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ABSTRACT In machine learning, the extraction of features is necessary for intelligent motor fault diagnosis.
In industrial applications, it is necessary to identify the optimal number of features to differentiate various
types of fault characteristics with less computational complexity and cost. However, motor fault diagnosis for
real-time applications has challenges in capturing characteristics due to variations in speed, load, force, run-
to-failure state as well as the type of the motor and its parts. The deep learning techniques that automatically
extract features and perform classification have algorithmic complexity. In this work, the authors address
these challenges by: 1) selecting and ensembling optimal time-domain features that are capable of identifying
motor faults using current signals of the permanent magnet synchronous motor (PMSM) in bearing; and
2) investigating the feature ensemble constituting optimal features for robust fault diagnosis in the PMSM
bearing as well as the stator and bearing of squirrel cage induction motor (SCIM) for various conditions. The
optimal features mean absolute value, simple sign integral, and waveform length yields 99.8% and 100%
for bearing fault and stator fault diagnosis, respectively, in PMSM. These features show 100% accuracy for
identification of fault in SCIM and 98.2% accuracy in the run-to-failure state.

INDEX TERMS Induction motor, permanent magnet synchronous motor (PMSM), rolling bearings, stator,
deep learning (DL), time-domain features, pattern recognition.

I. INTRODUCTION
Nowadays, permanent magnet synchronous motors (PMSMs)
[1] and induction motors [2] have a wide range of applications
including electric vehicles as well as industrial automation. In
electrical machines, identification of various faults is vital for
safe production and avoiding economic losses [3]. According
to a recent survey, the majority of mechanical failures are
due to bearing defects accounting for 45%–55% [4] and the
majority of the electrical faults are due to stator winding
exhibiting 21% to 40% [5]. Therefore, researchers instigated
to find bearing and stator faults widely using motor current
signals.

The fault diagnosis is motivated using deep learning (DL)
[6] and pattern recognition [7] approaches to obtain high
accuracy. In recent years, DL methods, which flourished glob-
ally due to their advanced characteristics, such as automated
adaptive feature extraction and greater labeled dataset man-
agement. Convolution neural network (CNN) is the most
prevalent DL algorithm for the identification of faults. Fur-
ther researchers transformed the acquired signals into images

and found efficacy is excellent. However, these methods
have the demerits of a large number of input images lead-
ing to the requirement of GPU hardware [8], [9] for a
significant amount of memory consumption as well as com-
putations. In real-time industrial settings implementing these
techniques is challenging [6]. It is also important to note
that DL models may be less effective due to the need for
large amounts of data and lengthy training time in industrial
processes.

In pattern recognition, the identification of features and
classifiers is crucial to recognize intricacies for high accu-
racy. However, the pattern recognition method [10] does not
require GPU for more memory, and computation. In this
method, various frequency, time–frequency, and time features
are attempted for machine fault diagnosis [11], [12]. The
frequency and time–frequency features have better perfor-
mance in fault diagnosis. However, the extracted features are
difficult to manage due to their large size and necessitate
feature reduction or selection causing increased computation
complexity [13].
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Time-domain feature-based extraction methods are simple
and fault diagnosis is attempted using conventional fea-
tures, such as standard deviation, crest factor, peak value,
kurtosis (KURT), root-mean-square (rms), shape factor, vari-
ance (VAR), and skewness (SKW) [14], [15], with different
classifiers such as artificial neural networks, linear discrim-
inant analysis, support vector machine, random forest, de-
cision tree (DT), kNN, and naïve Bayes (NB) approaches
[10], [16], [17].

The feature selection is usually employed to determine the
optimal number of features that greatly improve the speed
and maximize the accuracy for fault diagnosis of different
electrical machines. Particle swarm optimization (PSO) [18],
emperor penguin optimization [19], whale optimization [20],
and weighted superposition attraction optimization [21] are
the recently employed feature selection methods attempted by
researchers.

Our study solely looked at time-domain features that do not
require further signal transformation to reduce computation
complexity. Therefore, in this study, we investigated the five
conventional and five nonconventional time-domain features
(NCTDFs) to identify the optimal robust time-domain feature
ensemble (FE) for reliable fault diagnosis. The contribution
of the work in the identification of the machine faults is as
follows in four case studies.

1) The optimal NCTDF and conventional time-domain
feature (CTDF) pertinent to individual and combined
two different phase current signals are selected using
the PSO from the Paderborn University (PU) PMSM
bearing database to lessen computation complexity and
time. The robustness of the identified four FEs from
PSO constituting optimal features is investigated for
different speeds, loads, and forces in four different op-
erating conditions.

2) The robustness of the nonconventional optimal FEs is
studied with stator fault using PMSM current signal for
different fault severity levels.

3) The stability of FEs is also studied at different sampling
frequencies with phase current signals at three different
load conditions and computationally compared with the
AlexNet deep neural network.

4) The adeptness of optimal FEs is studied in the run-to-
failure bearing state dataset of the National Aeronautics
and Space Administration (NASA).

The rest of this article is organized as follows. In
Section II, methodology, which includes the dataset descrip-
tion, windowing, feature extraction, robust feature selection,
and pattern recognition-based fault diagnosis. Sections III
and IV explore bearing faults and stator fault identification
with benchmark datasets. Sections V and VI examine the
robustness of the optimal features using experimental squirrel
cage induction motor (SCIM) data and run-to-failure bearing
dataset. In Section VII, a summary of the results, limitations,
and future scope is discussed. Finally, Section VIII concludes
this article.

FIGURE 1. Flowchart of the fault diagnosis method. (a) Optimal feature
selection. (b) Investigating robustness of the optimal FEs.

TABLE 1. Operating Conditions

II. FAULT DETECTION METHODOLOGY
The flowchart of the fault diagnosis method is shown in Fig. 1.
This study investigates the PMSM in case studies 1 and 2,
and the SCIM in case study 3. The run-to-failure bearing
dataset is studied in case study 4. In case study 1, four distinct
operating conditions current data of a PMSM from the PU
bearing database are shown in Table 1. In case study 2, the
robustness of FEs is studied with stator fault for different fault
severity levels. In case study 3, a laboratory platform was
developed to analyze the stability of the identified FE at a
lower sampling rate and compared it with the image-driven
AlexNet model. In case study 4, the adeptness of FEs is stud-
ied in the run-to-failure bearing state dataset. The subsequent
sections describe each stage of the fault diagnosis method.
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FIGURE 2. Flowchart of feature selection using PSO method.

A. FEATURE EXTRACTION
The most commonly employed CTDFs, including KURT,
SKW, mean, rms, and VAR, [22], [23] are evaluated in this ar-
ticle. The NCTDF are mean absolute value (MAV), waveform
length (WL), simple sign integral (SSI), slope sign change
(SSC), and zero crossing (ZC) extracted [24] to identify opti-
mal robust FEs.

B. OPTIMAL FEATURE SELECTION METHOD
The authors of this article are motivated to find the optimal
robust time-domain features to diagnose faults. In case study
1, the PSO algorithm [25] is used to select FEs of size con-
stituting 2, 3, and 4 features for conventional and NCTDFs
of current data for four different operating conditions of in-
dividual and combined current data. The objective function
is to minimize the classification error rate by employing the
k nearest neighbor (kNN) classifier. Each particle stands for
a solution in the ′′M ′′ dimensional search space of 5. The
particles within the search space undergo movement to locate
the most optimal solution for the given objective function.

Fig. 2 depicts the flowchart illustrating the PSO algorithm.
Let i = {y1, y2, y3, . . ., yn} represent a set of particles that
are initialized with random positions in an M-dimensional
search space. Let y(t )

j represent the current position and v
(t )
j

represent the current velocity for the jth particle at the t th
iteration. The objective function is computed for every particle
during the t th iteration. The variable Pbest( j) represents the
personal best position of the jth particle, while Gbest refers to
the best position among all particles in the entire population.
The velocity and position of the particles updated at the end of
the iteration are shown in (1) and (2). The objective function
is evaluated for the newly obtained location, to update Pbest( j)
and Gbest. Repeat the steps, when the required number of

iterations is reached. Choose the optimal feature subset that
Gbest represents. Utilizing the features that were selected on
the test data, evaluate the classifier’s performance. This work
ranks conventional and NCTDFs separately using PSO

vt+1
j = θ t

j + αε1

(
Pbest( j) − yt

j

)
+ βε2

(
Gbest( j) − yt

j

)
(1)

yt+1
j = yt

j + vt+1
j (2)

where θ is the inertia constant, ε1, ε2 are random variables
between 0 and 1, and α and β are learning parameters.

C. FEATURE ENSEMBLING
The PSO ranking is used for organizing FEs. The first two
rank features are ensembled into FE-2 similarly, FE-3 con-
stitutes the first three ranked features, FE-4 constitutes the
first four ranked features, and FE-5 constitutes all five fea-
tures. The ranked features are ensembled separately for both
conventional and nonconventional features for individual and
combined current signals.

D. CLASSIFICATION
1) PATTERN RECOGNITION-BASED CLASSIFICATION
In this work, identified FEs are classified for 10% holdout
validation using the kNN, DT, and NB classifiers to find the
computationally simple classifier. The kNN is one of the sim-
plest pattern recognition algorithms. The kNN method [10]
has two fundamental components: distance measurement and
k-value selection. Among these, the choice of k value will
influence the kNN output. In this work, k = 3 is considered for
fault diagnosis. The utilization of distance measures facilitates
the formation of decision borders, which effectively separates
data points into distinct classes. Euclidean distance metrics
are employed to determine the closeness of data points.

The DT method is one of the pattern recognition meth-
ods [17] is created by choosing a feature with the highest
ability as a node to discriminate fault the Gini index used
to split the tree’s nodes until the model reaches its maximum
depth. The NB classifier is a Bayesian classifier that builds its
probabilistic model using the maximum likelihood conditions
and Bayes’ theorem [17]. If the features are well stated, the
Bayes classifier achieves the lowest percentage of errors.

2) DL METHOD
In this work, authors attempted a DL AlexNet model [26],
constituting five convolutional layers and three fully con-
nected layers. Maxpooling layers are employed after con-
volutional layers 1, 2, and 5 effectively decrease spatial
dimensions while preserving prominent features. AlexNet-
based fault diagnosis methods include data acquisition, image
conversion, image augmentation, and fault classification. In
this work, the acquired SCIM current signals are converted
into spectrogram images. In practice, gathering the required
information to train a deep neural network for fault classi-
fication adequately is challenging. Therefore, the acquired
data are converted into an image followed by augmentation
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FIGURE 3. Structural sketch of PU dataset.

TABLE 2. Bearing Codes Used (Model No-6203)

to enhance training samples and to prevent model overfitting.
Images may be augmented by mirroring, rotating, vertical flip,
horizontal flip, transpose, and elastic transform, the original
image dataset is enlarged to several times its original size and
finally classified into fully connected layers.

III. CASE STUDY 1: FEATURE SELECTION AND
ENSEMBLING OF FEATURES
This case study focuses on the identification of an optimal
features ensemble from conventional and nonconventional
features using PSO for individual current, and combined two
different phase current signals. The ranked conventional and
nonconventional features are ensembled of sizes 2, 3, 4, 5, and
classified for four different operating conditions.

A. DATASET DESCRIPTION
The structural sketch of the PMSM experiment setup shown
in Fig. 3 consists of a test motor, measurement shaft, bearing
module (deep groove ball bearing type-6203), flywheel, and
load motor. The current in each phase of the test motor rated
425 W, 3000 rpm, 2.3 amps is sampled at 64 kHz for 40 s
for four operating conditions of healthy (H), outer race fault
(ORF), and inner race fault (IRF) bearings. Table 2 shows the
bearing codes used in this work.

B. FEATURE EXTRACTION
Each feature is extracted from a data segment of 64 000
samples for 20 trials of current data. Each trial constitutes
20 data segments accounting for 20 × 20 = 400 number of
individual features for each fault condition. The combined
two-phase current data accounts for 800 individual features
for each bearing condition.

C. OPTIMAL FEATURE SELECTION
The PSO algorithm ranks features of all operating conditions
separately from the individual and combined current data.
The PSO population size is initialized to 50 and the number

TABLE 3. FEs Based on the PSO Ranking

of iterations is set to 100. The hyperparameters of the PSO
algorithm are tuned iteratively and chosen as follows: inertia
weight w is 0.2562, the damping ratio of the inertia weight is
0.99, the cognitive coefficient is 1, the social coefficient is 2,
and the velocity limit is 0.1, and the variable boundary is 0 to
1. Initially, the ranking sequence of conventional and noncon-
ventional features are {SKW, MEAN, RMS, VAR, KURT}
and {SSC, SSI, WL, MAV, ZC}, respectively. At the end of
the iterations, the ranking sequence of conventional features
is {KURT, SKW, MEAN, RMS, VAR} and nonconventional
features {MAV, SSI, WL, SSC, ZC}. The ranked features are
ensembled separately for both conventional and nonconven-
tional features, as shown in Table 3.

D. CLASSIFICATION
In this section, bearing fault classification using kNN, DT,
and NB classifiers with 10% holdout validation is studied.
The performance of the identified FE is classified with in-
dividual and combined different phase current signals for
conventional and nonconventional features for all operating
conditions.

1) PERFORMANCE OF CONVENTIONAL AND
NONCONVENTIONAL FES
The classification performance of conventional and NCTDFs
for operating condition-A of individual and combined two dif-
ferent phase current signals are shown in Fig. 4. For individual
phase current signal, it is noted from Fig. 4(a) conventional
features, that the classification accuracy shows the highest
accuracy of 85% with FEs consisting {KURT, SKW, mean}
using kNN classifier. The nonconventional features ensembles
consisting of FE-3 {MAV, SSI, WL} yield a maximum of 96%
accuracy with kNN classifier higher than DT and NB classi-
fiers. Therefore, it is clear from Fig. 4(a) that nonconventional
features perform better than CTDFs.

For combined phase current signals 1 and 2, it is noted from
Fig. 4(b) the conventional FE-3 {KURT, SKW, mean} at-
tained the highest accuracy of 94.3% with the kNN classifier.
The performance of the nonconventional FE with kNN clas-
sifier yields the highest accuracy of 100% with FE-3 {MAV,
SSI, WL} and FE-4 {MAV, SSI, WL, SSC}, 2.9% higher than
the DT classifier. The FE-2 yields 1.7% less than FE-3 and
FE-4 using the kNN classifier. The performance of the NB
classifier is less with conventional and nonconventional FEs
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FIGURE 4. Classification performance of optimal conventional FEs and nonconventional optimal FEs. (a) Individual phase current signal. (b) Combined
phase current signals.

in comparison with kNN and DT classifiers considered. From
Fig. 4(b), it is clear that the CTDF ensembles do not perform
well in comparison with the NCTDF ensembles. Also, FE-3
performance is significantly not different from FE-4 and FE-5.

The classification performance reveals that the NCTDF
ensembles with combined two-phase current signals per-
form better and show higher fault classification accuracy.
Therefore, the nonconventional FEs FE-2{MAV, SSI}, FE-3
{MAV, SSI, WL}, FE-4 {MAV, SSI, WL, SSC}, and FE-5
{MAV, SSI, WL, SSC, ZC} have been considered for further
studies.

2) IMPACT OF SELECTED FES FOR DIFFERENT OPERATING
CONDITIONS
Further studies investigate the efficacy of the identified FEs
using the combined phase current signals under three different
operating conditions in addition to operating condition A.
The classification performance of the varying combination
of combined two-phase current signals is depicted in Fig. 5
for four distinct operating conditions. From Fig. 5, it is clear
that the FE-3 shows 100% with the kNN classifier for oper-
ating conditions A, B, and D. In operating condition C, the
identified FE-3 has shown 99.2% accuracy. The FE-2 yields
an average classification accuracy of 98.5% with kNN. The
average classification accuracy of FE-3 shows 97.3% and 94%
accuracy with the DT and NB classifiers, respectively, under
four operating conditions. It shows a statistically significant
difference in the performance of the NB classifier compared

with a DT and kNN classifiers. In addition, the kNN classifier
is shown to be statistically insignificant with FEs FE-3, FE-4,
and FE-5.

It is clear from Fig. 5, that FE-3 {MAV, SSI, WL} was
found to be optimal in comparison with identified FEs with
high accuracy for combined current signals under four operat-
ing conditions using kNN classifier.

In addition to classification accuracy other performance
metrics including sensitivity, specificity, precision, F1 score,
false positive rate (FPR), and false negative rate (FNR) are
also calculated as shown in Table 4 for comparison of classi-
fiers considered. These metrics were calculated for combined
current signals. It is clear from Table 4, that the optimal FE
{MAV, SSI, WL} achieved the highest performance using
the kNN classifier in comparison with DT and NB classifiers
under four different operating conditions.

Feature plots are employed to analyze the discriminating
ability of each identified optimal NCTDF. Data have been
collected for three distinct bearing conditions, as depicted
in Fig. 6. The variation of the feature value to the window
segment for healthy, inner, and ORFs is shown. Accordingly,
the variation of each utilized feature of three different bearing
conditions is plotted. It is clear from Fig. 6, that optimal
nonconventional features mean absolute value, SSI, and WL
was an effective feature that maintained the most separability
between three bearing classes among all studied four operat-
ing conditions A, B, C, and D. In addition, the SSC and ZC
shows least variation in comparison with identified optimal
features.
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FIGURE 5. PMSM bearing fault classification accuracy using combined current signal under four operating conditions.

TABLE 4. Performance Index of Combined Current Signals

IV. CASE STUDY 2:INVESTIGATING THE ROBUSTNESS OF
FES FOR STATOR FAULT IDENTIFICATION
This case study investigates the robustness of the identi-
fied FEs in PMSM stator interturn fault identification using
current signals under eight fault severity levels from the Ko-
rea Advanced Institute of Science and Technology (KAIST)
dataset [27].

A. DATASET DESCRIPTION
The experimental setup comprises a 1 kW PMSM and a load
controller with a hysteresis brake. The parameter specification
of the PMSM is shown in Table 5. The three-phase current
data were obtained with the Hioki CT6700 model. The data
were recorded using a National Instrument 9775 module with
a 100 kHz sampling frequency for 120 s. Table 6 shows the
PMSM stator interturn fault severities with class labels.

B. FEATURE EXTRACTION
Each feature is extracted from a data segment of 100 000
samples. It constitutes 120 data segments accounting for 120
individual features for each fault severity level.

TABLE 5. PMSM Parameters for Stator Fault Diagnosis

TABLE 6. Class Label for Stator Interturn Fault in PMSM
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FIGURE 6. Feature plot of three bearing conditions.

C. CLASSIFICATION
The classification performance studied with the identified
nonconventional FEs using current signals. The identified FEs
FE-2, FE-3, FE-4, and FE-5 classification accuracy are shown
for three-phase current signals. From Fig. 7, it can be observed
that the classification accuracy for the phase current signal is
98%–100%. The high accuracy is achieved specifically FE-3,
FE-4, and FE-5, with the kNN classifier. The FE-3 {MAV, SSI,
WL} yields an average accuracy of 99.3% with current data
using the kNN classifier.

The kNN and DT classifiers are statistically insignificant
with the FE-3, FE-4, and FE-5 compared to the NB clas-
sifier. It shows a statistically significant difference in the
performance of the FE-2 with FE-3, FE-4, and FE-5 for in-
dividual phase current signals. The average accuracy of 100%
is achieved using a combined current signal FE-2, FE-3, FE-4,

and FE-5 with kNN, and DT classifiers. The kNN, DT, and NB
classifiers show no statistically significant difference with the
combined phase current signals. It is clear from Fig. 7, that as
the number of fault severity increases individual phase current
data is sufficient to identify the fault in PMSM for stator fault
identification. The performance metrics were calculated for
three-phase PMSM current signals. It is clear from Table 7,
that the optimal FE-3 {MAV, SSI, WL} achieved the highest
performance using the kNN classifier in comparison with DT
and NB classifiers.

V. CASE STUDY 3: INVESTIGATING THE STABILITY OF FES
IN SCIM
The identified FEs achieved good diagnostic performance for
PMSM bearing and stator interturn fault diagnosis. Conse-
quently, this case study examines the stability of the identified
FEs in a SCIM bearing faults using three-phase SCIM current
signals at different sampling rates.

A. EXPERIMENTAL SETUP DESCRIPTION
The test platform includes a 3.73 kW, 7 A, and 1500 RPM
SCIM coupled to a 5 HP dc generator powering a resis-
tive load. The ball-bearing parameters are shown in Table 8.
The Compact-RIO is used to acquire the three-phase SCIM
current signal through the three-channel current input mod-
ule NI-9246 using LabVIEW software. The NI 9246 current
input module employs a combination approach, utilizing ana-
log and digital filtering techniques. The key bandwidths to
be considered are the passband, the stopband, and the anti-
imaging bandwidth. The experimental setup sketch is depicted
in Fig. 8.

Three-phase current signals are acquired for healthy, ORF,
and ball faults for 40 s over two trials at sampling frequencies
of 3125 Hz and 16 and 50 kHz under no load, half load, and
full load conditions. Two different bearing faults are consid-
ered in this experiment including the ORF and the ball fault.
The electrical discharge machining used to create the outer
race artificial bearing damage of 2.5 mm in depth and 6 mm
in diameter [28], and lifetime ball damage is considered.

B. FEATURE EXTRACTION
The NCTDFs are extracted from 3125, 16 000, and 50 000
samples for two trials of three-phase current data constituting
40 data segments accounting for 2 × 40 = 80 feature
individual.

C. CLASSIFICATION
The stability of the identified NCTDF ensembles has been
studied experimentally using motor current signals. The bear-
ing conditions at three different lower sampling frequencies
are tested for three combinations of current signals {R ∧ Y, Y
∧ B, B ∧ R} at different load conditions.

The classification performance under 3125 Hz is shown in
Fig. 9. It can be observed that at no load conditions, classi-
fication accuracy was greater than 94.6% with identified FEs
using the kNN classifier. The DT and NB classifiers showed
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FIGURE 7. Classification accuracy of stator interturn fault using motor current signals.

TABLE 7. Performance Index of Stator Fault Diagnosis Using Current Signal

TABLE 8. SCIM Bearing Specifications

FIGURE 8. Experimental setup.

greater than 92% and 91% accuracy respectively for the R
∧ Y combination. In B ∧ R combination, the kNN classifier
attained greater than 93% accuracy with FE-2, FE-3, FE-4,
and FE-5. The kNN classifier is statistically insignificant with
all the FEs compared to DT and NB classifiers.

The classification performance under 16 kHz is shown in
Fig. 10. At no load conditions, the optimal FE FE-3 {MAV,
SSI, WL} observed with 100% accuracy with kNN and DT
classifiers for R ∧ Y, Y ∧ B, and B ∧ R combinations. The NB
classifier obtained a maximum of 77% accuracy with FE-3.

The FE-3, FE-4, and FE-5 are statistically insignificant with
kNN and DT classifiers compared to FE-2. At half and full
load conditions FE-3, FE-4, and FE-5 obtained 100% accu-
racy with kNN and DT classifiers under 3125 Hz, and 16 and
50 kHz. The FE-5 attained a maximum of 84% accuracy with
the NB classifier. It shows a statistically significant difference
in the classification performance of the NB classifier com-
pared with kNN and DT classifiers.

The performance metrics were calculated for SCIM current
signals under no load, half load, and full load conditions. It is
clear from Table 9, that the optimal features {MAV, SSI, WL}
achieved the highest performance using the kNN classifier in
comparison with other classifiers. It is clear from Table 10,
as the sampling frequency increases and shows better ac-
curacy using kNN and DT classifiers. In 50 kHz sampling
frequency, the FEs FE-2, FE-3, FE-4, and FE-5 have shown
higher accuracy. However, the identified feature-based fault
diagnosis methodology has shown better accuracy even with
lower sampling frequency.

The bearing fault classification accuracy of FE-3 has shown
a maximum accuracy of 95% with fewer samples (3125 HZ)
and 100% with a large number of samples (16 and 50 kHz).
Therefore, the optimal robust FE-3 {MAV, SSI, WL} per-
forms well with lower sampling frequencies using SCIM
phase current signals.

D. CLASSIFICATION USING ALEXNET
The SCIM current signals were investigated and evaluated
using the AlexNet method. The AlexNet model was imple-
mented on 8 GB of memory, an Intel i5 core, a 2.90 GHz
processor, and 64-bit operating systems. AlexNet model is
trained with 4000 images and tested with 1000 images for
each bearing condition. The batch size is 64, and the epoch
is 30. Table 11 shows the bearing fault classification accuracy
for three different phase current combinations. It can be seen
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FIGURE 9. Pattern recognition method-based classification accuracy under 3125 Hz sampling frequency.

TABLE 9. Performance Index of Bearing Fault Diagnosis Using SCIM Current Signal

TABLE 10. Classification Performance Under Different Sampling Frequencies

TABLE 11. Fault Classification Accuracy Using AlexNet Method

that the AlexNet method-based image classification for three
combinations {R ∧ Y}, {Y ∧ B}, and {B ∧ R} phase current
data has shown an average accuracy of 98.7% with computa-
tion time of 134 min, which is 71% higher than the optimal
FE-based fault diagnosis method.

VI. CASE STUDY 4: INVESTIGATING THE ADEPTNESS OF
OPTIMAL FES IN RUN-TO-FAILURE STATE
This case study examines the adeptness of the optimal FEs in
bearing faults using a run-to-failure NASA bearing dataset. A
shaft has four bearings installed on it. Throughout the bear-
ing’s expected life of over one hundred million revolutions,
faults in the bearing started to appear.

A. EXPERIMENTAL SETUP
Intelligent maintenance systems (IMS) at the University of
Cincinnati conducts experiments consisting of run-to-failure
bearings datasets [29]. The experimental sketch is depicted
in Fig. 11. Four bearings were mounted onto a shaft under
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FIGURE 10. Pattern recognition method-based classification accuracy under 16 kHz sampling frequency.

FIGURE 11. Experimental sketch.

the effect of a radial load. The rotational velocity of the shaft
remains constant at 2000 revolutions per minute. The shaft is
subjected to a radial stress of 6000 lbs. Signals were captured
on each bearing, with a sampling frequency of 20 kHz for 1 s,
and data were recorded every 10 min.

B. DATASET DESCRIPTION
In this work, recordings of four healthy bearings started on
12th February with 81 recordings and recording stopped on
19th February with 39 recordings was considered for 10%
holdout validation. Transient data recorded on 17th February
with 144 recordings are used for testing the robustness of

TABLE 12. Class Label Considered

the proposed feature-based approach. Run-to-failure occurred
only in bearing 1 on 19th February. Table 12 shows the class
label with bearing conditions considered.

C. FEATURE EXTRACTION
Each identified NCTDF is extracted from a data segment of
20 000 samples, 81 recordings for healthy data, 39 recordings
for fault data considered, and 144 recordings for transient data
for testing the proposed method. The data constitutes one data
segment for each recording.

D. CLASSIFICATION
In this work, the adeptness of identified FEs is classified for
10% holdout validation using the kNN, DT, and NB classifiers
for five class classifications.

The identified FEs FE-2, FE-3, FE-4, and FE-5 classifica-
tion accuracy are shown in Fig. 12. It is clear from Fig. 12,
that the optimal FE of FE-3 {MAV, SSI, WL} has shown
higher accuracy of 100% using kNN and DT classifiers. The
FE-2 has shown an accuracy of 97.9% with kNN and 96.4%
with the DT classifier. The FEs, FE-3 {MAV, SSI, WL}, FE-4
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TABLE 13. Time–Frequency Features and Machine Learning Based Related Reference Works

me

FIGURE 12. Classification performance of run-to-failure bearing fault
diagnosis.

{MAV, SSI, WL, SSC}, and FE-5 {MAV, SSI, WL, SSC, ZC}
are performing better with an average accuracy of 100% using
kNN classifier and NB classifiers shown least performance of
91% accuracy.

VII. DISCUSSION
It is necessary to identify optimal robust features from motor
signals concerning different operating conditions, faults in
motor parts, faults in different motors, and variations from
run-to-failure motor states. In this work, the authors address
two goals: 1) selecting and ensembling optimal features that
are capable of identifying motor faults using current signals
in PMSM and; 2) investigating the FE constituting optimal
features for robust fault diagnosis in the PMSM bearing as
well as the stator and bearing of SCIM for various conditions.

In case study I, the selection of the robust FE using PSO
from the motor current signal was evaluated using the classi-
fication performance of each FE. It is noted, that the optimal
conventional FE shows the highest accuracy. The optimal FE
of three combinations of FE-3 has better performance using
individual, and combined phase current signals. This implies
that choosing a robust time-domain FE can increase classifica-
tion accuracy. The impact of robust NCTDFs under different
operating conditions is investigated in our study.

In this section, the classification performance of robust
FE-based pattern recognition results are compared with the
results of similar fault datasets attempted in the literature. Re-
searchers [37], [30], [38] attempted using PU current signals
for four operating conditions. Hoang et al. [37] achieved an
average accuracy of 97.33% with a combined current signal
using a DL method for three operating conditions. Lessmeier
et al. [30] attempted an ensemble algorithm and attained

93.3% with phase current data for bearing fault classification.
Karatzinis et al. [38] attained 91.42% accuracy for the fault
classification with PU current signals using the fuzzy method.

The time–frequency domain-based machine learning fault
diagnosis performance of current data is compared with other
related works from PU bearing data shown in Table 13. How-
ever, the authors achieved an average accuracy of 99.8% with
an FE-3 with kNN classifier under four operating conditions
using current signals. The FE-3 consisting {MAV, SSI, WL}
was found to be an optimal robust feature with good accuracy
with simple time-domain features in comparison with other
identified FEs using all the classifiers considered and also
shows maximum accuracy of 100%.

Case study 2 investigates the KAIST PMSM’s current
dataset of stator interturn faults at different severities for the
robustness of the identified FEs of case study 1. The results
show 100% accuracy with the robust set of features FE-3
using kNN classifier.

In addition, the stability of the FEs is studied using ex-
perimental SCIM current data with a lower sampling rate
and fewer data. The optimal robust FE-3 performs better for
3125 Hz, and 16 and 50 kHz sampling frequencies and shows
an accuracy of 100% with the kNN under half and full load
conditions. The optimal robust features perform better even at
a low sampling rate.

Furthermore, the AlexNet neural network method using the
SCIM current signals has an average accuracy of 98.7% with a
computation time of 8040 s, which is 71% more computation
time than the features-based fault diagnosis method. Since,
it requires time–frequency image representation with a larger
number of input images, as well as a GPU system. However,
it needs to be noted that DL methods have been identified
by their computational complexity, which necessitates the
use of GPU hardware, as indicated in Table 14. Table 15
compares computational performance between the optimal
robust features-based pattern recognition methods and a DL
approach.

In addition, the adeptness of the identified optimal FEs is
studied using run-to-failure NASA IMS bearing datasets using
transient signals and shows a validation accuracy of 98.25%
and 94.74% with the kNN and DT classifiers, respectively.

The optimal robust performance of mean absolute value,
SSI, and WL have shown noticeable results among all the
time-domain features analyzed. The identified optimal ro-
bust FEs have been successful in electrical machine fault
identification with high accuracy and less computation burden
in both steady state and transient conditions.
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TABLE 14. Overview of Bearing Fault Diagnosis of Earlier Studies Contribution

TABLE 15. Comparison of Computation Time

A. FUTURE SCOPE
Online monitoring provides a user interface that allows for the
real-time monitoring and visualization of the current state of
motor conditions. The purpose of an interface is to present
sensor data patterns, diagnosis data, and alerts in a manner
that is easy for operators and maintenance professionals to an-
alyze. Employing a field-programmable gate array [39], [40]
as a user interface for bearing diagnosis provides a robust and
adaptable platform for building real-time monitoring systems
with better performance.

VIII. CONCLUSION
Motor fault diagnosis using an optimal robust time-domain
feature-based pattern recognition method is attempted to at-
tain high accuracy with reduced computation time using
motor current signals. Conventional and NCTDFs are at-
tempted to identify the optimal feature ensembles using PSO
from PMSM current signals under four distinct operating
conditions. The optimal FE-3 was found to be good with all
classifiers and attain maximum accuracy for combined current
signals. Further, the optimal robustness of the identified FEs
studied for PMSM stator interturn fault under eight distinct
fault severities, and FE-3 was robust with all possible com-
binations. In addition, the stability of the identified FE was
studied with experimental SCIM current signals with fewer
samples in lower sampling frequencies at three different load
conditions, and optimal FE-3 was found to be effective and
attain high accuracy in comparison with the AlexNet method.
In addition, the adeptness of the identified features was stud-
ied with run-to-failure bearing state and found to be effective
in transient data classification. The identified optimal robust

FE FE-3 consisting of {MAV, SSI, WL} maintains good clas-
sification accuracy with reduced computation time for bearing
and stator fault diagnosis in PMSM and SCIM. A limitation
of the optimal robust FEs is superior performance when ap-
plied to the combined phase current signal rather than to the
individual phase current.
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