. Furthermore, as the de-
vices have a range of variability, the experimental results are
also difficult to conclude in estimating the desired functional
behavior and accuracy of the design logic. This necessitates a
simulation-based approach to cross-validate the functionality
and accuracy of circuit designs with memristors.

Modeling memristive devices is significantly more complex
than MOSFETs because memristors are devices with diverse
material compositions, modes of operations, and structures.
MOSFETs have relatively uniform structure and operation,
making them feasible for standardized models like the Berke-
ley short-channel IGFET model. The memristor field is
heterogeneous and includes various devices with different op-
eration mechanisms. For example, the resistive random access
memory, in which conductance states switch depending upon
the formation and rupturing of conductive filament. Phase
change memory (PCM), in which conductance states change
according to change in state from crystalline to amorphous.
Spin-transfer torque RAM in which the conductance state
changes according to changes in the magnetic state due to
the spin-transfer torque effect. The resistive switching and
storage mechanisms are different for these devices. Hence,
the behavior of memristive devices cannot be analyzed using
a unified model. Detailed modeling approaches are needed to
model this wide range of resistive switching mechanisms like
ion migrations, magnetic effects, phase transitions, etc. For
MOSFETS, the relationship between the electrical characteris-
tics and the physical structure modeling approaches in CMOS
devices is comparatively simple.

CMOS devices show linear behavior in their operational
regions, whereas memristive devices are nonlinear devices
that change their resistance based on the previous states or
history of current and voltage. In amplifiers, the linear re-
gion operation of CMOS devices is used, and the memristors
are used in applications like mimicking neural computations,
neural synapses, etc, where nonlinear behaviors are advanta-
geous. The CMOS behavior is described using three different
equations corresponding to different regions of operations,
whereas memristor models have state-dependent resistance
values, and hence, the behavior is described using state-
variable equations connecting the voltage–current relationship
and internal state variable. Memristors are dynamic since their
resistance is dependent on the previous state. Hence, the re-
sistance will change over time based on the device’s voltage
and current history. Hence, memristors are dynamic in na-
ture, whereas the CMOS devices exhibit stable and predictive
behavior in circuit simulations. Leakage current effects also
need to be considered in CMOS circuits.

Several mathematical models are needed for memristive
circuit simulation and analysis. Cross-validation must be done
across various device types and operating conditions that re-
quire complexity in the modeling process. Hence, this work
emphasises the cross-validation of memristor models that con-
tinuously need to be refined and modified, which cannot be

VOLUME 5, 2024 837

PALLATHUVALAPPIL ET AL.: EXPLAINABLE MODEL PREDICTION OF MEMRISTOR

TABLE 1. Properties and Challenges of Different Memristor Models

unified like a more stable modeling environment of CMOS-
based models.

Through this new approach, we propose that estimating the
device model followed by using those models to build circuits
can lead to better estimates in cross-validating the accuracy
of circuit-level simulation results. Reverse engineering the
model from circuit design using the proposed approach also
leads to an efficient way to account for a wide range of device
variability.

The programming mechanism also differs in different de-
vices. Hence, proper programming methodology must be
followed for different devices mapping neural weights. Pre-
dicting the models from the simulations will help develop the
necessary programming strategies to tune the weights with
minimum error, which will help reduce the relative current
error and increase accuracy.

While doing the hardware implementation of neural net-
works, memristive crossbars emulate the weighted summation
operations using the multiply and accumulate (MAC) oper-
ation carried in between input voltages to the crossbar and
conductance values to which the memristors are programmed.
The output current read through the columns of the crossbar is
equal to the MAC result. Computations are performed within
the memory array, enhancing speed, and energy efficiency.
How precisely the weights are mapped to the conductance
states will determine the accuracy. Minimum deviation from
the target weight values should be ensured during mapping.

In edge computing applications in which the tasks per-
formed are specific, the memristor models need to be familiar
prior to use in those applications. Under different scenarios,
selecting the memristive devices that are suitable for specific
tasks helps optimize performance in different edge computing
applications.

Prediction of models from simulations helps to improve the
programming strategies, which differ among various memris-
tive devices. This device-specific programming helps provide
fine-tuning by properly mapping weights that will enhance
neural network performance and offer accurate computations,
reducing relative current errors.

FIGURE 1. (a) HP ion drift model implementation illustrated in material
physics. (b) Sandwich structure having two Pt electrodes, T iO2 and T iO2−X .

The rest of this article is organized as follows. Section II
gives an introduction. Section II comprises the background
of this article. Section III details the proposed model predic-
tion approaches in the single memristor model and models in
memristive crossbar arrays, followed by the analysis method-
ology and the results and discussion. Finally, Section IV
concludes this article.

II. BACKGROUND
Most memristor models selected for this work are based on
the memristor equations of the HP memristor model.

A. HP MEMRISTOR ION-DRIFT MODEL
The principle of resistance switching between two extreme
values, Ron and Roff, the device’s lowest and highest re-
sistance, makes them mathematically flexible to model in
different ways. The HP memristor model, an example of a
metal–insulator–metal (MIM) device, is shown in Fig. 1.

When the Pt electrodes are excited externally, as shown
in Fig. 2, the oxygen ions present in the doped region
will drift to the undoped region under the influence of
the electric field. This process will cause a shifting of the
boundary between these two regions. This displacement in
the boundary will cause a change in the resistance value
also. If the structure is entirely covered by TiO2−x, it is
in its low-resistance state or maximum conductive (Ron). If

838 VOLUME 5, 2024

FIGURE 2. (a) Detailed device level structure of the HP memristor model.
W is the width of the doped region, and D is the total device length. (b)
Total resistance will be the effective resistance of the low-resistance
region (doped region) and the high-resistance region (undoped region) .

the structure is entirely covered by TiO2, it is in its high-
resistance state (Rof f) or minimum conductive. The mem-
ristance is given by, M(q) = Ronw(t)/D+ Roff(1− w(t)/D).
The relation between the voltage and current is given by
V (t) = (Ronw(t)/D+ Roff(1− w(t)/D))i(t). Here w(t) is the
width of the doped region, and D is the total width of the
doped and undoped regions. The width w(t) is affected by i
by, dw/dt = μvRoni(t)/D. Here μv is the dopant mobility.
w(t) = μvRonq(t)/D+ w0. Here, q(t) is the charge injected
in the time t.

The dw/dt is the dynamic state variable, the drift velocity
of the Oxygen vacancies. The integration of the expression
μvRonq(t)/D gives the value of w(t). Even q(t) = 0, the
integrated output will equal a constant. This implies that
even if the current flow is zero, the charge is constant, and
resistance remains unchanged. The principle of nonvolatility
satisfies here. Based on the migration of ions, the value of w
varies between 0 and D. The drifting of the boundary region
is interpreted by different window functions and equations
that give different mathematical models of memristors. While
modeling different memristors, state variable equations are
substituted with the equation x(t)=W(t)/D. The state variable
becomes a normalized quantity whose value lies between 0
and 1. x(t) = 0 for the minor conductive state and x(t) = 1 for
the most conductive state. Window functions limit the motion
of the state variable between 0 and 1.

B. MEMRISTIVE CROSSBAR ARRAY
In a crossbar architecture [6], [7], memristors are arranged
in a matrix form, as shown in Fig. 3. Each row and column
intersection consists of a memristive device [8] and a selector
CMOS. The figure shows a 3-D crossbar array in which 2-D
crossbar arrays are stacked vertically. Word lines (WL) in a
crossbar are used to activate or deactivate selectors. Voltage
values above the threshold voltage of transistors are applied
through word lines to activate selectors. Source lines are used
to feed the input voltages, and bit lines are used to read output
currents. The output currents are the results of the MAC op-
eration [9] between the input voltage and conductance of the
memristive device.

FIGURE 3. Memristor-crossbar architecture. (a) 3-D architecture of a
memristive crossbar array obtained by stacking three layers of 2-D
memristive crossbar array. (b) Memristor and selector pair. (c) Circuit
connection showing the selector transistor and memristor in a crossbar
array with WL (Word line), BL (Bit line), and SL (Source line); vin1, vin2, vin3,
and output currents i1, i2, i3. Selector devices that need to be activated are
applied with an input voltage greater than the threshold voltage. The
Conductance of the memristor is denoted as gmn for the mth row and nth
column. The conductance of the selector transistor is given by gT .

The equation of the MAC operation is given by

i j =
j∑

k=1

vkgk, j (1)

where i j is the output current, vk is the input voltage, and gk, j

is the conductance of the crossbar node.

C. ENSEMBLE LEARNING—RANDOM FOREST AND
EXTREME GRADIENT BOOSTING
Ensemble learning techniques combine different learning al-
gorithms to make more accurate predictions. Predictions from
individual learning models are aggregated to form the final
prediction. These algorithms efficiently handle nonlinearity
and interactions and provide feature-importance, flexibility,
and robustness to overfitting. Since the data collected for this
study is susceptible to overfitting the model and shows a
nonlinear relationship, we are focusing on the following two
ensemble learning techniques.

Random forest [10], [11] is an ensemble prediction algo-
rithm having a combination of tree predictors. The majority
vote of all individual trees determines the final prediction
of the input vector. Each tree casts one vote for the most
frequently occurring class. In random forest, the Gini index,
which measures the degree of impurity of an attribute to dif-
ferent classes, is used as an attribute selection measure.

For a given training set T , selecting one case randomly and
assigning to a class Ci, the Gini index is expressed by

∑∑

j �=i

(f (Ci, T)/|T |)(f (Cj, T)/|T |) (2)

where f (Ci, T)/|T | is the probability that the selected case
belongs to class Ci. To reduce the complexity of the tree and
to prevent overfitting, pruning is used [12]. It removes the
branches of the tree that do not contribute to accuracy, and
the remaining branches are grown to the maximum.

VOLUME 5, 2024 839

PALLATHUVALAPPIL ET AL.: EXPLAINABLE MODEL PREDICTION OF MEMRISTOR

Algorithm 1: Pseudocode for XGBoost Classifier.
Training on the data
Training data (Xtrain, ytrain), number of boosting rounds
(num_rounds), maximum depth of each tree
(max_depth), learning rate (eta), subsample ratio of
training instances (subsample), and column
subsample ratio of features (colsample_bytree)
XGBoost model

Procedure:
Initialize model with a constant value: model =
initial_prediction_value;

for round← 1 num_rounds do
gradients = -gradient_of_loss(ytrain,
model.predict(Xtrain))
weak_model = fit_weak_model(Xtrain,
gradients, max_depth,
colsample_bytree);
update = eta *
weak_model.predict(Xtrain);
model = model + update;
Return: XGBoost model (model);

Prediction using the trained model
XGBoost model, Test data (X_test) Predicted class
labels for X_test

Procedure:
predictions = model.predict(Xtest)
Return: predictions;

In this approach, input voltages and the corresponding out-
put currents are the features. Based on this data, the random
forest prediction algorithm splits nodes to generate new trees
and identifies the respective models.

The extreme gradient boosting (XGBoost) [13] is a scalable
and efficient application of the gradient boosting framework.
A weight will be assigned for each observation. This weight
will be adjusted after training the predictor. The weight of the
correctly classified observations is decreased, and misclassi-
fied observations are increased. Using the observations with
modified weights, the subsequent predictor is trained, and the
process is repeated to create a highly accurate model. The
sum of prediction score fk (Xi) of all trees gives the estimated
output ŷiof the gradient boosting tree model

ŷi =
K∑

k=1

fk (Xi), fk ∈ � (3)

where � is the space of the regression tree, K is the number
of regression trees, and Xi is the features corresponding to
sample I.

This approach proposes estimating the device model and
using those models to build circuits to get better estimates
in cross-validating the accuracy of circuit-level simulation re-
sults. Reverse engineering the model from circuit design also
leads to an efficient way to account for a wide range of device

FIGURE 4. Explainable neuro-memristive circuit system workflow.

variability. A workflow of the proposed approach is shown in
the Fig. 4.

Here, nine memristor models are simulated in Spice. Each
model is simulated with an input voltage of four different
frequencies (0.5, 1, 5, and 10 Hz). The graph obtained by
plotting the input voltage versus the logarithmic scale of out-
put current gives nine different pinched hystereses, as shown
in Fig. 5. This output data are collected for each model and
prediction is performed using random forest and XGBoost
techniques. For random forest, the parameters are trained with
100 trees for each dataset for the different frequencies applied.
The prediction results for these nine models with four dif-
ferent frequencies of input voltages using random forest and
XGBoost algorithms are analyzed by the factors precision,
recall, f1-score, and support. The two prediction approaches,
accuracy, macro average, and weighted average, are compared
for different frequencies.

To calculate precision, recall, and f1-score, the following
parameters are calculated from the confusion matrix [14],
[15]. A confusion matrix is a tabular way of representing the
performance of the prediction algorithm
� True positive (TP): Values predicted as positive and it is

true.
� True negative (TN): Values predicted as negative and it

is true.
� False positive (FP): Values predicted as positive and it is

false.
� False negative (FN): Values predicted as negative and it

is false.
Precision is found using the following equation:

Precision = TP/(TP+FP)

Recall is calculated by the following equation:

Recall = TP/(TP+FN).

F1-score is measured using the equation

F1-score = (2*Recall*Precision)/(Recall+Precision).

840 VOLUME 5, 2024

FIGURE 5. BIOLEK: Biolek Model, UMM: University of Michigan Model, IDEAL: Ideal Memristor Model, JOGLEKAR: Joglekar Model, GHSM: General
Hyperbolic Sine Model, AFRLM: Air Force Research Lab Model, PRODOMAKIS: Prodromakis Model, PCM: Phase Change Memory, IMTMS: Insulator to
Metal Transition Memristive Systems, Pinched hysteresis of nine memristor models with (a) 0.5 Hz input voltage frequency, (b) 1 Hz input voltage
frequency, (c) 5 Hz input voltage frequency, and (d) 10 Hz input voltage frequency.

For performing prediction in a memristive crossbar instead
of a single memristor, memristors are arranged row and
columnwise in different dimensions (2× 2, 4× 4, 8× 8 and
16× 16). The simulated spice data of different input volt-
ages through rows and different output currents through
the columns are used to predict using random forest and
XGBoost. Performance is analyzed based on the factors of
precision, recall, f1-score, and support. The accuracy, macro
average, and weighted average of the two prediction ap-
proaches are compared for different crossbar dimensions.

D. RANDOM FOREST ALGORITHM ON MEMRISTOR DATA
A random forest algorithm is used for prediction and regres-
sion problems. It combines multiple decision trees to form a
forest. To predict, a random subset of the input data and a
random subset of the input features are used to train each de-
cision tree. Aggregation of the decisions of all trees gives the
final decision of prediction. Here, we use a technique known
as bagging that reduces overfitting and improves accuracy by
combining the predictions of multiple decision trees formed
from bootstrapped training data samples. The pseudocode for
random forest is given in Algorithm 1.

E. XGBOOST ALGORITHM ON MEMRISTOR DATA
The XGBoost algorithm is an ensemble learning method that
combines the predictions of multiple weak models to produce
a stronger prediction. Decision trees are base learners for the
XGBoost or eXtream gradient boosting prediction. It controls
overfitting by using a more regularized model. This makes it
more accurate and faster than traditional gradient boosting.
The pseudocode for XGBoost is given in Algorithm 2.

III. RESULTS AND DISCUSSION
The nine memristor models with four different frequencies
used for the prediction are shown in Fig. 5. The predictor may
not capture the relevant information if the number of features
is too small. If the number of features is too large, the predictor
may overfit the training data, leading to poor generalization
performance. Since we are only using two features, input volt-
age and output current, the predictor highly depends on the
data. In the dataset, different models show similar readings of
input voltage and output current (at the pinched point). Here,
the overall data are set into 70% of training data and 30% of
test data.

The initial dataset is split for training and testing. The test-
ing dataset contains randomly selected data for each model.
After training to predict the model, this testing dataset is

VOLUME 5, 2024 841

PALLATHUVALAPPIL ET AL.: EXPLAINABLE MODEL PREDICTION OF MEMRISTOR

TABLE 2. Performance Analysis of Random Forest Predictor on Single Memristor Circuit Simulations

TABLE 3. Performance Analysis of XGBoost Predictor on Single Memristor Circuit Simulations

Algorithm 2: Pseudocode for Random Forest Classifier.
Training on the data
Training data (Xtrain, ytrain), number of trees
(num_trees), max depth of each tree (max_depth)
Random forest model

Procedure:
Initialize an empty list to store the trees: forest =
[];

for i← 1 num_trees do subset_X, subset_y
= random_subset(Xtrain, ytrain);
tree = build_decision_tree(subset_X,
subset_y, max_depth);
forest.append(tree);
Return: Random Forest model (forest);

Prediction using the trained model
Random Forest model, Test data (X_test) Predicted
class labels for X_test

Procedure:
Initialize an array to store the predictions:
predictions = [];
for each tree in forest do prediction =
predict_with_tree(tree, X_test);
predictions.append(prediction);
Return: Majority vote of predictions;

used as input. After testing both algorithms in various data,
the performance is visualized using a confusion matrix and
analyzed using the parameters precision, recall, and f1-score
based on the support for each model. Precision is the ratio of
the number of true positives to the number of elements labeled
to belong to the positive class. The ratio between the number
of true positives and the total number of elements that belongs
to the positive class that gives recall and f1-score is calculated

by taking the harmonic mean of precision and recall. Support
represents the number of samples of true responses lying in
the class. The overall performance is evaluated using accu-
racy, macro average, and weighted average. In macro average,
all classes equally contribute to the final averaged matrix, and
in weighted average, each class’s contribution to the average
is weighted by its size.

The random forest prediction technique in which the pa-
rameters are trained with 100 trees is used to perform
prediction. Tables 2 and 3 show the performance analysis of
the random forest and XGBoost predictors for these nine mod-
els with four different frequencies of input voltages analyzed
by the factors precision, recall, f1-score, and support using
the confusion matrix shown in Figs. 6 and 7, respectively.
Most of the models give high accuracy while using both pre-
diction techniques. Support is a significant factor considering
the prediction parameters for individual memristor models.
Depending on the support, both algorithms show varying
performance parameters but are still well enough to identify
the model successfully. The comparison of overall accuracy,
macro average, and weighed average of random forest and
XGBoost for single memristor models at four different fre-
quencies 0.5, 1, 5, and 10 Hz are illustrated by the Fig. 8. The
performance of both approaches enhances with frequency.
Maximum accuracy is achieved at a higher frequency. This
implies that even though there are similar points in the dataset,
the two predictors can produce a better accuracy in predicting
or identifying the model.

Even though the overall prediction has good accuracy in
most cases, it would be better to fine-tune the dataset since
the data contains similar values from the pinched area of the
I–V curve. In memristor models, the pinched region gives
the voltage and current data as zero. Every memristor model
will have this region, an essential condition for being in the
class of memristors. Such training with a dataset excluding
the pinched area may improve the predictions. Also, we can

842 VOLUME 5, 2024

FIGURE 6. Random forest prediction confusion matrix for single
memristor simulation for (a) 0.5-Hz input voltage frequency, (b) 1-Hz input
voltage frequency, (c) 5-Hz input voltage frequency, and (d) 10-Hz input
voltage frequency.

FIGURE 7. XGBoost prediction confusion matrix for single memristor
simulation for (a) 0.5-Hz input voltage frequency, (b) 1-Hz input voltage
frequency, (c) 5-Hz input voltage frequency, and (d) 10 Hz input voltage
frequency.+

combine results from multiple algorithms to enhance the pre-
diction.

The performance analysis of random forest prediction and
XGBoost prediction for 2× 2 crossbar, 4× 4 crossbar, 8× 8
crossbar, and 16× 16 crossbar based on the confusion matrix
shown in the Figs. 9 and 10 are illustrated in the Tables 4–7,

FIGURE 8. Accuracy, macro average, and weighted average while using
Random forest and XGBoost for single memristor models at frequencies
0.5, 1, 5, and 10 Hz.

FIGURE 9. Random forest prediction confusion matrix for memristor
crossbar array simulation of (a) 2 × 2 crossbar array, (b) 4 × 4 crossbar
array simulation, (c) 8 × 8 crossbar array, and (d) 16 × 16 crossbar array.

respectively. According to the performance parameters, sup-
port plays a significant role in predicting the model. Since the
data from each model are close enough for higher prediction
accuracy, more input data points are required for higher ac-
curacy. Accuracy, macro average, and weighted average are
compared for the two prediction approaches for the above four
dimensions, as shown in Fig. 11. Random forest and XGBoost
gave more than 80% overall accuracy in four cases. In some
cases, random forest performed better than the XGBoost al-
gorithm. But this can vary depending on the input data. Both
approaches perform well enough to predict the model in most
cases.

VOLUME 5, 2024 843

PALLATHUVALAPPIL ET AL.: EXPLAINABLE MODEL PREDICTION OF MEMRISTOR

FIGURE 10. XGBoost prediction confusion matrix for memristor crossbar
array simulation of (a) 2 × 2 crossbar array, (b) 4 × 4 crossbar array,
(c) 8 × 8 crossbar array, and (d) 16 × 16 crossbar array simulation.

TABLE 4. Performance Analysis of Random Forest and XGBoost Algorithm
on 2 × 2 Crossbar

TABLE 5. Performance Analysis of Random Forest and XGBoost Algorithm
on 4 × 4 Crossbar

A. VARIABILITY ANALYSIS
The proposed work focuses on memristive devices which are
emerging and yet to mature. Modeling those devices with
higher accuracy is challenging due to different variabilities
like cycle-to-cycle, device-to-device, defective points in the
array, etc. Memristor is not a single device; several devices fall
under the broad category of memristors. Hence, the problem is
more complex than models which are CMOS-based. Because
of the mentioned issues, memristive circuits with idealistic
models can have output errors.

TABLE 6. Performance Analysis of Random Forest and XGBoost Algorithm
on 8 × 8 Crossbar

TABLE 7. Performance Analysis of Random Forest and XGBoost Algorithm
on 16 × 16 Crossbar

FIGURE 11. Accuracy, macro average, and weighted average while using
random forest and XGBoost for crossbar architectures of dimensions
2 × 2, 4 × 4, 8 × 8, and 16 × 16.

Variability in memristors can be analyzed by considering
the change in the conductance states in the device and crossbar
level. The variability can be induced by changing the conduc-
tance states of the memristive devices in the crossbar. The
analysis can be done by evaluating changes in the column’s
current measured through the crossbar columns. Since our
dataset contains the input voltages to the crossbar rows and
output currents from the crossbar columns, to analyze the
impacts of changed crossbar column currents in predicting
the memristor models, the relative current error after inducing
variability in conductance states needs to be considered.

There are two test cases for the same: Case 1: G+V ∗ G
and Case 2: G−V ∗ G. Here, V is the variability percentage,
and G is the actual conductance.

The simulations are done for conductance variations with
three variability percentages: 20%, 30%, and 40%. The con-
ductance values of the memristive devices in the crossbar

844 VOLUME 5, 2024

TABLE 8. Accuracy Obtained After Inducing Variabilities of 20%, 30%, and
40%

are changed by inducing the abovementioned percentages of
variabilities. This updated dataset contains the input voltages,
updated current values are again fed to the classifier, and clas-
sification reports are analyzed. Table 8 details the impact of
these induced variabilities in predicting the memristor models
using the random forest and XGBoost algorithms.

When we consider memristive devices in crossbars in a
neuro system, like a neural network implementation, these
changes in conductance states and relative current error, which
gives the difference between ideal and measured column cur-
rents, are more important, which impacts the accuracy of
implementations. Due to ageing effects, the RON and ROFF
values may get changed. This corner analysis shows the
impacts of relative current error on the accuracy of neural
network implementations. In neural network implementa-
tions, weights are mapped to conductance values to perform
MAC, equivalent to weighted summation. Hence, the accu-
racy depends on how accurately the weights are mapped to
conductance states. If more conductance states are available,
the weights will be mapped more precisely, and the accuracy
attained will also be higher. Ageing of memristors will cause
the vanishing of different conductance states, which will cause
degradation in accuracy due to a lack of precise mapping.
The relative current error gives the impact of variability in
the neural system. When RON increases and ROFF decreases,
the number of available conductance states decreases, and
mapping of weights cannot be done precisely, which leads to
degradation in the accuracy. When RON decreases and ROFF
increases, more conductance states will be available; hence
relative current error decreases.

Due to different variabilities, it is difficult to estimate the
functional behavior and accuracy of the experimental results.
The simulation-based approach is used to cross-validate mem-
ristor circuit designs regarding accuracy and functionality to
address the above issue. A wide range of variabilities in the

devices are addressed using this reverse engineering approach,
which is useful today and for the long term as more and more
memristive devices are discovered.

IV. CONCLUSION
The proposed work classifies and predicts the memristor
models used in circuit simulations with only available data
of inputs and outputs. The efficient hardware neuromorphic
computing systems for different industrial applications can be
implemented with higher degree of performance by choosing
memristor models that suit specific applications. Exploring
other advanced classifiers for prediction and cross-validation
can enlarge the boundaries for industrial applications in which
this explainable AI approach can be used. In this article, we
propose two ensemble learning techniques, random forest and
XGBoost, to cross validate circuit simulations for different
models of memristors. These proposed prediction models esti-
mate the memristor model from a circuit simulation’s voltage
and current measurements. In the detailed examinations, we
found that the predictive models could perform with high
accuracy in various configurations of the circuit design simu-
lations. The final analysis is based on the accuracy, precision,
and f1-score obtained from the confusion matrix. The input
voltage frequency was a key component in the accuracy of the
prediction models. The prediction model’s accuracy increased
with frequency. In various crossbar simulations, the prediction
models performed with high accuracy. In some cases, random
forest was able to perform better than XGBoost. From the final
analysis, we concluded that random forest and XGBoost work
well given large homogeneous training data and are relatively
robust to outliers.

The proposed prediction methods cross validate the mem-
ristor circuit simulations, ensuring accurate results concerning
the memristor model. This method helps precisely analyze the
circuit’s I-V characteristics and reverse engineering the circuit
only from the output measurements. When there is confusion
on which memristor model should be used for a desired input
and output, this cross-validation system can be successfully
implemented to explain the black-box mystery.

AUTHOR CONTRIBUTIONS
S. Pallathuvalappil and R. Kottapuzhackal, equally con-
tributed to lead the experimental setup, analysis, and writing.
A. James led the problem formulation, experimental design,
funding, and writing of the paper.

REFERENCES
[1] L. Chua, “Memristor-the missing circuit element,” IEEE Trans. Circuit

Theory, vol. 18, no. 5, pp. 507–519, Sep. 1971.
[2] Z. Biolek, D. Biolek, and V. Biolkova, “Spice model of memristor with

nonlinear dopant drift,” Radioengineering, vol. 18, no. 2, pp. 210–214,
2009.

[3] P. Sheridan and W. Lu, “Memristors and memristive devices for
neuromorphic computing,” in Memristor Networks. Berlin, Germany:
Springer, 2014, pp. 129–149.

[4] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnol., vol. 8, no. 1, pp. 13–24, 2013.

VOLUME 5, 2024 845

PALLATHUVALAPPIL ET AL.: EXPLAINABLE MODEL PREDICTION OF MEMRISTOR

[5] S. Kvatinsky, K. Talisveyberg, D. Fliter, A. Kolodny, U. C. Weiser,
and E. G. Friedman, “Models of memristors for spice simulations,” in
Proc. IEEE 27th Conv. Elect. Electron. Engineers Isr., 2012, pp. 1–5,
doi: 10.1109/EEEI.2012.6377081.

[6] A. P. James and L. O. Chua, “Analog neural computing with super-
resolution memristor crossbars,” IEEE Trans. Circuits Syst. I: Reg.
Papers, vol. 68, no. 11, pp. 4470–4481, Nov. 2021.

[7] I. Vourkas, D. Stathis, G. C. Sirakoulis, and S. Hamdioui, “Alterna-
tive architectures toward reliable memristive crossbar memories,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 24, no. 1, pp. 206–217,
Jan. 2016.

[8] T. Prodromakis and C. Toumazou, “A review on memristive devices
and applications,” in Proc. IEEE 17th Int. Conf. Electron. Circuits Syst.,
2010, pp. 934–937.

[9] J. Chen, J. Li, Y. Li, and X. Miao, “Multiply accumulate operations in
memristor crossbar arrays for analog computing,” J. Semicond., vol. 42,
no. 1, 2021, Art. no. 013104.

[10] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, and
J. P. Rigol-Sanchez, “An assessment of the effectiveness of a random
forest classifier for land-cover classification,” ISPRS J. Photogrammetry
Remote Sens., vol. 67, pp. 93–104, 2012.

[11] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in
a random forest?,” in Proc. 8th Int. Conf. Mach. Learn. Data Mining
Pattern Recognit., Berlin, Germany, 2012, pp. 154–168.

[12] V. Y. Kulkarni and P. K. Sinha, “Pruning of random forest classifiers: A
survey and future directions,” in Proc. Int. Conf. Data Sci. Eng., 2012,
pp. 64–68.

[13] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, pp. 1189–1232, 2001.

[14] S. Haghighi, M. Jasemi, S. Hessabi, and A. Zolanvari, “PyCM: Multi-
class confusion matrix library in Python,” J. Open Source Softw., vol. 3,
no. 25, 2018, Art. no. 729.

[15] M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-label con-
fusion matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022.

SRUTHI PALLATHUVALAPPIL (Graduate Stu-
dent Member, IEEE) received the B.Tech. degree
in electronics and communication from the Univer-
sity of Calicut, Malappuram, India, in 2014, and
the M.Tech. degree in embedded systems from the
Vellore Institute of Technology, Vellore, India, in
2017. She is currently working toward the Ph.D.
degree with the School of Electronics Systems and
Automation, Digital University of Kerala, Man-
galapuram, Kerala, India.

She is currently involved in a few projects re-
lated to hardware-based low power memristive network implementation. Her
research interests include low-power resistive memory networks for AI and
also memristive analog circuits, multibit logic memories, 3-D integration, and
neuromorphic computing systems.

RAHUL KOTTAPPUZHACKAL received the B.Sc.
degree in physics from MG University, Kottayam,
India, in 2020, and the M.Sc. degree in computer
science from Digital University Kerala, Thiru-
vananthapuram, India, in 2023.

He is currently a Research Assistant with the
School of Electronics Systems and Automation,
Digital University of Kerala, Mangalapuram, Ker-
ala, India. He is also working as an AI Engineer
with India Graphene Engineering and Innovation
Centre, Kochi, Kerala. He currently involved in the

areas of machine learning, memristive systems, and neuromorphic computing
systems. His research interests include the applications of machine learning
for memristor-based circuits.

ALEX JAMES received the Ph.D. degree from Grif-
fith University, Nathan, QLD, Australia, in 2008.

He is currently a Professor and Dean (Aca-
demic) with the Kerala University of Digital Sci-
ences, Innovation and Technology (aka Digital
University Kerala), Mangalapuram, Kerala, India.
He is the Professor-in-Charge of the Maker Village,
and the Chief Investigator with the India Inno-
vation Centre for Graphene, Kochi, Kerala. His
research interests include AI-neuromorphic sys-
tems (software and hardware), VLSI, and image

processing.
Dr. James is a Life Member of the Association for Computing Machin-

ery, Senior Fellow of higher education academy (HEA), Fellow of British
Computer Society (BCS), and Fellow of Institution of Engineering and Tech-
nology. He was the recipient of IEEE Outstanding Researcher by IEEE Kerala
Section for 2022, Kairali Scientist Award for Physical Science in 2021, and
Best Associate Editor for IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

I in 2021. He was an Editorial Board Member of Information Fusion from
2010 to 2014, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEM 1: REGULAR

PAPERS from 2018 to 2023, and has been serving as an Associate Editor for
IEEE ACCESS since 2017, Frontiers in Neuroscience since 2022, IEEE OPEN

JOURNAL OF CIRCUITS AND SYSTEMS since 2022, IEEE TRANSACTIONS ON

BIOMEDICAL CIRCUITS AND SYSTEMS since 2024, and IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE since 2024. He
has also been an Associate Editor-in-Chief for IEEE OPEN JOURNAL OF

CIRCUITS AND SYSTEMS since 2024. He is a member of IEEE Circuits and
Systems Society (CASS) Technical Committee (TC) on Nonlinear Circuits
and Systems; IEEE Consumer Technology Society TC on Quantum in Con-
sumer Technology; TC on Machine learning, Deep learning, and AI in CE;
IEEE CASS TC on Cellular Nanoscale Networks and Memristor Array Com-
puting; and IEEE CASS Special Interest Group on AgriElectronics. He was
the founding Chair of IEEE CASS Kerala chapter, a Member of IET Vision
and Imaging Network, and is currently a Member of BCS’ Fellows Technical
Advisory Group.

846 VOLUME 5, 2024

https://dx.doi.org/10.1109/EEEI.2012.6377081

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

