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ABSTRACT In the context of food science and engineering, the in vitro chewing effect on food bolus
formation is a critical area of research that explores the mechanical and textural properties of ingested
materials. This article presents a pioneering approach to assess the in vitro chewing impact on food bolus
formation using the gray level co-occurrence matrix (GLCM) image analysis technique. As technological
advancements lead to the development of mastication robots, the need for evaluating in vitro chewed food
bolus has grown. To address this challenge, a case study is conducted. The study’s objectives encompass
utilizing GLCM to determine the in vitro chewing cycle phase, analyzing texture features, and investigating
chewing trajectory differences for beef and plant-based burger patties. Applying GLCM as a methodology,
the research quantitatively analyzes textural features of food bolus formations under controlled in vitro
chewing conditions. The outcomes reveal distinct differences between beef and plant-based samples through
GLCM parameters. Significantly, the study identifies a consistent trend across various scenarios, indicating
an increase in energy and homogeneity and a decrease in dissimilarity with an increasing number of in vitro
chewing cycles. This investigation offers valuable insights into the dynamic relationship between chewing
cycles and textural features in the oral processing of beef and plant-based burger patties.

INDEX TERMS Food bolus formation, image processing, in vitro chewing, mastication robots, oral process-
ing, textural features.

I. INTRODUCTION
Chewing is a fundamental aspect of daily life, often occurring
without much conscious thought. It serves not only as an
essential function of food consumption and digestion but also
for savoring food texture and flavor [1]. The process involves
all the stimuli from vision, audio, tactile sensations, and kines-
thetics collectively for the formation of the food bolus in the
oral cavity. Hence, the evaluation of food bolus formation
stands as a significant challenge, emphasizing its impor-
tance and complexity in the domain of scientific investigation
[2], [3].

The bolus formation during mastication is usually studied
by measuring the properties of the bolus and comparing them

with the chewing movement, investigating both the intrinsic
properties of foods and their influence on the overall chewing
process [4] measured the hardness, cohesiveness, adhesive-
ness, and water content of steamed rice bolus at different
chewing stages and found the hardness gradually decreased
along the whole process, and the cohesiveness and water
content of the bolus remained unchanged at first followed
by a slight increase while the adhesiveness showed a rapid
decrease at the beginning of chewing In another study to
characterize food texture and bolus formation process, the
roughness, hardness, and dryness were the dominant attributes
at the start of chewing while the adhesiveness and softness
were dominant at the end of chewing, and the softness and
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adhesiveness were the key factors to trigger swallowing [5].
Furthermore, the chewing duration and the number of chew-
ing cycles were found to increase with the hardness and size of
the rice cracker [6]. Particle size distribution (PSD) is another
important factor of the bolus that researchers often measure
to understand the oral processing dynamics and evolution of
the bolus [7]. In summary, the texture properties, moisture rate
and PSD are typically measured to study the bolus formation
process.

The rate of change in the PSD of the bolus slows down over
successive chew cycles as particles larger than 2 mm are pri-
marily chosen for chewing [7]. Furthermore, Jalabert-Malbos
et al. [8] and Bleis et al. [9] stated that the particle size must be
smaller than 2 mm for a food bolus to be swallowed. Jalabert-
Malbos et al. [8] and Mishellany et al. [10] both highlighted
that the particle size distribution of the preswallow bolus is
similar and consistent across individuals when considering the
same type of food. When considering meat, although natural
meats do not entirely break down during mastication, there is
a fiber separation process. This separated fiber is later gath-
ered to create a lubricated bolus suitable for swallowing [11].
Moreover, in a study evaluating two types of bread boluses,
in [9], the apparent viscosity has exhibited a power-law rela-
tionship, with a consistency index decreasing as chewing time
progressed. Ultimately, the two bread types have reached sim-
ilar values just before swallowing. Furthermore, Hosotsubo
et al. [12] found that people take more time or cannot swallow
if the bolus is more than 400 mm3 in volume and more than
200 kPa in Young’s modulus.

Exploring the complex relationship between food proper-
ties, particle size, and textural perspectives of chewed food
boluses, numerous studies have employed different tech-
niques, sensory analysis, rheological measurements, imaging
methods, and sieving. Image analysis has served as a powerful
tool in many food applications to measure particle sizes and
observe the appearance features [13]. The key finding is that
researchers, through the combined use of image analysis and
sieving, have established a consistent correlation between the
PSD of a food bolus and the hardness of the food. The AM2
Masticator has been validated by the same method using siev-
ing and image analysis, comparing median particle sizes for
both in vitro and in vivo food boluses [14]. Studies have also
found the influence of one food component on the breakdown
of another by using sieving and ImageJ analysis [15]. They
have shown that, though diverse food combinations impact
chewing patterns, the particle size at the swallowing stage is
the same for peanuts in gelatine gel and peanuts in choco-
late. These suggest the use of image analysis in food science
related to the measurement of PSD, texture properties and
moisture rate. Similarly, Bleis et al. [9] evaluated the particle
size using mathematical morphology by taking monochrome
images, then gray-level thresholding, hole filling, and granulo-
metric analysis. However, sieve has failed to capture particles
smaller than the finest sieve aperture, and laser diffraction has
missed large particles due to technical constraints [16]. Due to
this, image analysis to determine the size of food particles is

seen as a fast, accurate, and dependable method, eliminating
the need for tedious and time-consuming sieving and laser
diffraction processes [17]. These researches emphasize the
integration of image processing techniques in the analysis
of food boluses, highlighting the critical role and signifi-
cance of utilizing advanced visual methodologies for a more
comprehensive research.

The application of image analysis has been employed to
assess texture properties and moisture rate. Since spitting food
out of the oral cavity interferes with natural food bolus forma-
tion [13], [18] observed the food boluses immediately before
swallowing using an endoscope to evaluate their relationship
with the number of chewing cycles. They have prepared 15 g
of white and green colored rice for endoscopic identification.
It has been suggested that grinding, mixing, and the number
of chewing cycles are not crucial for cooked rice to reach
the swallowing threshold, but aggregation is. This showcases
how advancements in technology and research have diverted
to different imaging methodologies of food bolus analysis.
Volumes of apple slices have been determined by dual-view
computer vision for deriving co-occurrence matrices and tex-
tural features [19]. LabVIEW processed images, extracting
intensity planes, applying thresholds, and filtering for accurate
identification and measurement of apple slices. A simulation
model using image analysis has been successfully developed
to identify the transient moisture gradient of the half-cut
soybeans during the soaking and diffusion process [20]. The
image processing steps have included image acquisition, seg-
mentation, thresholding, and analysis. Similarly, Yu et al. [21]
developed an automated technique to predict the moisture
ratio of dried kiwi fruit slices using color and morphological
feature extraction. The process has involved converting RGB
to HSV and segmenting kiwifruit slice masks using color
segmentation, edge detection, and contour extraction, thereby
locating the pulp part and variations in pulp color. This in-
troduces a pivotal example where an automated technique not
only highlights the importance of the suggested parameters
but also intricately connects to image analysis in the context
of food research.

In the field of image analysis and computer vision, one
widely employed technique for extracting textural informa-
tion is the gray-level co-occurrence matrix (GLCM). As a
powerful tool, GLCM captures the spatial relationships be-
tween pixel intensities in an image, providing a quantitative
representation of texture patterns. Originally introduced by
[22] in the 1970s, GLCM has since become a fundamental
method in texture analysis, offering insights into the distri-
bution of pixel pairs and their occurrence frequencies. One
such research [23] has examined chewed apple boluses in
vivo and in vitro by image texture analysis using GLCM.
Normalized principal component analysis (PCA) has been
conducted on nine parameters (energy, contrast, and correla-
tion at 1, 10, and 30-pixel distances) to characterize apples
chewed in the human mouth. However, their artificial mouth
is a crunching apparatus, differing much from the oral cavity.
A similar study [24] was found where GLCM and PCA were
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employed to conduct image texture analysis, investigating the
kinetics of bread bolus formation for four different bread
types. They have used GLCM features such as angular second
moment, contrast, correlation, entropy, and maximum prob-
ability and have suggested that contrast is the most effective
marker for food degradation. Extracted from the normalized
GLCM, Sebastian et al. [25] introduced a new feature called
trace, which identifies the constant regions in an image to
enhance the results. These research efforts are essential for
refining methodologies and addressing challenges, ultimately
paving the way for a more comprehensive understanding of
the dynamic interplay between texture patterns and in vitro
chewing.

In recent years, novel mastication robots have been used to
simulate chewing and assess food properties, thereby increas-
ing the demand for techniques to evaluate the chewed food
bolus [14], [26], [27]. Given this consideration, the objectives
of this case study are to utilize GLCM 1) to determine the
in vitro chewing cycle, 2) to analyze the relationship of tex-
ture features, and 3) to analyze the relationship of chewing
pattern differences, for beef and plant burger patties. GLCM
has gained widespread popularity as a technique, with nu-
merous studies successfully employing it for texture analysis
across various domains. GLCM was chosen due to this reason
and the demonstration of its effectiveness in various image
textural analysis tasks despite the availability of alternative
methods such as the local binary pattern, local binary gray
level co-occurrence matrix, gray level run length matrix,
and segmentation-based fractal texture analysis algorithms.
In this research, GLCM is employed as a novel methodol-
ogy to quantitatively analyze the textural features of food
bolus formations generated under controlled in vitro chewing
conditions. Hence, this approach extends the application of
GLCM to analyze the properties of chewed in vitro food
boluses.

II. IN VITRO CHEWING AND IMAGE ACQUISITION
In this section, the experiment protocol and the image of the
food bolus were illustrated, followed by preprocessing of the
images for further analysis.

A. CHEWING EXPERIMENTS
The experiments to generate food bolus were performed
using a biomimetic masticating robot with a three-degree-of-
freedom linkage mechanism and an artificial cavity [28]. The
chewing robot was designed to simulate the molar crushing
and grinding effect, generating a series of molar trajectories
in the XY plane, as shown in Fig. 1. The molar trajectories, T1
(Trajectory) to T13, provide increasing lateral displacement
during occlusion, which will result in a greater shearing effect
when contacting the food. The oral cavity located at the center
provides the function of containing the food and repositioning
it back to the lower molar between occlusions actuated by the
linear extension and contraction of pneumatic bellows. The
saliva injected into the robot’s oral cavity is controlled by an
automatic syringe to achieve a user-specified injecting rate.

FIGURE 1. (a) Chewing robot. (b) Beef and plant based patties before
chewing. (c) Trajectory 13 marked in blue dash line. (d) Food patty placed
inside the artificial cavity.

TABLE 1. Chewing Tests and Their Corresponding Trajectories and Number
of Cycles

Two products were tested in this research: pure organic beef
burger patties (Moreish, Palmerston North, New Zealand) and
plant-based burger patties (Beyond Meat, LA, USA), obtained
from local suppliers. The patties were cooked in the oven un-
der 200 °C until the temperature in the center reached 75 °C.
The cooked patties were cooled down to room temperature
and then stored in the fridge at 4 °C. Prior to the test, the
patties were cut into small pieces of 1 cm × 1 cm × 2 cm
and weighted. One sample is fed to the robot per chewing
test. The chewing parameters are present in Table 1, and each
experiment setting was repeated three times. Experiment set-
tings #1–#6 were performed with beef burgers and #7–#12
with plant-based burgers. Other than the listed parameters,
cycle durations were set at 1 s and saliva flow rate at 4 ml/min
(distilled water as saliva). As the chewing goes on, saliva is
injected into the cavity with the specified saliva flow rate.
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FIGURE 2. Images of BT1N7, BT1N15, and BT1N30.

FIGURE 3. Images of PT1N7, PT1N15, and PT1N30.

FIGURE 4. Background removed images of BT1N7, BT1N15, BT1N30.

B. IMAGE ACQUISITION AND PREPROCESSING
After the chewing, the food samples were taken out of
the cavity and spread on the flat surface for scanning. For
each experiment setting #1–#12, there were three repetitions,
where there are 36 photos of chewed samples altogether. A
standard scale with a length of 10 mm is marked on the
background. The scanned images were cropped to a dimen-
sion of 1950 × 1950 pixels, as shown in Figs. 2 and 3. In
these figures, the nomenclature is given as such, B = Beef,
P = Plant-based, T = Trajectory, N = Number of Chewing
Cycles. For example, BT1N7 means Beef, Trajectory 1, and 7
Chewing Cycles.

Then, the background removal was executed, rendering the
background uniformly black, as in Fig. 4. The color thresh-
olding method was used to remove the background. The
image converted to HSV color space was used to define the
range using cv2.inRange(), while a binary mask was created
to set the pixels within the color range to white and the
rest to black. Contours were detected within this mask using
cv2.findContours() and cv2.drawContours(). Finally, the mask
was applied to the original image using the cv2.bitwise_and()
function to retain the pixels of the original image where
the mask is white and set the rest to black, effectively re-
moving the background. The resulting image was partitioned
into 1521 tiny images, each measuring 50 × 50 pixels.

This preprocessing part and all programming were executed
within Visual Studio Code, using OpenCV, NumPy, Skimage,
Matplotlib, os, and numpy libraries.

Then, a subsequent step involved the categorization of the
1521 tiny images into two groups. When images with a black
background are used for GLCM calculations, the matrix con-
taining pairs of black pixels can reach unacceptably high
values, negatively impacting the GLCM calculations. There-
fore, to maximize the number of images for analysis while
minimizing the negative effects of black pixels on GLCM, the
threshold of 10% was chosen. Images exceeding 10% of black
pixels were excluded from the set, keeping only those tiny
images associated with the food bolus and those with 10% or
fewer black pixels. To this set of images, GLCM was applied
to find the textural parameters.

III. PROPOSED IMAGE ANALYSIS METHODOLOGY
GLCM textural features are highly correlated with one an-
other due to their calculation methods. Hence, a common
guideline can be given for choosing, which measure to use.
That is to choose one measure from each of the uncorrelated
groups [29]. The group comprising dissimilarity, contrast,
entropy, and variance are labeled as edge textures, having
high values when visual edges are present in the neighbor-
ing pixels. Alternatively, texture features labeled as interior
textures have high values for a neighborhood, which contains
few coherent edges but has many subtle and irregular varia-
tions. They are homogeneity, angular second moment (ASM),
correlation, GLCM mean, and possibly variance. Another cat-
egorization is done as contrast group (contrast, dissimilarity,
homogeneity), orderliness group (ASM, energy, entropy), and
descriptive statistics group (GLCM mean, GLCM standard
deviation, GLCM correlation) [30]. Whereas another sugges-
tion is that if only one texture measure can be used, it is
recommended to choose among contrast, dissimilarity, inverse
difference, moment normalized (homogeneity), or inverse dif-
ference normalized (similarity) [31]. Hence, this research
considered these different categorizations when implement-
ing GLCM textural analysis for the in vitro food boluses.
The chosen textural features are energy, dissimilarity, and
homogeneity, which are defined as

ASM =
∑levels-1

i=0

∑levels-1

j=0
P2

ij (1)

Energy = √
ASM (2)

Dissimilarity =
∑levels-1

i=0

∑levels-1

j=0
Pi,j |i − j| (3)

Homogeneity =
∑levels-1

i=0

∑levels-1

j=0

Pij

1 + (i − j)2
. (4)

Levels is the number of gray levels or intensity levels in
the image. Pi,j is the probability of gray level values i and j
occurring in adjacent pixels in the original image within the
window defining the neighborhood. i and j are the labels of
the columns and rows (respectively) of the GLCM.

VOLUME 5, 2024 685



AKARAWITA ET AL.: NOVEL APPROACH TO EVALUATE ROBOTIC IN VITRO CHEWING EFFECT ON FOOD BOLUS FORMATION

Then comes the problem in choosing the pixel distance and
angle between the pixels for calculating energy, dissimilarity,
and homogeneity. One suggestion is to calculate the GLCM
parameters by considering each pixel distance and angle and
taking the average [22]. The reason being that if the images
are rotated, then choosing a single angle is meaningless. In
this research, the images are kept without any changes to
image orientation and the final bolus images are extracted
in an automated process. The most used angles for GLCM
calculations are 0°, 45°, 90°, and 135° [22], [31], [32], and
[33]. Hence, to find the best pixel distance and the angle nec-
essary for GLCM calculations, an analysis was conducted. For
each parameter (energy, dissimilarity, and homogeneity), the
difference in pixel distances was determined across various
angles. That means, for each angle value and for each pixel
distance, the GLCM energy was calculated for both BT1N7
and BT1N30. BT1N15 was not considered here as it is the
mid chewing value. This was then plotted to visually identify
the maximum difference for a particular pixel distance. If the
pixel distance is one, we can see from the plot, which angle
gives the maximum energy difference between BT1N7 and
BT1N30. This was done separately for beef and plant, and
trajectory 1 and trajectory 13 chewing cycles. The average
energy difference between chewing cycles 7 and 30 of Trajec-
tory 1 beef burger patty for pixel distances from 1 to 10 across
various angles (0°, 45°, 90°, 135°) is shown in Fig. 5(a). Also,
the average energy difference between chewing cycles 7 and
30 of Trajectory 13 beef burger patty, for pixel distances from
1 to 10 across various angles (0°, 45°, 90°, 135°) is shown in
Fig. 5(b). This was carried out for eight such scenarios (two
GLCM parameters, two types of trajectories, and two types of
food).

The plot in Fig. 5(a) illustrates the difference in energy
values between BT1N7 and BT1N30, facilitating a compar-
ative analysis. The higher the difference between these, the
easier it is to simplify their distinction when analyzing the
GLCM textural features. The GLCM energy is calculated for
each pixel pair with varying distances denoted by the x-axis,
ranging from 1 to 10. While the plot extends up to pixel
distance 10, the diminishing magnitude of energy differences
indicates that further pixel distances may not offer significant
insights. The plot’s color signifies the angle between pixels,
and the Y-axis depicts the energy difference magnitude. From
this plot, the energy difference peaks at a pixel distance of 1
with angles 0 or 90, suggesting this is the optimal parameter
for GLCM analysis to effectively distinguish between BT1N7
and BT1N30. To gain a clear understanding of plotting the
curves in Fig. 5(a), the flow chart used for this algorithm
is presented in Fig. 6. The same procedure was done with
GLCM homogeneity to choose the optimum angle and the
distance of the pixels for calculating GLCM parameters. The
plot in Fig. 5(b). illustrates the difference in homogeneity
values between BT1N7 and BT1N30. From the plot, the ho-
mogeneity difference peaks at a pixel distance of 1 with an
angle of 90.

FIGURE 5. Plots illustrating the effect of pixel distance on (a) energy and
(b) homogeneity difference between BT1N7 and BT1N30.

The plot in Fig. 7(a) illustrates the difference in energy
values between BT13N7 and BT13N30. From this plot, the
energy difference peaks at a pixel distance of 1 with an angle
of 90. The plot in Fig. 7(b) illustrates the difference in ho-
mogeneity values between BT13N7 and BT13N30. From the
plot, the homogeneity difference peaks at a pixel distance of 1
with an angle of 45 or 90.

In conclusion, both GLCM energy and homogeneity of BT1
suggest pixel distance 1. However, GLCM energy differences
of BT1 suggest angles 0 or 90, while GLCM homogeneity dif-
ferences suggest angle 90. Since an angle needs to be chosen
for BT1 energy and homogeneity, angle 90 is chosen. Sim-
ilarly, in conclusion, both GLCM energy and homogeneity
of BT13 suggest pixel distance 1. However, GLCM energy
differences of BT13 suggest angle 90, while GLCM homo-
geneity differences suggest angles 45 or 90. Since an angle
needs to be chosen for BT13 energy and homogeneity, angle
90 is chosen. Therefore, when calculating the GLCM pa-
rameters, pixel distance 1 (dmax) and angle of 90 (imax) are
selected as they yield the maximum difference when GLCM
parameters are calculated for Beef samples with trajectories 1
and 13.

The same procedure was done for trajectories 1 and 13
of the plant patty to choose the optimum angle and distance
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FIGURE 6. Proposed methodology for selecting the distance and angle.

of the pixels for calculating GLCM parameters. The plot in
Fig. 8(a) illustrates the difference in energy values between
PT1N7 and PT1N30. From the plot, the energy difference
peaks at a pixel distance of 1 with an angle of 0. The plot
in Fig. 8(b) illustrates the difference in homogeneity values
between PT1N7 and PT1N30. From the plot, the homogeneity
difference peaks at a pixel distance of 1 or 2 with an angle
of 0.

The plot in Fig. 9(a) illustrates the difference in energy val-
ues between PT13N7 and PT13N30. From the plot, the energy
difference peaks at a pixel distance of 1 with an angle of 0.
The plot in Fig. 9(b) illustrates the difference in homogeneity
values between PT13N7 and PT13N30. From the plot, the
homogeneity difference peaks at a pixel distance of 1 or 2
with an angle of 0.

In conclusion, both GLCM energy and homogeneity of PT1
suggest an angle of 0. However, GLCM energy differences of
BT1 suggest pixel distance of 1, while GLCM homogeneity
differences suggest pixel distance of 1 or 2. Since a pixel
distance needs to be chosen for PT1 energy and homogeneity,
pixel distance of 1 is chosen. Similarly, in conclusion, both
GLCM energy and homogeneity of PT13 suggest angle of 0.
However, GLCM energy differences of PT13 suggest pixel
distance of 1, while GLCM homogeneity differences suggest

FIGURE 7. Plots illustrating the effect of pixel distance on (a) energy and
(b) homogeneity difference between BT13N7 and BT13N30.

pixel distance of 1 or 2. Since a pixel distance needs to be
chosen for PT13 energy and homogeneity, pixel distance of 1
is chosen. Therefore, when calculating the GLCM parameters,
pixel distance 1 (dmax) and angle of 0 (imax) are selected
as they yield the maximum difference when GLCM param-
eters are calculated for plant-based samples with trajectories
1 and 13.

In overview, the programming approach employed to at-
tain these parameters involves utilizing feature.graycomatrix
for GLCM computation, followed by the use of the
skimage.feature.graycoprops function to extract the specific
GLCM parameter.

IV. RESULTS
With the previously mentioned methodology, the maximum
difference for GLCM energy and homogeneity of each chew-
ing cycle is given by as follows.

1) Pixel distance 1 (dmax) and angle of 90 (imax) for Beef
samples with trajectories 1 and 13.

2) Pixel distance 1 (dmax) and angle of 0 (imax) for Plant-
based samples with trajectories 1 and 13.

Since the orientation of the images of the chewed food
bolus does not change, these parameters can be derived to cal-
culate the GLCM parameters. These results indicate that there
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FIGURE 8. Plots illustrating the effect of pixel distance on (a) energy and
(b) homogeneity difference between PT1N7 and PT1N30.

is a distinct difference between the two food types and the dif-
ference has been identified with the use of GLCM. However,
when the same methodology was applied to GLCM dissim-
ilarity, unlike energy and homogeneity, a single maximum
difference could not be found. The dissimilarity difference for
N7 and N30 increased with the increase in pixel distances with
each angle for all beef, plant, trajectory 1, and trajectory 13
images.

Afterwards, with the derived pixel distance and angle val-
ues, GLCM energy and homogeneity are calculated to check
if there is a relationship with each chewing cycle of the food
boluses. Across all scenarios involving beef and plant food
boluses with trajectories 1 and 13, a consistent trend emerges.
As the number of chewing cycles increases from 7, 15, and
30 (x-axis of the plots in Figs.), there is an increase in energy,
as shown in Fig. 10, an increase in homogeneity, as shown
in Fig. 11, a decrease in dissimilarity, as shown in Fig. 12.
The three plots represent each type of food boluses and tra-
jectories. This highlights the dynamic relationship between
chewing cycles and textural features in the oral processing of
beef and plant-based burger patties.

In this study, an analysis was conducted for the average
number of bolus pieces in relation to the number of chewing
cycles for both beef and plant-based boluses. The presented

FIGURE 9. Plots illustrating the effect of pixel distance on (a) energy and
(b) homogeneity difference between PT13N7 and PT13N30.

FIGURE 10. GLCM Energy of the in vitro food bolus with the number of
chewing cycles.

graph shown in Fig. 13 illustrates a comprehensive compar-
ison of the average number of bolus pieces generated during
different chewing cycles for both beef and plant-based boluses
under distinct in vitro chewing trajectories. Trajectory T1,
characterized by horizontal jaw movements, and T13, involv-
ing increased shear force, reveal distinctive patterns in bolus
formation. Remarkably, at T1, both beef and plant boluses
exhibit a consistent increase in the average number of bolus
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FIGURE 11. GLCM Homogeneity of the in vitro food bolus with the number
of chewing cycles.

FIGURE 12. GLCM Dissimilarity of the in vitro food bolus with the number
of chewing cycles.

FIGURE 13. Comparison of average number of chewed bolus pieces with
the number of chewing cycles.

pieces with the increase in number of chewing cycles, show-
casing effective breakdown. However, under T13, interesting
variations emerge. Beef boluses demonstrate a notable in-
crease in the average number of pieces, potentially indicating
enhanced fragmentation due to increased shear forces. In con-
trast, plant boluses under T13 exhibit a contrasting trend, with
a decrease in the average number of bolus pieces, suggesting

a potential shift in breakdown dynamics. The plot reveals a
significant increase in the number of bolus pieces for beef
burger patties as the chewing cycles increased. In contrast,
plant-based burger patties demonstrate a unified chewed bolus
at 30 cycles, where individual bolus pieces have combined to
form more cohesive boluses. This suggests the plant-based
burger patties have reached the endpoint of chewing, sooner
compared to the beef burger patty. Additionally, this indicates
a fiber separation process with the increase of chewing cycles
in the case of beef burger patties.

V. DISCUSSION
The results highlight the effectiveness of utilizing the GLCM
image analysis technique for evaluating in vitro chewing im-
pacts on food bolus formation. GLCM parameters energy
and homogeneity, revealed clear distinctions between beef
and plant-based samples across different trajectories. Fur-
ther analysis using derived GLCM parameters consistently
demonstrated trends. Increasing chewing cycles correlated
with heightened energy and homogeneity and reduced dis-
similarity. This dynamic relationship between chewing cycles
and textural features emphasizes the intricate oral processing
of beef and plant-based burger patties. The analysis extends
to examining the average number of bolus pieces concern-
ing chewing cycles, uncovering trajectory specific patterns.
Under Trajectory T1, both beef and plant boluses showed
increased pieces, signifying effective breakdown. However,
Trajectory T13 displayed divergent trends. Beef boluses ex-
hibited enhanced fragmentation, while plant boluses formed
a cohesive bolus, implying an earlier endpoint in chewing
for the plant-based variant. These nuanced insights deepen
our understanding of in vitro chewing dynamics and bolus
formation, highlighting GLCM’s potential in food science
research.

VI. CONCLUSION
This study successfully utilized GLCM to determine the in
vitro chewing cycle phase, analyze texture feature relation-
ships, and examine in vitro chewing trajectory differences
for both beef and plant burger patties. The integration of
GLCM analysis in evaluating the in vitro chewing effect on
food bolus formation presents a cutting-edge approach, offer-
ing researchers and food scientists a robust methodology for
quantifying textural changes in a reproducible and controlled
environment.
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