
Received 25 April 2024; accepted 2 June 2024. Date of publication 12 June 2024;
date of current version 3 July 2024. The review of this article was arranged by Associate Editor Paulo Leito.

Digital Object Identifier 10.1109/OJIES.2024.3413568

Formal Verification of Nonfunctional
Requirements of Overall Instrumentation and

Control Architectures
POLINA OVSIANNIKOVA 1 (Graduate Student Member, IEEE), ANTTI PAKONEN 2, DMITRY MUROMSKY4,

MAKSIM KOBZEV4, VIKTOR DUBININ 4, AND VALERIY VYATKIN 1,3 (Fellow, IEEE)
1Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland

2VTT Technical Research Centre of Finland Ltd., 02044 Espoo, Finland
3Department of Computer Science, Electrical and Space Engineering, Luleå Tekniska Universitet, 97187 Luleå, Sweden

4Independent Researcher 440000, Russia

CORRESPONDING AUTHOR: POLINA OVSIANNIKOVA (e-mail: polina.ovsiannikova@aalto.fi)

This work was supported by the Finnish Research Programme on Nuclear Power Plant Safety 2018-2022 under Grant SAFIR 2022.

ABSTRACT The design of safety-critical cyber–physical systems requires a rigorous check of their operation
logic, as well as an analysis of their overall instrumentation and control (I&C) architectures. In this article,
we focus on the latter and use formal verification methods to reason about the correctness of an I&C
architecture represented with an ontology, using the example of a nuclear power plant design. A safe nuclear
power plant must comply with the defense-in-depth principle, which introduces constraints on the physical
and functional components of the I&C systems it consists of. This work presents a method for designing
nonfunctional requirements using function block diagrams, its definition using logical programming, and
demonstrates its implementation in a graphical tool, FBQL. The tool takes as input an ontology representing
the I&C architecture to be checked and allows visual design of complex nonfunctional requirements as well
as explanation of the results of the checks.

INDEX TERMS Function block diagrams (FBDs), instrumentation and control (I&C) architecture, logical
programming, nonfunctional requirements, ontology, safety-critical systems.

I. INTRODUCTION
A safe design of a critical cyber–physical system assumes
both correct logic of operation and conformity of the op-
erational components to their nonfunctional requirements.
In safety-critical technological areas, the latter also means
fulfilling the defense-in-depth (DiD) principle [1], [2], [3].
According to the DiD principle, a successful instrumentation
and control (I&C) architecture design has multiple redundant
and diverse structures with components of different DiD levels
as physically and functionally independent of each other as
feasible [2], [4]. Thus, for example, in the nuclear power
industry, to prevent failures from propagating into accidents
and accidents propagating to radioactive releases, a nuclear
facility shall have successive protective barriers.

To assess requirements based on the DiD principle, one
needs to dive into at least two layers of information about
the various aspects of the design, i.e., physical and functional.

The physical layer includes the equipment used, its providers,
technologies, and safety classes. This layer stores information
about the structure of the architecture and physical interfaces
between its components along with their physical locations.
The functional layer determines the information flow, that is,
the functions that the equipment implements, the required ac-
tions, and the measurements. Now, this variety of knowledge
of the architecture and the fact that it is often scattered across
different sources [5] form obstacles to the manual assessment
of compliance with the DiD principle.

Pakonen and Mätäsniemi [5] gave a start to the formal
verification of the nonfunctional requirements of nuclear I&C
overall architecture. Here, it is represented with an OWL
ontology [6] (Web Ontology Language), and the checks
are performed using SPARQL (SPARQL Protocol and RDF
Query Language) [7] queries. The ontology combines both
layers of information; therefore, it is possible to check the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/616 VOLUME 5, 2024

https://orcid.org/0000-0003-3722-2603
https://orcid.org/0000-0002-6803-2303
https://orcid.org/0000-0002-5761-2249
https://orcid.org/0000-0002-9315-9920
mailto:polina.ovsiannikova@aalto.fi


properties related to the physical and functional components.
Although objects that satisfy a particular query can easily
be found, the shortcoming of this approach lies in reasoning
about more complex properties where the overall result is
influenced by the results of the assessment of multiple criteria.
Moreover, in this case, the result is not a logical variable but a
number whose value depends on the individual requirements
satisfied and the weight they have in the result.

To address this problem, we propose a method for develop-
ing and verifying complex requirements systems (or design
principles) using function block diagrams (FBDs)1 for the
description of overall I&C architectures stored in a knowledge
base. Having a design principle implemented in the form of
FBD, we can not only relieve the analyst of manual labor
of gathering the data across the scattered documents and its
assessing, but we also provide reasoning mechanisms about
the result of the assessment, which shed light on the result
received.

FBDs are a common programming language in safety-
classified nuclear automation systems (e.g., TELEPERM XS,
Spinline, AC160). Although FBD is not the only language
used for this purpose, using it to define nonfunctional require-
ments should reduce the barrier for control engineers to adopt
our method.

We present our method formally using Prolog [9]—a
declarative programming language with native reasoning ca-
pabilities and high expressive power. Here, information about
our I&C architecture is stored in a Prolog knowledge base, and
individual queries together with dependencies between them
are formulated in the form of Horn clauses. Prolog has a lot
of similarities with the declarative ontology languages OWL,
SWRL, and SPARQL, but is more appropriate to describe
concepts due to its elegant syntax and clear semantics.

Then, we present a graphical tool created using an object-
oriented programming language. This tool allows for a visual
building of requirement FBDs, their execution, and an ex-
planation of the results. In the backend of the tool, an I&C
architecture is represented as an ontology, and individual
queries are formulated using the graphical SPARQL language.
Such formulations are encapsulated in a special kind of func-
tion blocks (FBs)—SPARQL FB, which can be added to an
FBD of a design principle.

The design of cyber–physical systems critical to safety is
a complex process that involves multiple entities. The formu-
lation of complex design principles with which such systems
must comply may involve different actors, including govern-
mental organs, as, for example, in the nuclear domain. After
the requirements are formulated, various actors participate in
checking the system against these requirements. They include
domain specialists who can check whether I&C architecture
achieves the formulated goals, engineers who specialize in

1FBD is one of the graphical programming languages officially supported
by IEC 61131-3 [8]. However, the standard itself is not used much in the
nuclear domain, therefore, it makes sense to consider a more general version
of this language, as described in Section III.

particular parts of the architectures and design them using
diverse methods, and analysts (might also be hired externally)
who possess skills in the application of different techniques to
I&C architecture checking, however, may not have extensive
domain knowledge or knowledge about the particular system
being verified. The assessment process is further complicated
by confidentiality agreements; for example, engineers may
know only about the subsystems they develop, and external
specialists might not be allowed to check anything else than
an abstract design.

We claim that the method and the tool presented in this
article assist all the actors that have to check and/or design
complex nonfunctional requirements. Thus, in the following,
we call our users engineers, analysts, or domain specialists.

To demonstrate the method and its implementation, we take
both the properties and the running example from Pakonen
and Mätäsniemi’s [5] work because it makes the demonstra-
tion more straightforward and practice-oriented.

The rest of the article is organized as follows. In Section II,
we give a more detailed introduction to the DiD principle.
In Section III, we discuss the applicability of FBDs for the
formulation of complex design principles and introduce an
attribute-criteria (AC) design pattern for this purpose. Sec-
tion IV describes a system and a design principle used for
experimental evaluation. Section V gives a definition of the
method using the logical programming language, Prolog. The
graphical tool for formulation design principles using the pro-
posed design pattern is presented in Section VI. Section VII
describes the current state of the art, while Section VIII
discusses the applicability scope of the method. Finally, Sec-
tion IX concludes this article.

II. DID PRINCIPLE
The nonfunctional requirements we consider in this article are
the design principles that are derived from the DiD principle.
One of the domains where the DiD principle is frequently
applied is the nuclear industry. Therefore, to make the intro-
duction of the principle more descriptive, we will heavily use
examples related to the nuclear power plant safety context.

The DiD principle is a strategy to prevent critical failure
situations, that is, damage to the reactor or radioactive con-
tamination, by using successive layers of safety mechanisms.
Therefore, failures in one layer of defense must not lead to
consecutive failures in another layer. To achieve this, ideally,
the design should include full physical and functional separa-
tion between the different DiD layers, together with multiple
redundancies of the protection systems belonging to a single
layer. However, in reality, this is impractical; therefore, de-
signs involve acceptable compromises in dependencies [10].

I&C systems responsible for the safety functions must be
failure tolerant. The typical requirement is single failure tol-
erance, which means that the system must be able to perform
its function even if any single component designed for the
function fails.

On the overall I&C architecture level, we also have to
consider the propagation of failures from one system to

VOLUME 5, 2024 617



OVSIANNIKOVA ET AL.: FORMAL VERIFICATION OF NONFUNCTIONAL REQUIREMENTS OF OVERALL I&C ARCHITECTURES

another, and the possibility of the loss of an entire I&C system
altogether.
� A consequential failure refers to “a failure caused by a

failure of another system, component, or structure or by
an internal or external event in the facility”[2].

� A common cause failure—a failure of several structures,
systems, or components due to a common event or cause.
Typically, a failure-tolerant system consists of several re-
dundant (but often identical) subsystems, all susceptible
to similar failure modes.

Our nonfunctional requirements are heavily motivated by
the DiD principle and maintenance of the safe operation of the
plant. We start our experiments with the group of requirements
from IAEA [10], which focus on the independence of the
I&C systems from different layers and therefore are related
to the separation (physical, electrical, functional, indepen-
dence of communication and supply systems), diversity, and
redundancy design aspects. In general, when verifying these
particular properties, we seek a violation or a counterexample;
therefore, competency queries are negated versions of the re-
quirements. The answers are then entities with wrong relations
or with wrong properties, where an entity is either an I&C
system, its component, an interface, or a function.

However, verification of design principles, such as di-
versity, cannot be restricted to competency questions, as it
requires the assessment of multiple criteria to derive the
answer. For this purpose, NRC [11] states a score-based ap-
proach, where the total score of the design principle, diversity,
is computed based on subscores of its attributes, which val-
ues, in turn, depend on the particular criteria fulfilled by the
architecture. Therefore, we introduce another category of re-
quirements, which are expressed as systems of interdependent
rules, reasoning about which we have to produce results both
in the form of architectural entities and unsatisfied rules.

III. MODELING THE DESIGN PRINCIPLES USING FBDS
In this section, we describe the concept and design patterns to
model the design principles using FBDs. These requirement
formulation principles can then be implemented using various
approaches and programming languages, and one of them we
show further in the article.

A. FBD
FBDs in IEC 61131-3 are intended to implement PLC pro-
grams. Our main goal, in turn, is to formulate descriptive
nonfunctional requirements. Thus, for example, we do not
require the possibility for our FBs to be represented using
structured text, our FBs might have internal variables, but it
depends on a particular implementation whether they will.
We also do not assume any global scope that can be freely
edited by the user (except maybe knowledge base connection
settings) and do not impose any constraints on the graphical
representation of FBs, as this also depends on the goals of a
particular implementation. Thus, we view FBDs in a broader
scope than they are defined within the IEC 61131-3 standard,

and, in this section, we provide our definitions for both, FBs
and FBDs themselves.

Our goal is to assist in the formulation and checking of
complex nonfunctional requirements which, informally, are
questions of the type “How is the system designed?”. This
requires a single “scan” of a knowledge base, and thus a
single evaluation of an FBD. Therefore, in this version of the
method, we do not need FBs with memory or internal states
based on internally defined variables.

An FB is a graphical notion of a function that transforms
a tuple of its inputs into a tuple of its outputs according to
its predefined algorithm. Thus, each FB has input and output
interfaces that correspond to its sets of input and output vari-
ables. The outputs of one FB A can be connected to the inputs
of another FB B, which means that the input variables of B
are assigned with the output values of A. Outputs can pass
their values to multiple inputs, whereas inputs can have only
one incoming connection. The input interface variables have
constant values unless they are connected.

Two types of FBs exist, i.e., basic and composite. The
function and interfaces of the basic FBs cannot be changed
graphically; such blocks are atomic.

The functions of composite blocks in turn, are determined
by nets of interconnected FBs (basic or composite) they
encapsulate and must include at least one FB. The input vari-
ables of a composite FB can be connected to the inputs of its
internal FBs (thus, the input interface variables of a composite
FB act as input variables on the nested level to which their
FB belongs and as output variables for the internal net of
their composite FB). The outputs of a composite FB must be
connected to the outputs of internal FBs or to the inputs of
the composite FB to which they belong. The output interface
variables of a composite FB, then, opposite to input interface
variables, act as output variables on the nesting level to which
their FB belongs and as input variables in the internal net of
their composite FB.

An FBD, then, is a composite FB of the highest hierarchy
level (i.e., not nested in any other FB) that has a finite number
of nested FBs in every included composite FB.

The input and output variables of every nested FB (also
called component FB) in an FBD form its set of variables. An
assignment is a particular value of a particular variable that
belongs to an FBD, and an assignment of a basic FB is a set
of assignments of input and output variables of a basic FB. An
assignment of composite FB or an FBD is a set of assignments
for all their corresponding variables, including the variables of
their nested FBs.

Definition 3.1 (Correct assignment of a basic FB): Having
a basic FB B with a set of input variables u1, . . .uk , a set of out-
put variables uk+1, . . .um, and a transformation function f , the
assignment of B is correct if the formula v(u1), . . ., v(uk ) =
f (v(uk+1), . . ., v(um)), where v(ui ), i ∈ [1, m] is a value of
variable ui, is valid.

Definition 3.2 (Correct assignment of a connection): Hav-
ing a connection between two variables u1 and u2 of two
different FBs of any type, basic or composite, an assignment

618 VOLUME 5, 2024



of a connection is correct if the formula v(u1) = v(u2) is
valid.

Definition 3.3 (Correct assignment of a composite FB of an
FBD): The function of a composite FB with a finite number
of nesting levels (as only composite FBs with a finite number
of nesting levels are allowed in an FBD) is determined by its
net of interconnected FBs. Since the number of nesting levels
is finite, such a composite FB can be flattened into a net of
basic FBs, which can be represented as a tuple (B,C) of basic
FBs and connections between them. Then, an assignment of a
composite FB of an FBD is correct if the assignments of all
FBs from B and all connections from C are correct.

Based on the definitions provided in this section, a correct
assignment of an FBD is defined similarly to a correct assign-
ment of a composite FB of an FBD.

The FBD execution semantics is defined by each par-
ticular implementation method individually. Each execution
defined by the execution semantics of each implementation
method must always produce a correct assignment of an FBD.
In this article, we consider method definition using logical
programming (and thus its implementation in Prolog) and
its implementation using imperative object-oriented language
C++. In the first case, the FBD execution semantics corre-
sponds directly to the Prolog execution semantics (outlined in
Section V-E). In the second case, we implement the execution
semantics using the same programming language, C++, and
describe it in detail in Section VI-D.

B. BASIC BLOCK TYPES
Different implementations of the FBDs may define different
sets of basic FBs or even provide means for their customiza-
tion or manual creation. In the end, such sets are determined
by the design principles modeled. Overall, implementations
are not obliged to but are expected to have a set of basic
FBs representing simple arithmetic (i.e., plus, minus, multi-
plication, modulo) and logical (i.e., conjunction, disjunction,
negation) and comparison (i.e., greater, equal, less) functions.

A necessary basic FB type that we define for a design
principle FBD is a REQUEST basic FB, which makes a re-
quest to the knowledge base where information about the
I&C architecture is stored. Such a block is generic, as various
knowledge bases and FBD implementations require different
connection means and request syntax; however, generally,
such blocks are supposed to encode individual queries, i.e.,
request the details that are necessary to derive whether an
individual specification is true. Thus, the input interface of
a REQUEST basic FB is empty, as the knowledge base is
external to an FB, while its output interface contains at least
one output. In the situation where multiple knowledge bases
are to be addressed, REQUEST FB might accept the specific
knowledge base connection rules as input; however, we claim
that it is less error-prone to describe the connection to the ex-
ternal knowledge base externally, for example, in the settings
of the implementation.

C. AC DESIGN PATTERN
In this article, we propose modeling nonfunctional require-
ments using the AC design pattern.

In the context of industrial safety-critical cyber–physical
systems, due to their complexity, the fact of whether the sys-
tem complies with a design principle is often expressed not
with a logical variable but with a number, an estimate to what
degree the principle is followed, we also call it a score of the
system in relation to the design principle being checked. In
addition, as was mentioned earlier, a maximum value is not
always desirable, as in some cases this will increase the costs
and decrease the maintainability of such a system.

The basic brick of our design pattern is a QUERY com-
posite FB [see Fig. 1(a)]. Such blocks formulate reverse facts
about the system using basic REQUEST FBs to check whether
some requirements are satisfied. For example, if the require-
ment is for subsystems of some system not to have interfaces
with each other, the REQUEST FB will search for such sub-
systems that have interfaces with each other and are parts of
one system. Therefore, QUERY FB checks whether there is
a proof that the query has a counterexample. The result of
the REQUEST FB is then cast to a Boolean value and then
inverted. In the text, the requirements that are represented with
QUERY composite FBs are called individual queries.

In general, a design principle is formulated with a set of
rules that the system must follow to obtain the maximum score
and the weights of these rules that determine how critical it
is to follow the rule with respect to the design pattern ana-
lyzed. The rules, in turn, can directly correspond to individual
queries and seek particular design faults, or they can be repre-
sented as predicates over several individual queries. A rule can
only be followed or not; therefore, the result of the evaluation
of some rule in a system is a Boolean value.

An attribute of a design principle is a subarea evaluated
separately from the principle, which is represented by a set
of weighted rules or criteria [see Fig. 1(b)]. In other words,
an attribute is a group of rules united by their meaning and
weighted according to their contribution to a particular com-
ponent of a design principle [see Fig. 1(c)].

The score of a design principle is then defined as a function
of weighted attributes since different attributes also contribute
differently to the overall estimation.

Fig. 2 shows an example of the basic usage of the compo-
nents of the defined design pattern. The design pattern can be
used as presented or hierarchically, meaning that the design
principle can be subdivided into design subprinciples that can
be evaluated separately, and their score can also be weighted
and aggregated into the score of a main design principle.

This design pattern was partially motivated by the way the
diversity principle is evaluated in NRC [11]. CR-7007 [11]
describes the diversity strategy evaluation for nuclear I&C.
Here, in the beginning, sets of criteria are evaluated based
on facts about the I&C architecture. These criteria par-
tially correspond to the negated competence questions (CQs)
from Pakonen and Mätäsniemi’s [5] work. At the next level,

VOLUME 5, 2024 619



OVSIANNIKOVA ET AL.: FORMAL VERIFICATION OF NONFUNCTIONAL REQUIREMENTS OF OVERALL I&C ARCHITECTURES

FIGURE 1. FBs QUERY, CRITERION, and ATTRIBUTE—the constituents of
the AC design pattern. Rectangles on the sides of the FBs correspond to
the input and output variables of the blocks, light green text and arrow are
used to highlight the data types, the right upper corners of the composite
FBs contain their names, while names of the internal blocks are written in
the middle of the corresponding rectangles. The variables in bold and their
designated connections are the required variables for the design pattern,
and the remaining variables and connections are optional. The diagram
should be read from left to right. (a) Query function block. To understand
whether the requirement holds, we negate the meaning-reverse
requirement and get the proof of the presence or the absence of a
counterexample. (b) Criterion function block utilises the requirement and
additional Boolean logic to derive the result. The Logic function block can
be replaced with interconnected Boolean operators or omitted if the
criterion corresponds to its competence query. (c) Attribute function block
utilises the criteria results and additional Boolean logic to derive the
result. The Logic function block can be replaced with interconnected
Boolean operators.

attributes are assigned values depending on which criteria are
satisfied and their weights. In the end, the attributes values are
used to calculate the total score that can be used to compare
the efficacy of the selected diversity strategy with the strate-
gies used in other nuclear facilities.

D. APPLICATION OF EXPLANATION TECHNIQUES
In this article, we define an FBD and FBs similarly to Ovsian-
nikova et al.’s [12] work, except that here we do not predefine

FIGURE 2. Basic application of an AC design pattern for a principle
evaluation. The logic can be represented by one composite FB or a net of
several FBs. The diagram can also be enriched with additional inputs,
outputs, and constants. The connection to the knowledge base is shown
with green dashed lines as the knowledge base is not an FB (internal
REQUEST FBs encode the access to it).

a set of basic blocks and do not assume support for the DE-
LAY basic blocks (even though we still can insert such blocks
in an FBD, and, for example, program the loops to execute
iteratively some parts of an FBD, we chose to omit it as rare
nonfunctional properties require it). We have also introduced
a new type of basic block, a query block. Our design patterns
use basic and complex blocks, the native elements of an FBD.
This gives us the opportunity to explain the values of the FBD
variables (input, output, as well as input and output variables
of its internal FBs) after its execution is complete using the
explanation techniques from Ovsiannikova et al.’s [12] work,
with two adjustments. First, our counterexample now consists
of only one step—a single execution of an FBD. Second, the
explanation algorithm for the query block should be imple-
mented. In general, its output is explained by its input from
the knowledge base; however, such output is external to an
FBD and depends on the concrete implementation whether
the data can be accessed. Since, in explanation, we can use
only assignments internal to FBD and we have only one coun-
terexample step, we consider the outputs of query blocks as
constants and do not explain them further.

Now, the definition of an explanation target is similar to
that in Ovsiannikova et al.’s [12] work, considering the two
adjustments—it is a value of a particular variable of an FBD.
The explanation is also intuitively defined as a set of as-
signments that precede the explanation target in the order of
logical inference and unambiguously define the value of the
explanation target.

The example of an explanation for a nonfunctional require-
ment (a part of a diversity principle of NRC [11]) formulated
using the design pattern introduced in this section is shown in
Fig. 3. Here, we can see that Criterion 1.3 got a nonnegative
valuation due to the main requirement of Criterion 1.1 being
satisfied.

IV. CASE STUDY SYSTEM
Similarly to Pakonen and Mätäsniemi’s [5] work, as a running
example, we used a semifictional model of a nuclear reac-
tor, U.S. EPR (European Pressurised Water Reactor), whose

620 VOLUME 5, 2024



FIGURE 3. Application of an AC design pattern to a diversity design principle from NRC [11] (the logic for the first attribute is shown). The explanation
paths for the output of Criterion 1.3 are shown in bold blue. As we can see, although Q1.3 is the main request for this criterion, it obtained a
nonnegative result due to Q1.1.

FIGURE 4. Relational scheme of the information about U.S. EPR design entities, used as a running example. The yellow boxes on the top show the
domains of the variables of the types in bold. The white rectangles correspond to entities with their properties listed on the side in the form
<property_name> : <property_type> unless the property refers to another one. To save space, we omit completeness and consistency data
constraints.

safety I&C architecture is described in NP. U.S. Areva [13].
The publicly available documentation lists 24 I&C systems
arranged into three lines (or layers) of defense: preventive,
main, and risk reduction. It also proposes a methodology for
the evaluation of I&C design according to the DiD principle,
which addresses the Nuclear Regulatory Commission (NRC)
guidance. The design was never commissioned, and publicly
available documents omit the information required to verify
some particular properties [5].

In the current work, in addition to an ontological rep-
resentation of overall I&C architecture from Pakonen and
Mätäsniemi’s [5] work, it was convenient to also translate it
into a relational model to define the approach using logical
programming. This enabled the automatic generation of a
set of Prolog facts about the architecture. The translation of
the structure of the ontology into Prolog, that is, class and
property hierarchies, was done manually in the form of the

corresponding predicates. Although a tool can be developed
to automate this process, we do not focus on it in the current
work, as this was only required for a more precise definition
of the method with Prolog. Fig. 4 shows the types of entities,
their properties, and relations that we used to formulate the
nonfunctional requirements. From this scheme, we can see
that the architecture consists of components of different types
and is implemented using various technologies. Each compo-
nent can be part of an I&C system, including I&C systems
themselves. Every I&C system, in turn, might have more than
one function (which can be different from each other) and
several power supplies. Some I&C systems are connected to
wired or data interfaces to perform their functions.

As a source of a design principle, we use NRC [11], which
provides a detailed description of the evaluation of the sys-
tem against the diversity principle, one of the constituents of
DiD.

VOLUME 5, 2024 621



OVSIANNIKOVA ET AL.: FORMAL VERIFICATION OF NONFUNCTIONAL REQUIREMENTS OF OVERALL I&C ARCHITECTURES

V. METHOD DEFINITION USING LOGICAL
PROGRAMMING
Logic programming (LP) is a formalism for programming and
knowledge representation introduced in 1974 by R. Kowalski.
In logical programming languages, the program is expressed
using facts and rules, while the computation is done through
logical inferences. As a programming paradigm, it was origi-
nally implemented in Prolog [14]. The areas of application of
Prolog include symbolic computations to understand natural
languages (for which it was originally designed), text parsing,
and areas of artificial intelligence. In Prolog, LP is used both
for programming and for knowledge representation.

We chose logical programming as our method definition
language for the following reasons. First, one of its features
is backtracking, that is, it is possible to receive all the alterna-
tions of the proof (in case their number is finite). This means
that we can find all the possible violations of the properties
formulated. Next, it fits problems that involve entities (not
from a data structure point of view, but ideas that can be ex-
pressed using terms) and the relations between them [15]. The
program text describes the task domain and the computation
is driven by the Prolog internal algorithms, which makes the
creation of domain-specific languages (DSL) straightforward.
Then, the declarative style of query formulation assists in the
search for deviations in I&C architecture, as we often know
exactly what the deviation is in terms of the DSL of our
knowledge base, but it may not be obvious how to find it.
Another advantage is its ability not only to deduce but also
to compute. Thus, we can formulate requirements that require
additional computation directly in the knowledge base and
trace them using goal queries, thus directly integrating the
architectural properties into its model.

Prolog also implements a closed-world assumption, which
means that the lack of information implies its falsity. This
becomes especially important when the architecture design is
unfinished and it is critical to discover the missing parts.

In this work, we consider pure Prolog, where the program
is composed of Horn Clauses, a subset of first-order logic. A
Horn Clause is a disjunction, containing at most one non-
negative literal, and in Prolog, such clauses are written in
the form of implications. By the presence of positive and
negative literals, Horn clauses can be divided into three types.
A definite clause consists of both positive and negative literals
and represents rule in a program. The consequent of a rule
is a head and an implicant is a body. A unit clause is a clause
that contains a single positive literal and no negative ones; this
clause is called a fact. A definite goal is a clause with an empty
consequent [16], to check whether some conclusions can be
logically deduced from the program, we formulate queries
with this type of clause. We will also talk about compound
terms, which are functors with a finite set of arguments listed
in parentheses. The number of arguments is called the term’s
arity and is used to denote a term, e.g., f(a1, . . ., an) is
denoted as f/n. The variables in Prolog start with a letter in
uppercase and, essentially, are placeholders for terms.

A. SYSTEM ENCODING
The first step in the implementation of the AC design pattern
is the appropriate encoding of the system. According to a
database interpretation of the logic [17], [18], a logic pro-
gram consisting solely of ground unit clauses (or facts with
no variables) is considered as a database [16]. Therefore, the
conversion between our relation scheme of knowledge about
the I&C architecture from Fig. 4 to Prolog is straightforward.

In Fig. 4 we can distinguish two types of tables, the first
of which corresponds to entities described in the architecture,
i.e., interface, I&C system, function, and power supply, here-
after, entities, and the second of which is created to model
many-to-many relations. If we organize knowledge into a
database according to Fig. 4 and focus on entities, we can
consider the rows of the represented tables as objects of types
corresponding to the names of the tables with properties spec-
ified by their columns. We start by encoding each entity with
compound terms, where the functor represents the name of the
table, and its argument is the identifier of the object. Thus, we
encode the knowledge “there exists an object of type t with
identifier u” with t/1, i.e., t(u).

Next, each property is encoded with the compound term
t_p/2, e.g., t_p(u, v)., where p is the name of the
column, u is the unique identifier of the object of type t and
v is the column value.

Our many-to-many relations are motivated by the fact that
one entity might be in relation with multiple entities of the
same or another type. One way to formulate such a relation
can be with the use of lists in Prolog; e.g., if the entity of
type t1 and the identifier u is in some relation r with a set of
entities e of type t2, we can add to the program the following
fact t1_r_t2(u, e). Now, if we are to find two entities in
some relation, in order to disprove a requirement, we will have
to add the code for processing each such list to the Prolog pro-
gram. This will also affect the formulation of the property as it
will require complementing it with imperative constructions.
Therefore, we use another approach and encode such relations
similarly to how they are encoded in the database. Assuming
that the entity of type t1 and identifier u is in some relation r
with a set of entities E of type t2, we add the following set of
facts ∀e ∈ E : t1_r_t2(u, eu)., where eu is the unique
identifier of the entity e.

Translating the relational representation of the data to the
Prolog facts, we cannot assume that the data are complete and
consistent, as the architecture might still be under develop-
ment with missing information. For the same reason, we allow
the columns to be empty (except for unique identifiers); thus,
even incomplete information can be analyzed, avoiding false
negative answers of the reasoner due to the properties that
have not been modeled yet. On the other hand, all missing
information can also be found by checking specific queries,
for example, t1(U ) ∧ ¬t1_p1(U, _). checks whether there are
entities U of type t1 that lack the description of their property
p1. Thus, the closed-world assumption of Prolog is also useful
during the consistency check of the model.

622 VOLUME 5, 2024



The last step in our conversion would be to add the missing
hierarchies of classes, data properties, and relations of the
ontology. This is useful when we want to generalize several
types of relations and make queries that include the parent of
a hierarchy to search for all the children, as in the following
part of the SPARQL SELECT query:

?supportRel rdfs:subPropertyOf* :sup-
ports.

?equipment ?supportRel ?systemA.

In Prolog, for such relations, we add recursive rules. For
example, for a class hierarchy, with root a and children C,
the following rule is created: a(U )← ∨c∈Cc(U ), where U is
a Prolog variable for the unique identifier of an entity (note
that in the Prolog syntax, an implication is written reverse,
therefore “←,” and is replaced with sign “:-”). For example,
this can be used when we know that some system is a power
supply or a heating, ventilation, and air conditioning system
and want to conclude that it is a support system. SPARQL
property paths are modeled with recursion in Prolog and used
when we want to check if there is a path from one entity to an-
other following the specific property. For example, if a device
is a component (including subcomponents) of a system.

B. INDIVIDUAL QUERIES ENCODING
The first type of answer that we look for is whether there exist
entities with particular properties in a particular relation that
violate the property. A Prolog query (or a goal) is an impli-
cation without a consequent. In our domain, it is a description
of a violation state using compound terms from the knowledge
base and Prolog constructions, including operators ∧, denoted
as a comma, ∨ denoted as a semicolon, negation as failure
not/1, with relations of equality (=) and nonequality (\=)
between variables. For example, SPARQL query 2.1 (1) from
Pakonen and Mätäsniemi’s [5] work

SELECT ?fromSystem ?toSystem ?interface
WHERE {
?interface :interfaceFrom ?fromSystem.
?interface :interfaceTo ?toSystem.
?fromSystem :hasSafetyClass USEPR:S.
MINUS {?toSystem :hasSafety-

Class USEPR:S}
MINUS
{?interface :electricallyIso-

lated true}
}

Can be defined with Prolog as follows:

interface(I, S1, S2, false),
component_safety_class(S1, SC1),
component_safety_class(S2, SC2),

(SC1 = ‘S’; SC2 = ‘S’), SC1 \= SC2.

Here, the line interface(I, S1, S2, false)
means that we are looking for such interfaces between two
systems that are not electrically isolated.

Such a Prolog goal corresponds to REQUEST FB or an
individual query in terms of our design pattern.

As a result, we get a set of substitutions for query
variables that represent a failure found in the architecture.
Unnecessary variables can be hidden from the answer by
different means. For example, we can add a rule for a query
with a reduced set of arguments to the program code us-
ing its head as a goal. Alternatively, it is possible to form
the desired answer with a built-in procedure print/1,
for example, we can complete our previous example
with print((‘Interface’ = I, ‘System From’
= S1, ‘System To’ = S2)), nl, fail. if we
are not interested in the safety classes of the systems.

To model a QUERY FB from our design pattern, we have
to negate this Prolog goal (or individual query) with not/1,
which will give us the answer to whether undesired relations
are present in the architecture.

C. CRITERIA AND ATTRIBUTES ENCODING
Criteria and attributes are modeled as Prolog rules cr/4,
which essentially represent the criteria and state to which
attribute they belong, for example, Criterion 1.3 from Fig. 3
is encoded as follows:

cr(design, diff_tech, S1, S2) :-
different_technologies(S1, S2).
cr(design, diff_appr_within_tech, S1,

S2) :-
different_approach(S1, S2).
cr(design, diff_architectures, S1, S2)

:-
(different_architectures(S1, S2);
cr(design, diff_tech, S1, S2);
cr(design, diff_appr_within_tech,
S1, S2)).

In this example, different_technologies/2,
different_approach/2, and different_archit-
ectures/2 are individual queries, which, following the
logic from NRC [11] are assembled into Prolog rules that
represent CRITERION FBs. The first argument in all the
statements means that all the criteria belong to a design
attribute. Criteria and attribute weights are encoded as
separate predicates and are used further in code

attribute_weight(design, 1).
cr_weight(design, diff_tech, 0.5).

cr_weight(design, diff_appr_within_
tech,

0.333).
cr_weight(design, diff_architectures,

0.167).

VOLUME 5, 2024 623



OVSIANNIKOVA ET AL.: FORMAL VERIFICATION OF NONFUNCTIONAL REQUIREMENTS OF OVERALL I&C ARCHITECTURES

To obtain the final score, the criteria, attributes, and their
weights are aggregated according to the logic specified in the
evaluation of the design principle.

D. REASONING
Now, the system is ready to be evaluated. To not only obtain
the score but to get an insight into its causes, we have to
formulate a special term. We omit the Prolog code for the
aggregation of the satisfied criteria and the summation of
their weights (predicates cr_satisfied/3 and sum/4)
and show only the main query

q(S1, S2) :- cr_satisfied(S1, S2, Cri-
teria),

sum(S1, S2, Sum, Scores),
print
(’Criteria satisfied’ = Criteria,
‘Scores by attribute’ = Scores,
‘Total score’ = Sum),
nl, fail.

Execution of the goal q(’PS’, ‘DAS’). yields the fol-
lowing result for our example:
’Criteria satisfied’ =
[(design,diff_architectures),
(design,diff_tech),
(equip_manuf,diff_man_design),
(equip_manuf,same_man_diff_design)],
’Scores by attribute’ =
[(design,0.667), (equip_manuf,0.175)],
’Total score’ = 0.8420000000000001
This is an I&C architecture evaluation result based on two

attributes that each includes three criteria. We can see that the
criterion that checks the use of different approaches within
the same technology is not satisfied, which reduces the total
score of the overall design principle (here, the diversity) eval-
uation. Assuming that the whole design principle is encoded
as shown, the engineer could consider how far the total score
is from the maximum value with the acceptable error, and
apply fixes to address the criteria that were not satisfied. With
this code, we can change the logic of the design principle, for
example, add additional criteria, build a more complex system
of attributes, and change weights. Then, having this list of
satisfied and unsatisfied rules, their structure, and attributes
valuations, we obtain an assignment of an FBD which can
then be analyzed using, e.g., graphical user interface tools.

E. EXECUTION SEMANTICS
One benefit of using Prolog as an implementation language is
that the logic of the design principle is encoded declaratively,
meaning that the analyst does not have to consider the execu-
tion semantics, as it is outsourced to the Prolog engine.

The computation is mainly based on two principles, i.e.,
unification and resolution refutation. Informally, unification
stands for a process of discovering such a substitution for the
variables in the formulas that makes the formulas equal. The
resolution refutation is aimed at finding such a substitution of

query variables that, applied, leads to a contradiction between
the negated query and the program.

VI. IMPLEMENTATION AS A GRAPHICAL TOOL
In this section, we present a graphical tool implementing the
presented method. The tool FBQL Editor presented in the
current section was implemented using an imperative object-
oriented language, C++. This allowed us to create means for
users to define their custom basic blocks and explanation rules
for them. The knowledge base is presented in a declarative
form of ontology.

In the FBQL Editor, we distinguish the following three
types of FBs: basic, composite, and SPARQL. Basic FBs per-
form computational functions; for example, they can imple-
ment logical operations (AND, OR, NOT), arithmetic operations
(addition, subtraction, multiplication, division, etc.), and com-
parison operations (equal, not equal, greater, less, etc.). Basic
FB functionality is defined using the JavaScipt language. In
FBQL Editor we predefined a standard set of basic FBs that
correspond to the most common arithmetic and logical oper-
ators. Although we believe that such a set can be sufficient
for most of the usage scenarios, the tool is open-source, and
the initial set can be extended according to one’s needs. The
functions and interfaces of basic FBs can be changed only
textually. The functionality of composite FBs is determined
by the corresponding nets of FBs of all three types, which
can be created and edited in the graphical editor. The GUI
includes the main diagram area and a list of available FBs. FBs
libraries can be uploaded from a file or created manually. The
user can create, update, or delete basic and composite FBs,
both individually and within the library. The functionality of
SPARQL FBs is defined by the corresponding visual queries
based on the restricted SPARQL language. A special graphical
editor has been developed for the creation and editing of this
kind of FBs.

A. SYSTEM ENCODING
This implementation assumes that the overall I&C architec-
ture is stored in an ontology.

An ontology is a vocabulary for a shared discourse do-
main, which defines classes, individuals, and the relationships
between them for a given domain [19]. Ontology languages
such as OWL [6] (which serves as the foundation of Semantic
Web [20]) provide machine-interpretable structures to ex-
press semantics. OWL is an extension of resource description
framework (RDF) [6], and a knowledge base based on RDF
triples can use reasoners to infer, for example, subsumption
or classification. SPARQL [7] serves as a query language for
RDF graph patterns.

In Pakonen and Mätäsniemi’s [5] work, the authors ex-
periment with a semantic web-based approach to analyse
nonfunctional requirements related to DiD. The U.S. EPR is
used as a case study. The Protégé [21] ontology editor serves
as a graphical medium for processing SPARQL queries. This
is the ontology that we use in the experiments with the tool.

624 VOLUME 5, 2024



FIGURE 5. Graphical representation of a SPARQL query for CQ 2.1 (1) from Pakonen and Mätäsniemi’s [5] work. Rectangles with sharp and rounded
corners allow one to define variables and constants, respectively. The outer rectangle marks the boundaries of a single graph pattern. Construction ORDER
BY is omitted in the diagram because it does not affect the items of the result set.

B. INDIVIDUAL QUERIES ENCODING
Since our I&C architecture is represented with an ontology,
individual queries should contain the request to the knowl-
edge base in an acceptable format, which is SPARQL in our
case. To model a REQUEST FB, we developed a graphical
language that we internally translate into SPARQL queries
and make a request to the Apache Jena Fuseki SPARQL
Server [22]. The implementation of REQUEST FB is called
SPARQL FB in the FBQL Editor. It has no input and one
numerical output. The reasons why we decided to develop a
graphical version of SPARQL instead of having a plain textual
editor are as follows. First, having the graph pattern visualized
makes it easier to navigate complex relations. Second, this
reduces the number of errors caused by typos and misplaced
relations in queries. Finally and mainly, the visual SPARQL
query design requires no special knowledge of SPARQL syn-
tax or RDF prefixes; all domain experts have to do is to “draw”
a graph pattern they want to search for in the ontology and add
the necessary Boolean constraints. We claim that eliminating
the need to learn SPARQL can positively influence the adop-
tion rate. Our graphical version of SPARQL is a prototype,
and the user experience is a subject for improvement. For
example, drop-down menus can be introduced for choosing
appropriate relationships or individuals, or, e.g., an intelligent
autocomplete. In the following, we describe the syntax of
our graphical language, while its semantics are fully inherited
from SPARQL.

Graphical SPARQL syntax: The graphical language can be
translated into a subset of SPARQL. We allow the formulation
of graph patterns using graphic analogues for RDF triples
with variables and literals, as well as filtering the results using
Boolean constraints utilising FILTER statements. In addition
to WHERE clauses, it is allowed to use the MINUS and
UNION clauses to perform graph operations. Fig. 5 provides
an example of a SPARQL query for a CQ 2.1 (1) from Pako-
nen and Mätäsniemi’s [5] work and shows the formulating
of multiple graph patterns with their relations. Fig. 6 con-
tains a visual SPARQL query for CQ 3.3 from Pakonen and
Mätäsniemi’s [5] work that contains a Boolean predicate in its

FIGURE 6. Graphical representation of SPARQL query for CQ 3.3 from
Pakonen and Mätäsniemi’s [5] work. A Boolean predicate is added to the
FILTER construction of the SPARQL query.

“Filter” construction. The query 2.1 (1) is formulated using
SPARQL as follows:
SELECT ?fromSystem ?toSystem ?interface
?description
WHERE {
?interface :interfaceFrom ?fromSystem.
?interface :interfaceTo ?toSystem.
?interface rdfs:comment ?description.
?fromSystem :hasSafetyClass USEPR:S.
MINUS {?toSystem :hasSafety-

Class USEPR:S}
MINUS {?interface :electricallyIso-

lated true}
}
ORDER BY ?interface
The query 3.3 is formulated using SPARQL as follows:
SELECT ?systemA ?DidLevelA ?systemB
?DidLevelB ?interface
WHERE {

VOLUME 5, 2024 625



OVSIANNIKOVA ET AL.: FORMAL VERIFICATION OF NONFUNCTIONAL REQUIREMENTS OF OVERALL I&C ARCHITECTURES

?systemA :associatedWithDidLevel ?Di-
dLevelA.

?systemB :associatedWithDidLevel ?Di-
dLevelB.

?interface :interfaceFrom ?systemA.
?interface :interfaceTo ?systemB.
FILTER (?DidLevelA != ?DidLevelB)
}
Currently, graph patterns inside the “Filter” constructions

cannot be formulated graphically. However, the tool has the
option of calling a textual editor, where the user can complete
the translated graphical query with necessary graph patterns
or, e.g., ORDER BY constructions using the SPARQL syntax.
Using graphical SPARQL together with the textual editor, it
is possible to formulate all queries from Pakonen and Mätäs-
niemi’s [5] work.

SPARQL FBs implement REQUEST FB from AC design
pattern. To get an individual query, we connect the negation
basic FB to the output of SPARQL FB and wrap it into a
composite block. Note that at this stage of the development
of query/computing FBD, the limitation is that SPARQL FB
has a single numerical output. If the result of computing the
corresponding SPARQL query is empty, then 0 is issued;
otherwise the number of fitting tuples found. In the future,
we are going to expand the possibilities of using the results
of computing SPARQL queries. For example, SPARQL FB
could output several integral numerical indicators (rather than
one, as in the current version).

C. ATTRIBUTES AND CRITERIA ENCODING
Criteria and attributes are represented with composite FBs,
which can include both basic and composite FBs. In the fol-
lowing, we describe the means for the creation of basic and
composite FBs.

1) BASIC FBS CREATION
Basic FBs can be created manually using the editor shown
in Fig. 7. The transformation function is encoded using
JavaScript. The built-in variables are arrays of inputs,
outputs, and causes. inputs and outputs represent
arrays of input and output variables (or interface variables) of
a basic FB correspondingly. The user may create additional
internal variables to define the transformation function. Since
we use JavaScript (a dynamically typed language) for the FB
logic encoding, the variables do not have type constraints.
The interface variables of a basic FB can be addressed by
their indexes in the arrays. The output explanation logic can
be integrated into the FB script using an array of causes.
By adding the corresponding indexes of the input variables
to causes, the user can determine which variables influence
the output variables of the FB in each particular evaluation
situation (or by using some common rule as shown in Fig. 7).
Each basic block must have a name.

In our implementation, basic FBs may have a finite number
of inputs (defined by the number of incoming connections)

FIGURE 7. Basic FBs editor. The JavaScript script encodes the
transformation function of a basic FB. “Label” and “LineEdit” check boxes
and fields are used to create basic FBs with user input, e.g., to define
constants. More can be found in the documentation of the tool [23].

and outputs (defined in the transformation script). There is no
defined structure for the script and the user may write it in
their preferred coding style as long as it is a valid JavaScript
code, which can be checked by clicking the button “Test
Script” of the editor. The default library of basic FBs imple-
ments logical, comparison with zero, and arithmetic operators
with a single output.

2) COMPOSITE FBS CREATION
Composite FBs are created using the main diagram area
and comply with the description of composite FBs in
Section III-A. Each composite FB has a name. Table 1 shows
the elements that can be arranged and interconnected to repre-
sent the internal network of FBs of a composite FB, Fig. 8
shows the example of the internal diagram of a composite
FB. The execution semantics of composite blocks is discussed
further.

D. EXECUTION SEMANTICS
The execution semantics of our FBDs is synchronous, so that
the output values of each block are functions of its input
values, and the signals are propagated through connections
instantly.

Each execution cycle of an FBD is independent of the pre-
vious executions, which means that any execution is preceded
by the deletion of the previously obtained assignments (except
for the assignments of constant values). If the diagram was not
modified between two subsequent execution cycles, then the

626 VOLUME 5, 2024



TABLE 1. Building Constructs of a Composite FB or an FBD

FIGURE 8. Example of a composite block internal diagram designed in
FBQL editor. The diagram is formed by interconnected basic and composite
FBs, the block has no inputs and one output out.

FBD assignments obtained after each of the executions will
be the same.

The execution order of the FBs is determined by the struc-
ture of the FBD to which they belong. The basic rule is that
an FB can be executed only after all its inputs are calculated
during the current execution cycle. Thus, the first FBs to
execute are the ones with no input (e.g., REQUEST FBs) or
the ones whose all inputs are assigned with constant values.

Following this execution rule, the FBs of an FBD can be
divided into execution layers—tuples (i, B), where i ∈ N is
the order of the layer and B is a set of FBs of the FBD that
can be executed in parallel. For example, Fig. 9 shows the
distribution of the execution layers of FBs that make up a
composite FB from Fig. 8. We show the distribution for the
initial internal diagram of the FB. The internal diagram also

FIGURE 9. FBs of a composite FB from Fig. 8 graphically distributed by the
execution layers they belong to. Numbers in italics are user-defined
constants.

contains composite FBs that can be represented with their
internal nets. Since we forbid infinite nesting of composite
FBs, each composite FB and an FBD, in general, in the end,
can be unfolded into a net of basic FBs. This unfolding is
the first step of our execution algorithm. It is followed by
building the execution layers over the unfolding result and
their subsequent ordered execution.

In our FBDs, we do not allow loops in general. This is
explained by the fact that we model requirements, which are
evaluated over an ontology during a single cycle. Our require-
ments modeled using FBDs are enriched queries to an I&C
architecture knowledge base (queries with postprocessing)
rather than a control logic.

E. REASONING AND ITS IMPLEMENTATION
The reasoning is based on the concept of dependence of FB
output on input. Let us assume that each FB has only one
output and several inputs. In this case, it can be represented
as a function y = f (x1, x2, . . . , xn).

Each of the arguments xi affects the result of y (in other
words, the value of the function depends on each of the argu-
ments). Conceptually, if some of the arguments did not affect
the result of the function, they could be safely removed from
the set of arguments. This type of dependence of the output y
on the inputs x1, x2, . . . , xn follows from the definition of the
function.

Now, let us consider the concept of dependence of the
output value of y on the assignment of the input variables. Let
w = f (d1, d2, . . . , dn), where d1, d2, . . . , dn are the specific

VOLUME 5, 2024 627



OVSIANNIKOVA ET AL.: FORMAL VERIFICATION OF NONFUNCTIONAL REQUIREMENTS OF OVERALL I&C ARCHITECTURES

assignments of the inputs and w is the specific assignment of
the output.

We say that the input value di does not affect the result w if
any change applied solely (that is, maintaining the same con-
text) to di does not lead to a change in the result. Otherwise,
we say that the output value w directly depends on the input
value di in a given context (in other words, the input value di

individually influences the output value w).
Let us call the input value di individually dominant among

the input parameters d1, d2, . . . , dn, if it completely deter-
mines the output value w. In this case, the remaining values
can be changed, but the result w will remain. We define such
a dependence of the output value w on the input value di as a
individual dominance dependence (context-independent).

Following the same logic, if there is a group of input values
dk, dm, .., ds that completely determines the output value w,
that is, the remaining values can be changed, but the result
w remains, such a dependence of the output value w on
the group of input values dk, dm, . . ., ds is a group domi-
nance dependence (also context-independent). As previous,
here, the context also refers to the input values that are not
included in the group. Several dominance groups can exist
for one output value. If the group includes all input values,
then this dependency is a full-group dominance dependency
(or a full-group dependency). Since in this case there is
no context as such, the dependence directly determines the
result.

For explanation purposes, we consider only the domi-
nance relations (individual and group) between an output
and the inputs. The assignment whose value affects the
output is an active assignment. An input assignment is
active if:

1) there exists a change in the value of this assignment,
which leads to a change in the output value or;

2) the value of this assignment directly determines the out-
put value.

For each FB type, it is necessary to formulate particular
rules for determining active assignments.

Reasoning is implemented according to the algorithm from
Ovsiannikova et al.’s [12] work, which was also used to
calculate the explanation in Oeritte, presented in the same
article. Here, we use the same idea of backtracking, that
is, starting from the explanation target (a variable value of
interest), moving in the opposite direction to the informa-
tion flow, and determining assignments that influence the
target (active assignments). The difference from the existing
application of the algorithm (in Oeritte) here is that a set
of basic FBs can be created manually, which means that
their individual explanation functions are determined by the
user.

The explanation function explicitly encodes which assign-
ments are active depending on the current output and input
values. Thus, for example, for a basic FB that encodes the
disjunction y = x1 ∨ x2, the explanation function includes the
following rules. If y = T , then the active assignments are

FIGURE 10. Explanation example shown in an unfolded internal diagram
of a composite block SYS for the explanation target c1 (the diagram was
created using other than FBQL Editor visual redactor). The connections
between the assignments that influence c1 are shown in bold red. The
block has two composite blocks (fb3 and fb4) which are also shown
unfolded. Red numbers on the yellow rectangle and round backgrounds
show the valuations of the variables and predefined constants
correspondingly.

those whose values are T and if y = F , both input assignments
fully determine the output value.

As shown in Fig. 7, the user should use variable causes
to store the active assignments determined (as they cause the
output value).

Fig. 10 shows the result of the explanation for the output c1
of a composite block SYS. The internal diagram contains two
composite FBs and four basic FBs. As we can see, the result
of fb2 did not influence the target.

VII. RELATED RESEARCH
A considerable amount of scientific work describes ap-
proaches for modeling nonfunctional requirements. In our
state-of-the-art analysis, we searched for existing visual lan-
guages that have built-in capabilities to assist domain experts
in the formulation of DiD requirements. Special attention was
paid to the techniques applicable to evaluating complex I&C
architectures.

Most of the works consider integrating nonfunctional re-
quirements into the software development process. Even
though our nonfunctional requirements were decoupled from
the ones that software must comply with, we found several
visual techniques that partially motivated our research. For
example, Fei and Xiaodong [24] discussed the integration of
software architecture during analysis, and the described hier-
archy of properties resembles our AC design pattern. Then,
Gross and Yu [25] proposed the formulation of nonfunctional
requirements of different types in the form of different design
patterns, while we propose a design pattern to formulate vari-
ous requirements.

628 VOLUME 5, 2024



Supakkul and Chung [26] extended the UML language
for the formulation of functional requirements with nonfunc-
tional requirements framework and integrate two notations.
Hammani [27] also addressed the software engineering do-
main and points out the diversity of nonfunctional require-
ments; such requirements can often be decomposed into
several subrequirements. Their extended feature model, as
our FBD, among all, depicts how the requirements can be
expressed quantitatively using variables of a system. Bernardi
et al. [28] presented dependability-specific modeling and
analysis in MARTE, which extends UML with concepts for
modeling and quantitative analysis of real-time and embedded
systems.

Other articles in the software engineering domain ad-
dress nonfunctional requirements in model-driven develop-
ment [29], Cysneiros et al. [30] integrated them into concep-
tual models to deal with process-oriented properties, Botella
et al. [31] developed a special language and use UML to
implement its constructs, Ernst et al. [32] proposed a quality-
based visualisation scheme for nonfunctional aspects, which
is layered on top of functional artifacts.

In the I&C research domain, most of the works propose the
overall architectural development approaches, often without
particular focus on the nonfunctional requirement formula-
tion. Thus, Linnosmaa et al. [33] applied the architecture
analysis and design language to overall nuclear I&C. Neyret-
Thibault et al. [34] in turn, proposed a tool, STIMULUS, for
the visual design of requirements, but for the functional design
of I&C. The tool also has the capability of automatic observer
creation for the model under development, which reflects our
idea of being able to check the requirements automatically and
immediately after formulation.

There are also a few works on automatic nonfunc-
tional property checking; commonly, such works focus on
one particular requirement or their group. For example,
Singh [35] used the Petri Nets representation of safety crit-
ical systems to estimate their performance risk, Wakankar
et al. [36] proposed an automated dependability analysis using
model checking on the system architecture hierarchy, and
Promyslov et al. [37] dealt with cybersecurity requirements.
Sannier et al. [38] focused on modeling requirements under
the conditions of their frequent changes and mentions tools for
their creation (SysML and Unispace); however, it keeps the
creation of the architecture model and communication with it
beyond the scope.

More recent works mainly consider the software engi-
neering domain. For example, they include Alhaizaey and
Al-Mashari’s [39] work, which proposes a framework for
reviewing nonfunctional requirements in agile requirements
formulated as user stories or Bajammal [40] proposed a vi-
sual analysis of web applications’ nonfunctional properties.
In turn, Ernerstedt [41] addressed distributed systems and
evaluates visual tools to verify cloud-deployed applications
against nonfunctional properties.

Lubars et al. [42] assembled common challenges in the
development of complex software systems and the manage-
ment of their requirements, which also persist today in the
domain of I&C architectures. Our approach is flexible enough
to be tuned to the needs of different industries and different
approaches within the industry. The tool-assisted approach
simplifies the process of evaluating the system in the situation
of changing requirements. Resolution of conflicts between
different requirements can also be implemented using FBDs;
for instance, the cost optimization dimension can be added to
the existing FBD that evaluates the diversity of the architec-
ture.

Our approach can also be used with other methods and
tools, for example, executable UML. In this case, the knowl-
edge base should be figured out; for example, a relational
database can be queried instead of a set of Prolog statements
or an ontology.

VIII. DISCUSSION
We developed a method that 1) enables computer-aided graph-
ical formulation and a quantitative analysis of nonfunctional
properties or design principles that often can be satisfied only
to some extent and 2) reasoning over the obtained evalua-
tion result. The method of formulating design principles with
FBDs can be implemented using diverse instruments, and we
provided the example implementation in the FBQL Editor
graphical tool.

We demonstrated the method and the tool using a particular
ontology that represents I&C architecture and formulated a
diversity design principle using the proposed pattern. How-
ever, the applicability scope of the method is not restricted
by this example. Domain experts, engineers, and analysts can
maintain the knowledge they have about the system in on-
tologies and formulate various design principles or complex
nonfunctional properties. The use of the proposed method can
be justified if several requirements that can be answered by
whether they hold or not for the system are combined with
additional logic, for example, weighting or prioritization.

The reasoning principles of the method are described with
Prolog, while the extended FBD language is used for query
definition.

In our tool implementation, we use ontology as a knowl-
edge base and SPARQL queries to formulate the requests,
which are similar to Prolog, but better supported by modern
software tools.

IX. CONCLUSION
The contribution of this article is three-fold. First, we pro-
posed a method and a design pattern to formulate complex
design principles using FBD. This is a continuation of Pako-
nen and Mätäsniemi’s [5] work where the authors argued that
ontologies are convenient for developing and maintenance
of I&C architectures and showed how to formulate what
we call individual queries, using SPARQL. Together with

VOLUME 5, 2024 629



OVSIANNIKOVA ET AL.: FORMAL VERIFICATION OF NONFUNCTIONAL REQUIREMENTS OF OVERALL I&C ARCHITECTURES

Ovsiannikova et al.’s [43] work, this series of work establishes
the basis for developing complex I&C architectures, their
verification against nonfunctional properties, and subsequent
debugging of failures.

Second, we defined the method using the logical pro-
gramming language, Prolog. Finally, we demonstrated the
implementation of the proposed method within the graphical
tool, equipped with a graphical editor for the intuitive formu-
lation of SPARQL queries, which relieves users from the need
to learn SPARQL in the event that their knowledge base is
represented with an ontology.

The FBQL Editor graphical tool is available online [23].
The tool is in the prototype stage and its experimen-
tal evaluation was limited to the project team. In fu-
ture work, the tool is intended to be used by more
engineers.

Future work also includes improving the user experience
of the tool and enriching the graphical implementation of
SPARQL. In addition to general tool enhancements, we plan
to integrate algorithms from Ovsiannikova et al.’s [43] work
to provide a magnifying view of the knowledge base and
to highlight particular areas in I&C architectures that may
contain flaws. Then, it will be possible to create a method to
determine the optimal fix to the architecture for the criteria
provided by the analyst.

REFERENCES
[1] J.-E. Holmberg, “Defense-in-depth,” in Handbook of Safety Principles.

Hoboken, NJ, USA: Wiley, pp. 42–62, 2017.
[2] STUK, “Safety design of a nuclear power plant,” Radiation and Nuclear

Safety Authority YVL Guide B.1, 2019. [Online]. Available: https://
www.stuklex.fi/en/ohje/YVLB-1

[3] A. Mosteiro-Sanchez, M. Barcelo, J. Astorga, and A. Urbieta,
“Securing IIoT using defence-in-depth: Towards an end-to-end se-
cure industry 4.0,” J. Manuf. Syst., vol. 57, pp. 367–378, 2020,
doi: 10.1016/j.jmsy.2020.10.011.

[4] WENRA, “Safety of new NPP designs - study by reactor harmonization
working group RHWG,” Western European Nuclear Regulators’ Asso-
ciation, Tech. Rep., 2013. [Online]. Available: https://www.wenra.eu/
sites/default/files/publications/rhwg_safety_of_new_npp_designs.pdf

[5] A. Pakonen and T. Mätäsniemi, “Ontology-based approach
for analyzing nuclear overall I&C architectures,” in Proc.
47th Annu. Conf. IEEE Ind. Electron. Soc., 2021, pp. 1–7,
doi: 10.1109/IECON48115.2021.9589078.

[6] W3C, “OWL 2 web ontology language document overview (second
edition),” The World Wide Web Consortium, 2012. [Online]. Available:
https://www.w3.org/TR/owl2-overview/

[7] W3C, “SPARQL 1.1 query language” The world wide web consortium,
w3c recommendation, 2013. [Online]. Available: https://www.w3.org/
TR/sparql11-query/

[8] International Electrotechnical Commission, International Standard IEC
61131-3:2013: Programmable Controllers. Part 3: Programming Lan-
guages. IEC, 2013.

[9] W. F. Clocksin and C. S. Mellish, Programming in PROLOG. Berlin,
Germany: Springer, 2003.

[10] IAEA, “Exploring semantic technologies and their application to nu-
clear knowledge management,” Int. At. Energy Agency, Nucl. Energy
Ser. NG-T-6.15, 2021. [Online]. Available: http://www-pub.iaea.org/
MTCD/Publications/PDF/P1899_web.pdf

[11] NRC, “Diversity strategies for nuclear power plant instrumentation
and control systems” United States Nuclear Regulatory Commission,
NUREG CR-7007, 2009. [Online]. Available: https://www.nrc.gov/
docs/ML1005/ML100541256.pdf

[12] P. Ovsiannikova, I. Buzhinsky, A. Pakonen, and V. Vyatkin,
“Oeritte: User-friendly counterexample explanation for model check-
ing,” IEEE Access, vol. 9, pp. 61383–61397, 2021, doi 10.1109/AC-
CESS.2021.3073459.

[13] Areva NP. U.S. EPR Final Safety Analysis Report. 2013. [On-
line]. Available: https://www.nrc.gov/reactors/newreactors/design-cert/
epr/reports.htm

[14] L. S. Sterling and E. Y. Shapir, The Art of Prolog, 2nd ed. Cambridge,
MA, USA, MIT Press, 1994.

[15] I. Bratko, Prolog Programming for Artificial Intelligence, London,
U.K.: Pearson, 2001.

[16] J. W. Lloyd, Foundations of Logic Programming. Berlin, Germany:
Springer, 2012.

[17] J. Minker, “Logic and databases: A 20 year retrospective,” in Proc. Int.
Workshop Log. Databases, 1996, pp. 1–57.

[18] H. Rybiński, “On first-order-logic databases,” ACM Trans. Database
Syst., vol. 12, no. 3, pp. 325–349, 1987.

[19] T. R. Gruber, “A translation approach to portable ontology spec-
ifications,” Knowl. Acquisition, vol. 5, no. 2, pp. 199–220, 1993,
doi: 10.1006/knac.1993.1008.

[20] N. Shadbolt, T. Berners-Lee, and W. Hall, “The semantic web revis-
ited,” IEEE Intell. Syst., vol. 21, no. 3, pp. 96–101, Jan./Feb. 2006,
doi: 10.1109/MIS.2006.62.

[21] M. A. Musen, and Protégé Team “The Protégé project: A look
back and a look forward,” AI Matters, vol. 1, pp. 4–12, 2015,
doi: 10.1145/2757001.2757003.

[22] A. J. Fuseki. [Online]. Available: https://jena.apache.org/
documentation/fuseki2/

[23] FBQL editor. [Online]. Available: https://github.com/FBQLEditor/
FBQLEditor

[24] Y. Fei and Z. Xiaodong, “An XML-based software non-functional re-
quirements modeling method,” in Proc. 8th Int. Conf. Electron. Meas.
Instrum., 2007, pp. 2-375–2-380, doi: 10.1109/ICEMI.2007.4350695.

[25] D. Gross and E. Yu, “From non-functional requirements to design
through patterns,” Requirements Eng., vol. 6, no. 1, pp. 18–36, 2001.

[26] S. Supakkul and L. Chung, “A UML profile for goal-oriented and
use case-driven representation of NFRs and FRs,” in Proc. 3rd
ACIS Int. Conf. Softw. Eng. Res. Manage. Appl., 2005, pp. 112–119,
doi: 10.1109/SERA.2005.19.

[27] F. Z. Hammani, “Survey of non-functional requirements modeling and
verification of software product lines,” in Proc. IEEE 8th Int. Conf. Res.
Challenges Inf. Sci., 2014, pp. 1–6, doi: 10.1109/RCIS.2014.6861085.

[28] S. Bernardi, J. Merseguer, and D. C. Petriu, “A dependability profile
within MARTE,” Softw. Syst. Model., vol. 10, pp. 313–336, 2011.

[29] D. Ameller, X. Franch, and J. Cabot, “Dealing with non-functional
requirements in model-driven development,” in Proc. 18th IEEE Int. Re-
quirements Eng. Conf., 2010, pp. 189–198, doi: 10.1109/RE.2010.32.

[30] L. M. Cysneiros, J. C. S. do Prado Leite, and J. de Melo Sabat Neto, “A
framework for integrating non-functional requirements into conceptual
models,” Requirements Eng., vol. 6, pp. 97–115, 2001.

[31] P. Botella, X. Burgues, X. Franch, M. Huerta, and G. Salazar, “Mod-
eling non-functional requirements,” in Proc. Jornadas de Ingenieria de
Requisitos Aplicada JIRA, vol. 2001, 2001.

[32] N. A. Ernst, Y. Yu, and J. Mylopoulos, “Visualizing non-functional
requirements,” in Proc. 1st Int. Workshop Requirements Eng. Visual.,
2006, Art. no. 2, doi: 10.1109/REV.2006.10.

[33] J. Linnosmaa, A. Pakonen, N. Papakonstantinou, and P. Karpati, “Appli-
cability of AADL in modelling the overall I&C architecture of a nuclear
power plant,” in Proc. 46th Annu. Conf. IEEE Ind. Electron. Soc., 2020,
pp. 4337–4344, doi: 10.1109/IECON43393.2020.9254226.

[34] M. Neyret-Thibault, T. Lemattre, and G. Robin, “Model-based verifi-
cation of I&C specifications-184,” NPIC&HIMIT, USA, Jun. 11–15,
2017.

[35] P. Singh and L. Singh, “Verification of safety critical and control
systems of nuclear power plants using petri nets,” Ann. Nucl. En-
ergy, vol. 132, pp. 584–592, 2019, doi: 10.1016/j.anucene.2019.06.027,
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0306454919303457

[36] A. Wakankar, A. Kabra, A. Bhattacharjee, and G. Karmakar,
“Architectural model driven dependability analysis of computer
based safety system in nuclear power plant,” Nucl. Eng. Technol.,
vol. 51, no. 2, pp. 463–478, 2019, doi: 10.1016/j.net.2018.10.019,
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1738573318300536

630 VOLUME 5, 2024

https://www.stuklex.fi/en/ohje/YVLB-1
https://www.stuklex.fi/en/ohje/YVLB-1
https://dx.doi.org/10.1016/j.jmsy.2020.10.011
https://www.wenra.eu/sites/default/files/publications/rhwg_safety_of_new_npp_designs.pdf
https://www.wenra.eu/sites/default/files/publications/rhwg_safety_of_new_npp_designs.pdf
https://dx.doi.org/10.1109/IECON48115.2021.9589078
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://www-pub.iaea.org/MTCD/Publications/PDF/P1899_web.pdf
http://www-pub.iaea.org/MTCD/Publications/PDF/P1899_web.pdf
https://www.nrc.gov/docs/ML1005/ML100541256.pdf
https://www.nrc.gov/docs/ML1005/ML100541256.pdf
https://dx.doi.org/10.1109/ACCESS.2021.3073459
https://dx.doi.org/10.1109/ACCESS.2021.3073459
https://www.nrc.gov/reactors/newreactors/design-cert/epr/reports.htm
https://www.nrc.gov/reactors/newreactors/design-cert/epr/reports.htm
https://dx.doi.org/10.1006/knac.1993.1008
https://dx.doi.org/10.1109/MIS.2006.62
https://dx.doi.org/10.1145/2757001.2757003
https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/documentation/fuseki2/
https://github.com/FBQLEditor/FBQLEditor
https://github.com/FBQLEditor/FBQLEditor
https://dx.doi.org/10.1109/ICEMI.2007.4350695
https://dx.doi.org/10.1109/SERA.2005.19
https://dx.doi.org/10.1109/RCIS.2014.6861085
https://dx.doi.org/10.1109/RE.2010.32
https://dx.doi.org/10.1109/REV.2006.10
https://dx.doi.org/10.1109/IECON43393.2020.9254226
https://dx.doi.org/10.1016/j.anucene.2019.06.027
https://www.sciencedirect.com/science/article/pii/S0306454919303457
https://www.sciencedirect.com/science/article/pii/S0306454919303457
https://dx.doi.org/10.1016/j.net.2018.10.019
https://www.sciencedirect.com/science/article/pii/S1738573318300536
https://www.sciencedirect.com/science/article/pii/S1738573318300536


[37] V. G. Promyslov, K. V. Semenkov, and G. V. Promyslov, “Prac-
tical method of the I&C system security architecture design using
graph models,” IFAC-PapersOnLine, vol. 55, no. 9, pp. 227–232, 2022,
doi: 10.1016/j.ifacol.2022.07.040, [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2405896322004256

[38] N. Sannier, B. Baudry, and T. Nguyen, “Formalizing standards and
regulations variability in longlife projects. A challenge for model-driven
engineering,” in Proc. Model-Driven Requirements Eng. Workshop,
2011, pp. 64–73, doi: 10.1109/MoDRE.2011.6045368.

[39] A. Alhaizaey and M. Al-Mashari, “A framework for reviewing
and improving non-functional requirements in agile-based require-
ments,” in Proc. 18th Iberian Conf. Inf. Syst. Technol., 2023, pp. 1–7,
doi: 10.23919/CISTI58278.2023.10211956.

[40] M. Bajammal, “Automated visual analysis of non-functional web
app properties,” Ph.D. dissertation, Univ. Brit. Columbia, Vancou-
ver, BC, Canada, 2022. [Online]. Available: https://open.library.ubc.ca/
collections/ubctheses/24/items/1.0413754

[41] J. Ernerstedt, “An evaluation of tools for verifying non-functional re-
quirements for cloud deployed applications,” Master’s thesis, Fac. Sci.
Technol., Dept. Comput. Sci., Umeå Univ., Umeå, Sweden, 2023.

[42] M. Lubars, C. Potts, and C. Richter, “A review of the state of the prac-
tice in requirements modeling,” in Proc. IEEE Int. Symp. Requirements
Eng., 1993, pp. 2–14, doi: 10.1109/ISRE.1993.324842.

[43] P. Ovsiannikova, A. Pakonen, and V. Vyatkin, “Automatic generation
of repair suggestions for overall I&C architecture represented with
an ontology,” in Proc. IEEE 28th Int. Conf. Emerg. Technol. Factory
Automat., 2023, pp. 1–8, doi: 10.1109/ETFA54631.2023.10275557.

POLINA OVSIANNIKOVA (Graduate Student
Member, IEEE) received the B.Sc. degree in soft-
ware engineering and the M.Sc. degree in applied
mathematics and computer science from ITMO
University, Saint Petersburg, Russia, in 2016 and
2018, respectively, and the Ph.D. degree from
Aalto University, Espoo, Finland, in 2023.

Her research interests include formal verifica-
tion and its industrial applicability, methods for
aiding in requirements analysis for I&C systems,
and automation technologies for vertical farming.

ANTTI PAKONEN received the M.Sc. (Tech.) de-
gree in I&C systems from the Helsinki University
of Technology, Espoo, Finland, in 2004.

He is currently a Senior Scientist and Project
Manager with the VTT Technical Research Centre
of Finland Ltd., Espoo, Finland, where he has been
employed, since 2002. His research interests in-
clude I&C software engineering, I&C architecture
evaluation, practical application of model checking
in industrial applications, and knowledge manage-
ment.

DMITRY MUROMSKY received the B.Sc. degree
in software engineering from the University of
Penza, Russia, in 2023.

He is a Software Engineer, who actively partic-
ipates in research and development of software for
information protection and information security.
His research interests include graphic editors and
networked systems.

MAKSIM KOBZEV received the B.Sc. degree in
software engineering from the University of Penza,
Russia, in 2023.

He is a Software Engineer. He participates in
the development of software systems for the col-
lection, processing, and analysis of data in the
field of education. His research interests include
finite state machine models and their transforma-
tions, human–machine interface design methods,
and graphical query languages based on SPARQL.

VIKTOR DUBININ received the diploma and
Ph.D. degrees in computer engineering and the
Dr.Sc. degree in computer science from the Uni-
versity of Penza, Penza, Russia, in 1981, 1989, and
2014, respectively.

From 1981 to 1989, he was a Researcher; from
1989 to 1995, he was a Senior Lecturer; and from
1995 to 2015, he was an Associate Professor with
the University of Penza. In 2011, he held a vis-
iting Researcher position with The University of
Auckland, Auckland, New Zealand, and from 2013

to 2019, he was with the Luleå University of Technology, Luleå, Sweden.
From 2015 to 2022, he was a Professor with the Department of Computer
Science, University of Penza. His research interests include formal methods
for specification, verification, synthesis, and implementation of distributed
and discrete event systems.

Dr. Dubinin was a recipient of DAAD grants to work as a Guest Scientist
with Martin Luther University Halle-Wittenberg, Halle, Germany, in 2003,
2006, and 2010.

VALERIY VYATKIN (Fellow, IEEE) received the
Ph.D. degree in applied computer science from the
Taganrog State University of Radio Engineering,
Taganrog, Russia, in 1992, the Dr.Eng. degree in
electrical engineering from the Nagoya Institute of
Technology, Nagoya, Japan, in 1999, and the Ha-
bilitation degree in engineering from the Ministry
of Science and Technology of Sachsen-Anhalt,
Magdeburg, Germany, in 2002.

He is currently the Chaired Professor with the
Luleå University of Technology, Luleå, Sweden,

and a Full Professor with Aalto University, Helsinki, Finland. He was a Visit-
ing Scholar with Cambridge University, Cambridge, U.K., and had permanent
academic appointments with New Zealand, Germany, Japan, and Russia. His
research interests include dependable distributed automation and industrial
informatics, software engineering for industrial automation systems, artifi-
cial intelligence, distributed architectures, and multiagent systems applied in
various industry sectors, including smart grids, material handling, building
management systems, data centres, and reconfigurable manufacturing.

Dr Vyatkin was a recipient of the Andrew P. Sage Award for the Best IEEE
Transactions Paper in 2012. He has been Chair of the IEEE IES Technical
Committee on Industrial Informatics, since 2016, and the Vice President of
IES for Technical Activities for the term 2022–2025.

VOLUME 5, 2024 631

https://dx.doi.org/10.1016/j.ifacol.2022.07.040
https://www.sciencedirect.com/science/article/pii/S2405896322004256
https://www.sciencedirect.com/science/article/pii/S2405896322004256
https://dx.doi.org/10.1109/MoDRE.2011.6045368
https://dx.doi.org/10.23919/CISTI58278.2023.10211956
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0413754
https://open.library.ubc.ca/collections/ubctheses/24/items/1.0413754
https://dx.doi.org/10.1109/ISRE.1993.324842
https://dx.doi.org/10.1109/ETFA54631.2023.10275557


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


