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Context-aware dual-task deep network for concurrent
bone segmentation and clinical assessment to

enhance shoulder arthroplasty preoperative planning
Luca Marsilio, Andrea Moglia, Alfonso Manzotti, Pietro Cerveri

AllAbstract—Goal: Effective preoperative planning for shoul-
der joint replacement requires accurate glenohumeral joint (GH)
digital surfaces and reliable clinical staging. Methods: xCEL-
UNet was designed as a dual-task deep network for humerus
and scapula bone reconstruction in CT scans, and assessment of
three GH joint clinical conditions, namely osteophyte size (OS),
joint space reduction (JS), and humeroscapular alignment (HSA).
Results: Trained on a dataset of 571 patients, the model optimized
segmentation and classification through transfer learning. It
achieved median root mean squared errors of 0.31 and 0.24 mm,
and Hausdorff distances of 2.35 and 3.28 mm for the humerus
and scapula, respectively. Classification accuracy was 91 for
OS, 93 for JS, and 85% for HSA. GradCAM-based activation
maps validated the network’s interpretability. Conclusions: this
framework delivers accurate 3D bone surface reconstructions and
dependable clinical assessments of the GH joint, offering robust
support for therapeutic decision-making in shoulder arthroplasty.

Index Terms—Assisted preoperative planning; Deep learning;
Explainable AI; Shoulder arthroplasty; Shoulder bone segmenta-
tion.

Impact Statement- Integrating a multi-task CNN with
explainable AI techniques can provide trustworthy
segmentation and classification outcomes, potentially
enhancing the reliability and adoption of AI-driven
solutions in surgical planning.

I. INTRODUCTION

OSTEOARTHRITIS (OA) is a degenerative condition af-
fecting bones and cartilage, often resulting in changes

to the bony surfaces, including osteophyte development, bone
density loss, and joint spaces narrowing [1], [2]. In the
shoulder, the glenohumeral (GH) joint comprises the humeral
head and the scapula glenoid surface (i.e. the humeral socket).
Primary OA leads to cartilage deterioration, causing a reduc-
tion in the GH joint space [3]. OA progression may lead
to direct contact between the humeral head and its socket,
culminating in impingement, inflammation, pain, and limited
joint mobility. As OA advances, osteophytes may develop
in the antero-inferior portion of the humeral head and ex-
tend downward [2]. The constant bone rubbing flattens the
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glenoid and further advances osteophyte formation along its
boundaries, disrupting GH joint functionality over time [4].
Pathological humeroscapular alignments, such as subluxation
or eccentricity, exacerbate joint instability and OA progression
[5], [6]. Identifying these conditions is crucial for shoulder
joint treatment, as it enables effective preoperative planning
and drives the selection of the most suitable surgical im-
plant, between anatomical and reverse [7], [8]. Furthermore,
personalized surgical instruments (PSIs) proved effective in
decreasing surgical time and enhancing postoperative bone
alignment [9], [10]. PSIs for shoulder arthroplasty are patient-
specific cutting jigs based on digital 3D models of the humerus
and scapula obtained from medical image data [11], [12]. These
aids facilitate proper implant sizing and cutting plane defini-
tion, reducing the risk of implant loosening [13]. However,
irregular bone profiles pose challenges for accurate boundary
delineation, requiring advanced image processing techniques
[14]. Deep learning tools, particularly convolutional neural
networks (CNNs), held promise to automate image process-
ing and analysis in orthopedics [15]–[17]. Encoder-decoder
architectures like the UNet and nnUNet have been effective in
identifying osseous regions and soft tissues in 2D and 3D scans
[15], [16], [18]–[21]. CNNs have also been studied for OA
staging and treatment prediction [22]–[24]. In this context, core
research gaps may be synthesized. First, irregular bone profiles
and pathological changes complicate accurate boundary delin-
eation and segmentation using traditional imaging techniques.
Advanced image processing tools are needed to handle these
complexities effectively. Second, while personalized surgical
instruments (PSIs) have shown promise in improving surgical
outcomes, their reliance on manual or semi-automated work-
flows for image analysis can be time-consuming and prone to
variability. Third, although CNNs have demonstrated success in
image segmentation and OA staging, existing models often lack
multi-task capabilities, which are essential for simultaneously
analyzing multiple clinical conditions affecting the GH joint.
Finally, despite the effectiveness of CNNs, their ”black-box”
nature hinders clinical trust. Explainable AI tools, such as
GradCAM, are not fully integrated into workflows to provide
interpretable diagnostic insights.
To address these gaps, this study introduces a novel multi-task
deep learning framework, xCEL-UNet, designed specifically
for automated analysis of shoulder CT scans (Fig. 1). The
network predicts the proximal humerus and scapula segmen-
tation, concurrently with the staging of three different clinical
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Fig. 1. xCEL-UNet model. It performs shoulder bone segmentation
and clinical assessment of the glenohumeral joint, providing inter-
pretability of the prediction by means of GradCAM.

conditions affecting the glenohumeral joint, namely the osteo-
phyte size (OS), the GH joint space narrowing (JS), and the
humeroscapular alignment (HSA). Each condition was strati-
fied into multiple severity classes, comprehensively analyzing
the shoulder bone pathologies. In addition, a gradient class acti-
vation map-based (GradCAM) [25] module was incorporated to
produce visual explanation maps of the diagnostic classification
(see subsections II-D and II-G for detailed technicality). By
integrating segmentation and classification tasks into a single
framework, xCEL-UNet offers a comprehensive analysis of GH
joint conditions. Automated segmentation and severity staging
enable more accurate and efficient preparation for shoulder
arthroplasty, facilitating personalized treatment and reducing
surgical risks. Incorporating GradCAM visualization enhances
model transparency, helping clinicians understand the basis
of diagnostic predictions and fostering trust in AI-assisted
workflows. The xCEL-UNet leverages encoder-decoder archi-
tectures and multi-task learning to address complex patholog-
ical presentations, pushing the boundaries of existing CNN
applications in orthopedics. As such, novel contributions can
be summarized as:

• innovative xCEL-UNet deep learning framework1, for
bone shoulder segmentation, 3D surface reconstruction,
and GH joint clinical assessment,

• GradCAM-based explainability module to enhance model
interpretability and trustworthiness;

• validation across diverse demographic groups, clinical
conditions, varying levels of disease severity, and bone
morphological heterogeneity.

A. Related works

Traditional segmentation methods, such as thresholding,
region growing, and statistical shape models have been in-

1source code available at https://github.com/LucaMarsilio/xCEL UNet.git

vestigated to achieve accurate bone CT segmentation. How-
ever, the development of joint-related pathological conditions,
including osteoarthritis and osteoporosis, further complicates
the boundary delineation by blurring intensity contrasts and
deteriorating bone profiles [19], [26], [27]. For this reason,
UNet-like deep CNNs were largely proposed in medical im-
age segmentation to overcome these limitations [15], [28],
[29]. Their encoder-decoder design, with skip connections,
captures image features at different resolutions enhancing the
anatomical identification. These architectures were extensively
studied for the segmentation of knee, ankle, and shoulder
bones in CT and MRI scans, and vertebral bodies in CTs
[22], [30], [31]. Reduced segmentation accuracy and model
generalization ability were assessed when training networks
with small datasets [32], [33]. Pre-training UNet models or
deploying adversarial regularization have shown promise in
overcoming these limitations [34]. However, the same draw-
backs might persist even after increasing the dataset numerosity
[35]. Likewise, CNNs were proposed to evaluate cartilage os-
teonecrosis in knee X-ray images using the Kellgren-Lawrence
scoring, achieving results comparable to expert operators [17],
[22]. In [36], the authors tested various pre-trained models,
such as ResNet and DenseNet, for discriminating fracture/non-
fracture conditions in X-ray images. A multitask deep learning
model was investigated for grading hip osteoarthritis in 4368
radiographs [37]. In [23] the rotator cuff muscle degeneration
was analyzed on a 95-patient CT dataset using CNNs, demon-
strating accuracy comparable to expert raters. However, com-
prehensive evaluation of shoulder conditions necessitates ad-
dressing osteophyte and humeral head shift assessments, which
were neglected in the above-mentioned studies. Nonetheless,
none of the previous studies faced morphology and diagnostic
evaluation in a holistic approach. Context-aware segmentation
and diagnostic classification methods have gained significant
attention in the biomedical field as a single model can learn
multiple related tasks by sharing representations. The contex-
tual information from one task can inform another, enhancing
overall performance. In [38], the authors proposed a multi-class
segmentation of the aorta based on a UNet model, improved
with context-aware self-attention. Likewise, the segmentation
of hepatic vessel was improved by incorporating into a UNet
model devoted modules to exploit the spatial vessel develop-
ment in adjacent CT slices [39]. In [40], the authors increased
the quality of hand bone segmentation in ultrasound images
by weighting attention mechanism able to better learn differ-
ences among the different bones. Nonetheless, most of the
deep learning-based literature contributions lacked strategies to
increase clinical prediction transparency. Saliency maps were
proposed to produce visual explanation maps assigning each
pixel to a value representing its relevance to the prediction of
a certain class [41]. Specifically, Grad-CAMs were proposed as
a general method for evaluating the coherence of the predicted
classification in a large class of CNN-based models [25]. In
orthopedics, they were deployed to explain the predictions of
bone mineral density in CT [42], to improve the reliability of
radiographic fracture classification [43], and to enhance bone
tumor classification in the proximal femur [44].
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II. MATERIALS AND METHODS

A. Dataset description

607 axial CT scans were provided by MEDACTA Inter-
national SA (Castel San Pietro, TI, Switzerland), in pseudo-
anonymized form. The original images were acquired in prepa-
ration for PSI-based total (TSA) or reverse (RSA) arthroplasty
interventions, all performed between 2021 and 2022. In detail,
a five-to-one ratio in favor of RSA intervention was observed.
The dataset was multi-centric, spanning North America (30%),
Europe and the Middle East (48%), Asia Pacific (20%), and
Latin America (2%). CT scans, characterized by 512×512
pixels, 330 slices on average, variable pixel size from 0.30
to 0.98 mm, and variable axial slicing from 0.30 to 2.5 mm,
were acquired with different equipment, including General
Electric, Varian, and Philips. Patients, aged 74±11 years, were
diagnosed with different shoulder-related clinical conditions,
including primary GH osteoarthritis, osteonecrosis, inflam-
matory arthritis, osteophyte development, and post-traumatic
degenerative disease. Alongside CT scans, the scapula and
proximal humerus reference surfaces were included. Two clini-
cal operators, with more than 10 years of radiological expertise,
produced and revised the bony surfaces with Mimics (v.16.0,
Materialise, Leuven, Belgium). Two different humerus surfaces
were available for each patient. The first one represented the
original proximal humerus morphology. The second was a
manually elaborated version where osteophytes and deformities
were cleared to reproduce the physiological humeral head
anatomy. While the original surface was crucial to designing
the custom-cutting implant and planning the contact areas
between the bone and corresponding jigs, the modified version
was necessary to plan the optimal prosthesis positioning and
size.

B. Ethical and Regulatory Compliance

The personal patient information in the dataset was com-
pletely unavailable, with each case identified by an alphanu-
meric code. Clinical data and images were encoded by
MEDACTA with a two-stage anonymization. This method is
used to safeguard clinical data, including images, in compli-
ance with the GDPR (General Data Protection Regulation). A
separate department in MEDACTA (trusted party) retains the
ability to re-identify individuals using a key or decoding mech-
anism. Thus, all the training and testing stages described in this
paper were compliant with current regulations in medical data
management.

C. Training set preparation

Among the 607 cases, 36 were excluded because bones
presented internal metal components such as screws, implants,
and plates, whose analysis was beyond the aim of this study.
Therefore, the present investigation was conducted with the
remaining 571 cases, comprising 274 females and 297 males,
and 300 right and 271 left shoulders. CT preprocessing was
carried out to standardize the dataset samples. In detail, voxel
normalization was performed to scale their intensity between
0 and 1. Since each scan was derived from different scanning

machinery, voxel values were converted to the Hounsfield
Unit (HU) range, ensuring a range between -1024 and 2500,
representing air to dense cortical bone [45]. Values were then
shifted to positive units and normalized between 0 and 1 for
consistency. The 571 cases were randomly split into 485 (85%)
as training and validation set, and 86 (15%) as test set. Two
different groups were generated from the original dataset, one
for CT segmentation and the other for staging three GH-related
conditions (see Supplementary Materials, Fig. 1). The first one
(DSeg) included the preprocessed shoulder CT scans and their
corresponding segmentation labels. To reduce the computa-
tional overhead, cropping was applied to the CT volumes in the
axial, coronal, and sagittal views to eliminate all slices where
the proximal humerus and scapula labels were not available. In
addition, a patch-based method was deployed to augment the
training set size while keeping the original voxel resolution.
Specifically, cropped CTs were patched into sub-volumes of
size 160×160×160, with a variable overlapping degree (25%
on average), depending on their initial spatial size. The second
dataset (DCls) consisted of CT volumes focused on the humeral
head and glenoid surface, and their corresponding segmentation
and classification labels. The automatic extraction of these GH-
centered bounding boxes from the original shoulder CT scans
rested upon a prior method originally developed and tested for
proximal femur head [11]. The number of CT scans in the
DCls set was finally doubled by data augmentation flipping
the originated sub-volumes in the sagittal plane. The humeral
head osteophytes severity degree (OS) was staged into three
classes, according to the Samilson-Prieto grading system [46],
[47], highlighting increasing osteophyte size. Grade 0 revealed
small-size (so<3 mm), grade 1 medium-size (3<so<7 mm),
and grade 2 large-size (so>7 mm) osteophytes. Automated OS
labeling was achieved by computing the maximum distance
(in millimeters) between the osteophyte-cleared and morpho-
logic humerus reference surfaces for each dataset case. The
GH joint space (JS) was manually identified following the
Kellgren-Lawrence grading system [1]. Three classes were
tagged for each dataset case according to the residual JS
including physiological joint space (grade 0), slightly narrowed
joint space (grade 1), and non-detectable joint space (grade
2). Finally, HSA was assessed by looking at the humeral
head shift from the glenoid surface in cranio-caudal direction
by identifying either concentric-physiological or eccentric-
pathological humeral head alignment [48]. The entire labeling
procedure was supervised and revised by an orthopedic surgeon
with more than 25 years of clinical practice (A.M.) (Table I).

D. Segmentation module of the xCEL-UNet

The segmentation and classification modules of the xCEL-
UNet (Fig. 1) share a common encoder path featuring a
sequence of convolutional blocks (convolutional, ReLU acti-
vation, and max-pooling layers), with the same characteristics
of the original CEL-UNet, described in [20], which is our
reference segmentation architecture for this work. It includes
three processing blocks, doubling at each one the number of
feature maps, initially set to eight. The convolutional filter size
and stride were 3×3×3 and 1×1×1, respectively, while max-
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TABLE I. GH osteoarthritic-related condition labeling. The first
column describes the pathological condition, namely osteophyte size
(OS), GH joint space (JS), and humeroscapular alignment (HSA).
The second and third columns show the labeling criteria for each
multi-class task and the provided index. The last column reports the
frequency of each class in the dataset for the corresponding task.

Condition Criteria Index Frequency [%]

OS
<3 mm 0 31.1
3-7 mm 1 36.1
>7 mm 2 32.8

JS
Physiological 0 38.2

Narrowed 1 27.2
Non-detectable 2 34.6

HSA Concentric 0 56.1
Eccentric 1 43.9

pooling uses 2×2×2 filters. Unlike the UNet, the xCEL-UNet
was characterized by two parallel decoder branches, namely the
mask decoder (MD) for region segmentation, and the contour
decoder (CD) for edge detection. Both branches performed
upsampling via transpose convolution, with the number of
feature maps halving at each decoding block. Skip connections
linked the encoder to both decoder branches. The final layer
of the MD branch was a 1×1×1 convolution with three output
channels (background, proximal humeral bone, scapula) and
Softmax activation. Unidirectional skip connections from each
block in the contour decoder to the corresponding block in the
mask decoder were enabled. The training of the segmentation
module was based on the optimization of both Lr and Lc loss
functions as:

Lr = 1− (α ·D +(1−α) ·C )

Lc = 1− (β ·C +(1−β) · Ĉ )
(1)

where C and Ĉ are the distance cross-entropy and reverse
distance cross-entropy terms, D is the Dice score, and α and
β parameters weight the contribution of the Dice and cross-
entropy terms.

E. Classification module of the xCEL-UNet

The xCEL-UNet classification module consisted of the en-
coder, shared with the segmentation one, a 3D global aver-
age pooling, and three classification branches, tailoring the
network for each pathological condition. They embedded two
consecutive dense layers with 64 and 16 units and a ReLU
activation function. The output of two of the three-stage
classification tasks, namely OS and JS, were dense layers with
three output neurons with Softmax activation function, while
the binary neuron for the HSA prediction featured sigmoid
activation functions. During the training of the classification
task, categorical and binary cross-entropy loss functions were
chosen for the categorical and binary predictions, respectively.
To balance the uneven training label frequency for each task
(Table I), each loss function was weighted with a parameter Kc
to balance the representation of every class, following Eq.2:

K c =
1

Nc

∑
C
i=1(

1
Ni
)

(2)

where c, Nc, and C were the current class for the specific
classification task, the number of total cases for each class,
and the number of classes, respectively.

F. xCEL-UNet training: transfer learning and fine tuning

The xCEL-UNet training was performed in two sequential
steps. In the first stage, the segmentation module (encoder
branch, mask decoder and contour decoder, cfr. Fig. 1) was
trained using the DSeg dataset. The training process utilized
the ADAM optimizer (Adaptive Moment Estimation) with a
learning rate of 10−4. The parameter α in the Lr loss (eq. 1)
was initially set to 1 and reduced by a factor of 0.005 per
iteration until reaching a value of 0.5 at the 100th iteration,
after which it remained constant. This scheduling strategy was
designed to enable the Dice loss to dominate weight learning
in the early stages, gradually incorporating the influence of
cross-entropy based on the distance-weighted map, thereby
reducing the prominence of the Dice loss component over
time. To balance the two contributions in the Lc loss (eq. 1),
the parameter β was defined as the ratio of shape boundary
voxels to the total number of voxels within the batch. Early
stopping was applied to prevent overfitting, terminating the
training after 40 consecutive epochs with no improvement in
validation loss. In the second stage, the training of the clinical
staging module (classification branch, cfr. Fig. 1) harnessed
four distinct strategies (Table II), employing the DCls dataset.
The first utilized a transfer-learning (TL) approach, where
the encoder, bottleneck, and decoder branches were frozen
(i.e. their weights were not retrained). This method aimed to
determine if the high and low-level features learned during
segmentation training could be leveraged for identifying GH
osteoarthritic-related conditions in the classification task. The
other three strategies involved fine-tuning specific sections of
the segmentation network: the network bottleneck (FT-B), the
encoder (FT-E), and the entire network (FT-N). This time,
the number of re-trained weights in the segmentation module
varied depending on the training setup. The analysis sought to
evaluate whether modifying the segmentation module during
the second training phase could improve feature extraction for

TABLE II. xCEL-UNet training setup summary. The transfer-learning-
based method (TL) entails just the optimization of the classification
branch layers, while the three fine-tuning-based setups re-train differ-
ent portions of the segmentation network, including the whole encoder
(FT-E), the bottleneck (FT-B), and the whole network (FT-N).

Setup Encoder Bottleneck Decoder Classification

TL frozen frozen frozen trainable

FT-B frozen trainable frozen trainable

FT-E trainable trainable frozen trainable

FT-N trainable trainable trainable trainable
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GH condition classification while maintaining the accuracy of
the segmentation outputs. Computations were performed on a
32-core CPU and Nvidia A100-PCIe GPU with 40 GB RAM.

G. GradCAM and visual explainability

To investigate the network’s ability to learn the clinical
context, this work employed the GradCAM algorithm proposed
in [25] and extended it to the multi-class classification. This
implementation produced a 3D activation heatmap overlaid
onto the corresponding CT volume to visualize which shoulder
regions were important for the specific GH clinical classifi-
cation (see Fig. 1). In detail, the entire procedure involved:
1) the forward pass, processing the CT scan with the xCEL-
UNet; 2) the selection of the output score y corresponding to
the class set s (e.g. HSA in Fig. 1) and the specific class c
(e.g. eccentric); 3) the backward pass to compute the gradients
δ

s,c
f of the score y for the target class s,c with respect to the

feature maps A f of the bottleneck layer ( f ranged between
1 and 64); 4) the global average of these gradients across
the bottleneck spatial dimension (10× 10× 10) to obtain the
weights α

s,c
f for each feature map; 5) the weighted sum of the

feature maps, 6) the ReLU activation to focus on the positive
activations, 7) upsampling the heatmap to the CT volume size
and overlaying. Mathematically, the gradient was computed for
each voxel (i, j,k) as:

δ
s,c
f =

∂ys,c

∂A f ,i, j,k
(3)

and then globally averaged across the spatial dimensions as:

α
s,c
f =

1
Z

10

∑
i=1

10

∑
j=1

10

∑
k=1

δ
s,c
f (4)

where Z = 1000 was the feature map voxel number. Finally,
the class activation map was obtained as:

Ls,c
GradCAM = ReLU

(
64

∑
f=1

α
s,c
f A f ,i, j,k

)
(5)

H. Result comparison, metrics, and statistical analysis

The four xCEL-UNet training setups were evaluated for seg-
mentation, 3D reconstruction, and classification outcomes. The
first two tasks were further compared to the results achieved
by the CEL-UNet architecture to assess deviations from a tra-
ditional segmentation network training approach. The original
CEL-UNet, backbone of the xCEL-UNet, was also compared
to state-of-the-art nnUNet architecture to evaluate its raw
performances. Dice score was computed to measure the inter-
section over union network performances against segmentation
labels, while precision and recall are responsive for both over-
and under-segmentation errors, respectively. The 3D volumes
of each prediction were built exploiting a custom marching
cube-based automated algorithm [11]. Reconstruction errors
were evaluated by computing the root mean squared error
(RMSE) and the Hausdorff distance, considering the average
and maximum distance between the reference and predicted
surfaces. In detail, a one-way analysis was carried out by

Fig. 2. Four reconstructed test set cases (0005, 0102, 0328, and
0628) showing different morphological structures and pathological
conditions.

comparing the distances between each vertex of the target mesh
and its closest from the predicted mesh. The statistical analysis
of segmentation and 3D reconstruction results was performed
using the non-parametric Friedman test, followed by Wilcoxon
Signed-Rank tests with Bonferroni correction for post-hoc
analysis. A p-value below 0.05 was considered indicative of
statistical difference between competitive models. Accuracy,
precision, recall, and F1-score computation were carried out to
identify the best training setup for the classification tasks. In
addition, the confusion matrix of the most promising approach
was showed provide a broader evaluation of its classification
performances.

III. RESULTS

A. Segmentation and 3D reconstruction

The segmentation and reconstruction of the humerus and
scapula by the xCEL-UNet was accurate across a wide range
of morphologies (Fig. 2). As an example, the upper left
image depicts large deformations of the humeral head due
to osteophyte development. Likewise, the upper right one
represents distributed osteophytes on the humeral head, with
null intra-articular space. Both bottom images displayed fewer
osteophytes, but eccentric humeral heads. The comparison be-
tween the xCEL-UNet against the nnU-Net [15] segmentation
outcomes showed competitive dice results in the range of
99% (p=0.0002) and 98% (p=0.0005) for the humerus and
scapula, respectively (see Supplementary Material, Table 2).
Considering the xCEL-UNet variants, the results computed
with the TL strategy were by definition identical to the one
achieved with the original CEL-UNet, as both the encoder
and the decoder branches were not re-trained (Fig. 3). The
outcomes of the three xCEL-UNet fine-tuning variants were
similar to the TL approach for the humerus dice score (p>0.5),
while for the scapula they showed larger interquartile ranges,
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Fig. 3. Dice, precision, and recall for humerus (above) and scapula
(below). Red boxplots display the CEL-UNet scores for the three
metrics, the blue ones the xCEL-UNet trained with a transfer learn-
ing (TL) approach, while three tones of green depict the different
fine-tuning strategies, re-training only the bottleneck alongside the
classification layers (dark green, FT-B), the encoder (green, FT-E),
and the whole network (light green, FT-N).

with the FT-B model showing significantly lower metrics
(p=0.0007). The precision results highlighted again similar
performances in the humerus segmentation across the three
variants. However, FT-E and FT-N models were significantly
worse in the scapula than those achieved by the CEL-UNet.
Regarding recall, FT-E and FT-N scores were significantly
greater than the CEL-UNet ones in the humerus (p=0.0002 and
p=0.0001, respectively), while for the scapula, FT-N showed
the best results overcoming again the CEL-UNet. The 3D
reconstruction errors saw a RMSE for the xCEL-UNet variants
confirming high segmentation quality for the humerus, similar
to that of the original CEL-UNet, featuring median values less
than 0.3 mm with an IQR ranging from (0.15-0.48). The FT-
E and FT-N variants showcased the best and worst results,
respectively, with 0.21 mm (0.15-0.38) and 0.31 mm(0.22-
0.69) (Fig. 4). The RMSE for the scapula was significantly
lower than the ones of the humerus (p=0.0001). For the CEL-
UNet, the median Hausdorff distance error was in the range of
1.5 mm, for both the humerus and scapula. Among the three
variants, FT-E showcased the worst results for the scapula,
featuring a median RMSE and Hausdorff distance of 0.24 mm
and 3.28 mm.

B. Clinical classification

The pure transfer learning (TL) of the CEL-UNet segmen-
tation weights, alongside the classification module training,
proved ineffective in staging the three pathologies, achieving
results just above the random classification thresholds (Ta-
ble III). Conversely, the fine-tuning variants provided better
results for the three class sets. The best results for the os-
teophyte size (OS) and the joint space (JS) detection were
achieved by retraining the whole encoder (FT-E), with accuracy
and precision values of 0.91 and 0.93, and recall and F1-
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Fig. 4. Root mean squared error (above) and Hausdorff distance
(below) for the humerus and scapula 3D reconstruction. Red boxplots
display the CEL-UNet results, the blue ones the xCEL-UNet with
the transfer learning (TL) strategy, while three tones of green depict
the different fine-tuning strategies, re-training only the bottleneck with
the classification layers (dark green, FT-B), the encoder (green, FT-E),
and the whole network (light green, FT-N).

Fig. 5. Confusion matrix of the GH osteoarthritic-related condition
classification computed with the FT-E xCEL-UNet.

score of 0.90 and 0.93, respectively, consistently outscoring
the other strategies. Conversely, the greatest performance for
the HSA assessment was computed with the bottleneck fine-
tuning (FT-B), reaching accuracy, precision, recall, and F1-
score of 0.91, 0.93, 0.89, and 0.91, respectively. Overall, FT-N
was less reliable than the other two variants, especially for the
OS prediction, with a 74% accuracy. Based on these findings,
the FT-E approach was selected as the optimal training strategy
for this multi-task, multi-class classification problem. Accord-
ingly, the FT-E confusion matrix (Fig. 5) was computed to
provide broader insights into the classification performance. It
demonstrates how the non-pathological condition staging for
OS and JS (i.e., small/no osteophyte and physiological joint
space, respectively) was always estimated at 100%, while the
medium-size identification was the most challenging assess-
ment, with a true positive rate of 78%. For the HSA index,
a slight bias toward the concentric condition prediction was
observed, with a true positive rate of 90%.
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TABLE III. Accuracy, Precision, Recall, and F1-score for the three GH osteoarthritic-related condition classification, osteophyte size (OS),
joint space (JS), and humeroscapular alignment (HSA) with the four different training setups of the xCEL-UNet, including transfer learning
(TL), and the fine-tuning of the bottleneck (FT-B), encoder (FT-E), and the whole network (FT-N).

Training Accuracy Precision Recall F1 Score

OS JS HSA OS JS HSA OS JS HSA OS JS HSA

TL 0.33 0.47 0.58 0.35 0.31 0.67 0.32 0.45 0.40 0.33 0.37 0.50

FT-B 0.83 0.80 0.91 0.82 0.80 0.93 0.82 0.79 0.89 0.82 0.79 0.91

FT-E 0.91 0.93 0.85 0.91 0.93 0.90 0.90 0.93 0.80 0.90 0.93 0.85

FT-N 0.74 0.86 0.90 0.74 0.87 0.93 0.74 0.85 0.87 0.74 0.85 0.90

C. GradCAM-based xCELUnet interpretability

The GradCAM activation maps were generated for the FT-
E xCEL-UNet model which achieved the best classification
scores against the other three training strategies. For HSA, a
strong coherence between the eccentric pathological condition
(i.e., humeral head shifting upward in the coronal plane) and
the generated heatmap was found, with maximum activation
in the intersection regions between the humeral head and
the scapula acromion (see Supplementary Materials, Fig.2).
The radial colormap distribution showed its highest values in
the narrowed intra-articular space (A, B, and C), with lower
intensity activation in the surrounding areas. Conversely, the
concentric HSA prediction resulted in a less homogenous acti-
vation pattern (see Supplementary Materials, Fig. 3). Likewise,
the network decision-making process leading to a correct OS
and JS staging demonstrated strong coherence with the clinical
features of the corresponding pathological condition of interest
(Fig. 6). In detail, the highest activations registered for the
large-size osteophyte classification were predominantly in the
osteophyte regions (A, C, and E) of the humeral head, while
for the narrowed JS identification they were mainly confined to
the contact areas between the glenoid and the humeral head (B,
D, and F), with less or no activation in the osteophyte regions.
The comparison of case 0362 JS and OS visual explanations
provided valuable insights into the selectivity for the two
different specific clinical conditions. Interestingly, the visual
analysis of the OS classification confirmed the network ability
to discriminate the three gradings with specific activation
patterns. For the grade 0 staging (see Supplementary Materials,
Fig. 4 - case 0221), the absence of relevant osteophytes
was explained featuring a smooth activation distributed across
the overall distal humerus. For grade 1 (see Supplementary
Materials, Fig. 4 - case 0158), the presence of a medium-size
osteophyte corresponded to an activation map very localized
on the specific region. For grade 2, the activation map focused
coherently on the large region affected by the osteophytes
spanning both the top and lateral surface of the humeral head
(see Supplementary Materials, Fig. 4 - case 0362).

IV. DISCUSSION

The humerus and scapula segmentation can be more chal-
lenging than other bones. With a pathological GH joint space
reduction and concurrent osteophyte development, the humeral

Fig. 6. OS and JS GradCAM-generated activation maps (second and
third column, respectively) overlaid on top of their corresponding
input CT (coronal view). A, C, and E areas highlight large humeral
osteophytes, while B, D, and F arrows the non-detectable joint space
between the humerus and the glenoid.

head is wrapped around the glenoid, further complicating the
identification and delineation of the two bone boundaries.
The proposed xCEL-UNet was retrospectively validated for
humerus and scapula segmentation using a private dataset of
571 patients from different ethnic groups, characterized by
a large variability of GH pathological conditions, enhancing
the robustness and generalization capability of the model.
The patients were diagnosed with different shoulder-related
clinical conditions including primary GH joint osteoarthritis
and osteonecrosis, inflammatory arthritis, and post-traumatic
degenerative disease. Some patients featured subluxation con-
ditions with eccentricity of the humeral head. Others reported
morphological variations due to osteophyte formation. All
these ensured that the model performance was aligned with
real-world medical scenarios. The labeling process for all three
clinical conditions was overseen and refined by an orthopedic
surgeon with over 25 years of experience. Each condition
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TABLE IV. Comparison of with state-of-the art papers dealing with shoulder bone segmentation.

Study Cases/Images Region/Condition Modality Segm Accuracy Class Accuracy

[49] 31 Humeral head/acetabulum MRI 0.88 N/A
[50] 116 Scapula CT 0.97 N/A
[35] 485 Scapula CT 0.87 N/A
[21] 16 Upper body bones CT 0.85 N/A
[51] 500 Humerus head MRI 0.91 N/A
xCELUnet 571 Humerus/Scapula CT 0.98 0.90

was categorized into multiple severity levels, allowing for a
thorough and detailed assessment of shoulder bone pathologies.
The qualitative results showed the potential clinical impact of
the xCEL-UNet model for shoulder bone segmentation (see
Supplementary Materials, Table 2). The network was capable
of handling a wide range of joint morphological deforma-
tions, such as the absence of intra-articular cartilage, abnormal
humeral head positioning, and bone osteophytes (see Fig. 2).
The fast reconstruction of the shoulder bone surface sensibly
reduces the time required for diagnosis, provides a meaningful
three-dimensional comprehension of the overall pathological
condition, and supports the decision for the identification of the
optimal treatment. Once clinically validated, the proposed deep
learning method may feature a substantial clinical impact by
improving diagnostic accuracy and surgical options in the treat-
ment of glenohumeral joint arthritis. As far as classification is
concerned, pure transfer learning yielded poor results, indicat-
ing that features learned during segmentation were insufficient
for accurate clinical staging without retraining. Fine-tuning the
network encoder alongside training the classification branch
was the best trade-off for concurrent segmentation and classifi-
cation tasks, achieving the highest classification outcomes (Ta-
ble III) while maintaining high segmentation (cfr. Fig. 3) and
3D reconstruction (cfr. Fig. 4) quality. GradCAM enhanced the
interpretability of the xCEL-UNet model, showing coherence
between predicted classifications and clinical context through
activation maps, highlighting the model decision-making pro-
cess (cfr. Fig. 6, and Supplementary Materials Fig.2, 3, and
4). Our findings are supported by the literature (Table IV). A
CNN, trained on a dataset of 95 shoulder CT scans, achieved
a 97% Dice similarity coefficient for humerus segmentation
[52]. Furthermore, a UNet-based glenoid segmentation from
237 CT scans featuring anterior shoulder dislocation was
investigated against a 248 control group dataset, reaching a
segmentation accuracy of 96% [35], similar to our results
computed over the entire scapula. Deep neural networks,
such as the ResNet18, were proposed as diagnostic support
systems for distal humerus fracture with sensitivity results in
the range of 61%, but with a high specificity (95%) making
them particularly useful for identifying these lesions [53].
A multi-class bone segmentation pipeline was presented in
[21], achieving an overall dice score of 85% across 126 bone
classes. However, the study’s generalizability was limited, as
the training and testing were conducted on only 16 upper-
body postmortem CT scans. Additionally, the dataset did not
include orthopedic patients, meaning the humerus and scapula
were not consistently affected by osteoarthritic pathologies.

From a clinical translation perspective, the segmentation tool’s
accuracy makes it viable for PSI manufacture and planning,
with the entire inference pipeline running below 15 seconds on
a dedicated GPU-based cluster computer [54]. The inference
(segmentation, surface reconstruction, and clinical prediction)
was tested on a consumer laptop (Intel i7 processor, 24GB
RAM) showing a computational time of approximately 130
seconds on average, still compatible with orthopedic planning
practice. In the light of the results, we remark that this work
provided enhanced precision in anatomical segmentation and
reconstruction, improved diagnostic accuracy and decision-
making, and supported interpretability for clinical adoption
of deep learning models. The accurate segmentation of the
humerus and scapula and the ability to handle morphological
variations are critical for preoperative planning. The xCEL-
UNet results demonstrates its reliability in capturing fine
anatomical details. This may have implications in the pre-
operative implant design as surgeons can use these detailed
reconstructions to select and customize prosthetic components,
particularly in shoulder arthroplasty, where precise alignment
and fit are crucial. In addition, the CEL-UNet’s robustness in
cases with osteophytes, joint narrowing, or eccentric alignment
underscores its potential to improve planning in complex cases,
reducing intraoperative uncertainty. The classification results,
especially with the FT-E fine-tuning approach, demonstrated
high accuracy in staging all the three critical OA-related
features. This may have implications in the early identification
of pathological changes like large osteophytes or narrowed
joint spaces that can guide earlier intervention, potentially
delaying disease progression. In addition, such findings may
help to select tailored treatment plans according to severe
against mild-to-moderate OA, suggesting joint replacement
surgery and more conservative therapies, respectively [4],
[55]. Lastly, the model’s ability to reliably identify concentric
vs. eccentric HSA conditions can help stratify surgical risks.
Eccentric conditions often indicate rotator cuff dysfunctions
or glenoid wear, which may require more complex surgical
techniques or grafting. The GradCAM maps demonstrated the
model’s ability to focus on clinically relevant regions, such as
inter-articular spaces for JS and osteophyte sites for OS. This
may have implications in increasing the clinical confidence
of the operator in the transparent use of AI tools [56].
These maps might also serve as educational tools, helping less
experienced orthopedics understand key diagnostic markers
of the GH osteoarthritis. However, these findings must be
interpreted within the study’s limitations. In detail, just a binary
HSA condition was considered, whereas the humeral head
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eccentricity (subluxation) is typically described in posterior,
anterior, inferior, and superior directions. This choice was
driven by the study’s focus on patients with degenerative
shoulder arthritis. Moreover, despite an extensive dataset of
571 patients, it lacked clinical conditions such as bone loss,
and prior surgeries. Additionally, a bias is registered towards
an older population (the median age was 74 years) reflecting
instances more susceptible to bone deterioration and decreased
turnover. Although the xCEL-UNet demonstrated strong per-
formance in general cases, its application to rare pathologies or
extreme deformities may require further fine-tuning and data
augmentation to ensure robustness. Effective implementation
in clinical practice will depend on close interdisciplinary
collaboration between surgeons, radiologists, and engineers
to validate AI predictions under real-world conditions. Ad-
ditionally, compliance with healthcare regulations and ethical
standards is essential to guarantee the safe deployment of these
models. Looking ahead, the xCEL-UNet holds promise for
intraoperative applications, such as integration into surgical
navigation systems for real-time guidance, and for longitudinal
monitoring, enabling clinicians to track disease progression and
adjust treatment plans over time.

V. CONCLUSIONS

We demonstrated that a dual-task deep network can ef-
fectively perform CT segmentation and clinical assessment
simultaneously. This pilot study is the first to apply a UNet-
like architecture to the scapula and humerus segmentation
while retraining it to classify three clinical conditions affecting
the glenohumeral joint. GradCAM analysis confirmed that the
network consistently learned the context of GH joint clinical
conditions. These findings suggest a significant advancement
in AI-based decision tools, improving clinical interpretation
of the GH joint and aiding in the selection of appropriate
prosthetic and surgical strategies, making it more viable for
clinical implementation.
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This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2025.3527877

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Technology
learning for the rapid automatic quantification and characterization of
rotator cuff muscle degeneration from shoulder ct datasets. European
radiology, 31:181–190, Jan 2021.

[24] Anish G. Potty, Ajish S. R. Potty, Nicola Maffulli, Lucas A. Blumen-
schein, Deepak Ganta, R. Justin Mistovich, Mario Fuentes, Patrick J.
Denard, Paul M. Sethi, Anup A. Shah, and Ashim Gupta. Approaching
artificial intelligence in orthopaedics: Predictive analytics and machine
learning to prognosticate arthroscopic rotator cuff surgical outcomes.
Journal of Clinical Medicine, 12(6):2369, March 2023.

[25] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision,
pages 618–626, 2017.

[26] Sozan Mohammed Ahmed and Ramadhan J. Mstafa. A comprehensive
survey on bone segmentation techniques in knee osteoarthritis research:
From conventional methods to deep learning. Diagnostics, 12(3), 2022.
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