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Prediction of Survival in Patients With
Esophageal Cancer After Immunotherapy

Based on Small-Size Follow-Up Data
Yuhan Su , Chaofeng Huang, Chen Yang, Qin Lin , and Zhong Chen

Abstract—Esophageal cancer (EC) poses a significant
health concern, particularly among the elderly, warranting
effective treatment strategies. While immunotherapy holds
promise in activating the immune response against tumors,
its specific impact and associated reactions in EC patients
remain uncertain. Precise prognosis prediction becomes
crucial for guiding appropriate interventions. This study,
based on data from the First Affiliated Hospital of Xiamen
University (January 2017 to May 2021), focuses on 113 EC
patients undergoing immunotherapy. The primary objec-
tives are to elucidate the effectiveness of immunotherapy in
EC treatment and to introduce a stacking ensemble learning
method for predicting the survival of EC patients who have
undergone immunotherapy, in the context of small sam-
ple sizes, addressing the imperative of supporting clinical
decision-making for healthcare professionals. Our method
incorporates five sub-learners and one meta-learner. Lever-
aging optimal features from the training dataset, this ap-
proach achieved compelling accuracy (89.13%) and AUC
(88.83%) in predicting three-year survival status, surpass-
ing conventional techniques. The model proves efficient
in guiding clinical decisions, especially in scenarios with
small-size follow-up data.

Index Terms—Esophageal carcinoma, immunotherapy,
survival prediction, stacking ensemble learning, machine
learning.

Impact Statement—This study introduces a stacking en-
semble learning model achieving 89.13% accuracy in pre-
dicting three-year survival for esophageal cancer patients
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receiving immunotherapy, offering valuable support for
clinical decision-making.

I. INTRODUCTION

E SOPHAGEAL cancer (EC) ranks ninth among the most
prevalent malignant tumors worldwide, with the sixth-

highest mortality rate attributed to cancer. The five-year survival
rate of EC patients undergoing surgical intervention alone is
low [1], [2], [3], [4], [5]. As the initial symptoms of EC are often
atypical, patients commonly present in advanced stages, leading
to an unfavorable prognosis [6], [7], [8]. In recent years, in
addition to conventional therapeutic approaches such as surgery,
radiotherapy, and chemotherapy, multidisciplinary neoadjuvant
strategies like stent therapy, molecular targeted therapy, and im-
munotherapy have gained prominence in the management of EC.
Immunotherapy, in particular, has emerged as a crucial adjunct
to traditional modalities for EC treatment [9]. By potentially
activating the patient’s innate immune system, immunotherapy
elicits a sustained anti-cancer response, aiming for durable dis-
ease control. Moreover, immunotherapy exhibits efficacy across
various stages of EC, encompassing both advanced and pre-
advanced stages. Notably, in comparison to certain traditional
cancer treatments, immunotherapy typically presents with re-
duced adverse effects, contributing to an enhanced quality of life
for patients [10]. Nevertheless, it remains essential to establish
the optimal timing for immunotherapy, attain accurate prediction
of the response to immunotherapy, identify the most appropriate
cohort of patients for maximal benefits from immunotherapy,
and optimize the survival advantage. As such, developing an
accurate prognostic model for EC patients post-immunotherapy
is crucial for enhancing prognosis and facilitating informed
clinical decisions [11], [12], [13].

The realm of data mining methodologies stands poised to
deliver substantial knowledge and insights, enabled by their
capacity to systematically process vast troves of structured and
unstructured data drawn from diverse sources. These methodolo-
gies possess the prowess to unveil patterns and synthesize robust
predictive models using clinical data [14], [15], [16]. Notably,
within this array of techniques, machine learning (ML) has
ascended as a prominent paradigm, finding prolific application
in forecasting cancer survival outcomes. Its effectiveness in
augmenting prediction accuracy has been well documented [17].
Among the various ML methods, ensemble learning approaches
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have garnered significant attention for their remarkable perfor-
mance superiority over singular classifiers. These approaches
can be broadly classified into two categories: homogeneous and
heterogeneous ensemble learning methods. Of particular note is
the stacking ensemble learning method [18], [19], [20], which
hinges on harnessing heterogeneous weak learners. This in-
volves integrating diverse learning algorithms and subsequently
amalgamating the resultant base models through a meta-model.
The efficacy of this strategy is particularly pronounced when
dealing with limited sample sizes, such as in scenarios involving
small datasets.

A. Related Works

Immunotherapy has been widely examined by experts and
researchers. The authors in [11] evaluated the safety and feasi-
bility of esophagectomy in patients with locally advanced EC
who had received neoadjuvant immunotherapy and chemora-
diotherapy. The results demonstrated that the combination of
neoadjuvant immunotherapy and standard chemoradiotherapy
followed by esophagectomy showed satisfactory outcomes in
this patient population with locally advanced EC. [21] presented
a rank-based pairwise comparison algorithm that was utilized
for selecting effective immune-related gene pairs (IRGPs). The
authors then proceeded to construct a prognostic IRGP sig-
nature utilizing the least absolute shrinkage and selection op-
erator regression model. The immune signatures established
have exhibited considerable potential in prognosticating the
clinical outcome, tumor immunogenicity, and the response to
immunotherapy in patients diagnosed with EC. In narrative
review [22], the authors provided a overview of the current
state of immunotherapy for EC, categorized by disease stage.
They also discussed promising biomarkers and potential future
directions in the field. The authors highlighted the ongoing
need for additional prospective and dedicated clinical trials to
identify molecular biomarkers capable of predicting treatment
response and patient prognosis in the context of immunotherapy
for EC. The prognostic implications of various indicators for
patients with EC have been examined through distinct studies.
For instance, [23] explored the prognostic relevance of lactate
dehydrogenase (LDH) in the context of advanced EC patients
undergoing immunotherapy. Similarly, in another investigation,
the authors in [24] assessed the prognostic significance of the
pretreatment platelet to albumin ratio among EC patients under-
going definitive radiotherapy. The authors in [25] employed a
systematic review and meta-analysis approach to evaluate the
safety and efficacy of neoadjuvant immunotherapy in EC. Re-
sults from the comprehensive analysis demonstrated the safety
and efficacy of neoadjuvant immunotherapy in locally advanced
EC patients, thereby warranting its consideration as a recom-
mended neoadjuvant treatment modality for this population.
Notwithstanding, the authors have emphasized the urgent need
for additional research to reveal the long-term effects of im-
munotherapy, as emphasized in their work. This provides the
impetus for our study.

The increasing availability of computer technology has facil-
itated the widespread use of artificial intelligence (AI) in the
medical field. Among the AI techniques, ML has become a

prominent research focus in medicine. Different ML approaches
have demonstrated their effectiveness in predicting key factors,
including tumor susceptibility, recurrence, and survival rates for
malignancies. In recent years, numerous studies have employed
ML techniques to model cancer risk and patient outcomes. For
instance, a comprehensive review of the latest publications on the
use of ML in cancer research was presented in [26]. In another
study, [27] developed and validated a novel hybrid approach
utilizing an improved synthetic minority oversampling tech-
nique and an adaptive support vector machine (SVM) method
to predict the postoperative survival of lung cancer patients with
imbalanced data. Ensemble learning methods are increasingly
popular in the field of ML, as they are capable of enhancing
the overall prediction performance of a model and addressing
the issue of weak supervision. In the context of cancer research,
numerous ensemble learning methods have been proposed to
predict patient survival. For example, in [28], a homogeneous
ensemble learning method was developed to predict the survival
of breast cancer patients, using an area under the curve-based in-
tegration mechanism to combine twelve different SVM models.
Results indicated that the proposed method outperformed SVM
alone. Similarly, in [29], a two-stage tree ensemble-based model
was proposed to predict the survival of colorectal cancer pa-
tients, which distinguished between patients whose outcome was
survival or not and those whose outcome was death. However,
the use of single models in homogeneous ensemble learning
methods can lead to limitations due to the structural constraints
of each model. Overcoming this limitation is challenging, and
hinders improvement in model performance. To address this,
the authors in [30] proposed a heterogeneous ensemble learning
method to predict the survival of neuroblastoma patients and
extract decision rules to aid physicians in making decisions. In
another study, the authors in [31] introduced a parallel Bayesian
hyperparameter optimized stacking ensemble model (referred to
as BSense) designed for prognosticating breast cancer survival.
This model was constructed through a stacking mechanism that
combines multiple ML models. The process of hyperparameter
tuning for these machine learning models was accomplished
using Bayesian optimization with Gaussian Processes, resulting
in the identification of optimal hyperparameters. The integration
of parallelism and Bayesian optimization was strategically em-
ployed to mitigate the computational time associated with this
process. Nonetheless, to overcome data imbalance or small sam-
ple size issues, effective integration mechanisms are necessary
to improve prediction performance. This remains a significant
challenge that requires further exploration in future studies.

B. Novelty and Contributions

In contrast to the majority of prior research that has pri-
marily focused on predicting the survival of EC patients post-
radiotherapy or surgery, this paper delves into prognosticating
EC patient survival subsequent to immunotherapy-assisted ra-
diotherapy or surgery. Notably, through a systematic and statisti-
cal analysis, this paper establishes a prediction model for gener-
ating effective predictions under small sample sizes. This model
is designed to offer diagnostic guidance and technical support to
address the challenges of predicting survival status outcomes in
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EC patients treated with immunotherapy-assisted radiotherapy
or surgery. Specifically, a stacking ensemble learning-based
approach is presented, consisting of five heterogeneous sub-
learners and a meta-learner, which first utilizes the training data
to generate optimal feature subsets of each sub-learner, then
the prediction results of the sub-learners are fed into the meta-
learner for further prediction. To evaluate the performance of
the proposed method, various mainstream ML (MML) methods,
start-of-the-art (SOA) methods, and stacking ensemble learning
mechanisms are compared and assessed using statistical and ML
metrics. Additionally, valuable information is extracted from the
prediction model to assist clinicians in decision-making. The
main contributions of this paper are as follows:

� We present an analysis of clinical and follow-up data
from real-world cohorts of EC patients who underwent
immunotherapy. The primary objective is to assess the
impact of different features on the three-year survival
status of EC patients following immunotherapy. Through
a thorough evaluation of the obtained data, we identify
several features that exhibit a statistically significant asso-
ciation with the prognostic survival status of EC patients.
These findings emphasize the potential predictive value of
these features in determining clinical outcomes, while also
providing a deeper understanding of the complex interplay
between these indicators and their impact on clinical prog-
nosis of EC patients undergoing immunotherapy.

� We propose a prediction method for determining the
prognostic survival status of EC patients receiving
immunotherapy. Our method utilizes stacking ensemble
learning and leverages multiple features to improve
prediction accuracy. Specifically, we use sub-learners
that are trained on identical datasets but with varying
feature subsets to optimize their prediction capabilities.
The outputs of these sub-learners are then fed into a
meta-learner, resulting in a refined and more accurate
prediction model. Our research demonstrates the efficacy
of our method in predicting three-year prognostic
survival status outcomes for EC patients treated with
immunotherapy, particularly in scenarios involving small
sample sizes. Our findings highlight the potential of
this approach to improve clinical decision-making and
ultimately enhance patient outcomes.

� We assess the effectiveness of the proposed method for
predicting the three-year prognostic survival status of
EC patients undergoing immunotherapy, using real-world
testing dataset. Our experimental findings demonstrate
that leveraging stacking ensemble learning yields superior
accuracy compared to mainstream and SOA methods.
Additionally, the proposed model is efficient in predicting
the three-year prognostic survival status of EC patients
following immunotherapy. The results provide compelling
evidence for the efficacy of our model and underscore its
potential as a valuable tool for predicting clinical outcomes
in EC patients receiving immunotherapy.

Overall, this paper’s contributions lie in the development
of a prediction model for EC patient survival following
immunotherapy-assisted radiotherapy or surgery, which has
potential clinical implications. The subsequent sections of this

paper are structured as follows: Section II provides an overview
of the dataset employed in this paper and presents a detailed
description of the data preprocessing and feature analysis pro-
cedures that are employed. Section III outlines the training
process for the proposed prediction method. In Section IV, we
evaluate the performance of our prediction model using several
evaluation metrics and present a discussion of the results. Finally,
Sections V and VI offer a concluding summary of this paper and
propose directions for future research, respectively.

II. MATERIALS

A. Dataset

The precise prediction of patient survival outcomes in the
context of immunotherapy represents a critical concern in con-
temporary prognostic cancer studies [33], [34], [35]. To address
this challenge and improve the prognostic accuracy of survival
outcomes for EC patients receiving immunotherapy, we con-
duct a retrospective analysis utilizing data collected from the
First Affiliated Hospital of Xiamen University. Specifically, we
conduct between January 2017 and May 2021, focused on 113
EC patients receiving immunotherapy, 75 of whom are newly
diagnosed, while 38 are diagnosed with recurrent or metastatic
EC. Through this analysis, we seek to investigate the efficacy of
immunotherapy in the context of EC and assess its potential to
improve patient survival outcomes. This study protocol received
ethical approval from the Medical Ethics Committee of The
First Affiliated Hospital of Xiamen University (No. XMYY-
2023KYSB094). To ensure the confidentiality of patient infor-
mation, individual identifiers were substituted with a distinct
study identification number. As a result, the requirement for
informed consent was thus exempted.

The dataset captured comprehensive patient information, in-
cluding general information, disease information, immunother-
apy information, and prognosis follow-up information of the
EC patients with immunotherapy. Specifically, the general in-
formation includes patients’ EC type, age, gender, and personal
history of other malignancies within five years (PHM), while
disease information includes Eastern Cooperative Oncology
Group (ECOG) score, interval from the time of the first diagnosis
of EC to the time of follow-up (TFD), primary tumor site (PTS),
metastatic situation (MS), pathology (PSCC), disease stage
(DS), presence of oligometastatic disease (POD), pre-treatment
diet (PTD), presence of supportive treatment (PST), and blood
index information. The immunotherapy information includes
immunotherapy drugs (ID), immunotherapy cycles (IC), pres-
ence of immune delay (PID), presence of local treatment (PLT),
local treatment range (LTR), and local treatment time (LTT).
The prognostic follow-up information consists of presence of
disease progression (PDP) and three-year survival status, where
the participants were followed by various methods, including
telephone interviews, surveillance at the hospital, and medical
reports in the inpatient department after recurrence. The pri-
mary outcome was ascertained by two investigators blinded to
the predictor variables. Notably, the analysis did not include
data during immunotherapy, such as the blood index informa-
tion during immunotherapy, as the purpose of this paper is to
provide a reliable prediction model to assist doctors in making
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TABLE I
DETAILS AND INTERPRETATION OF FEATURES

a diagnosis of patients before participating in immunotherapy.
For ease of reference, the full names, corresponding abbrevi-
ations and explanations of the key information in this paper
are listed in Table I. Note that blood index information lacks
a precise range, prompting the provision of reference intervals
(RI). Additionally, when evaluating the PLT, both surgery and
radiotherapy were considered if the patient had undergone such
interventions.

B. Data Preprocessing and Feature Analysis

This section details the crucial data preprocessing and fea-
ture analysis steps employed in the mining of immunotherapy
prognosis data for EC patients. Initially, features exhibiting
strong correlation with prediction outcomes are eliminated. For
instance, PDP, closely tied to both immunotherapy prognosis
and survival status, is precluded as a feature. For features with
missing values, we applied the following methods: (i) removal
of variables with missing rates exceeding 50% from the initial
dataset; (ii) estimation of corresponding values of features with
missing rates between 50% and 10% using the mean; and (iii)
removal of patients with missing rates of features below 10%
from the initial dataset. After preprocessing, the dataset con-
sisted of 21 features and 112 samples. Secondly, to eliminate

inconsistencies arising from features of different dimensions,
we employed the minimum-maximum normalization method
to normalize the dataset before constructing the prediction
model [36]. Specifically, the z-th feature of the n-th sample can
be transformed using the following formula:

x′
n(z) =

xn(z)−minn xn(z)

maxn xn(z)−minn xn(z)
, (1)

where xn(z) represents the initial value for the z-th feature of
the n-th sample and x′

n(z) is the converted value for the z-th
feature of the n-th sample.

Following data preprocessing, it is imperative to investigate
the interdependence among different features. The Pearson cor-
relation coefficient (PCC) [37], a commonly used statistical mea-
sure to assess the strength of a linear relationship between two
variables, can be utilized to determine the correlation between
the features. In this, the PCC P between z-th feature and z′-th
feature can be defined as follows.

P =

∑N
n=1(x

′
n(z)− x′(z))(x′

n(z
′)− x′(z′))√∑N

n=1(x
′
n(z)− x′(z))2

√∑N
n=1(x

′
n(z

′)− x′(z′))2
,

(2)
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Fig. 1. Correlation heat map between the features. A heat map show-
ing the value of the correlation coefficient between each possible pair of
features.

where x′(z) and x′(z′) are the means of two features, and N
denotes the number of the samples. Upon conducting a correla-
tion analysis on the preprocessed data, this paper employs the
PCC to measure the relationship between features and presents
a correlation coefficient heat map in Fig. 1 to visually represent
these relationships. The heat map uses colors to indicate the
degree of correlation, with darker or lighter colors indicating
higher correlation. The results of the analysis reveal that the
majority of the variables exhibit correlation coefficients less than
0.5, with most coefficients being less than 0.3.

C. Feature Extraction

Feature extraction plays a vital role in reducing model com-
plexity and enhancing accuracy by eliminating redundant or
irrelevant features from high-dimensional data [38]. It encom-
passes two main methods: filtering and encapsulation. The filter-
ing method assigns scores to each feature based on divergence
or correlation, applies a threshold or selects a specific number
of features, and efficiently selects the most relevant ones. On the
other hand, the encapsulation method explores and optimizes the
feature space, iteratively selecting or excluding features based
on an objective function, typically a prediction performance
score. In this paper, a filtering feature extraction method is
employed. Specifically, as the objective is to predict the survival
status of EC patients following immunotherapy, the SelectKBest
feature analysis method is utilized for each feature [39]. This
method calculates the relative correlation of each feature by
considering the highest correlation score with the survival status.
The preprocessed dataset of EC patients is analyzed to determine
the significant relationships between each feature and three-year
survival status. The normalized correlation scores derived from
this analysis are visually represented in Fig. 2, revealing that
BA, BPC, DS, and age demonstrate the strongest correlations,
in sequential order, with the prediction of three-year survival
outcomes in EC patients following immunotherapy. These find-
ings align with the experimental results reported in [23], [24],

Fig. 2. Normalized correlation scores between the features and sur-
vival status.

[40]. Additionally, Fig. 2 also illustrates a significant correlation
between LTR in immunotherapy information and Status, which
further supports the conclusion drawn in [41]. Specifically,
older age is associated with poorer prognosis; patients with
advanced tumors typically have a worse prognosis; a strong
immune response predicts better outcomes; patients with su-
perior BA and BPC have a better prognosis; and comprehensive
treatment regimens contribute to improved prognosis. These
findings align with existing biological knowledge and clinical
experience, further validating the soundness of our analytical
approach.

Following feature extraction, the top 11 features with the
highest correlation scores are retained, including Age, Gender,
ECOG, PTS, DS, PTD, BLC, BPC, BA, BLDH, and LTR. This
set of 11 features is established as the final indicator system
and used as the feature dataset for training the prediction model.
The dataset is split randomly, with 70% used for training and
the remaining 30% for testing the model’s performance.

III. METHODS

To bolster the precision of survival outcomes among EC
patients who have undergone immunotherapy, we introduce
an approach grounded in stacking ensemble learning. By har-
nessing a repository of real-world data originating from post-
immunotherapy EC patients, we aim to enhance the predictive
prowess for determining survival status. Fig. 3 delineates the
framework of our proposed method, designed to prognosti-
cate the survival trajectory of EC patients subsequent to im-
munotherapeutic interventions. The crux of our approach lies
in the orchestration of a learning paradigm that amalgamates a
spectrum of ML methodologies. By amalgamating diverse ML
techniques through a cascade system, this approach effectively
distills salient insights from the dataset, unfurls prognostic pat-
terns from comparatively diminutive sample sizes, and furnishes
steadfast prognoses concerning the three-year survival trajecto-
ries of EC patients subjected to immunotherapy regimens. The
underpinning architecture of the proposed methodology encom-
passes a sub-learning module synergistically collaborating with
a meta-learning module to synergistically achieve a heightened
degree of prognostic precision.



774 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

Fig. 3. Framework of the proposed prediction method.

A. Sub-Learning Module

From the perspective of stacking ensemble learning, the uti-
lization of sub-learners can provide feature subsets that demon-
strate optimal performance. However, it has been observed that
the use of the same feature subset for guiding the construction
of a stacking ensemble learning model may lead to relatively
suboptimal ensemble performance. To achieve a high-quality
ensemble, it is necessary to obtain individualized feature subsets
for each sub-learner prior to constructing the prediction model.
Thus, the optimal feature subset for each sub-learner can be
used as prior knowledge to guide the construction of the pre-
diction model. This paper has employed a sub-learning module
consisting of five commonly utilized ML algorithms, namely
random forest (RF) [42], extremely randomized trees (ET) [43],
adaptive boosting (AdaB) [44], gradient boosting decision trees
(GBDT) [45], and SVM [46], as sub-learners.

1) RF: RF is a supervised learning technique that has found
applications in both classification and regression analyses. With
a reputation for high accuracy, it is a flexible and straightforward
algorithm that can be applied to a variety of datasets. A forest in
RF comprises multiple trees that are constructed by bootstrap-
ping the training data, and for each split, a randomly selected
subset of features is employed. A higher number of trees in the
forest translates to increased robustness. RF utilizes a decision
tree approach, where data is randomly chosen to create multiple
trees, and prediction is obtained from each tree. The best solution
is then determined using a voting technique.

2) ET: ET is an ensemble classification technique based on
decision trees. This approach integrates a higher level of random-
ness than the RT algorithm. The fundamental principle of ET is to
use all the initial data for each decision tree and randomly select
split nodes, with the goal of reducing variance more effectively
than methods that employ weaker randomization schemes. The
specific algorithmic steps of ET are as follows: (i) In the ET
classification model, all samples are used for training in each

decision tree. (ii) To increase randomness, features are randomly
selected for each node split. The optimal attribute is chosen for
each node to split the node, and this step is repeated until a
decision tree is produced. (iii) The process outlined in (i) and
(ii) is repeated to create an ET classification model.

3) AdaB: AdaB, a widely used and highly effective en-
semble learning technique, is a meta-algorithm that belongs
to the family of Boosting methods. Boosting is a variation
of the bagging ensemble approach that improves learners by
focusing on the areas where the system is underperforming.
AdaB aims to build multiple models of the same classifier, with
each one learning to correct the prediction errors of the previous
model in the sequence. The individual classifier outputs are then
combined into a weighted sum, which represents the final output
of the boosted classifiers. This boosting technique is referred
to as adaptive since subsequent weak learners are adjusted in
favor of the misclassified instances. In AdaB, instances in the
dataset are weighted according to their level of difficulty in being
classified, enabling the algorithm to allocate more attention to
these instances when building subsequent models. The algo-
rithm assigns a higher weight to the misclassified instances, and
each subsequent boosting iteration learns a new classifier on the
weighted dataset. The classifiers are then weighted to form a
single powerful classifier, with those having a low training error
rate receiving a higher weight. The process is terminated using
cross-validation.

4) GBDT: GBDT is a ML algorithm that has demonstrated
remarkable success in various real-world applications. GBDT is
employed for function estimation and is regarded as a method
for numerical optimization in the function space. Specifically,
GBDT relies on boosting to construct a robust model by it-
eratively adding weak learners that minimize a specified loss
function. In each iteration, the weak learner is trained on the
gradient of the loss function with respect to the current model’s
output. The resulting model is a weighted sum of the weak
learners, with the weights determined by their performance in
minimizing the loss function. Through this approach, GBDT
progressively improves the performance of the model until a
stopping criterion is met.

5) SVM: SVM is a statistical learning technique widely used
for classification, regression, and outlier detection. It has been
extensively applied in data analysis, especially in classification
and regression tasks. In regression, SVM utilizes a nonlinear
mapping function to transform low-dimensional samples into a
high-dimensional vector space, which addresses the challenge
of small-sample problems and enhances the efficacy of the
method. In our study, SVM is employed as a sub-learner for
predictive analysis, serving as a discriminant classifier that
is defined by distinct hyperplanes. The algorithm operates
on labeled training data, utilizing a supervised learning ap-
proach to obtain an optimal hyperplane for classifying novel
instances.

To optimize the utilization of the available data, this paper
employs a 10-fold cross-validation strategy for each sub-learner,
as illustrated in Fig. 4. The dataset is partitioned into K subsets,
with one subset allocated for validation and the remaining for
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Fig. 4. Framework of the K-fold cross-validation approach for each
sub-learner.

training during each of theK iterations. This process guarantees
that all data undergo training K times and are validated once.
Consequently, each sub-model’s prediction results constitute a
fusion of K validation results.

The sub-learner ensemble comprises a regression-based
model and four tree-based models, as observed. These sub-
learners are trained on the same dataset, enabling the determi-
nation of feature importance associated with the four decision
tree-based classification algorithms. The computation of fea-
ture importance is based on the reduction of impurity at each
node and its subsequent weighting to calculate the probabil-
ity of reaching that node, commonly referred to as the Gini
importance [47]. It quantifies the importance of each feature
by summing the number of splits across all decision trees that
incorporate the feature, weighted by the number of samples
it splits. The probability of a node is derived by dividing the
number of observations that reach the node by the total number of
observations. A higher feature value signifies greater importance
in the feature importance methods. Specifically, assuming that
the dataset has a total of I classes, in a decision tree, each
feature corresponds to a node, then the Gini coefficient Gz of
node z is:

Gz = 1−
I∑

i=1

(
N i

z

Nz

)
, (3)

where Nz represents the number of samples of node z, and N i
z

represents the number of samples of class i of node z. Then, the
evaluation of Gini Importance of node z in the decision tree is
conducted as follows:

Iz =
Nz

N

(
Gz − NR

z

N
GR
z − NL

z

N
GL
z

)
, (4)

where GL
z and GR

z are the Gini coefficients of the left child and
right child of node z respectively, NL

z and NR
z are the number

of the samples of node z that go to the left child and go to the
right child respectively. Feature importance plays a pivotal role
in predictive modeling by providing valuable insights into the
data, the model, and facilitating dimensionality reduction and
feature selection to enhance the efficiency and effectiveness of
prediction models. In this paper, the importance of each feature
to the survival status is defined as the exponential function
value of the Gini importance. Fig. 5 illustrates the evaluation of

feature importance for each tree-based sub-learner. Notably, the
feature importances vary across the training models associated
with different ML algorithms. To leverage this observation, the
proposed approach incorporates the prediction results of the
five sub-learners as new feature subsets into the meta-learner.
This novel prediction model combines the features from all
five sub-learners, thus further reinforcing the accuracy of the
predictions.

B. Meta-Learning Module

Single prediction models have inherent limitations in terms
of their prediction performance. To overcome these limitations,
ensemble learning techniques have been widely employed to
integrate the strengths of individual models and construct supe-
rior prediction models. Extensive research has demonstrated the
outstanding prediction performance of stacking ensemble learn-
ing [20], [48], [49], [50]. In the proposed prediction method,
stacking ensemble learning is employed to enhance the per-
formance of the prediction model by amalgamating multiple
models. Specifically, the prediction results obtained from the
sub-learning module, which constitutes the first layer prediction
model, serve as input features for the second layer prediction
model, known as the meta-learning module. The meta-learner
leverages these features to learn the underlying relationships
and subsequently generates the desired prediction results, as
illustrated in Fig. 6. Extreme gradient boosting (XGB), a ML
algorithm renowned for prediction and classification tasks, em-
ploys posterior inference to construct robust classifiers and re-
gression models [51]. By effectively reducing model parameters
using second-order Taylor expansion, XGB enhances evaluation
accuracy and runtime efficiency. Notably, XGB exhibits several
advantages, including simplicity, user-friendliness, and strong
robustness. Hence, this paper employs XGB as the algorithm
for the meta-learner.

In the meta-learner, let xm
n denote the prediction result of

sub-learner n for sample n, vector xn = [x1
n, . . ., x

m
n , . . ., xM

n ],
vector yn denote the associated label, and D = {(xn,yn)}
denote the input dataset of the meta-learner, where |D| = N .
The final prediction function is given by

FB(xn) =

B∑
b=1

fb(xn) = FB−1(xn) + fB(xn), (5)

where fb(xn) represents the model of the b-th base classifier for
xn, FB−1(xn) represents the aggregation of predictions from
the firstB − 1 base classifiers that have already been trained and
fixed. On the other hand, FB(xn) corresponds to the final pre-
diction made by the meta-learner, which combines the predicted
values of the B base classifiers trained on xn. The objective
function of the meta-learner consists of two components: a loss
function and a regularization penalty term. The inclusion of
the regularization penalty is essential to prevent overfitting and
enhance the generalization ability of the model. The explicit
mathematical form of the objective function is provided as
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Fig. 5. Feature importance of the different tree-based models in the sub-learning module.

Fig. 6. Framework of the meta-learning module.

follows:

LB =
N∑

n=1

loss [yn, FB(xn)] +
B∑

b=1

Ω(fb)

=
N∑

n=1

loss [yn, FB−1(xn) + fB(xn)] +
B∑

b=1

Ω(fb). (6)

The loss function, denoted as loss[.], evaluates the performance
of a single sample prediction and quantifies the discrepancy
between the predicted and actual values. It is assumed to be a
convex function. On the other hand, Ω(.) represents the regular-
ization term, which characterizes the complexity of the model.
The regularization term is formulated as follows, capturing the
contribution of model complexity to the overall objective:

Ω(fb) = γJ +
1

2
λ

J∑
j=1

ω2
j , (7)

where J represents the number of nodes in the base classifier fb,
while ωj denotes the weight of node j. Additionally, λ and γ are
penalty coefficients incorporated in the formulation. As a conse-
quence, when the complexity of the base classifier increases, the
objective function is augmented, thereby effectively mitigating
the risk of overfitting.

By applying the second-order Taylor expansion to the objec-
tive function (6) around FB−1(xn), an expanded function can

be derived as follows:

LB
∼=

N∑
n=1

[
loss [yn, FB−1(xn)]

+ gnfB(xn) +
1

2
hnf

2
B(xn)

]
+

B∑
b=1

Ω(fb), (8)

where gn and hn are the first-order and second-order derivatives
of the loss function atFB−1(xn), respectively, and are expressed
as follows:⎧⎪⎪⎨

⎪⎪⎩
gn =

∂loss [yn, FB−1(xn) + fB(xn)]

∂FB−1(xn)
,

hn =
∂2loss [yn, FB−1(xn) + fB(xn)]

∂2FB−1(xn)
.

(9)

Given that the first B − 1 base classifiers have already been
determined, the terms associated with fB(xn) in (8) become
constants and do not impact the final optimization solution.
Hence, we can eliminate the constant term, resulting in the
transformation of the objective function as follows:

L̃B =

N∑
n=1

[
gnfB(xn) +

1

2
hnf

2
B(xn)

]
+Ω(fB). (10)

Based on (10), it can be inferred that once FB−1(xn) is deter-
mined, the values of gn and hn can be readily computed for each
sample n.

L̃B =

N∑
n=1

[
gnfB(xn) +

1

2
hnf

2
B(xn)

]
+ γJ +

1

2
λ

J∑
j=1

ω2
j

=
J∑

j=1

⎡
⎣
⎛
⎝∑

n∈Nj

gn

⎞
⎠ωj +

1

2

⎛
⎝∑

n∈Nj

hn + λ

⎞
⎠ω2

j

⎤
⎦+ γJ,

(11)

where Nj = {xn|q(xn) = j} represents the sample set on node
j, q(xn) represents the index function that maps samples to
nodes, ωj = fB(xn) (n ∈ Nj) represents the regression value
of node j. Let us define:{

Gj �
∑

n∈Nj
gn,

Hj �
∑

n∈Nj
hn.

(12)

By doing so, the objective function can be reformulated as a one-
dimensional quadratic function with respect to the node weight
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ωj . To minimize the objective function, we can set its derivative
to zero and solve for the optimal prediction score of each node
as follows:

ω∗
j = − Gj

Hj + λ
. (13)

Bringing (11) into the objective function, the minimum loss is
obtained as:

L∗
B = −1

2

J∑
j=1

(
G2

j

Hj + λ

)
+ γJ. (14)

Then the meta-learner uses the following formula to evaluate the
pros and cons of node splitting:

Gain =
1

2

[
G2

L

HL + λ
+

G2
R

HR + λ
− (GL +GR)

2

HL +HR + λ

]
− γ,

(15)

where GL, HL, GR, and HR indicate the scores associated with
different sub-trees following a split operation, respectively. The
structural score Gain signifies the disparity between the loss
prior to splitting and the loss subsequent to splitting. A greater
disparity denotes a reduced loss after splitting, resulting in a
lower value for the objective function, thus indicating improved
effectiveness.

At this stage, the training of the meta-learner is complete,
resulting in the acquisition of the final prediction model. Subse-
quently, the test dataset is employed to assess and evaluate the
performance of the prediction model.

IV. EXPERIMENT

The Python language, along with the Scikit-learn libraries,
was utilized to develop and evaluate the proposed prediction
method using a range of ML techniques [52]. To ensure a
fair comparison, all the models were implemented with their
default hyperparameters and stopping criteria. To evaluate the
effectiveness and superiority of the proposed method, we con-
ducted three distinct experiments: (i) the comparison with
MML-based models, (ii) the comparison with SOA method-
based prediction models, (iii) the comparison with various stack-
ing ensemble learning mechanism-based prediction models.
For each model, the following metrics are evaluated on the
dataset.

1) Accuracy: The accuracy metric in a prediction model
quantifies the percentage of correctly predicted samples relative
to the total samples, providing a measure of the model’s overall
effectiveness and precision. Nonetheless, it is important to ac-
knowledge that this metric can be influenced by the distribution
of samples across different categories. In scenarios where the
number of samples in one category is significantly lower, such
as the case where only 1% of samples correspond to the deceased
category, even a model with limited discriminatory power may
yield a high accuracy rate of 99%.

2) Precision: Precision serves as a prevalent evaluation metric
within prediction models, encapsulating the accuracy of pre-
dicted survival outcomes in this paper. Specifically, it quan-
tifies the ratio of accurately predicted occurrences where EC

Fig. 7. Loss function on traning and texting datasets of the proposed
prediction model.

patients, specifically, those who succumbed to mortality within a
three-year duration post-immunotherapy, are correctly identified
among the total predicted death cases.

3) Recall: The recall metric, a significant measure in evalu-
ating prediction models, quantifies the ratio of actual positive
samples (i.e., EC patients who experienced mortality within
three years after immunotherapy in this paper) to the total
positive samples encompassing both true positives and false
negatives within a given dataset. Widely utilized to assess a
model’s recall or sensitivity, this metric holds utmost importance
in assessing the model’s efficacy in correctly identifying positive
instances.

4) F1-Score: The F1-score, a performance metric in machine
learning, effectively captures the intricate relationship between
precision and recall. It offers a balanced evaluation of model
performance, eliminating the need for explicit knowledge of the
overall sample count. As a valuable alternative to conventional
accuracy measures, the F1-score uncovers nuanced insights
about the model that might be concealed when focusing solely on
precision or recall optimization. By considering both precision
and recall, the F1-score establishes a meaningful standard for
evaluating model accuracy.

5) Area Under Curve (AUC): AUC is a commonly employed
metric for evaluating prediction models, which quantifies the
area under the receiver operating characteristic (ROC) curve.
This paper adopts AUC as an evaluation criterion due to the
inherent ambiguity of the ROC curve in determining the superior
model. By providing a unified measure of model performance,
AUC enables a more straightforward comparison of predictive
efficacy, with larger AUC values generally indicative of higher
predictive capability. Notably, AUC is computed as the summa-
tion of areas under the ROC curve, ensuring a comprehensive
assessment of model performance across the entire spectrum of
potential thresholds.

The iteration process of the proposed model is depicted in
Fig. 7. It is evident that the model’s loss steadily decreases
with increasing iteration cycles until it reaches a stable value.
Notably, the rate of decrease in loss for the test set is lower
compared to that of the training set. Once the loss function
attains a stable value, the loss function for the testing dataset
consistently remains higher than that of the training dataset.
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Fig. 8. Performance comparison of the mainstream traditional machine leaning-based prediction models.

TABLE II
PERFORMANCE COMPARISON OF THE DIFFERENT MAINSTREAM MACHINE

LEARNING-BASED PREDICTION MODELS

A. Comparison With Mainstream Machine
Learning-Based Prediction Models

We commence by comparing the presented prediction model
with several MML-based models, namely SVM, ET, AdaB,
RF, GBDT, and XGB. Fig. 8 displays the experimental results.
Among the MML-based models, the performance parity among
distinct models is a prevailing observation. Notably, the results
underscore the significant superiority of the proposed model
over the MML-based models. Detailed analysis, as presented in
Table II, reveals that the proposed model outperforms the best-
performing MML-based model (XGB) across various metrics.
Specifically, the proposed model demonstrates 32.7% higher
accuracy, 21.8% higher recall, 36.2% higher precision, 30.7%
F1-score, and 30.0% higher AUC. Overall, the performance of
the proposed model surpasses that of the other models. This
can be attributed to the utilization of stacking ensemble learning
in the proposed prediction method, which effectively integrates
multiple prediction models with substantial differences. By
leveraging the collective decision-making of the sub-learners,
the proposed approach mitigates the impact of incorrect pre-
dictions by individual sub-learners, thus enhancing the overall
prediction accuracy.

B. Comparison With Start-of-The-Art Method-Based
Prediction Models

As discussed in Section I-B of this paper, the field of medical
science has embraced the growing utility of ML algorithms,
particularly in the context of survival prediction. This domain
has witnessed notable contributions such as the prognosis of

breast cancer patients’ outcomes and the determination of the
survival status of individuals diagnosed with neuroblastoma. A
spectrum of endeavors has been undertaken to construct diverse
prediction models, leveraging distinct datasets and a range of
ML methodologies. However, it’s essential to recognize that
the applicability of these techniques varies substantially, and
their effectiveness across distinct datasets might not be uniform.
To ascertain the efficacy of the novel approach introduced in
this study for predicting the survival of patients affected by EC
post-immunotherapy, this research undertakes a comprehensive
comparative analysis. Specifically, it conducts a juxtaposition
between our proposed model and four SOA method-based pre-
diction models: self-organizing maps (SOM)-SVM [53], XG-
BLC [54], DRGXG [30], and BSense [31]. The particulars of
the comparison methods are delineated as follows:

1) SOM-SVM: This method is proposed by the authors
in [53], which is a prediction approach employing SOM neural
network clustering and SVM techniques to prognosticate the
survival risk levels in the context of EC.

2) XGBLC: This method is introduced by the authors in [54],
which is a refined framework termed XGBLC, enriching the sur-
vival prediction model based on XGB through the incorporation
of Lasso-Cox for a more robust analysis of high-dimensional
genomic data.

3) DRGXG: This method is presented by the authors in [30],
which is a heterogeneous ensemble learning scheme that takes
the stage to predict survival in the realm of neuroblastoma.
Notably, sub-learners in this method encompass decision trees,
RF, a genetic algorithm-fueled SVM, XGB, and light gradient
boosting machine (GBM).

4) BSense: This method is presented by the authors in [31],
which is a novel stacking ensemble prediction paradigm based
on Bayesian hyperparameter optimization. This method, specif-
ically designed for breast cancer survival prediction, employs
a stack of sub-learners including deep neural networks (DNN),
GBM, and distributed RF, and DNN also serves as the meta-
learner.

Fig. 9 portrays the outcomes of our experimental investiga-
tions, accentuating the juxtaposition between the SOA method-
based prediction model and the approach put forth in this
paper. The outcomes distinctly exhibit the excellence of the
proposed model. For instance, the proposed model attains an
AUC of 0.8883, surpassing the SOM-SVM, XGRL, DRGXG,
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Fig. 9. Performance comparison of the different traditional single machine leaning-based prediction models.

Fig. 10. Performance comparison of the different stacking ensemble learning mechanism-based prediction models.

TABLE III
PERFORMANCE COMPARISON OF THE DIFFERENT SOA METHOD-BASED

PREDICTION MODELS

and BSense methods by margins of 17.2%, 21.1%, 10.8%,
and 15.2%, respectively. Moreover, the results, as outlined
in Table III, corroborate the preeminence of the proposed
model in forecasting the survival status of EC patients post-
immunotherapy across four additional metrics. This is because
the disparity in efficacy emerges as the SOM-SVM and XGRL
methods are founded upon a single model predicated on sub-
stantial sample size. Notably, even the XGRL method enhances
the performance of the XGB framework, it relies on a dataset of
over 10,000 cancer patient samples to attain favorable prediction
outcomes. As a consequence, its suitability for scenarios involv-
ing small sample sizes is limited. While the DRGXG method
employs a ensemble learning architecture, its efficacy just lies
in the amalgamation weighted by the sub-model AUCs, not
re-optimization sub-learner outcomes. The BSense method, akin
to our proposed method, employs a cascade framework to make
secondary predictions based on sub-learner outcomes. However,
the inherent limitation surfaces in its reliance upon a trifecta of

TABLE IV
STACKING ENSEMBLE LEARNING MECHANISM-BASED PREDICTION MODELS

AS BENCHMARKS

sub-models, only three sub-learners hinder its predictive ability
when faced with limited sample size.

C. Comparison With Stacking Ensemble Learning
Mechanism-Based Prediction Models

To further validate the efficacy of the proposed model, we
established five distinct stacking ensemble learning mechanism-
based prediction models as benchmarks for comparison, as
presented in Table IV. Fig. 10 depicts the experimental re-
sults, emphasizing the comparison between the various stack-
ing ensemble learning mechanism-based prediction models and
the proposed model. The outcomes reveal that the proposed
model outperforms the benchmarks. For instance, the accuracy
value achieved by the proposed model is 0.8913, surpassing the
performance of Stacking-SVM, Stacking-ET, Stacking-AdaB,
Stacking-RF, and Stacking-GB models by 5.1%, 2.5%, 2.5%,
10.4%, and 2.5%, respectively. Furthermore, the results for
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TABLE V
PERFORMANCE COMPARISON OF THE DIFFERENT STACKING ENSEMBLE

LEARNING MECHANISM-BASED PREDICTION MODELS

the remaining four metrics, as displayed in Table V, further
substantiate the superior predictive capabilities of the proposed
model in determining the post-immunotherapy survival status of
EC patients. This superiority can be attributed to the utilization
of XGB as the meta-learner in the proposed model. XGB lever-
ages an optimized second-order Taylor expansion, allowing for
better fitting of complex nonlinear datasets using second-order
functions. Moreover, XGB effectively reduces model parame-
ters, leading to more accurate predictions and faster execution.
Additionally, XGB demonstrates superior handling of missing
data and achieves more efficient completion of prediction tasks.

V. CONCLUSION AND DISCUSSION

EC is a prevalent tumor affecting the digestive tract, which
presents a formidable hurdle in accurately prognosticating the
survival outcomes of patients following immunotherapy, thus
accentuating the pivotal nature of this task in tumor prognosis.
In this paper, we introduced a novel approach grounded in the
principles of stacking ensemble learning, aiming to construct a
prediction model of exceptional quality for prognosticating the
survival status of EC patients subsequent to immunotherapy.
The proposed methodology encompasses a series of pivotal
steps. Primarily, leveraging preprocessed data, we discerned
the optimal feature sub-set specific to each sub-learner. These
feature sub-sets were subsequently harnessed to construct the
sub-learning module. Consecutively, the prediction outcomes
derived from the sub-learners assume the role of essential prior
knowledge in the construction of the meta-learning module.
The central objective of this research is to holistically assess
the performance exhibited by the proposed stacking ensemble
learning prediction model and duly substantiate the efficacy of
the proposed methodology. By meticulously scrutinizing the
experimental results, a host of significant conclusions have been
gleaned, succinctly summarized as follows:

� In the proposed heterogeneous stacking ensemble learning
approach, the utilization of distinct sub-learners necessi-
tates the selection of feature subsets that exhibit optimal
performance for each sub-learner. This process guides the
subsequent ensemble construction and enhances the over-
all integration effectiveness. In comparison to prediction
techniques reliant on individual ML classifiers such as
SVM, ET, AdaB, RF, GB, and XGB, commonly employed
in various cancer prognosis and diagnosis investigations,
the proposed method demonstrates effective prediction
capabilities even under conditions of limited sample sizes.

� Through meticulous assessments and comparisons with
diverse stacking ensemble learning methodologies encom-
passing five heterogeneous sub-learners, the presented
stacking ensemble learning mechanism establishes its
supremacy in terms of prediction performance, as substan-
tiated by multiple ML metrics. Particularly, the proposed
mechanism harnesses the inherent strengths of XGB’s pos-
terior inference to forge a resilient meta-learning module
and classifier, resulting in augmented evaluation accuracy,
accelerated execution speed, and heightened resilience.

� Through an extensive examination of the feature vari-
ables, our comprehensive study has yielded noteworthy
insights. Firstly, within the cohort of EC patients receiving
immunotherapy, age, gender, and DS have demonstrated
a robust association with prognostic survival. This ob-
servation underscores the importance of these variables
in the context of survival prognosis for EC patients un-
dergoing immunotherapy. Secondly, pre-treatment blood
testing has emerged as a pivotal determinant in the im-
munotherapeutic landscape for EC patients, wherein the
values of BA, BPC, BLDH and LTR have exhibited a
notable impact on survival prognosis. This is consistent
with the research findings in [23], [24], [40], [41]. Conse-
quently, healthcare professionals are advised to consider
these findings diligently during the assessment of im-
munotherapy suitability for EC patients before initiating
treatment.

Moreover, the rationale behind this study lies in the exclusive
use of clinical features for survival prediction, providing notable
advantages, particularly in terms of model simplification and
heightened interpretability:

1) Model Simplification: Clinical features, encompassing fun-
damental physiological and pathological patient information,
obviate the need for intricate imaging analyses. This results in
the development of survival prediction models that are succinct,
facile to construct, and straightforward to interpret.

2) Ease of Acquisition: Clinical features are typically derived
from routine medical examinations and standard laboratory
tests. In contrast, certain baseline imaging characteristics may
necessitate costly imaging technologies that might not be uni-
versally available across medical institutions.

3) Interpretability: Clinical features often possess intuitive
meanings, fostering easier comprehension and engendering trust
among physicians and researchers regarding the predictive out-
comes derived from these features.

VI. LIMITATIONS AND FUTURE DIRECTIONS

Given that the dataset utilized in this paper originates solely
from a single medical institution, with a small sample size
primarily composed of East Asian populations, the model’s
generalization across different genetic backgrounds (e.g., Eu-
rope, Africa, or America), and diverse patient groups remains
unverified, potentially impacting its applicability and predictive
performance. To further authenticate the validity and versatility
of our model, forthcoming studies will undertake the following
measures:
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1) Multi-Center and Diversified Data Collection: We will
collaborate with medical institutions in various regions and
countries to gather data from patients with different genetic
backgrounds. This multi-center approach will facilitate the eval-
uation of the model’s predictive performance and applicability
across diverse genetic backgrounds.

2) External Validation: By incorporating independent datasets
from varied genetic backgrounds for external validation, we can
comprehensively assess the model’s generalization capability
and reliability.

3) Model Adjustment and Optimization: Based on the data
from populations with different genetic backgrounds, we will
make necessary adjustments and optimizations to the model to
enhance its prediction accuracy and applicability across diverse
populations.

Moreover, it is imperative to acknowledge that relying solely
on clinical features may sometimes fall short of providing a
comprehensive patient profile. Certain imaging baseline features
could encompass more nuanced and intricate information. In
specific scenarios, amalgamating clinical and imaging features
might enhance the model’s predictive efficacy, enabling a more
precise prognosis of immunotherapy outcomes. Consequently,
the consideration of baseline imaging characteristics hinges on
the specific objectives of the study and the characteristics of the
available data. This consideration forms part of our prospective
research agenda.

Furthermore, future investigations can also explore various
aspects to further enhance our understanding. Firstly, integrating
clinical data with RNA datasets of EC patients will enable
the development of a holistic survival prediction model, poten-
tially yielding valuable insights and refining prediction accuracy.
Secondly, expanding the predictive methodology to encompass
other tumor types, such as renal tumors and osteosarcoma,
promises to advance prognostic research in oncology. Evalu-
ating the proposed method’s efficacy across diverse tumor types
will furnish valuable insights for clinical application. Lastly,
given the growing interest in heterogeneous ensemble learn-
ing techniques, investigating the performance of deep learn-
ing models in cancer survival prediction presents a promis-
ing avenue for future inquiry. Exploring the potential of deep
learning approaches holds the potential to augment prediction
accuracy and facilitate informed decision-making within clinical
settings.
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