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Abstract—Quality of Life (QoL) assessment has evolved
over time, encompassing diverse aspects of human exis-
tence beyond just health. This paper presents a compre-
hensive review of the integration of Deep Learning (DL)
techniques in QoL assessment, focusing on the analysis
of wearable data. QoL, as defined by the World Health Or-
ganisation, encompasses physical, mental, and social well-
being, making it a multifaceted concept. Traditional QoL
assessment methods, often reliant on subjective reports
or informal questioning, face challenges in quantification
and standardization. To address these challenges, DL, a
branch of machine learning inspired by the human brain,
has emerged as a promising tool. DL models can ana-
lyze vast and complex datasets, including patient-reported
outcomes, medical images, and physiological signals, en-
abling a deeper understanding of factors influencing an
individual’s QoL. Notably, wearable sensory devices have
gained prominence, offering real-time data on vital signs
and enabling remote healthcare monitoring. This review
critically examines DL’s role in QoL assessment through the
use of wearable data, with particular emphasis on the sub-
domains of physical and psychological well-being. By syn-
thesizing current research and identifying knowledge gaps,
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this review provides valuable insights for researchers, clin-
icians, and policymakers aiming to enhance QoL assess-
ment with DL. Ultimately, the paper contributes to the adop-
tion of advanced technologies to improve the well-being
and QoL of individuals from diverse backgrounds.

Index Terms—Deep learning, healthcare, machine learn-
ing, quality of life, wearable data.

Impact Statement—This review highlights the transfor-
mative potential of deep learning techniques and wearable
technology in assessing physical and psychological as-
pects of Quality of Life, enabling more personalized and
accurate healthcare interventions.

I. INTRODUCTION

THE notion of Quality of Life (QoL) has been examined
from multiple perspectives, resulting in the recognition that

health-related QoL and total QoL are frequently synonymous.
The World Health Organisation (WHO) characterises health as a
holistic condition of physical, mental, and social well-being, un-
derscoring its importance in improving quality of life. In addition
to health, QoL includes employment capacity, social support,
and the physical environment [1]. Researchers have suggested
that QoL can be examined from several perspectives, such as
psychological, economic, and medical, hence complicating its
definition and assessment [2].

Conventional approaches to evaluating QoL have depended
on informal enquiries by healthcare professionals, which may
be subjective and variable. Two principal methodologies for sys-
tematic assessment have arisen: (1) validated patient-reported
outcomes (PROs) instruments that gather subjective data [3];
and (2) objective data acquisition via technologies that record
physiological signals and behaviours [3]. In response to the
necessity for a thorough Quality of Life evaluation tool, the
WHO created the WHOQOL assessment instrument, which
includes many domains such as physical health, mental well-
being, relationships, and environmental factors [4] (Fig. 1).

Recently, a paradigm change in QoL assessment has occurred
with the incorporation of Deep Learning (DL) approaches,
which utilise complicated datasets to improve comprehension
of QoL domains [6]. This innovation facilitates the analysis
of many data sources, such as PROs, medical imaging, and
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Fig. 1. WHOQOL instrument domains and subdomains [5].

physiological signals, yielding enhanced insights into the de-
terminants of quality of life [7]. Wearable technologies have
significantly altered the landscape by providing continuous,
real-time data on vital signs and other health parameters, thus
improving the precision of quality of life assessments [8], [9].
This review examines the function of deep learning approaches
in evaluating the physical and psychological health subdomains
of QoL, emphasising the progress and prospective applications
of wearable technology in this emerging and critical healthcare
sector [10].

II. PHYSICAL HEALTH ASSESSMENT

The maintenance of physical health is an essential aspect
that contributes significantly to an individual’s holistic well-
being. It comprises a broad spectrum of factors pertaining to
the physiological functioning and overall welfare of the human
body [11]. One of these factors, Human Activity Recognition
(HAR), has progressed markedly due to the emergence of DL,
utilising wearable sensor data to precisely categorise activities of
daily living (ADL) such as walking, jogging, and driving. Con-
volutional Neural Networks (CNN) have exhibited remarkable
efficacy in extracting spatial characteristics from sensor data,
as evidenced by Dua et al. [12], where a CNN-GRU hybrid
attained an accuracy of 96.00% across several datasets. Long
Short-Term Memory (LSTM) networks, intended for sequential
data, have proven effective, with Kuncan et al. [13] attaining
98.42% accuracy utilising Motif Patterns. Hybrid models such
as CNN-LSTM [14] enhance performance, achieving accuracy
levels of up to 99.00% on particular datasets. Recently, atten-
tion mechanisms and transformers have improved the accuracy
of HAR, as demonstrated in Sarkar et al. [15] and Dirgova
Luptakova et al. [16], where transformer-based models attained

over 99.00% accuracy by effectively capturing temporal de-
pendencies in sensor data. Nevertheless, numerous research,
including those employing benchmark datasets like UCI-HAR,
are constrained by restricted sample numbers and insufficient
variety, which raises issues over their generalisability across
populations with varying demographics or activity patterns.
These constraints may impede the model’s efficacy in varied
real-world environments. Furthermore, datasets frequently inad-
equately represent the inherent diversity of human behaviours,
leading to models that are tailored to certain, often idealised
circumstances instead of the unpredictable nature of real-world
situations.

Moreover, medication adherence, an essential element of
effective therapy, has significantly improved with DL algo-
rithms and wearable data, providing real-time feedback and
accuracy in monitoring. Odhiambo et al. [17] used a Deep Neural
Network (DNN) with accelerometer data from smartwatches
to identify involuntary movements associated with medicine,
attaining a precision of 96.50%. CNNs have been effectively
utilised, as demonstrated by Lee et al. [18], who employed
a camera image sensor combined with wearable devices to
monitor medicine adherence, achieving an accuracy of 92.70%.
CNN-based approaches for monitoring chronic diseases and
glucose levels have shown encouraging outcomes [19]. Pettas
et al. [20] employed LSTM networks, recognised for their capa-
bility in temporal data processing, to identify audio events from
inhalers, achieving accuracy rates as high as 94.00%, surpassing
conventional approaches.

Energy and fatigue (EF) are essential measures of an individ-
ual’s health and productivity, with precise measurement vital for
evaluating overall well-being. Recent studies have investigated
innovative techniques for identifying EF using wearable sensors
and deep learning models. Sharma et al. [21] employed CNN
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to monitor wrist motions and recognise eating events with an
accuracy of 89.00%, whereas Wang et al. [22] integrated CNNs
with attention mechanisms to assess eating speed, achieving a
minimal error of 0.11. Advancements in mental fatigue detection
have been made by deep learning approaches; Wu et al. [23] em-
ployed a Contractive Sparse Auto-encoder to categorise fatigue
states from EEG data, attaining an accuracy of 83.00%. Bai
et al. [24] utilised a self-attention LSTM model for fatigue de-
tection using ECG and actigraphy data, illustrating the efficacy
of integrating temporal and attention mechanisms. Additional
significant applications involve employing CNNs and BiLSTM
for the detection of driver sleepiness [25], [26] and utilising HRV
signals from wearables to assess driver fatigue [27], with these
models attaining accuracy rates of up to 94.31%. Notwithstand-
ing these developments, a trade-off exists between the accu-
racy of high-performing models, such as hybrid CNN-LSTM
architectures, and the feasibility of their implementation on
resource-limited wearable devices. The computational require-
ments of these models, especially when managing extensive
datasets or real-time data streams, may hinder their deployment
on devices with limited processing capacity or battery longevity.
This requires the investigation of more computationally efficient
algorithms that can sustain high accuracy while remaining prac-
tical for wearable devices.

Mobility is another essential aspect of public health, en-
compassing physical mobility, ambulation, and transportation,
all of which enhance an individual’s QoL [28]. GPS-enabled
wearables enable the assessment of life-space mobility, which
is associated with social support and gait speed [29], whilst
accelerometers monitor velocity and physical activity [30]. Nu-
merous research efforts utilise wearable sensors to evaluate
fall risk and mobility challenges, especially among the older
population. Kulurkar et al. [31] attained a 95.87% accuracy in
fall detection utilising LSTM and IoT-based systems. In patients
with Parkinson’s Disease, freezing of gait (FOG) was accurately
predicted utilising transformer-based topologies combined with
BiLSTM, resulting in elevated specificity and sensitivity [32].

Pain perception is a multifaceted and subjective experience
that presents difficulties for objective assessment [33]. Recent
breakthroughs in wearable technologies, including electroder-
mal activity (EDA) sensors and DL algorithms, provide novel
methods for pain quantification, hence improving quality of life
evaluations. Gkikas et al. [34] used multi-task learning (MTL)
neural networks with ECG data, enhancing the precision of pain
assessment. Rojas et al. [35] employed functional near-infrared
spectroscopy and a BiLSTM model to attain 90.60% accuracy
in evaluating pain in non-communicative patients. Pouromran
et al. [36] enhanced pain intensity classification using a cus-
tomised BiLSTM model, achieving a f1-score of 0.81 and an
AUROC of 0.93 across multiple pain states. Hu et al. [37] proved
the efficacy of LSTM in chronic pain identification, attaining
precision and recall rates of 97.20% via balance and body sway
analysis. Wang et al. [38] investigated protective behaviour
recognition with layered LSTM methodologies, achieving an
ideal F1-score of 0.82. Furthermore, Yu et al. [39] employed
EEG signals to objectively assess pain, attaining classification
accuracy of 97.37%, via CNN-based models.

Additionally, sleep is a vital physiological condition marked
by a transient loss of consciousness and modified cerebral activ-
ity, serving a fundamental function in both physical and mental
well-being [40]. Emerging wearable technology and sophisti-
cated deep learning approaches are crucial for precisely measur-
ing sleep, improving personal understanding of sleep patterns,
and aiding healthcare professionals in detecting sleep problems
and refining treatment strategies. The NetHealth dataset [41],
which examined data from 698 college students, revealed that
CNN could proficiently evaluate sleep quality, attaining a mean
absolute error (MAE) of roughly 0.04. Furthermore, Yildirim
et al. [42] presented a 1D-CNN model that automated the
classification of sleep stages utilising polysomnogram (PSG)
data, attaining accuracies ranging from 91.00% to 98.06%.
Mousavi et al. [43] created SleepEEGNet, which employed
single-channel EEG data to attain an accuracy of 84.26% by
integrating CNN and sequence-to-sequence models. In contrast,
Supratak et al. [44] merged CNN and BiLSTM networks in
the DeepSleepNet model, achieving an accuracy of 86.20%.
Furthermore, actigraphy sensors have shown efficacy in fore-
casting sleep efficiency, with CNN achieving the best accuracy of
97.30% [45]. LSTM models, as emphasised by Phan et al. [46],
successfully forecasted sleep quality via physical activity data,
attaining an accuracy of 61.00. Finally, Matsumori et al. [47]
utilised a hybrid CNN-LSTM model with a lightweight EEG
sensor, attaining an accuracy of 78.60%, equivalent to clinical
PSG systems.

Lastly, work capacity, as defined by the American College
of Sports Medicine (ACSM), refers to the maximum physical
work an individual can perform, assessed through power output
or endurance and influenced by factors like cardiorespiratory
fitness and muscular strength [48]. Traditional evaluations have
relied heavily on self-report instruments, which often suffer
from reliability issues due to biases and recall problems [49].
The Work-ability Support Scale (WSS) effectively measures
vocational capability after disability, covering physical, cog-
nitive, and social domains [50]. Other assessments, such as
the Functional Capacity Evaluation (FCE) and the Work Abil-
ity Index (WAI), focus on job-specific physical and cognitive
requirements [51]. The Work Capacity Test (WCT), used by
organizations like the U.S. Forest Service, assesses physical
capabilities for demanding roles [52]. Wearable activity trackers
can quantify many work capacity factors, making them useful for
physically demanding jobs. However, like mobility, we assume
that the subset of work capacity that can be evaluated using
DL using wearable sensor data is closely connected with ADL
evaluation.

For a comprehensive summary of studies employing wear-
able devices for physical health assessment, including datasets,
sensors, and methodologies, we refer readers to Table I in the
supplementary material.

III. PSYCHOLOGICAL HEALTH

The QoL of an individual is significantly influenced by
their physiological health, encompassing various dimensions
such as feelings, self-esteem, memory, spirituality, and body
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image [53]. The importance of physiological health within the
larger framework of QoL becomes apparent when we consider
its direct influence on many domains. One such domain, feelings,
encompassing both positive and negative states, are fundamental
to well-being and QoL [54]. Recent advancements in wearable
technology have significantly improved the ability to identify
emotions by monitoring physiological signals such as heart
rate variability, skin conductance, and facial expressions [55].
Research employing DL methodologies has demonstrated this
potential; for instance, the eSEE-d database utilises eye-tracking
data for emotion estimation, achieving an accuracy of up to
92.00% for positive valence [56]. Furthermore, systems integrat-
ing sensors with deep learning models, such as a smartwatch-
based adaptive system for multi-sensory emotion detection,
have attained an accuracy of 74.30% in identifying arousal and
valence [57]. In addition, self-supervised learning has shown
robustness to data degradation, achieving 81.00% accuracy in
emotion recognition [58], while emotion recognition in older
adults using LSTM networks has reached accuracies of up
to 95.00% [59]. Moreover, hybrid CNN-LSTM models have
demonstrated efficacy with precision rates as high as 99.00%
[60]. Large Language Models (LLMs) like GPT have been
utilized for analyzing patient narratives and emotion estimation,
complementing sensor-based methods for psychological health
assessment. For example, recent studies [61] have demonstrated
how these models can process unstructured text data to derive
insights into emotional well-being, thereby enriching the under-
standing of QoL dimensions.

Self-esteem, which refers to an individual’s self-acceptance
and self-regard, is shaped by personal and cultural standards
and their perceived competency in essential life domains [62].
Traditionally, self-esteem evaluations have relied on self-report
instruments such as the Rosenberg Self-Esteem Scale (RSE) and
the Single Item Self-Esteem Scale (SISE) [63], [64]. Instruments
like the Multidimensional Self-Esteem Inventory (MSEI) and
the Contingency of Self-Worth Scale (CSWs) focus on spe-
cific dimensions of self-esteem [65], [66]. However, wearable
technology presents innovative yet complex possibilities for
measuring self-esteem. A novel method utilising EEG data and
CNN models has achieved an accuracy exceeding 79.00% in
differentiating between high and low self-esteem [67]. Although
CNN-LSTM models demonstrate great accuracy in emotion
recognition, their lack of explainability hinders healthcare prac-
titioners from trusting and implementing these methods in prac-
tice. The opaque nature of deep learning models hinders the in-
terpretability of outcomes, particularly in sensitive domains like
psychological health, where practitioners require clear and com-
prehensible insights for informed decision-making. Explainable
AI (XAI) models are necessary to overcome these concerns and
enhance trust in such technologies for clinical application.

Spirituality, which encompasses the acknowledgment of a
higher force and the pursuit of meaning beyond sensory ex-
perience, poses unique challenges for technological quantifica-
tion [68]. Instruments such as the Spiritual Well-Being Scale
(SWBS) [69], the Spiritual Needs Questionnaire (SpNQ) [70],
and the Spirituality Questionnaire [71] are commonly employed
to evaluate spiritual well-being. Despite the promise offered

by wearable sensors and deep learning for quality of life as-
sessments, the subjective and contextual nature of spirituality
presents considerable obstacles, as physical data may inade-
quately represent spiritual experiences.

Thinking, comprising fundamental mental processes such as
perception, memory, problem-solving, and decision-making, is
vital for numerous aspects of life, including emotional control
and communication. Recent advancements in DL have facili-
tated the classification of cognitive states through wearable de-
vices. For example, integrating EEG data with CNN models has
achieved an accuracy of up to 96.70% in classifying cognitive
workload in drivers [72]. Similarly, DL approaches employing
EEG and eye-tracking data have shown great accuracy (up to
97.00%) in identifying cognitive effort and mental burden [73].
These methodologies, despite facing obstacles, exhibit great
potential for enhancing cognitive evaluation and, consequently,
QoL.

Body image refers to an individual’s cognitive and emotional
perceptions regarding their physique, encompassing elements
such as form, size, and attractiveness [74]. While wearable
devices like smartwatches and activity trackers can gather data
on physical metrics such as blood pressure and bodily move-
ments [75], they are limited in their ability to encapsulate the
intricate, subjective aspects of body image, including body ac-
ceptance and self-perception [76]. A comprehensive evaluation
of body image necessitates an amalgamation of objective met-
rics and self-reported instruments, including the Body-Image
Acceptance and Action Questionnaire [77] and the Body Image
Scale [78]. By integrating these diverse elements, we can gain
a more nuanced understanding of psychological health and its
impact on overall quality of life.

For a comprehensive summary of studies employing wearable
devices for psychological health assessment, we refer readers to
Table II in the supplementary material.

IV. PUBLICLY AVAILABLE DATASETS

This section discusses the strengths and weaknesses of
datasets related to QoL subdomains that include wearable sensor
data and are publicly accessible. Table I highlights significant
variation in participant data, with sample sizes ranging from 4
(“OPPORTUNITY”) to 700 (“NetHealth”) and ages spanning 18
to 78 years, as seen in the “Sleep-EDF” dataset. Such diversity
enhances the generalizability of findings across age cohorts.
Gender distribution also varies; for instance, “BioVid Heat Pain”
includes 43 females and 44 males, while “MHEALTH” lacks
gender-specific data. Demographic diversity aids in understand-
ing how factors like age and gender influence QoL assessments
through wearable data [105].

The datasets encompass a wide array of stimuli and activities,
demonstrating the adaptability of wearable technology in eval-
uating various facets of daily life. For instance, “Extra-sensory”
assesses 51 behavioral activities, whereas “MIT/BIH PSG”
concentrates on overnight sleep recordings. Numerous datasets,
like “UCI-HAR,” “WISDM,” and “PAMAP,” focus on ADL,
rendering them especially pertinent for quality of life evaluations
in this subdomain. In contrast, datasets such as “MIT/BIH PSG”
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TABLE I
SUMMARY OF IDENTIFIED PUBLICLY AVAILABLE DATASETS CONTAINING WEARABLE DATA AND STIMULI RELATED TO QOL DOMAINS
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and “Sleep-EDF” focus on sleep-related stimuli, corresponding
to the Energy and Fatigue, and Sleep (EF/Sleep) subdomains.
This variability enables researchers to customize their inquiries
to particular aspects of QoL. Furthermore, the datasets em-
ploy several wearable sensors, such as accelerometers (ACC),
gyroscopes (GYRO), and electrocardiograms (ECG), to assess
quality of life (QoL) thoroughly. The MHealth dataset integrates
ACC, GYRO, heart rate (HR), and ECG data, rendering it
suitable for assessing activities of daily living (ADL) in QoL
research. Likewise, EEG and EMG data in “Sleep-EDFX” and
“MASS” are customized for sleep-related subdomains. The
emotional aspects of quality of life are examined in datasets such
as “eSEE-d” and “CASE,” which utilize emotion-inducing films
and record physiological signals like ECG and electrodermal
activity (EDA). The diversity and richness of wearable data in
these datasets provide a detailed examination of quality of life
across many research requirements.

V. CONCLUSION

In conclusion, integrating DL with wearable technology offers
a promising approach to evaluating QoL, excelling in domains
like physical and psychological well-being. Models like CNN
and LSTM provide accurate insights into daily activities, medi-
cation adherence, and mental states through real-time, objective
data often missed by self-reports. DL’s ability to process multi-
modal sensor data enables comprehensive, dynamic, and person-
alized QoL assessments. However, challenges remain regarding
generalizability, data variability, and privacy. Limited datasets
and demographic-specific studies hinder broader applicability,
while subjective aspects like body image and spirituality pose
integration difficulties. Real-world deployment faces hurdles
like noisy data, battery constraints, and privacy concerns.

Looking ahead, innovations like explainable AI, federated
learning, and edge computing promise more transparent, private,
and real-time wearable data processing. Interdisciplinary collab-
oration is essential for advancing DL-driven QoL evaluations,
paving the way for transformative impacts on healthcare and
well-being.
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