
Received 5 April 2024; accepted 17 May 2024. Date of publication 5 June 2024;
date of current version 21 June 2024. The review of this article was arranged by Associate Editor Luis Gomes.

Digital Object Identifier 10.1109/OJIES.2024.3406059

A Framework for the Generation of Monitor
and Plant Model From Event Logs Using
Process Mining for Formal Verification of

Event-Driven Systems
MIDHUN XAVIER 1 (Graduate Student Member, IEEE), VICTOR DUBININ 2,
SANDEEP PATIL 1 (Member, IEEE), AND VALERIY VYATKIN 1,3 (Fellow, IEEE)

1Luleå University of Technology, 97187 Luleå, Sweden
2Independent researcher, Russian Federation, Penza 440052, Russia

3Aalto University, 02150 Helsinki, Finland

CORRESPONDING AUTHOR: VALERIY VYATKIN (e-mail: Valeriy.Vyatkin@aalto.fi)

This work was supported in part by Horizon Europe Project Zero-SWARM funded by European Commission under Grant 101057083.

ABSTRACT This article proposes a method for the automatic generation of a plant model and monitoring us-
ing process mining algorithms based on recorded event logs. The behavioral traces of the system are captured
by recording event logs during plant operation in either manual control mode or with an automatic controller.
Process discovery algorithms are then applied to extract the logic of the process behavior properties from the
recorded event logs. The result is represented as a Petri net, which is used to construct the state machine of
the plant model and monitor and is in accordance with the IEC 61499 Standard. The monitor is implemented
as a function block and can be deployed in real time to trigger an error signal whenever there is a deviation
from the actual process scenario. The plant model and controller are connected in a closed loop and are
used for the formal verification of the system with the help of the “fb2smv” converter and symbolic model
checking tool NuSMV.

INDEX TERMS IEC 61499, formal verification, plant model generation, process mining.

I. INTRODUCTION
The adoption of the IEC 61499 [1] Standard in Industry 4.0
to model distributed systems signifies a reliable and widely
accepted approach [2]. In the IEC 61499 Standard, the dis-
tributed control system is expressed in terms of a network of
function blocks (FBs) executed in an event-driven way, while
individual FBs are implemented as state machines [3], [4], [5]
called execution control charts (ECCs).

The design of distributed control for systems is composed
of several mechatronic components with complex interactions
and is susceptible to design faults in the real system. In order
to detect potential errors during run-time, monitors [6], [7] can
be used as a monitoring technique. The monitor can observe
the process sequence and provide an alert or even stop the
process if it deviates from the expected process flow. The

deployment of distributed control systems without proper ver-
ification can cause significant damage to system components.
Simulation [8] is another widely used error-capturing method,
this method does not guarantee the absence of errors in the
system.

Formal verification [9], [10] can be utilized to identify
errors in the designed system by using computation tree
logic (CTL) and linear temporal logic (LTL) specifications.
The development of a formal model for the system requires
the creation of models for both the plant and controller.
While creating a formal model for the controller is rela-
tively straightforward, modeling the plant can be complicated
and it requires manual development. Formal verification [11]
offers a more rigorous approach to verifying the correct-
ness of distributed automation systems. Ramdani et al. [12]

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 5, 2024 517

https://orcid.org/0000-0003-3371-6075
https://orcid.org/0000-0002-5761-2249
https://orcid.org/0000-0003-2936-4185
https://orcid.org/0000-0002-9315-9920
mailto:Valeriy.Vyatkin@aalto.fi

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

introduced reconfigurable CTL, an extension of classical
CTL, aimed at streamlining the formal verification process for
complex reconfigurable discrete-event systems by reducing
the number of properties needing verification through the clas-
sification and prioritization of properties based on dominance
and equivalence relations. By computationally exploring a
broad range of error-causing scenarios within the system, for-
mal verification techniques can provide a more comprehensive
analysis of potential errors than simulation-based methods.

The manual implementation of plant models [8], [13] is
complex and time-consuming; hence, the automatic genera-
tion of plant models [14], [15] helps in many cases. The plant
model can be implemented by obtaining system information
through the recording of event sequences that occur within the
system.

This study focuses on generating a monitor and a plant
model by leveraging a process mining methodology on
recorded event logs. While the monitor can be represented in
different process model paradigms for the purpose of confor-
mance checking, this study focuses on developing a monitor
based on the IEC 61499 FB. Subsequently, this monitor is
deployed to evaluate the conformance.

The study addresses the challenge of classic process min-
ing, which typically constructs a model of the entire system. In
our approach, the focus is on developing a model specifically
for the uncontrolled behavior of the plant, with the inten-
tion of later integrating it with the control model to create
a closed-loop system model. This approach aligns with the
requirements of discrete event system verification.

The article is structured as follows: Section II provides
an in-depth literature review that compares the proposed
approach with existing methods found in prior research.
Section III provides an overview of the foundational concepts
of the reference model of control/sensor events sequencing
and outlines the process of decomposing Petri nets into state
machine components (SMCs). The workflow and potential use
cases are detailed in Section IV. Section V describes the pro-
cess of finite state machine (FSM) generation from the event
log, including the implementation of both the monitor and the
plant model within IEC 61499 FBs. Section VI offers a case
study focusing on a pneumatic cylinder, presenting compre-
hensive results and analysis. Finally, Section IX serves as the
conclusion, summarizing the article’s findings and delineating
future objectives.

II. RELATED WORK
IEC 61499 [1] is an international standard for the design
and implementation of industrial automation systems (IASs),
particularly in the realm of distributed control systems.
Christensen et al. [16] introduced a model-driven approach
(MDA) for distributed control systems within the context of
IEC 61499 systems, providing a framework for modeling,
designing, and deploying distributed control systems using
a modular and event-driven approach. IEC 61499 is em-
ployed in industrial applications due to its enhanced modular-
ity [17], control logic reusability [18], flexibility in complex

processes [19], and improved interoperability among automa-
tion components [20].

The paper [21] describes how IEC 61499 standard itself
ensures safety, but it is necessary to verify the system before
its deployment to guarantee its reliability. Hegny et al. [8]
presented IEC 61499 based simulation framework for model-
driven production systems development. While simulation is
valuable for identifying bugs and assessing system behavior,
it alone does not guarantee error-free operation. In [10], the
comparison of formal verification approaches for IEC 61499
to enhance the safety assurance is explained. Formal analysis
of IEC 61499 applications [11], [22] involves mathematically
proving that the control system meets specified safety proper-
ties and requirements. By applying formal methods [23], [24],
potential hazards and errors can be rigorously identified and
corrected.

In [25] and [26], systematic closed-loop modeling in IEC
61499 FBs and its formal verification is presented. Closed-
loop formal verification in IEC 61499, where the plant model
and controller are connected in a closed-loop, is a better ap-
proach [27], [28] as it allows for the verification of system
properties under realistic operating conditions, ensuring that
the control system behaves correctly and safely in response to
dynamic and unpredictable environmental changes [29].

In [13], the plant model is presented not only for simula-
tion but also serves the purpose of formal verification. Malik
et al. [30] presented an efficient approach wherein the plant
model is constructed within an IEC 61499 FB, simplifying
the integration of the controller and plant within a closed-loop
system. The introduction of the fb2SMV tool [31] facilitates
the conversion of FB code into SMV format, enabling the
verification of CTL or LTL specifications through NuSMV
model checker [32], thus streamlining the formal verifica-
tion process. In [33], a plant model in IEC 61499 FB with
nondeterministic transitions (NDTs) is introduced for for-
mal verification. While this method provides a more realistic
means of implementing the plant model, it does entail manual
work that is susceptible to errors and can be time-intensive. In
our previous study [14], we proposed a semiautomatic plant
model generation in SMV, but it posed challenges in inte-
grating with the SMV model of the controller for closed-loop
formal verification.

The research gap centers on the automatic generation of a
plant model within IEC 61499 FBs to facilitate formal ver-
ification, and this article aims to fill this void. In this study,
we employ recorded events and leverage a process mining
approach to develop a plant model. While process mining
typically yields an overview of the entire system’s behavior,
this article specifically details the extraction of the plant model
using IEC 61499 FBs from this broader system behavior.

Process mining is a data-driven technique used to discover,
monitor, and improve real-world processes by analyzing event
logs and extracting valuable insights about how these pro-
cesses are executed [34], [35]. Beyond the realm of business
process modeling, such methods are also applied in anomaly
detection, cyber-attack detection, and alarm analysis within
industrial control systems, utilizing a range of control flow

518 VOLUME 5, 2024

discovery algorithms [36]. By analyzing event logs from var-
ious components and sensors, it can provide a comprehensive
view of the system’s operational behavior, enabling the iden-
tification of bottlenecks, deviations, and inefficiencies. This
study applies similar principles to derive the process sequence
of a controlled system, utilizing a mining algorithm for pro-
cess discovery. ProM [37] and DISCO [38] are the widely
used process mining tools for the preparation of event logs,
process discovery, visualization, and conformance checking.
ProM [39] which is used in this study, is an open-source tool,
and comprises several process discovery algorithms and plu-
gins for conformance checking and visualization. The alpha
algorithm [40] is selected as the process discovery algorithm
in this study due to its simplicity and transparency. Other
process mining algorithms, such as the Heuristics Miner,
Inductive Miner, or Genetic Miner are suggested when more
complex or detailed insights are required [41], [42]. In recent
research, process mining algorithms have shown the capa-
bility to handle multiple-concurrency short-loop structures
effectively [43], [44]. These algorithms can handle larger and
more intricate event logs, making them suitable for in-depth
analysis, optimization, and automation of processes. The se-
lection of the algorithm should align with the objectives of the
level of complexity in the process of being analyzed [36].

The study provides a comprehensive understanding of the
system’s behavior through event logs is available. This sets
the stage for performing conformance checking based on the
model derived from these event logs [45], [46]. This article
introduces a method for the automated generation of a mon-
itor in IEC 61499 FBs, facilitating real-time deployment for
monitoring purposes. This IEC 61499 monitor FB analyzes
all events to detect any deviations from the expected flow.
The combination of this monitor in the form of an IEC 61499
FB and the plant model represented similarly in IEC 61499
FBs becomes particularly advantageous when introducing
new controllers or migrating to IEC 61499 FBs. The newly
introduced controller can seamlessly connect in a closed-loop
configuration with the plant model, and the developed IEC
61499 monitor FB allows us to monitor system behavior. Any
deviation in events leading to an error state triggers the mon-
itor, ensuring that the newly developed controller performs in
accordance with the previous controller. The option to create
a formal model of the system and perform formal verification
adds an extra layer of safety assurance before deployment into
the operational system.

III. BACKGROUND
A. RMCSES CONCEPT
The Reference Model of Control/Sensor Events Sequencing
(RMCSES) is a formal model that developed from the pro-
cess mining [47] of event logs describing the functioning
of a closed-loop IAS in an “error-free” mode over an ex-
tended period. RMCSES offers a condensed representation
of a vast event log, encompassing all possible signals from
all components. Conceptually, if one imagines the event log
as a collection of sentences or phrases of a formal language,

describing the behavior of the IAS [27], then RMCSES func-
tions as a sentence generator for this language. Due to its
conciseness, RMCSES can be readily implemented in soft-
ware or hardware.

The interface of the RMCSES is shown in Fig. 1(d). The
RMCSES only takes into account control signals originating
from the controller and informative signals originating from
sensors as events. These signals represent the interface be-
tween the controller and the plant. Internal signals circulating
within the control system and the plant are not considered, but
it is possible to include control signals from external sources
such as an operator.

In an IAS operating in an “error-free” mode, the func-
tioning of each component is characterized by cyclical,
meaningful, and locally complete processes. The insignificant
operation of components, such as when an ejector piston
moves back and forth indefinitely, is not considered. The com-
ponent is identified to have meaningful behavior when it has
a specific goal and actively works toward achieving it. Each
component or device follows a specific scenario that begins
with its initialization and ends with its termination. A multi-
functional device may execute different scenarios depending
on the specific task or operation it is performing.

Fig. 1(b) illustrates the cyclical operation of a component
(device) and the possible cutoff points of the event log. As the
functioning of a component (device) is cyclical, meaningful,
and locally complete, the event log represents only a part of
the process history of this component (device), leading to
incomplete operation traces in the log that will be mapped
onto the formal model. Therefore, a question arises as to how
these incomplete traces, or “scraps,” affect the extraction of an
event log. Our experimental results indicate that the addition
of such scraps to the event log does not result in significant
changes.

Given the convenience of implementing the RMCSES as an
IEC 61499 FB, we have opted to employ it as an FSM in our
research; we do not preclude the use of alternative models.
The RMCSES will constitute a comprehensive representation
of the lower level operation of the system; for intricate IAS,
this model may become unwieldy.

Petri nets [48] are frequently employed as a formalism for
system modeling in the domain of process mining, as they of-
fer greater expressive power in comparison to finite-automata
models. The Petri nets are subsequently decomposed into
SMCs and then composed to create an FSM through the
application of specific refactoring rules. This FSM can be
readily mapped onto an ECC diagram of a basic FB, with a
near “one-to-one” correspondence. The primary goal of this
refactoring procedure is to eliminate constructs such as “Fork
into parallel branches” and “Join parallel branches.” It should
be noted that such transformations may not always be feasible.

B. OVERVIEW OF PETRI NET DECOMPOSITION
TECHNIQUES
Petri nets are essential for modeling concurrent systems [49],
but can become complex as systems grow in scale. To man-
age this complexity, various decomposition techniques have

VOLUME 5, 2024 519

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

FIGURE 1. Workflow and use cases.

been developed. These methods, including the reachability
graph method, structural decomposition methods, and lin-
ear algebra-based methods, aim to break down Petri nets
into more understandable components while preserving their
essential behavioral characteristics. The reachability graph
method [50] involves analyzing the reachability graph to
identify subsets of states and transitions, facilitating the parti-
tioning of the Petri net into manageable modules. Structural
decomposition methods [51], [52] leverage properties like
perfect graph theory to systematically break down complex
nets into simpler subnets. Linear algebra-based methods [53],
[54] use matrix manipulation to extract sequential components
from place invariants, aiding in the identification of inde-
pendent modules within the Petri net. These techniques offer
distinct advantages in analyzing, verifying, and understanding
concurrent systems modeled with Petri nets.

In this article, the focus lies on accurately modeling a plant
using IEC 61499 FBs to ensure the comprehensive capture
of all its behaviors, vital for the proper functioning of the

closed-loop system with a controller. To achieve this, the
reachability graph [55], [56] method is employed as a de-
composition technique to derive SMCs from Petri nets. This
method offers a structured and systematic approach to ex-
ploring all reachable states and transitions within the system,
guaranteeing completeness in capturing all potential behav-
iors. By exhaustively mapping out all possible states and
transitions, it ensures that no aspects are overlooked during
analysis, providing a thorough understanding of the system’s
behavior dynamics and potential outcomes. It is suscepti-
ble to the state explosion problem [50], [57], particularly
in larger and more complex Petri nets, leading to compu-
tational inefficiency and difficulty in analysis. In contrast,
structural decomposition methods leverage the Petri net’s
structural properties [58] to identify cohesive subsets that
can be modeled as individual SMCs, providing flexibility in
decomposition criteria. While these methods can offer more
manageable representations and may be less prone to state
explosion, their effectiveness heavily depends on the chosen

520 VOLUME 5, 2024

structural properties and decomposition criteria, and may re-
quire domain-specific knowledge for optimal results.

This article discusses on the complete automatic generation
of a plant model in IEC 61499 FB, identifying structural
properties poses a challenge and necessitates domain-specific
knowledge. Structural decomposition methods may offer a
different approach by breaking down the system into smaller
components based on structural properties [59]. This approach
may overlook certain behaviors arising from interactions
between components, unlike the comprehensive exploration
provided by reachability graphs. Reachability graphs provide
a fine-grained analysis of the system’s behavior, captur-
ing individual states and transitions, which may be lacking
in granularity in structural decomposition methods. Linear
algebra-based methods [60] provide a systematic approach to
extracting sequential components from place invariants, offer-
ing insights into the structural properties of the Petri net. They
may have limited applicability to Petri nets with complex or
nonlinear dynamics and may be computationally intensive for
large systems, requiring expertise in linear algebra [53], [61]
for implementation and analysis. Overall, while the reachabil-
ity graph method ensures completeness but suffers from state
explosion, structural decomposition methods offer flexibility
but depend on chosen criteria, and linear algebra-based meth-
ods provide insights but may have limited applicability and
computational complexity, highlighting the tradeoffs between
completeness, flexibility, and computational efficiency in de-
composing Petri nets into SMCs.

Considering the tradeoffs among different decomposition
techniques, the need for completeness in capturing all system
behaviors to ensure successful formal verification of closed-
loop system properties is paramount. The challenge of state
space explosion looms large, particularly in the reachability
graph method [62], [63]. To address this, several strategies
can be implemented [64]. State space reduction techniques in-
volve the adoption of symbolic representations such as binary
decision diagrams (BDDs) or decision diagrams to compactly
represent sets of states [65], thereby reducing memory re-
quirements and mitigating state space explosion. A recent
study [66] presents an approach utilizing reduced ordered
binary decision diagrams to address state explosion issues in
verifying privacy properties of multiagent systems modeled
with knowledge-oriented Petri nets and CTL of knowledge,
significantly reducing verification time even for large-scale
systems such as the dining cryptographers protocol. Abstrac-
tion and Aggregation methods [67] selectively abstract or
aggregate unnecessary details in the reachability graph, fo-
cusing on essential behavioral properties while discarding
less critical information, thus reducing the size of the state
space and enhancing efficiency. Partial order reduction tech-
niques [68], [69] aim to diminish redundant interleavings
explored during state space traversal, avoiding the explo-
ration of equivalent states and further reducing the size of
the state space. clarke1999state, a Hybrid Exploration Strat-
egy is suggested. It involves incremental construction, where
the reachability graph is dynamically constructed as needed

during analysis, conserving memory and computational re-
sources. On-the-fly exploration is employed to explore states
as needed rather than generating all states upfront, efficiently
managing state space explosion. Structural decomposition
techniques are integrated into the hybrid method, wherein the
Petri net is decomposed into smaller subsystems, and reacha-
bility analysis is performed on each subsystem independently.
This approach reduces the overall size of the state space that
needs to be explored and analyzed, further mitigating state
space explosion while ensuring comprehensive system behav-
ior coverage.

Combining SMCs into a cohesive FSM necessitates care-
ful integration to ensure synchronization and coordination
between them. Several methods facilitate this process: Se-
quential composition [70], where the output of one SMC
becomes the input of another, suitable for systems with well-
defined sequential behavior; parallel composition, involving
concurrent execution of SMCs and combining their states and
transitions to represent parallel behavior [71]; synchroniza-
tion and handshaking techniques [72] ensuring coordination
between SMCs through protocols and clock domain cross-
ing mechanisms; global state encoding [73], where individual
SMC states are merged into a unified state space for compre-
hensive system representation; state merging, identifying and
collapsing equivalent states to manage complexity [74]; and
interface design and refinement, establishing clear interfaces
and refining interactions for modularity and maintainability.
These methods offer practitioners a toolkit to effectively in-
tegrate SMCs, with choices guided by system characteristics
such as concurrency and synchronization needs, enabling the
creation of a coherent FSM reflecting the overall system be-
havior.

For developing an FSM, a combination of parallel com-
position and synchronization techniques is preferred. Given
the distributed nature and modularity requirements of IEC
61499 systems, parallel composition allows individual SMCs
to represent concurrent activities effectively, aligning with
the system’s modular architecture. This approach facilitates
easier maintenance, debugging, and resource utilization opti-
mization. Synchronization techniques ensure proper coordina-
tion and communication between distributed SMCs, meeting
real-time constraints and enhancing system correctness and
reliability. By leveraging parallel composition and synchro-
nization, developers can seamlessly integrate SMCs into a
coherent FSM, enabling the development of robust and effi-
cient ECC in IEC 61499 FB environments.

IV. WORKFLOW
This section outlines the workflow and potential use cases
enabled by RMCSES, as illustrated in Fig. 1. Initially, signals
from the distributed control system are recorded to construct
RMCSES using process mining techniques. RMCSES then
serves as the basis for generating the monitor (D1), plant
model (D2), control model (D3), and control program (D4).
In our prior research, we presented (D3) an interactive learn-
ing approach for deriving controller logic following the IEC

VOLUME 5, 2024 521

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

FIGURE 2. Tool chain and data flow for generating FSMs from event logs
and their implementation in the form of IEC 61499 FBs.

61499 standard [75]. Our previous study detailed (D2) the
methodology and implementation of a basic plant model
(a horizontal cylinder) [15]. In this study, we enhance the
methodology by incorporating global state information to cre-
ate a precise plant model, subsequently closing the loop with
a controller for formal verification using a toolchain [33].
Developing the monitor in IEC 61499 FBs is instrumental
for real-time error identification and prediction within the
controller. In this article, we develop such a monitor from
event logs for conformance checking. Finally, future work is
planned to reimplement control and facilitate platform migra-
tion by deriving the control program from RMCSES.

V. FSM FROM EVENT LOGS AND THEIR
IMPLEMENTATION IN IEC 61499 FBS
This section describes the steps involved in generating IEC
61499 FBs from the recorded event log.

A. PETRI NET CONSTRUCTION FROM EVENT LOGS
The process of generating FSM from event logs and their
implementation in the IEC 61499 FB is shown in Fig. 2. To

start the process, the event log is given as input to the process
mining tool called ProM [39], which is an open-source tool
that offers various features such as representing process logic
in different models, event log preprocessing, format conver-
sion, conformance checking, LTL specification testing, and
visualizations. The input event log is provided to ProM in
CSV format, which then preprocesses the data and converts
it into eXtensible Event Stream (XES) format. ProM then
applies a process mining algorithm to the event log in XES
format to extract processes in the form of Petri nets.

B. FSM GENERATION FROM PETRI NET
1) FROM PETRI NETS TO SMCS: UTILIZING REACHABILITY
GRAPHS FOR DECOMPOSITION
To depict a Petri net within the ECC of IEC 61499 FBs, it
is crucial to first decompose the Petri net into SMCss. Sub-
sequently, these SMCs can be composed into a FSM. The
extracted Petri net can be exported in the Petri net Markup
Language (PNML) format using the ProM tool. The PNML-
formatted Petri net is then given as input to the TINA tool [76],
which constructs a RG and can perform Petri net simulation.
The finite RG is decomposed to SMC with spontaneous tran-
sitions as follows.

Consider a running example “Repairing telephones” for
the implementation of the IEC 61499 FB of the FSM for
conformance checking. The description of the “Repairing
telephones” event log is given in ProM 6 tutorial, 2010 [77].
The generated Petri net from the event log using an inductive
miner is shown in Fig. 3(a). A supplementary transition is
added to the Petri net to make the process cyclic. In Fig. 3(a),
the Petri net is under stepwise simulation, and the “Repeat”
transition is added to make this process cyclic. Graphical
representation of the RG is drawn manually using the RG text
from TINA is outlined in Fig. 3(b). The SMC is derived from
the RG, and the transitions in the SMC are designated with the
same names as the corresponding transitions in the Petri net.
The “spontaneous” transitions are marked in blue color.

There appears to be a discrepancy regarding the potentially
infinite nature of constructing a reachability set for a Petri net,
which, in theory, could be infinite. It is essential to clarify that
this set should not be infinite, as the event log, by its very
nature, is finite. From a finite event log, a Petri net should
indeed yield a finite number of reachable markings. The count
of these markings should not exceed the number of entries in
the event log, serving as an upper bound. This is grounded in
the event log’s representation as a very large RG with linear
topology. Each event (entry) in the log distinctly defines a
transition from one state (marking) to another. Modern tools
for Petri net analysis can construct high-dimensional RGs, like
those achieved through the BDD method. The challenge lies
not in constructing the RG but rather in its implementation
using IEC 61499 FBs. Nevertheless, even in cases where the
RG comprises several thousand states, this challenge could
be surmountable with the availability of appropriate CAD
tools. It is worth noting that reduction methods for Petri nets

522 VOLUME 5, 2024

FIGURE 3. Transformation of Petri net to FSM for monitor implementation.

may offer a viable strategy to significantly reduce the size of
the RG, further enhancing the manageability of this complex
process.

2) TACKLING STATE SPACE EXPLOSION: EFFECTIVE
STRATEGIES FOR PETRI NET ANALYSIS
Addressing the state space explosion issue in the reachabil-
ity graph method for Petri nets involves employing various
strategies to manage the exponential growth of states and
transitions. Techniques such as abstraction and aggregation
identify high-level patterns and structures for simplification,
while partial order reduction reduces redundancy by exploring
subsets of transitions together. Symmetry reduction exploits
symmetrical properties to collapse equivalent states and tran-
sitions, effectively pruning redundant branches. On-the-fly
exploration dynamically generates states and transitions only
when needed, reducing memory consumption. State compres-
sion techniques compress state representations for efficient
storage, and parallel and distributed exploration leverage par-
allelism to speed up analysis. By utilizing these methods,
practitioners can navigate the complexities of larger Petri nets
while efficiently managing computational resources, with the
choice of approach guided by specific system characteristics
and resource constraints.

3) COMPOSING FSM FROM SMCS
Developing a FSM from SMCs demands meticulous syn-
chronization of decomposed components, a challenging task
influenced by the system’s clock domains. Within the frame-
work of IEC 61499 FB, creating an ECC requires selecting

an appropriate method for merging SMCs into an FSM, tai-
lored to the specific requirements and characteristics of the
distributed control system. The combined utilization of par-
allel composition and synchronization techniques emerges
as the favored approach, offering concurrency management,
modularity preservation, resource optimization, adherence to
real-time constraints, and reinforcement of system correctness
and reliability. These methodologies seamlessly align with the
distributed and modular architecture of IEC 61499 systems,
making them well-suited for consolidating SMCs into a co-
herent FSM.

To implement the strategy of parallel composition and syn-
chronization techniques, the initial step involves identifying
individual SMCs representing distinct functionalities within
the distributed control system. Clear interfaces must be de-
fined to delineate inputs, outputs, events, and communication
protocols, facilitating seamless coordination among SMCs.
Each SMC is then implemented as a separate module, en-
abling concurrent execution to handle various tasks efficiently.
Event-driven communication serves as a pivotal synchro-
nization mechanism, establishing communication channels
between SMCs to facilitate information exchange and event
triggering. Integration of SMCs into a unified system requires
ensuring accurate interaction and synchronization based on
defined interfaces and communication channels. Rigorous
testing is essential to validate correctness, reliability, and real-
time performance, with iterative refinement and optimization
of the FSM to meet desired behavior and performance criteria.
This approach, aligned with the distributed and modular na-
ture of IEC 61499 systems, fosters the development of robust
and efficient distributed control systems.

VOLUME 5, 2024 523

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

C. DETERMINIZATION OF FSM WITH SPONTANEOUS
TRANSITIONS
Nondeterminism may occur in FSMs when employing “spon-
taneous” transitions within Petri nets. This means that the
transitions of the Petri net are not related to any event. In
the ProM system, they are indicated by black rectangles in
Petri nets. The rule of mapping the transitions is as follows:
A transition in an FSM will be spontaneous if it corresponds
to a “spontaneous” transition in the Petri net. In FSM, sponta-
neous transitions are denoted by the symbol λ (“lambda”) or
ε (“epsilon”).

The process of determinization can significantly simplify
the implementation of a FSM in software. In this case, this
process consists of getting rid of λ-arcs representing sponta-
neous transitions.

In this study, we use two approaches to the determinization
of FSM that contain spontaneous transitions. The essence of
the first approach is as follows: two vertices (states) connected
by a λ-arc are combined into one vertex. In this case, the
incoming and outgoing arcs of both vertices are combined,
and the λ-arc is removed [see Fig. 3(d)]. This rule is applied
until there are no λ-arcs left in the transformed graph. This
method is not universal and it is applicable only in the case
of a tree-like topology of λ-arc relationships. In the second
(universal) method, two vertices are contracted into one vertex
if one vertex is reachable from another vertex through a chain
of λ-arcs.

Determinization of an FSM can be omitted when there are
no states with two or more spontaneous transitions outgoing
from a state of the FSM. If there are no such situations, then
a spontaneous transition can be interpreted in the ECC as a
transition with an always true condition “1.”

D. GENERATION OF DETERMINISTIC FSM
The JFLAP tool [78] is used to implement the determinization
of FSM. In this process, only one-letter designations of input
symbols (signals) can be used. To encode the long names of
input events used in the Petri net for the given example, we
use a one-letter encoding (see Fig. 3).

The nondeterministic FSM is shown in Fig. 3(b), and spon-
taneous transitions are labeled with the symbol λ (“lambda”).
The transition labeled as J (i.e., “Repeat”) from q9 to q0 will
not take part in the determinization process. Instead, it will be
replaced with the symbol “1” in the corresponding ECC. After
determinization, the deterministic FSM is obtained as shown
in Fig. 3(c). GraphML format [79] was used to visualize the
reachability graph with the help of visualization tools like
Gephi [80], Yed [81], etc.

We employ a process discovery algorithm to generate
a Petri net from the event log. Subsequently, we utilize
the TINA tool to convert this Petri net into SMCs. These
SMCs are further transformed into a deterministic FSM with
the assistance of the JFLAP tool. These tools have gained
widespread acceptance and are known for their accuracy and
reliability in performing these conversions. By following this
step-by-step approach and analyzing the model at each stage,

we ensure the correctness of the transformation process. At-
tempting a direct conversion could be error-prone, making
these integrated tools the preferred choice to prevent inaccu-
racies and streamline the workflow.

E. TRANSFORMATION OF FSM TO IEC 61499 FBS FOR
MONITOR IMPLEMENTATION
The structure of the application for conformance checking is
depicted in Fig. 4. The application is based on a closed-loop
system that includes a plant and a controller. The RMCSES
obtained from the event log is connected to the closed-loop
system for the purpose of conformance checking. The RMC-
SES is implemented as a FSM that uses input data to drive
its logic. The FSM is capable of detecting errors and verifying
the correct sequence of steps in the process flow by monitoring
events from the sensor and actuator in real time.

Fig. 4 depicts the conversion of the RMCSES into the
monitor. The monitor interface FB receives input signals in
the form of controller signals c1 . . . cn and sensor signals
s1 . . . sm. The ECC is generated through the utilization of the
transformation rule depicted in Fig. 4. An algorithm, based
on this transformation rule and facilitating the conversion of
FSM to ECC with error handling, is presented in Algorithm 1.
When the monitor FB detects a valid transition from state qi

to q j triggered by event Xk , it generates an output indicating
a successful transition, denoted as “OK.” If an unexpected
event occurs, it transitions to the ERROR state, producing
an ERROR event and providing details about the event that
caused the error (EventID) and the StateID, which identifies
the state where the error took place. This transformation rule
ensures that the ECC reflects the behavior of the FSM and is
equipped to handle errors.

The Monitor FB shown in Fig. 4 is a direct implementation
of the FSM, representing the formal reference model. The
FSM is mapped to the ECC practically “one-to-one” and the
FB interface is formed as follows. Each event is assigned
its own event input. The INIT input signal is intended to
set the model to the initial state. The signal from the event
output “OK” is issued when the received input event is in
conformance with the formal reference model. In this case, the
number (id) of the ECC state is issued, to which the transition
took place (the output variable StateID). When an error is
detected, not only the state number (StateID) where the error
occurred but also the number of the input event (EventID) that
led to the error is issued. Thus, the error is captured. The FB
works until the first error appears, after that the FB is blocked,
i.e., it becomes not responsive to any inputs. The ECC model
is complete in the sense that from each basic ECC state,
there are outgoing arcs labeled by each of the input events.
Input events that are not specified for a state of the formal
reference model transition the ECC to one of the error states.
The ECC representation for the running example “Repairing
telephones” is shown in Fig. 5(b). For the sake of simplicity
transitions to error, states are shown for only one test state
q11.

524 VOLUME 5, 2024

FIGURE 4. Application for conformance checking.

FIGURE 5. FB interface and ECC of telephone repairing monitor.

It should be noted that the implementation of the monitor
may differ in different tools. For example, in FBDK [82] it is
simpler than in NxtStudio. This is due to the difference in exe-
cution models of basic FBs in these tools. While in FBDK the
input event is immediately cleared after the activation (firing)
of the ECC transition, in NxtStudio it is not cleared during
the entire execution time of the FB (run-to-complete). As a
result, during the execution of the FB, several ECC transitions
marked with the same input event can be triggered.

F. EXTRACTION OF PLANT MODEL FROM THE OVERALL
SYSTEM MODEL
The FSM derived from the event log serves as a representation
of the overall system behavior. In this study, an innovative
approach for extracting the model of the uncontrolled plant
is presented. The system is viewed as a closed-loop config-
uration, encompassing both the plant and the controller. The
objective, therefore, centers on obtaining the model of uncon-
trolled plant behavior, which can subsequently be integrated
with the control model, resulting in a closed-loop system
model. This approach is particularly tailored to meet the re-
quirements of event-driven system verification. The process

of transitioning from the FSM to the plant model in the form
of IEC 61499 FBs is elaborated upon below, illustrating our
methodology for achieving this integration.

G. TRANSFORMATION OF FSM PLANT MODEL TO IEC
61499 FBS
The presented application for verification follows a structure
illustrated in Fig. 6, where a closed-loop system is formed by
connecting a plant model obtained from the RMCSES with
either a new or an existing controller. An existing controller is
utilized to construct the RMCSES, whereas a new controller is
connected with RMCSES for the purpose of verification. The
verification process involves conformance checking to ensure
that the newly developed controller operates in accordance
with the previous controller. NuSMV tool can be used for
verification through CTL/LTL specifications.

1) TRANSFORMATION RULES FROM FSM TO ECC
The graphical depiction of the transformation of RMCSES
to plant model in IEC 61499 FB is illustrated in Fig. 6.
The resulting plant model interface comprises control sig-
nals c1 . . . cn and NDT as input signals, while sensor signals

VOLUME 5, 2024 525

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

FIGURE 6. Application for verification.

s1 . . . sm are designated as the output signals of the FB. In
this transformation, any transition in the FSM triggered by a
sensor signal is replaced by an NDT transition, with the output
of the next state serving as a sensor event signal. This NDT
serves as a mechanism for initiating transitions at arbitrary
time intervals. On the other hand, transitions within the FSM
that are initiated by control signals remain unaltered when
transitioning to the ECC model.

A) CASE 1: DIVERGING SENSOR SIGNALS
The transformation rule when sensor signal arcs diverge from
a state is shown in Fig. 6. When signals emanate from one
state and branch out to multiple states, the sensor signals are
substituted with NDT signals, and each output place generates
the corresponding sensor signal as its output.

Given transitions in the FSM:

(qx, si) → qi

(qx, s j) → q j .

In ECC, these transitions are replaced by NDT transitions
with output events si and s j :

(qx, NDT) → (qi, si)

(qx, NDT) → (q j, s j).

B) CASE 2: CONVERGING SENSOR SIGNALS
When signals come together into a single state from various
states, they are altered according to the rule depicted in Fig. 6.
It is important to note that it is not feasible to bring multiple
NDT signals together into the same state and generate two
sensor signals as outputs. To address this, we introduced addi-
tional intermediary states that produce their respective sensor
signals as outputs, and eventually, these states converge into
a single state. The transformation rule for this scenario is as
follows:

Given transitions in the FSM:

(qi, si) → qx

(q j, s j) → qx.

In ECC, additional intermediate states qim and q jm are in-
troduced, and NDT transitions are used to connect them to qi

and q j , respectively:

(qim, NDT) → (qi, si)

(q jm, NDT) → (q j, s j).

Finally, qi and q j converge to qx:

(qi, 1) → qx

(q j, 1) → qx.

Algorithm 2 is defined by applying the transformation rules
described earlier to facilitate the conversion of RMSCES into
a plant model in the IEC 61499 FB.

H. MDA AS A METHODOLOGICAL BASIS FOR THE
DEVELOPMENT
In this study, the MDA was used for the development, ac-
cording to which the design process is represented as a chain
of model transformations, starting from the initial model and
ending with the target one. In model-driven development
the model transformation is “the heart and soul” of the ap-
proach [83]. The event log as a source model, and the target
models are: 1) the monitor model and 2) the plant model. In
accordance with this, two different chains of transformations
were used. The plant model is important as an independent
result that can be used for various purposes in the design
process, including certifying a new controller during tran-
sitions between different hardware and software platforms.
This challenge of certifying is addressed in this study. The
certification process involves two essential activities: one is
the creation of a model representing the plant through a series

526 VOLUME 5, 2024

Algorithm 1: FSM to Monitor ECC.

of transformations from event log to Petri net, RG, FSM of
the plant, resulting in an IEC 61499 FB-based plant model.
Next is the development of a comprehensive model for the
new controller using IEC 61499 FBs. As the new controller is
developed in IEC 61499 FBs, it is advisable to maintain con-
sistency by expressing the plant model in the same notation.
This design not only ensures uniformity but is also supported
by the availability of the fb2smv, a tool that streamlines the

Algorithm 2: FSM to Plant Model ECC.

conversion of IEC 61499 FBs into SMV code. These conver-
sions, while intricate, are significant for systematic controller
verification and migration, ensuring uniformity and reliabil-
ity in the certification process. While many conversions are
required primarily for certification and monitoring system im-
plementation, a more direct approach is available when the
sole goal is to verify an existing system based on event log
data. In this scenario, the Petri net generated in ProM can
be directly analyzed in dedicated platforms like TINA, which

VOLUME 5, 2024 527

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

FIGURE 7. Pneumatic cylinder HMI representation NxtStudio.

offers compatible tools for this purpose. There are different
corresponding tools available within this system. There exist
methods for directly converting Petri nets into SMV code [84].
The resulting SMV code can be employed for analysis using
queries rooted in LTL and CTL within systems like NuSMV.

VI. CASE STUDY: A PNEUMATIC CYLINDER
A. GENERAL DESCRIPTION
Visualization of the cylinder’s generated by its IEC 61499
simulation model in NxtStudio is shown in Fig. 7. The cylin-
der has three sensors START, MID, and END indicating the
position of the piston. The vertical cylinder’s motion is con-
trolled by EXT and RETR actuator signals’. EXT to move
downwards and RETR to move upwards. The Actuator and
Sensor signals of the pneumatic cylinder are represented in
Fig. 7.

B. EVENT LOG DESCRIPTION
The event log of the different processing scenarios of the
vertical cylinder is recorded in CSV format, which captures
the activities in chronological order. The event log, depicted
in Fig. 8(a), comprises of three columns: CaseId, State, and
Activity. The CaseId is unique for each processing scenario,
while the Activity column represents the events that occurred
during the processing of a scenario. Signals (like events)
happen instantaneously, and it is a good practice to use the
Boolean vector to store them, with “1” indicating it is set and
“0” indicating it is reset. The timestamp information is used
solely for sorting the activities in the event log.

The event log captures various processing scenarios of the
vertical cylinder, including movements from START to END
via MID, and returns to the START position. The event log
also includes random movements of the cylinder captured by
pressing the HMI buttons. These events are recorded using the
OPC UA communication protocol.

C. FSM GENERATION FROM EVENT LOG
The ProM process mining tool is utilized for constructing
a Petri net from the event log. ProM offers several process

discovery algorithms, and the alpha algorithm is utilized here
for extracting the process from the event log. The event log, in
CSV format, is first converted to XES format, and the “Case”
column is selected as “CaseId,” while the event column is
a combination of “Activity” and “State” columns. This XES
format is then provided as input to the alpha algorithm. The
resulting Petri net is shown in Fig. 8(b).

The TINA tool is used to generate the RG for the Petri net.
To achieve cyclic processing behavior, a new transition named
“Repeat” is added to the Petri net, connecting the “END” state
to the “START” state. Stepwise simulation is performed to
test the Petri net, as shown in Fig. 8(b). The RG is then used
to generate the FSM in text format. The RG obtained from
the Petri net can contain spontaneous transitions, rendering
it a nondeterministic FSM. To convert this nondeterministic
FSM to a deterministic one, the “Converter of TINA RG to
GraphML” software tool [75] is utilized. The resulting deter-
ministic FSM is presented in Fig. 8(c) in GraphML format.
The FSM is visualized using the “Yed” GraphML editor [81],
which provides a clear process logic behind the system. The
state information on the edges of the FSM is removed since it
is unnecessary to differentiate control and sensor signals.

D. IEC 61499 REPRESENTATION OF MONITOR
To implement the monitor in the IEC 61499 FBs, the RM-
CSES’ FSM representation is taken as a starting point. The
transformation rules are then applied to this FSM to create
the monitor’s FB interface. The interface, represented in Fig.
9(a), includes input signals for sensors and control signals. An
additional event “R” is included for the “Repeat” event, which
is used for the cyclic operation of the system’s process.

The monitor FB generates an “OK” event with the cor-
responding StateID when the system process executes in
the correct order. In the case of any deviation from the
expected process behavior, an “ERROR” signal is emitted
along with the “EventID” indicating the specific event re-
sponsible for the deviation. The ECC for the monitor FB
is represented partially in Fig. 9 (E2). If any event other
than “VCEXT_TRUE” and “VCRETR_FALSE” occurs in
“STATE4,” an “ERROR” event is triggered, along with the
respective EventID. The ECC in Fig. 9 (E2) only shows er-
rors occurring from “STATE 4,” but in the actual scenario,
there will be multiple events from different states (STATE1,
STATE 2, etc.) leading to their corresponding “ERROR”
states (VCEXT_TRUE, VCRETR_FALSE, etc.).

E. IEC 61499 REPRESENTATION OF PLANT MODEL
The ECC of the plant model is generated using the determin-
istic FSM obtained from the Petri net. Transformation rules
discussed in Section V-G are applied to the FSM to derive the
ECC. The interface of the plant model mirrors the controller
depicted in Fig. 9(a). The plant model has an additional signal
called NDT, which provides a nondeterministic delay before
producing the sensor signals as output. The behavior of the
system is represented by the ECC and is embedded inside a
FB. The ECC of the plant model is illustrated in Fig. 9 (E1).

528 VOLUME 5, 2024

FIGURE 8. (a) Vertical cylinder event log representation in CSV, (b) Stepwise simulation of Petri net in TINA, and (c) FSM representation in Yed editor.

VII. TRACES WITH ONLY EVENTS, NO GLOBAL STATE
A. GLOBAL STATE
The global state of the system is defined as a vector of boolean
values that represents the combination of sensor and actuator
signals. This vector is used to construct the global state con-
text of the system. The global state context represents a unique
frame of reference for the system. To ensure the accuracy of
the global state, clock synchronization and time stamping are
used across all distributed controllers in the network.

B. IMPORTANCE OF STATE INFORMATION
In order to obtain accurate results from the process mining
algorithm, it is essential to include state information in the
event log. The activity in the event log should reflect the
combination of the event signal value and state information.
By doing so, the generated Petri net will consist of two loops,
which will showcase the different actions of the pneumatic
cylinder. This confirms that the system is capable of support-
ing multiple processing paths or options.

A) HOW NEW TRANSITION IN PETRI NET IS CREATED WHEN
STATE INFORMATION IS CONSIDERED?
A new transition in Petri net is created only when the combi-
nation of signal value and state of the system is different.

1) If the state of the system is the same and signals are
different, then a new transition occurs.

2) If the signals are the same but occur in different state
conditions, then a new transition occurs.

So, the number of events in the event log would not
be the same as the number of transitions in the Petri net.

The Petri net constructed without the state information for the
same experiment is shown in Fig. 10. When comparing
the Petri net created using state information Figs. 8(b) and 10,
the Petri net without state information, Fig. 10, is inaccurate
and shows misleading transitions which never occur in the
process scenarios.

VIII. RESULTS AND ANALYSIS
A. FORMAL VERIFICATION OF THE SYSTEM USING
GENERATED PLANT MODEL
The IEC 61499 FB plant model can be used in conjunc-
tion with the controller for formal verification purposes. The
fb2smv tool is used to convert the IEC 61499 FBs into the
SMV formal model of the closed-loop system, which is then
verified with a symbolic model checker tool called NuSMV.
Various CTL or LTL specifications can be used to check
the formal model against the desired system behavior. The
NuSMV tool allows one to interactively explore the states of
the system and observe its behavior. The simulation mode in
NuSMV is useful for validating the system works according
to the correct process sequence. The closed-loop model of
the system, illustrated in Fig. 9(a) but without the monitor
FB, was transformed into a formal model and simulated using
NuSMV. The simulation confirmed that the system followed
the correct path. To detect possible failure situations that could
arise in critical scenarios, the system can be verified using
CTL specifications. The SMV specification of the system
guarantees that the specified property will never occur in the
system at any time.

VOLUME 5, 2024 529

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

FIGURE 9. Closed-loop system of plant and controller model with the monitor.

check_ltlspec -p "G (ClosedLoopModel_inst.
PLANT_VCPOSITION_START_TRUE -> F (
ClosedLoopModel_inst.
CONTROLLER_VCRETR_FALSE))"

The above specification is checked using NuSMV proving
that when the vertical cylinder reaches the start position the
controller always produces a RETRACT_FALSE event signal
in the future. Like this, it is possible to verify the system
properties by connecting it with the controller in closed-loop
with the help of CTL or LTL specifications.

B. CLOSED-LOOP SYSTEM INTEGRATION WITH MONITOR
The closed-loop system of the plant model and new controller
is integrated with a monitor, as depicted in Fig. 9(a). The in-
tegration of the closed-loop system is achieved by connecting
the output sensor and output actuator signals to the input of the

previously generated monitor 9 (A). The monitor checks the
conformance of the system by analyzing the signal values. If
the signals occur according to the actual process scenario, then
it produces an “OK” event with its corresponding “StateID.”
In case of nonconformance, the monitor produces an “RROR”
signal along with the “StateID” and “EventID.” The “StateID”
specifies the state in which the error occurred, while the
“EventID” represents the event that caused the error.

In this experiment, the model produces the right events
and it follows the process scenario; therefore, there are no
ERROR signals produced after one cycle. Fig. 9(a) shows
that it reached “StateID” = 13 and ran one and a half cy-
cles (R = 1) is completed without any occurrence of errors
(“ERROR” = 0). In order to check whether the monitor cap-
tures the error, “VCEXT_TRUE” event was added instead
of “VCRETR_TRUE” at “STATE51” of the controller in
Fig. 9(E3). Then the monitor produced an “ERROR” signal

530 VOLUME 5, 2024

FIGURE 10. Petri net constructed without state information.

with “EventID” = 1 and “StateID” = 11. The monitor at
“STATE11” [see Fig. 9 (E2)] checks if any event other than
“VCRETR_TRUE” occurs then it directs toward the respec-
tive event error state, i.e., in this case, it goes to “E1_VCEXT_
TRUE” state and executes “AE1” algorithm and produces
ERROR signal as output along with the “EventID” = 1 and
“StateID” = 11.

IX. CONCLUSION AND FUTURE WORK
The study proposes a novel method for generating a monitor
and plant model from behavioral traces. The monitor is used
to detect any deviation in the process sequence, while the
automatic generation of a plant model is a challenging task
without adequate domain knowledge and system behavior.
The study also demonstrates the automatic generation of a
plant model solely based on recorded event signals. The re-
sulting plant model is useful for the formal verification of
closed-loop systems in compliance with IEC 61499.

Further testing with additional use cases is required to val-
idate the effectiveness of this approach. Future work could
involve connecting the monitor to the actual plant in order
to detect deviations from the expected process scenario. The
global state of the system is the essential information needed
for this approach, but recording all sensor and actuator signal
values whenever an event occurs makes this process difficult.
It is possible to poll all sensors and actuators’ signal values
with the help of synchronization and timestamp, but for a
complex system, there will be a considerable amount of time
delays. The retrieval of state information for a complex system
needs to be analyzed.

In future research, the significance lies in exploring the
performance of the approach, particularly in handling dif-
ferent levels of system complexity. This entails conducting
comprehensive analyses of time complexity and engaging in
quantitative experiments to gain deeper insights into the effec-
tiveness and scalability of the proposed methodology. Such
efforts are essential for establishing a robust understanding
of the approach’s capabilities across various scenarios and
ensuring its applicability in real-world contexts.

APPENDIX A: LOW LEVEL EVENT LOG
This section describes the formal definition of the low-level
event log. Fig. 1(a) shows the closed-loop system consisting of
the plant and the controller. The set of (abstract) signal lines,
L in a closed-loop system is defined as

L = S ∪ C; S ∩ C = φ

where S = {s1, s2, . . . , sm} is a set of lines from Plant’s sensor
to Controller and C = {c1, c2, . . . , cn} is a set of lines from
Controller to Plant’s actuator. Fig. 1(a) shows a closed-loop
system with indicated signal lines. The set L includes all (n +
m) lines:

L = {l1, l2, . . . , ln+m}.
Let there be a set of attributes or parameters that can be
associated with signals transmitted over the lines

A = {a1, a2, . . . , ak}.
Each signal line can have its own set of attributes, defined by
a function:

p : L → 2A.

Thus, signals with the following set of attributes are transmit-
ted over the line li ∈ L. This set of attributes is assumed to
be ordered. A function is defined to assign attribute values to
each of the lines li ∈ L

zi : li → Dom
(
a1

i

) ∗ Dom
(
a2

i

) ∗ · · · ∗ Dom(at
i)

where Dom(a j
i) is a domain for the attribute a j

i . In the case
of a large dimension of these domains, the total number of
possible signal values can be very large. For convenience, a
generalized value function is introduced

z = z1 ∪ z2 ∪ · · · ∪ zn+m.

A signal on the line li ∈ L is a set of attribute values on this
line, i.e., z(li). z(li)[t] denotes a set of values of attributes of
the line li ∈ L at the moment of time t ∈ N+, where N+ is the
set of positive integer numbers. The use of discrete time does
not change the general situation.

An event on the line li ∈ L is the moment when the signal
on this line changes. The signal changes if the value of at least
one of its attributes changes. The condition that determines
the occurrence of an event on the line li ∈ L is the following:

∃t (z(li)[t] �= z(li)[t + 1]).

VOLUME 5, 2024 531

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

Theoretically, at the same time, different events can occur on
two or more lines. It is possible, but the probability of this is
very small. All events in the system can be enumerated

E = {e1, e2, . . . , eh}.
Each event ei ∈ E is defined by the following tuple:

ei = (ti, nei)

where ti is the time at which the event occurred and nei is the
name of the event. The name of the event ei ∈ E arising at the
line l j ∈ L is defined as follows:

nei = (l j, z(l j)[ti]). (1)

From this formula, one can see that the event name consists
of the line ID and the values of all line attributes. We define a
function that maps a signal line to a component (device) with
which it is connected

r : L → D

where D = {d1, d2, . . . , dv} is a set of components (devices)
in the system.

An event log entry for event ei ∈ E at line l j ∈ L is defined
by the following tuple:

wi = (CaseID, ti, nei, r(l j))

where CaseID is the constant identifier for each cyclic opera-
tion of the processes, ti (that is, Timestamp) is the time when
the event occurred, nei (that is, Activity) is the name of the
event according to the formula 1 above, r(l j) is the component
with which the corresponding line is associated. It should be
noted that the component r(l j) may not be used. The com-
ponent ti may not be used if the event log is chronologically
ordered or if timing is not taken into account.

REFERENCES
[1] “International Standard IEC 61499-1: Function blocks, Part 1: Archi-

tecture, International Electrotechnical Commission,” 2nd ed., 2012.
[2] W. Dai, C. Pang, V. Vyatkin, J. H. Christensen, and X. Guan, “Discrete-

event-based deterministic execution semantics with timestamps for
industrial cyber-physical systems,” IEEE Trans. Syst., Man, Cybern.
Syst., vol. 50, no. 3, pp. 851–862, Mar. 2020.

[3] W. Dai and V. Vyatkin, “Redesign distributed PLC control systems
using IEC 61499 function blocks,” IEEE Trans. Autom. Sci. Eng., vol. 9,
no. 2, pp. 390–401, Apr. 2012.

[4] R. Lewis, Modelling Control Systems Using IEC 61499: Applying
Function Blocks to Distributed Systems. London, U.K.: Institution of
Engineering and Technology, 2001.

[5] G. Frey and T. Hussain, “Modeling techniques for distributed control
systems based on the IEC 61499 Standard-current approaches and
open problems,” in Proc. 8th Int. Workshop Discrete Event Syst., 2006,
pp. 176–181.

[6] M. Wenger, A. Zoitl, and J. O. Blech, “Behavioral type-based monitor-
ing for IEC 61499,” in Proc. IEEE 20th Conf. Emerg. Technol. Factory
Autom., 2015, pp. 1–8.

[7] D. Do Tran, J. Walter, K. Grüttner, and F. Oppenheimer, “Towards time-
sensitive behavioral contract monitors for IEC 61499 function blocks,”
in Proc. IEEE Conf. Ind. Cyberphysical Syst., 2020, pp. 27–34.

[8] I. Hegny, M. Wenger, and A. Zoitl, “IEC 61499 based simulation frame-
work for model-driven production systems development,” in Proc. IEEE
15th Conf. Emerg. Technol. Factory Autom., 2010, pp. 1–8.

[9] S. Patil, V. Dubinin, and V. Vyatkin, “Formal verification of IEC61499
function blocks with abstract state machines and SMV–modelling,” in
Proc. IEEE Trustcom/BigDataSE/ISPA, 2015, pp. 313–320.

[10] J. O. Blech, P. Lindgren, D. Pereira, V. Vyatkin, and A. Zoitl, “A
comparison of formal verification approaches for IEC 61499,” in
Proc. IEEE 21st Int. Conf. Emerg. Technol. Factory Autom., 2016,
pp. 1–4.

[11] G. Cengic and K. Akesson, “On formal analysis of IEC 61499 appli-
cations, part A: Modeling,” IEEE Trans. Ind. Inform., vol. 6, no. 2,
pp. 136–144, May 2010.

[12] M. Ramdani, L. Kahloul, M. Khalgui, Z. Li, and M. Zhou, “RCTL:
New temporal logic for improved formal verification of reconfigurable
discrete-event systems,” IEEE Trans. Automat. Sci. Eng., vol. 18, no. 3,
pp. 1392–1405, Jul. 2021.

[13] H.-M. Hanisch, M. Hirsch, D. Missal, S. Preuße, and C. Gerber, “One
decade of IEC 61499 modeling and verification-results and open is-
sues,” IFAC Proc. Vol., vol. 42, no. 4, pp. 211–216, 2009.

[14] M. Xavier, J. Håkansson, S. Patil, and V. Vyatkin, “Plant model gener-
ator from digital twin for purpose of formal verification,” in Proc. 26th
IEEE Int. Conf. Emerg. Technol. Factory Autom., 2021, pp. 1–4.

[15] M. Xavier, V. Dubinin, S. Patil, and V. Vyatkin, “Plant model genera-
tion from event log using prom for formal verification of CPS,” 2022,
arXiv:2211.03681.

[16] J. H. Christensen, Design patterns for systems engineering in IEC
61499, Verteilte Automatisierung - Modelle und Methoden für En-
twurf, Verifikation, Engineering und Instrumentierung (VA2000). Ger-
many: Otto-von-Guericke-Universität Magdeburg, Mar. 22–23, 2000,
pp. 63–71.

[17] K. Thramboulidis et al., “IEC 61499 as an enabler of distributed and
intelligent automation: A. state-of-the-art review–a different view,” J.
Eng., vol. 2013, pp. 1–9, 2013.

[18] I. Hegny, T. Strasser, M. Melik-Merkumians, M. Wenger, and A. Zoitl,
“Towards an increased reusability of distributed control applications
modeled in IEC 61499,” in Proc. IEEE 17th Int. Conf. Emerg. Technol.
Factory Autom., 2012, pp. 1–8.

[19] W. Dai, V. Vyatkin, J. H. Christensen, and V. N. Dubinin, “Bridging
service-oriented architecture and IEC 61499 for flexibility and inter-
operability,” IEEE Trans. Ind. Inform., vol. 11, no. 3, pp. 771–781,
Jun. 2015.

[20] C. Sunder et al., “Usability and interoperability of IEC 61499 based dis-
tributed automation systems,” in Proc. 4th IEEE Int. Conf. Ind. Inform.,
2006, pp. 31–37.

[21] V. Vyatkin, “The IEC 61499 standard and its semantics,” IEEE Ind.
Electron. Mag., vol. 3, no. 4, pp. 40–48, Dec. 2009.

[22] G. Cengic and K. Akesson, “On formal analysis of IEC 61499 appli-
cations, part B: Execution semantics,” IEEE Trans. Ind. Inform., vol. 6,
no. 2, pp. 145–154, May 2010.

[23] C. Schnakenbourg, J.-M. Faure, and J.-J. Lesage, “Towards IEC 61499
function blocks diagrams verification,” in Proc. IEEE Int. Conf. Syst.,
Man Cybern., 2002, pp. 1–6.

[24] L. Yoong, “Modelling and synthesis of safety-critical software with IEC
61499,” Ph.D. dissertation, ResearchSpace, Auckland, 2010.

[25] V. Vyatkin, H.-M. Hanisch, C. Pang, and C.-H. Yang, “Closed-loop
modeling in future automation system engineering and validation,”
IEEE Trans. Syst., Man, Cybern., C, vol. 39, no. 1, pp. 17–28, Jan. 2009.

[26] C. Pang and V. Vyatkin, “Systematic closed-loop modelling in IEC
61499 function blocks: A case study,” IFAC Proc. Vol., vol. 42, no. 4,
pp. 199–204, 2009.

[27] R. Sinha, S. Patil, L. Gomes, and V. Vyatkin, “A survey of static formal
methods for building dependable industrial automation systems,” IEEE
Trans. Ind. Inform., vol. 15, no. 7, pp. 3772–3783, Jul. 2019.

[28] M. Xavier, S. Patil, V. Dubinin, and V. Vyatkin, “Formal modelling,
analysis, and synthesis of modular industrial systems inspired by net
condition/event systems,” in Proc. Int. Conf. Appl. Theory Petri Nets
Concurrency, 2023, pp. 16–33.

[29] P. Ovsiannikova, E. Le Priol, V. Perret, P. Jhunjhunwala, M. Xavier,
and V. Vyatkin, “Formal verification of observers supervising a cyber-
physical system implemented using IEC 61499,” in Proc. IEEE 32nd
Int. Symp. Ind. Electron., 2023, pp. 1–6.

[30] A. Malik, P. S. Roop, N. Allen, and T. Steger, “Emulation of cyber-
physical systems using IEC-61499,” IEEE Trans. Ind. Informat.,
vol. 14, no. 1, pp. 380–389, Jan. 2018.

[31] “FB2SMV model generator.” Accessed: Mar. 5 2024. [Online]. Avail-
able: https://github.com/dmitrydrozdov/fb2smv

[32] A. Cimatti et al., “NUSMV 2: An opensource tool for symbolic
model checking,” in Proc. Int. Conf. Comput. Aided Verification, 2002,
pp. 359–364.

532 VOLUME 5, 2024

https://github.com/dmitrydrozdov/fb2smv

[33] M. Xavier, S. Patil, and V. Vyatkin, “Cyber-physical automation sys-
tems modelling with IEC 61499 for their formal verification,” in Proc.
IEEE 19th Int. Conf. Ind. Inform., 2021, pp. 1–6.

[34] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process models
from workflow logs,” in Proc. Int. Conf. Extending Database Technol.,
1998, pp. 467–483.

[35] W. Van Der Aalst, “Process mining: Overview and opportunities,” ACM
Trans. Manage. Inf. Syst., vol. 3, no. 2, pp. 1–17, 2012.

[36] M. Xavier, V. Dubinin, S. Patil, and V. Vyatkin, “Process mining in
industrial control systems,” in Proc. IEEE 20th Int. Conf. Ind. Inform.,
2022, pp. 1–6.

[37] B. F. Van Dongen, A. K. A. de Medeiros, H. Verbeek, A. Weijters, and
W. M. van Der Aalst, “The prom framework: A new era in process
mining tool support,” in Proc. Int. Conf. Appl. Theory Petri Nets, 2005,
pp. 444–454.

[38] C. W. Günther and A. Rozinat, “DISCO: Discover your processes,”
BPM, vol. 940, no. 1, pp. 40–44, 2012.

[39] “Prom.” Accessed: Jan. 17, 2024. [Online]. Available: https://www.
promtools.org/

[40] C. A. Petri, “Kommunikation mit automaten,” dissertation, Dept. Com-
put. Sci., 1962. Accessed: Jun. 9, 2024. [Online]. Available: http://edoc.
sub.uni-hamburg.de/informatik/volltexte/2011/160/

[41] S. Dunzer, M. Stierle, M. Matzner, and S. Baier, “Conformance
checking: A state-of-the-art literature review,” in Proc. 11th Int. Conf.
Subject-Oriented Bus. Process Manage., 2019, pp. 1–10.

[42] V. Naderifar, S. Sahran, and Z. Shukur, “A review on conformance
checking technique for the evaluation of process mining algorithms,”
TEM J., vol. 8, no. 4, 2019, Art. no. 1232.

[43] H. Sun, W. Liu, L. Qi, X. Ren, and Y. Du, “An algorithm for min-
ing indirect dependencies from loop-choice-driven loop structure via
petri nets,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 52, no. 9,
pp. 5411–5423, Sep. 2022.

[44] H. Sun, W. Liu, L. Qi, Y. Du, X. Ren, and X. Liu, “A process mining
algorithm to mixed multiple-concurrency short-loop structures,” Inf.
Sci., vol. 542, 2021, pp. 453–475.

[45] W. Van der Aalst, A. Adriansyah, and B. Van Dongen, “Replaying
history on process models for conformance checking and performance
analysis,” Wiley Interdiscipl. Rev., Data Mining Knowl. Discov., vol. 2,
no. 2, pp. 182–192, 2012.

[46] J. Munoz-Gama et al., Conformance Checking and Diagnosis in Pro-
cess Mining. Berlin, Germany: Springer, 2016.

[47] J. E. Cook and A. L. Wolf, “Discovering models of software processes
from event-based data,” ACM Trans. Softw. Eng. Methodol., vol. 7,
no. 3, pp. 215–249, 1998.

[48] W. M. Van Der Aalst and B. F. V. Dongen, “Discovering petri
nets from event logs,” in Transactions on Petri Nets and Other
Models of Concurrency VII. Berlin, Germany: Springer, 2013,
pp. 372–422.

[49] G. Liu, Petri Nets: Theoretical Models and Analysis Meth-
ods for Concurrent Systems. Berlin, Germany: Springer Nature,
2022.

[50] P. Buchholz and P. Kemper, “Hierarchical reachability graph generation
for petri nets,” Formal Methods System Des., vol. 21, pp. 281–315,
2002.

[51] J. Ye, M. Zhou, Z. Li, and A. Al-Ahmari, “Structural decomposition and
decentralized control of petri nets,” IEEE Trans. Syst., Man, Cybern.
Syst., vol. 48, no. 8, pp. 1360–1369, Aug. 2018.

[52] F.-S. Hsieh, “Robustness analysis of non-ordinary petri nets for flexible
assembly/disassembly processes based on structural decomposition,”
Int. J. Control, vol. 84, no. 3, pp. 496–510, 2011.

[53] R. Wiśniewski et al., “Decomposition of distributed edge systems based
on the petri nets and linear algebra technique,” J. Syst. Archit., vol. 96,
pp. 20–31, 2019.

[54] E. Best, R. Devillers, and M. Koutny, Petri Net Algebra. Berlin, Ger-
many: Springer Science & Business Media, 2013.

[55] T. Miyamoto and K. Horiguchi, “Modular reachability analysis of petri
nets for multiagent systems,” IEEE Trans. Syst., Man, Cybern. Syst.,
vol. 43, no. 6, pp. 1411–1423, Nov. 2013.

[56] A. Giua and F. DiCesare, “Petri net structural analysis for supervi-
sory control,” IEEE Trans. Robot. Autom., vol. 10, no. 2, pp. 185–195,
Apr. 1994.

[57] P. Küngas, “Petri net reachability checking is polynomial with optimal
abstraction hierarchies,” in Proc. Int. Symp. Abstraction, Reformulation,
Approximation, 2005, pp. 149–164.

[58] R. Wiśniewski, G. Bazydło, L. Gomes, A. Costa, and M. Wojnakowski,
“Analysis and design automation of cyber-physical system with hippo
and IoPT-tools,” in Proc. 45th Annu. Conf. IEEE Ind. Electron. Soc.,
2019, pp. 5843–5848.

[59] A. Kiviriga, “Efficient model checking: The power of randomness,”
Ph.D. dissertation, Aalborg Univ. 2023.

[60] R. Wiśniewski, Ł. Stefanowicz, A. Bukowiec, and J. Lipiński, “The-
oretical aspects of Petri nets decomposition based on invariants and
hypergraphs,” in Multimedia and Ubiquitous Engineering. Berlin, Ger-
many: Springer, 2014, pp. 371–376.

[61] Y. Cai, I. Nishii, and T. Sekiguchi, “Modeling by petri net with place
invariants for sequential control systems,” Elect. Eng. Jpn., vol. 115,
no. 5, pp. 100–111, 1995.

[62] E. Zambon and A. Rensink, “Graph subsumption in abstract state
space exploration,” in Proc. Conf. Comput. Graph. Interactive Techn.
Australas. Southeast Asia, 2012. [Online]. Available: https://api.
semanticscholar.org/CorpusID:2828529

[63] S. Apel, D. Beyer, V. Mordan, V. Mutilin, and A. Stahlbauer, “On-
the-fly decomposition of specifications in software model checking,”
in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016,
pp. 349–361.

[64] Z. Xin-feng, W. Jian-dong, L. Bin, Z. Jun-wu, and W. Jun, “Methods
to tackle state explosion problem in model checking,” in Proc. 3rd Int.
Symp. Intell. Inf. Technol. Appl., 2009, pp. 329–331.

[65] A. Shrestha, L. Xing, and Y. Dai, “Decision diagram based methods and
complexity analysis for multi-state systems,” IEEE Trans. Rel., vol. 59,
no. 1, pp. 145–161, Mar. 2010.

[66] L. He, G. Liu, and M. Zhou, “Petri-net-based model checking for
privacy-critical multiagent systems,” IEEE Trans. Comput. Social Syst.,
vol. 10, no. 2, pp. 563–576, Apr. 2023.

[67] S. Lüdtke, M. Schröder, F. Krüger, S. Bader, and T. Kirste, “State-space
abstractions for probabilistic inference: A systematic review,” J. Artif.
Intell. Res., vol. 63, pp. 789–848, 2018.

[68] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Berlin, Ger-
many: Springer, 1996.

[69] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled, “State space
reduction using partial order techniques,” Int. J. Softw. Tools Technol.
Transfer, vol. 2, pp. 279–287, 1999.

[70] R. Wiśniewski, A. Karatkevich, M. Adamski, A. Costa, and L. Gomes,
“Prototyping of concurrent control systems with application of petri
nets and comparability graphs,” IEEE Trans. Control Syst. Technol.,
vol. 26, no. 2, pp. 575–586, Mar. 2018.

[71] R. Czerwinski and D. Kania, Finite State Machine Logic Synthesis
for Complex Programmable Logic Devices, vol. 231. Berlin, Germany:
Springer Science & Business Media, 2013.

[72] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, Logic Synthesis for Asynchronous Controllers and Inter-
faces, vol. 8. Berlin, Germany: Springer Science & Business Media,
2012.

[73] A. El-Maleh, S. M. Sait, and F. N. Khan, “Finite state machine state
assignment for area and power minimization,” in Proc. IEEE Int. Symp.
Circuits Syst., 2006, pp. 1–4.

[74] R. Czerwinski, D. Kania, R. Czerwinski, and D. Kania, “Synthesis
of FSMs,” in Finite State Machine Logic Synthesis for Complex Pro-
grammable Logic Devices. London, U.K.: Springer, 2013, pp. 25–48.

[75] M. Xavier, V. Dubinin, S. Patil, and V. Vyatkin, “An interactive learning
approach on digital twin for deriving the controller logic in IEC 61499
standard,” in Proc. 27th Int. Conf. Emerg. Technol. Factory Autom.,
2022, pp. 1–7.

[76] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool TINA–
construction of abstract state spaces for petri nets and time petri nets,”
Int. J. Prod. Res., vol. 42, no. 14, pp. 2741–2756, 2004.

[77] H. E. Verbeek and R. Jagadeesh Chandra Bose, “ProM 6.0 tutorial,”
2010, last accessed: Mar. 7th, 2024. [Online]. Available: http://www.
promtools.org/prom6/downloads/prom-6.0-tutorial.pdf

[78] S. Rodger and T. Finley, “JFLAP,” 2015, last accessed: Jan. 20, 2024.
[79] ”Graphml,” last accessed: Jan. 11, 2024. [Online]. Available: http:

//graphml.graphdrawing.org/specification/dtd.html
[80] M. Bastian, S. Heymann, and M. Jacomy, “GEPHI: An open source

software for exploring and manipulating networks,” in Proc. Int. AAAI
Conf. Web Social Media, 2009, pp. 361–362.

[81] “Yworks,” last accessed: Jan. 15, 2024. [Online]. Available: https:
//www.yworks.com/

VOLUME 5, 2024 533

https://www.promtools.org/
https://www.promtools.org/
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
http://edoc.sub.uni-hamburg.de/informatik/volltexte/2011/160/
https://api.semanticscholar.org/CorpusID:2828529
https://api.semanticscholar.org/CorpusID:2828529
http://www.promtools.org/prom6/downloads/prom-6.0-tutorial.pdf
http://www.promtools.org/prom6/downloads/prom-6.0-tutorial.pdf
http://graphml.graphdrawing.org/specification/dtd.html
http://graphml.graphdrawing.org/specification/dtd.html
https://www.yworks.com/
https://www.yworks.com/

XAVIER ET AL.: FRAMEWORK FOR THE GENERATION OF MONITOR AND PLANT MODEL FROM EVENT LOGS

[82] “Holobloc,” last accessed: Mar. 5, 2024. [Online]. Available: https://
holobloc.com/

[83] S. Sendall and W. Kozaczynski, “Model transformation: The heart and
soul of model-driven software development,” IEEE Softw., vol. 20,
no. 5, pp. 42–45, Sep./Oct. 2003.

[84] G. Wimmel, “A BDD-based model checker for the PEP tool,” Major
Individual Project Report, Dept, 1997.

MIDHUN XAVIER (Graduate Student Member,
IEEE) received the B.Tech. degree in electronics
and communication engineering from MG Uni-
versity, Kottayam, India, in 2014, the master’s
degree in computer science from Indian Institute
of Information Technology, NIT Trichy Campus,
India, in 2017. He is currently working toward
the Ph.D. degree in dependable communication
and computation systems with Luleå University of
Technology, Luleå, Sweden, with a major in formal
verification and modeling of industrial automation

systems using IEC 61499 Standard.
He is also an accomplished Software Engineer with 3 years of experience in

data analytics and web3 development. He has worked with several esteemed
organizations such as Uvionics Pvt. Ltd., TCS, and RCKR Software Pvt. Ltd.
in India as a Software Engineer.

VICTOR DUBININ received the Diploma degree
in computer engineering, the Ph.D. degree in
computer engineering and the Dr.Sc. degree in
computer science from the University of Penza,
Penza, Russia, in 1981, 1989, and 2014, respec-
tively.

From 1981 to 1989, he was a Researcher, from
1989 to 1995, he was a Senior Lecturer, and from
1995 to 2015, he was an Associate Professor with
the University of Penza. Since 2015, he has been
a Professor with the Department of Computer Sci-

ence, University of Penza. He was a Visiting Researcher position with The
University of Auckland, Auckland, New Zealand, and from 2013 to 2019, he
was with the Luleå University of Technology, Luleå, Sweden. His research
interests include formal methods for specification, verification, synthesis, and
implementation of distributed and CPS. He was a recipient of DAAD-grants
to work as a Guest Scientist with Martin-Luther-University Halle-Wittenberg,
Halle, Germany, in 2003, 2006, and 2010, respectively.

SANDEEP PATIL (Member, IEEE) received the
bachelor’s degree in computer science engineering
from the CMR Institute of Technology, Bangalore,
India, in 2005, the master’s of computer science in
software engineering degree from the Illinois Insti-
tute of Technology, Chicago, IL, USA, in 2010, the
master’s of engineering studies (computer systems)
degree from the University of Auckland, Auckland,
New Zealand, in 2011, and the Ph.D. degree in for-
mal verification of cyber-physical systems from the
Lulea University of Technology, Lulea, Sweden.

His research interests include software engineering principles and method-
ologies in distributed industrial automation, especially using the IEC 61499
paradigm. He also works with formal verification techniques in the same
application field. He is an accomplished software engineering professional
with over 16 years of research and development experience in systems and
application software, including 4 years as a Senior Software Engineer at
Motorola India Pvt. Ltd., India.

VALERIY VYATKIN (Fellow, IEEE) received the
Ph.D. degree from Taganrog Radio Engineering
Institute, Taganrog, Russia and Nagoya Institute
of Technology, Nagoya, Japan, in 1992 and 1999,
respectively, and the Habilitation degree from
Conferred by Ministry of Science and Education
Saxony-Anhalt Country, Germany, in 2002.

He is currently on Joint Appointment as the
Chaired Professor with the Luleå University of
Technology, Luleå, Sweden, and a Full Professor
with Aalto University, Helsinki, Finland. Previ-

ously, he was a Visiting Scholar with Cambridge University, Cambridge,
U.K., and had permanent academic appointments with New Zealand, Ger-
many, Japan, and Russia. His research interests include dependable dis-
tributed automation and industrial informatics, software engineering for
industrial automation systems, artificial intelligence, distributed architectures,
and multiagent systems applied in various industry sectors, including smart
grid, material handling, building management systems, data centers, and
reconfigurable manufacturing.

Dr. Vyatkin was a recipient of the Andrew P. Sage Award for the Best IEEE
Transactions Paper in 2012. He has been the Chair of the IEEE IES Technical
Committee on Industrial Informatics since 2016 and the Vice President of IES
for Technical Activities for the term 2022–2025.

534 VOLUME 5, 2024

https://holobloc.com/
https://holobloc.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

