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ABSTRACT In a multitude of industrial and biomedical applications, the need for arbitrary waveform gen-
erators is essential, serving the purpose of load characterization and excitation, among others. Historically,
these generators have had limitations in terms of voltage, current, and frequency output, primarily related
with constraints associated with the power devices and circuit topologies. However, notable advancements
in semiconductor technology have introduced a new era, enabling the creation of highly versatile waveform
generators capable of superior performance, and extended operational capabilities. In this article, a versatile
AWG based on switched modules is proposed. In contrast to the previous ones, whose implementation was
based on linear amplifiers, it enables arbitrary waveform generation, higher efficiency, and very low output
impedance. In addition, it is also presented as a novelty that the voltage in each of the modules is different,
following a digital to analog converter (DAC) structure, which allows us to obtain a lower total harmonic
distortion (THD) in the output waveform than with conventional methods. The design will take advantage of
wide band gap devices to be able to switch in the MHz range to achieve a high bandwidth. Furthermore, in
addition to the design and implementation of a high-performance generator, a comparative analysis between
the conventional and the proposed DAC-based modulation pattern is performed based on a comparative
analysis of the THD and switching losses.

INDEX TERMS Arbitrary waveform generation (AWGs), gallium nitride power device, inverter, multilevel
converter.

I. INTRODUCTION
Today, arbitrary waveform generators (AWGs) are increas-
ingly required in multitude high voltage/high power appli-
cations, from the industrial to the biomedical range. Their
versatility allows them to be used in many different operating
conditions, especially for powering or characterizing loads
[1]. Fig. 1 shows some application examples under excitation
conditions similar to real conditions. Fig. 1(a) represents the
biomedical treatment of electroporation [2], [3], [4], which
consists of applying high-voltage pulses to liver tissue with
the aim of eliminating cancer cells present in the tissue.
Fig. 1(b) shows how the AWG can be used to characterize

highly non-linear induction heating loads [5], [6], [7]. In
these two applications, highly variable waveforms in large
current/voltage ranges are required.

Therefore, given the growth of this type of generators in
recent years, a study of the current state of the art has been
carried out to be able to analyze in more detail the existing
technology gap.

Classically, three approximations to obtain AWGs are con-
sidered. High-voltage AWGs can be obtained by amplifying
the low-voltage waveform through power linear amplifiers,
by using switched topologies such as class-D amplifiers or
multi-level converters, or by using a hybrid approach between
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FIGURE 1. Applications of the proposed versatile generator.
(a) Electroporation of liver tissue. (b) characterization of induction heating
loads.

both strategies. The low efficiency and high load depen-
dence of linear power amplifiers, which imply high losses
and correspondingly complex thermal management, make
conventional purely analog concepts unsuitable for future
high-performance power amplifiers. In spite of this, there are
still many commercial high-bandwidth analog amplifiers [8].
Also, by using linear amplifiers, in [9], arbitrary waveforms
up to 200 V, 500 mA, and 5 kHz are obtained, and in [10]
an AWG able to reach 60 V, 50 mA, and 1 kHz has been
developed.

When considering switch-mode amplifiers, in early stages
there were systems based on standard two-level [insulated
gate bipolar transistor (IGBT-based)] class-D inverters, featur-
ing switching frequencies of around 10 kHz in the range of 10
to 50 kVA, achieving fundamental output frequencies of up to
100 Hz [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].
Higher fundamental output frequencies can be achieved by
moving from silicon IGBTs to WBG power semiconductors
[21], [22], [23], reaching up 10 kHz output bandwidth. To
reach a better performance, some authors opted for imple-
menting interleaving techniques in order to reduce the stress
in terms of current, the output current ripple, and to increase
the effective switching frequency. Using this implementation,
[24] reaches up to 320 V, 10 A, and 1 kHz. Similarly, [25]
employs a full-bridge configuration with dual six interleaved
IGBT bridge-legs to implement a 50 kVA (three-phase) ampli-
fier with a bandwidth of 1 kHz for grid emulation applications.
Parallel interleaving has also been used in industrial systems.
For example, the work in [26] and [27] describe a 350 V, 480
A emulation system that achieves a large-signal bandwidth of
5 kHz using six parallel amplifier modules with six interleaved
IGBT bridge-legs each. Similarly, Liebig et al. [28] describe a
high-power industrial motor emulator system with an overall
output current rating of up to 800 A at 50 V and a fundamental
frequency of up to 5 kHz. Recent work [29] aiming lower
output voltages and making use of state-of-the art 150 V
gallium nitride (GaN) transistors has been able to reach 45
V, 18 A and 350 kHz bandwidth. However, all these systems
still lack performance in terms of high voltage/current in the
MHz range.

Later, with the growth of multi-level converters, new solu-
tions started to appear, such as neutral point clamped (NPC),
flying capacitors (FCs) and cascaded H-bridge (CHB) con-
verters. Regarding NPC and FCs, in [30] a five-level NPC
bridge-leg structure is proposed to realize a 7.5 kW (three-
phase) amplifier with an output frequency of 2 kHz. Similarly,
but now making use of SiC power semiconductors, Boillat et
al. [31], [32], [33] propose a 10 kW three-phase ac power
source that operate with a switching frequency of 48 kHz,
achieving a large-signal bandwidth limited to 300 Hz. Re-
cently, Suthar et al. [34] demonstrated an AWG with an
eight-level FC bridge-leg using GaN transistors switching at
200 kHz. The prototype is rated at only 500 W and operates
with a relatively low dc-bus voltage of 200 V, and it achieves a
large-signal output waveforms with fundamental frequencies
of up to 40 kHz. In [35], an AWG is proposed to deliver 100
kV, 100 mA with a large-signal bandwidth of 50 Hz. More
recently, Schmitt et al. [36] proposed a motor emulator that
consists of three parallel interleaved three-level NPC bridge-
legs that provides 200V, 70 A and 2.5 kHz output bandwidth.
The 400 V, 4 kW prototype described in [37] achieves a large-
signal bandwidth of 10 kHz with a three-level NPC digital
amplifier switching at 100 kHz.

With regard to CHB implementations, in [38] it is described
a system with grid-level output voltage ranges, up to 400 V,
and 5 A which could achieve a closed-loop large signal band-
width of 5 kHz. Similar results have also been reported in
[39] or, for lower output voltages, in [40]. The scalability of
the CHB concept renders it suitable also for applications with
higher voltages and medium-voltage grid simulation, as indi-
cated in [41], where a 6 MVA, 50 Hz system that can provide
35 kV output voltage (with a step-up transformer) has been
implemented. Recently, Petković et al. [42] and Hildebrandt
et al. [43] introduced a 3 kV, 120 A and 7 kHz system with
five cascaded cells. CHB converters have also been employed
for special applications, with low power but high voltage for
supplying plasma reactors with a 15 kV square-wave voltage
at 5 kHz [44]. Similarly, in [45], a high voltage multi-level
AWG for insulation testing has been developed, providing up
to 14 kV, 0.1 A and 100 kHz. A similar concept is used in
[46] obtaining 20 kV, 0.4 A and 5 kHz output bandwidth. In
[47], a CHB has been implemented for pulsed electric field
applications reaching 500 V, 2 A and 2 kHz. In [48], a bipolar
modular MLC based on half-bridge and special full-bridge
for electroporation applications has been employed delivering
2 kV, 10 A and a high output bandwidth of 500 kHz. Other
concepts more focused on a high output bandwidth has been
implemented in [49] and [50] obtaining up to 400 V, 4 A and
1 MHz output bandwidth.

Regarding hybrid topologies, which mix both, analog and
digital power amplifiers there exists different works in the
literature. For example, Gong et al. [39], and Gong et al.
[51], [52] describe a 130 V rms, 1 kW (single-phase) system
consisting of nine cascaded converter cells with equal dc volt-
ages, which achieves a large-signal bandwidth of 10 kHz and,
thanks to the linear stage, a very high small-signal bandwidth
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FIGURE 2. State-of-art analysis of AWGs.

of 600 kHz. The 140 Vrms, 500 W hybrid amplifier proposed
in [53] achieves a similar small-signal bandwidth of 400 kHz,
but uses only four cascaded cells that, however, feature un-
equal dc voltages and thus can realize 19 voltage levels. In
[54], it is described a converter able to provide 480 V, 50 A
and a large-signal bandwidth of 100 kHz.

The aim of this article is to propose, design, implement
and optimize a versatile large-signal high-frequency AWG
taking advantage of the new GaN devices and being able to
provide a 400 Vpp, 50 Arms and 5 MHz large-signal output
bandwidth. The aim of this converter is to fill the existing gap
in the high voltage/current AWGs in the MHz range. All the
previous state-of-art analysis and the proposed converter are
represented in Fig. 2, where the clear existing gap and novelty
of the proposed topology can be observed. For this purpose,
a multilevel topology has been chosen and a new modulation
scheme has been proposed, based on different voltage levels
in each module, which allows us to obtain a significantly
better total harmonic distortion (THD) than in the case of
conventional implementations [55], and better performance in
terms of switching losses. To demonstrate this, in this article,
a detailed analysis of the THD and switching losses with this
new modulation has been carried out and compared with the
previous ones, and detailed experimental results are provided.

The rest of this article is organized as follows. Section II
shows the proposed power converter. In Section III, a modu-
lation strategy analysis is carried out. Section IV details the
main implementation and main experimental results. Finally,
Section V concludes this article.

II. PROPOSED POWER CONVERTER
The proposed converter is presented in Fig. 3. It employs a
CHB multilevel structure comprising n modules. Regarding
the CHB topology, it has been selected for the following rea-
sons: First, it requires the least number of components among
all alternatives. Table 1 gives the component requirements of
NPC, FC, and CHB converters depending on the number of
levels, m. It can be seen how, in NPC and FC topologies,
the clamping diodes and balancing capacitors, respectively,

TABLE 1. Comparison of Power Component Requirements per Phase Leg
Among Three Multilevel Converters

increases quadratically, while for the CHB the increment of
all the components is linear with the number of levels.

Secondly, the CHB topology offers a higher scalability
because, related with the reduced number of components, it
is easier to increment the output voltage levels in CHB with
respect to NPC and FC topologies. This is due to the fact that a
modularized circuit layout and packaging is possible because
each level has the same structure. And, finally, in the CHB
topology, there are different power supplies for each level,
which allows a higher versatility in terms of voltage levels
because it is the only alternative which can reach different bus
voltages in each level and avoid the problem of balancing the
voltage in the bus capacitors.

Each level follows a full-bridge configuration which can
supply a bus voltage of {−Vbus,i, 0, Vbus,i}, i=1, …, n. In this
design, each level’s voltage is carefully chosen to optimize the
resulting output voltage waveform. Consequently, the maxi-
mum attainable output voltage is

Vo,max =
n∑

i=1

Vbus,i, (1)

allowing the generation of arbitrary waveforms with an am-
plitude resolution of mini=1...n(Vbus,i ).

To generate the desired arbitrary waveforms, each level
is activated sequentially to achieve the instantaneous output
voltage

vo =
n∑

i=1

vo,i (2)

being vo,i = {−Vbus, i, 0,Vbus,i},i = 1, …, n.
In order to maximize temporal and frequency resolution,

WBG devices are employed, leveraging their low Qoss, min-
imum figure of merit, FOMg = Qg·Ron, and negligible Qrr

characteristics. Consequently, WBG devices provide a rapid
response, enabling the minimization of signal lag and dis-
tortion and increasing the maximum operating frequency.
Different modulation strategies have been investigated and
compared (see Fig. 4). On the one hand, the fixed-voltage
pulsewidth modulation (PWM) where Vbus,i = Vo,max/n, i=1,
…, n. This strategy enhances resolution by employing high-
frequency PWM techniques [56], [57] capitalizing on the
benefits of WBG devices. On the other hand, in this article,
a DAC-based approach is proposed, employing a different bus
voltage in each module to achieve similarly low harmonic
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FIGURE 3. Proposed GaN-based multilevel topology.

FIGURE 4. Comparative analysis of the analyzed modulation strategies. (a) DAC modulation. (b) Fixed-voltage PWM modulation.
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distortion. The bus voltage of each module is defined as
Vbus,i = Vo,max · 2(i−n−1), i=1, …, n.

In this article, the latter strategy is going to be implemented
in order to attain improved total harmonic distortion across
a broad spectrum of operating conditions, encompassing dif-
ferent output voltage amplitudes and frequencies, while also
requiring a limited number of levels.

III. MODULATION STRATEGY ANALYSIS
To determine the optimal implementation and modulation
strategy, a comprehensive analysis has been conducted, taking
into account factors, such as the number of levels, switching
losses, total harmonic distortion, and system complexity.

A. DESCRIPTION
In the first approach, the fixed-voltage PWM modulation [58],
[59], [60], each H-bridge level is controlled using PWM,
where the duty cycle of the switching signals is adjusted to
control the output voltage. The PWM strategy ensures that
each H-bridge creates an average output voltage that is a
fraction of the dc-bus voltage. The modulation strategy in this
configuration is relatively simple, as each H-bridge operates
with the same modulation scheme. The control algorithms
are straightforward and easy to implement. Besides, since all
H-bridges share the same dc-bus voltage, voltage balancing
between the levels is less critical. Minor voltage differences
can often be managed through simple control adjustments.

On the other hand, in DAC modulation, or hybrid modula-
tion [61], [62], [63], [64], the modulation is more complex due
to different voltage levels at each level, but it provides a better
performance. In this case the lowest voltage module is the
one that will determine the accuracy of our converter. It will
act as the least significant bit of a DAC converter. Therefore,
the maximum error that can be obtained when synthesizing
a waveform is half of this voltage. As the voltage buses are
configurable, it allows us to obtain a higher precision than
PWM modulation, as it can be seen in Fig. 4. In this example,
the proposed modulation achieves five times less error than the
fixed-voltage counterpart. This configuration can potentially
provide better efficiency because each H-bridge can operate at
a voltage level close to the required output voltage, reducing
voltage losses in the switching devices. Furthermore, variable
voltage levels lead to lower THD in the output waveform, as
it will be explained in following section.

B. HARMONIC DISTORTION ANALYSIS
In order to perform a fair comparison between both alter-
natives in terms of the output waveform quality, the total
harmonic distortion rate has been taken as a reference figure of
merit. In both cases, the maximum output voltage waveform
is the same, but not the number of modules, because in order
to reach the same amplitude, in the DAC implementation, it
will be necessary to include more modules due to the reduced
bus voltage in some of them.

The general expression for calculating the THD is as fol-
lows:

THD =
√∑∞

h=2
V 2

h

/
V1 (3)

where Vh is the voltage amplitude of the hth harmonic.
Therefore, to calculate the THD, the value of all harmonics

of the output waveform are required to be calculated in each
case. The fundamental harmonic corresponds to the reference
sinusoidal signal to be synthesized for both, the fixed PWM
voltage and DAC approach.

In case of fixed voltage PWM approach, the shape of the
output waveform is also a ladder, however this has subpulses
per voltage level, because it has more than one switching angle
per step, so in order to do the fast Fourier transform (FFT)
over the output waveform, those switching angles are taken
into account. In [65] an analytical method for calculation of
multilevel pulse width modulation has been developed, ob-
taining the generic (4) for FFT calculation in this modulation

v(t ) =
α∑

h=1

4Vo,max

nπh

⎡
⎢⎣

k−1
2∑

i=1

Li∑
j=1

(−1) j−1 cos
(
hαi j

)⎤⎥⎦sen (hωt )

(4)
where Vo,max/n is the bus voltage of each module, k is defined
as the number of steps, Li is a vector that indicates the number
of switching angles for step i, j denotes the specific switching
angle within a step i, α represents the switching angle, ω, the
output frequency and h represents the harmonic number.

Therefore, combining (3) and (4) in order to calculate the
THD, the following expression is obtained as

THDPWM =

√∑h max
h=2

(∑ k−1
2

i=1

∑Li
j=1 (−1) j−1 cos

(
hαi j

))2

∑ k−1
2

i=1 cos (hαi )
.

(5)
For the DAC modulation case, it is required to start from the

equation that defines the step function, which is the following:

f (t ) = Vm

2n
·
[(

2n − 1
)

sin

(
2π

M

[
Mt

T

])]
(0 ≤ t < T ) (6)

where Vm represents the amplitude of the reference voltage,
M the number of discrete points in a period T, T/M the time
interval for discretization, n is the number of bits and [·] means
number rounding.

Through different mathematical manipulations and by per-
forming the FFT over the function f(t) the generic (7) shown
at the bottom of the next page can be obtained [66] for the
calculation of THD, which has been taken as reference

Once the procedures for the THD calculation have been
defined for each case, specific operating conditions will be
established to perform a representative comparison. WBG
devices will enable the switching frequency to be 5 MHz,
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FIGURE 5. Total Harmonic Distortion comparison between the two
analyzed modulation strategies.

FIGURE 6. Switching losses comparison between the two analyzed
modulation strategies.

which will correspond to the sampling frequency. In order
to compare the two analyzed modulation strategies, the THD
is going to be calculated in both cases for different output
frequencies, from 10 Hz up to 1 MHz at the highest output
voltage, 400 Vpp. Under these conditions, the main results
are summarized in Fig. 5.

In view of the results obtained, it can be observed as the
DAC modulation strategy presents a much better behavior in
terms of output THD values, especially in low frequencies
where the PWM modulation strategy presents more than ten
times higher THD values. As the synthesized frequency is
increased, this difference decreases, but better results are still
obtained with the DAC modulation alternative.

As a conclusion of this analysis, although DAC modulation
demands a greater quantity of switching modules to achieve

FIGURE 7. Experimental prototypes. (a) Global view. (b) Detail of one
power sub-module.

FIGURE 8. Detailed high frequency power devices layout.

an equivalent output voltage, it excels in performance, notably
in terms of reducing output voltage THD.

C. SWITCHING LOSSES ANALYSIS
In order to make a comparison between both modulation
strategies in terms of switching losses, the switching power
losses in the converter have been calculated as a function of

THDDAC =

√√√√√√√√√
2π2

M

∑M−1
i=0

[
(2n − 1) sin

( 2π
M i

)]2

{∑M−1
i=0

[
(2n − 1) sin

( 2π
M i

)] (
sin

(( 2π
M

)
(i + 1)

)) − sin
( 2π

M i
)}2+{∑M−1

i=0

[
(2n − 1) sin

( 2π
M i

)] (
cos

( 2π
M i

) − cos
( 2π

M (i + 1)
))}2

− 1. (7)
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FIGURE 9. Experimental waveforms with sinusoidal operation at 1 kHz. (a) 68 Vrms output voltage. (b) 136 Vrms output voltage. Total output voltage
(CH7) and single level output voltages (CH1-6).

FIGURE 10. Experimental waveforms with sinusoidal operation at 1 kHz. (a) 68 Vrms output voltage. (b) 136 Vrms output voltage. Total output voltage
(CH7) and single level output voltages (CH1-6).
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FIGURE 11. Comparison of DAC modulation and PWM modulation synthesizing a sinusoidal waveform of 100 V and 50 kHz. (a) Time domain.
(b) Frequency domain.

the frequency generated at the output. For this purpose, the
Eoss variable of the selected device, in this case the GaN de-
vice EPC2206, was used. It is important to remark that the Eoss

variable evolves nonlinearly with the voltage to be blocked
by the device. This is why, in the case of PWM modulation
strategy, the Eoss will be constant for all modules, and for
DAC modulation, its value will be changing. Second, to make
a comparison between both alternatives, a 10-module CHB
converter has been modeled in Matlab/Simulink, generating a
sine function at the output with an amplitude of 200 V. In this
simulation, different counters have been placed on each of the
devices to know the exact number of times that they switch
during one output waveform period. Finally, this number of
switching events has been multiplied for the output waveform
frequency in order to know the real switching frequency of
the devices. Multiplying this switching frequency by the Eoss

obtained in the first step, the switching power losses can be
obtained as

Psw = fsw · Eoss. (8)

In order to obtain a comparison in a wide range of out-
put frequencies, a frequency sweep has been made, from the

Hz to the MHz range. The results of this simulations have
been represented in Fig. 6. It can be observed that, at low
frequencies (up to 10 kHz), there is an important dominance
of the DAC modulation over PWM modulation, and from
10 kHz to the MHz range both strategies have similar power
losses, in the order of 60 W. This power is shared among
all the power devices of the converter and the heat produced
can be easily evacuated. In summary, DAC modulation is
more efficient in terms of switching frequency than PWM
modulation.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS
The proposed versatile large-signal AWG has been imple-
mented to provide up to 400 Vpp output voltage with a
maximum operating frequency of 5 MHz (see Fig. 7).
The proposed converter features EPC2206 devices with
LMG1205Y driver, providing up to 50-A RMS continuous
output current. This implementation has been made using
a modular approach, where each full-bridge is an surface-
mount device (SMD) component. The output voltage at
each level can be set to different values. In the case of
DAC modulation, the voltage level of each module will
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FIGURE 12. Arbitrary output waveform using DAC modulation strategy.

be configured as powers of two, but in the PWM modu-
lation, all modules will be configured at the same voltage.
Fig. 7 shows the proposed modular design implemented, in-
cluding a view of the complete prototype (a) as well as
de detail of one of the power sub-modules containing the
GaN-based full bridge structure, decoupling capacitors and
drivers (b).

For the routing and placement of the components, the
manufacturer design guidelines [67] for the Gan devices has
been followed, to maximize efficiency and performance at the
MHz switching range. More in detail, an optimal-power-loop-
implementation strategy has been selected, reducing the main
parasitic power-loop-inductance below 0.5 nH and, therefore,
minimizing oscillations and overvoltage during switching
transitions. Additionally, gate drivers are located symmetri-
cally and very close to the power transistors to minimize
possible oscillations caused by the gating circuit. In Fig. 8, a
detailed image of the high frequency board has been included
to show the component placement.

Fig. 9 shows a representative example of the converter
applying the DAC modulation and operating at 1 kHz with
two different output voltage amplitudes. In this figure, the total
output voltage, and the individual output voltage provided by
each one of the levels are represented, where the different volt-
age, distribution can be seen. Following the same approach,
Fig. 10 shows two more examples of operation at different
sinusoidal output voltage frequencies: 10 and 100 kHz. These
experimental results prove the ability of the converter to oper-
ate at a wide range of operating conditions.

In order to facilitate the comparison, both the temporal
waveforms and the resulting FFT of two new experimen-
tal high-resolution captures using PWM and the proposed
DAC modulation are included in Fig. 11. Both modulations
synthesized a sinusoidal waveform with a 100 V amplitude
and a 50 kHz output frequency. The temporal waveforms
of both modulations result in lower THDs, with the quality
of the DAC modulation appearing superior. This assump-
tion is verified in the spectral plot, where the amplitude

of the non-fundamental harmonics is much lower for the
DAC modulation. Additionally, it can be observed that the
5 MHz switching frequency of the PWM modulation cre-
ates intermodulation products, worsening the spectrum. The
obtained THD from the FFT analysis results in 11.21% and
2.53% for the PWM and DAC modulations, respectively,
(7% and 0.88% theoretical). Differences from theoretical
predictions are mainly caused by the non-ideal switching
waveforms.

Finally, in order to test the flexibility of the proposed
converter, Fig. 12 shows an arbitrary output waveform fea-
turing highly variable amplitude and frequency. In this case
it has been represented using the DAC modulation strategy,
which has demonstrated a better performance. As a con-
clusion, the proposed system can be used to generate up
to 400 Vpp and 50 A waveforms with a bandwidth in the
MHz range defined by the 5 MHz GaN-devices switching
frequency.

V. CONCLUSION
In this article, a versatile large-signal high-frequency AWG
has been presented. It follows a multilevel CHB structure and
takes advantage of GaN devices to achieve a low-distortion
and high-bandwidth operation. Different modulation strate-
gies have been discussed, DAC modulation and fixed-voltage
PWM modulation. In order to compare both alternatives, a
comprehensive analysis in terms of harmonic distortion and
switching losses has been carried out, opting for DAC modula-
tion to enhance both switching efficiency and minimize output
voltage THD. The proposed converter has not only been de-
signed but also successfully implemented, yielding a high
performance design featuring a 400 Vpp voltage and a 50 A
current at 5 MHz switching frequency. This achievement rep-
resents a significant stride in achieving both high voltage and
remarkable temporal/amplitude resolution, effectively paving
the way for future applications in the realms of industrial and
biomedical fields.
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