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ABSTRACT One of the biggest challenges when considering the applicability of Deep Learning systems
to real-world problems is the possibility of failure in critical situations. Possible strategies to tackle this
problem are two-fold: (i) models need to be highly accurate, consequently reducing this risk of failure; (ii)
facing the impossibility of completely eliminating the risk of error, the models should be able to inform
the level of uncertainty at the prediction level. As such, state-of-the-art DL models should be accurate
and also calibrated, meaning that each prediction has to codify its confidence/uncertainty in a way that
approximates the true likelihood of correctness. Nonetheless, relevant literature shows that improvements
in accuracy and calibration are not usually related. This motivates the development of Agreement-Driven
Dynamic Ensemble, a deep ensemble method that - by dynamically combining the advantages of two
different ensemble strategies - is capable of achieving the highest possible accuracy values while obtaining
also substantial improvements in calibration. The merits of the proposed algorithm are shown through a
series of representative experiments, leveraging two different neural network architectures and three different
datasets against multiple state-of-the-art baselines.

INDEX TERMS Deep ensembles, deep learning, image classification, reliability, probabilistic interpretation,
uncertainty calibration.

I. INTRODUCTION
As Deep Neural Networks (DNNs) become ubquitous in
critical fields such as autonomous driving, medicine, remote
sensing, and robotics - where erroneous decisions can have
significant repercussions - there rises a pressing need for Deep
Learning (DL) models that not only exhibit high accuracy,
but are also highly reliable when exposed to the variability
of real-world data. It is therefore desirable that the DL mod-
els are capable to output predictions that codify trustworthy
information. This underscores the importance of uncertainty
calibration (also called confidence calibration or simply cal-
ibration), which ensures that the confidence scores generated
by the DNNs accurately reflect the likelihood of correctness.
This reliable quantification of predictive uncertainty will con-
tribute to a probabilistically interpretable behaviour, when

these models are applied to real-world data. Therefore assess-
ing and improving the uncertainty calibration of modern DL
systems, in diverse and representative scenarios, has become
pivotal for the safe application of AI systems in real-world
contexts.

As it will be formalized in Section III, the problem of un-
certainty calibration focuses on the probabilistic correctness
of a model’s prediction. Intuitively, if a perfectly calibrated
model makes 100 predictions that have a confidence value
of 0.85, then 85 of those predictions will be in fact correct.
A model that possesses this ability to accurately reflect how
confident/uncertain it is in each prediction, is not only more
reliable but also probabilistically interpretable, since - by
leveraging calibrated confidence values - it is possible to quan-
tify the level of uncertainty of the model for each prediction
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and thus act accordingly within the context of the application.
It is worth noting that modern DNNs have been found to be
tendentiously uncalibrated, despite being increasingly accu-
rate [7].

Understanding, evaluating and improving uncertainty cali-
bration is essential for a trustworthy application of DNNs in
real-world scenarios. This is particularly important in critical
applications, where a malfunctioning AI system can lead to
severe consequences. Remote sensing satellite systems are
becoming increasingly vital in critical applications disaster
prevention and response [15], [23], urban planning [24], re-
source management [21] and agriculture [5]. The variability
in data induced by different sensors, resolutions, regions of
acquisition and environmental factors, makes satellite image
data a unique and challenging case study for evaluating the
reliability of classification models. As such, given the critical
aspects, the complexity and the real-world variability of this
type of data, three different satellite image-based datasets
were chosen as study case for the experiments presented in
this article.

Within the various methodologies proposed in recent years
to improve uncertainty calibration of modern DNNs, the use
of Deep Ensembles [9] has been shown to be an effective
strategy to improve both accuracy and calibration in DL-
based classification problems [8], [14], [18], [20]. From the
preliminary work developed in [3], it can be concluded that
leveraging calibration metrics within an ensemble strategy
can lead to better results in terms of model calibration, when
compared to a traditional average-based ensemble algorithm.
Nonetheless, this comes at the cost of a lower accuracy than
what can be obtained with the average-based strategy. This
type of trade-off - where calibration is improved at the cost of
accuracy - is often undesirable, particularly in critical applica-
tions.

Contribution: Therefore, this article extends the work
developed in [3] by proposing the Agreement-Driven Dy-
namic Ensemble (ADDE) algorithm, that explores a dy-
namic ensemble system to improve the uncertainty calibra-
tion while retaining the same high accuracy obtained by
an average-based Deep Ensemble. The merits of the pro-
posed approach are shown through a series of representative
experiments.

II. RELATED WORK
Through the work presented in [7], the problem of uncertainty
calibration is introduced to the DL community. The authors
highlight that while modern deep learning architectures have
achieved superior performance across various tasks, they tend
to be less well-calibrated compared to “older” models. This
is shown through a series of experiments, using multiple
state-of-the-art DNNs, applied to different datasets from both
computer vision, pattern recognition, and natural language
processing applications. This issue related to DNN calibration
is illustrated by leveraging the use of reliability diagrams
and explicitly evaluated with the Expected Calibration Error
(ECE) metric.

To address the calibration issues identified in [7], the au-
thors employ post-hoc calibration methods. They introduce
temperature scaling, a generalization of the Platt scaling
algorithm [19], [17], which shows better performance on
most datasets compared to other methods like histogram
binning [27] and isotonic regression [28]. Since then, other
post-hoc calibration methods have been proposed, like Dirich-
let calibration [12], that is applicable to larger range of
classification models (beside DNNs) and can, in some cases,
outperform temperature scaling.

Besides post-hoc approaches, addressing DNN’s epistemic
uncertainty through the use of approximate Bayesian infer-
ence has shown also good results in improving the calibration
of DL-based models [4], [6]. Given the computational com-
plexity of full Bayesian Neural Networks (BNNs), the authors
in [4] propose Monte Carlo dropout (MC dropout) as a form
of approximate Bayesian inference for DNNs, that achieves
similar results with a significant decrease in complexity.

Alternatively, ensemble methods operate on the principle
of generating predictions from multiple deterministic models.
When multiple deep neural networks (DNNs) are combined,
this is known as a Deep Ensemble. Initially developed
to enhance prediction accuracy [9], Deep Ensembles were
later proposed as an alternative to Bayesian neural networks
(BNNs) for achieving better-calibrated predictions [14]. Un-
like BNNs, Deep Ensembles are simpler to implement and,
while requiring more computational effort than a single DNN,
often demand less than Bayesian approaches. Intuitively, a
Deep Ensemble will approximate the probabilistic nature of
a BNN by making multiple point estimations. Earlier versions
of Deep Ensembles were inspired by bootstrap aggregating
(bagging) techniques [1]; however, the authors in [14] demon-
strate that training individual DNNs with random initialization
is sufficiently effective in practice, while bagging techniques
usually negatively affect accuracy and calibration. In fact,
simply averaging the predictions of independently trained
and randomly initialized DNNs has shown better results than
more complex strategies, even outperforming BNNs and MC
dropout in most cases [8], [14], [18], [20].

The work done in [3] proposes an ECE-based weight-
ing and filtering/pruning ensemble strategy that effectively
outperforms traditional (average-based) Deep Ensembles in
different calibration-related metrics. Nonetheless, this im-
provement in terms of calibration comes at the cost of reduced
accuracy, relatively to the average-based counterpart. As such,
balancing the improvement in terms of calibration and ac-
curacy is the main motivation behind the work subsequently
presented in this article.

III. BACKGROUND
In this section, we formally discuss the problem of uncertainty
calibration and introduce two standard evaluation metrics used
in this domain.

Notation: with �k = {(p1, . . . , pk ) ∈ [0, 1]k :
∑k

j=1 p j =
1} denotes a probability simplex for a classification problem
with k different classes; we will use bold notation to denote
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vectors, like p = (p1, . . . , pk ); the j-th element of some vec-
tor p will be referred as p{ j} := p j ; σ : Rk → �k represents
the softmax function; we define bag (also called a multiset)
as an extension of the notion of set, that can have repeated
elements (i.e., different instances of the same element). These
remarks are valid for all sections of the article; other remarks
on notation will be given along the text, when found relevant.

A. DEFINING UNCERTAINTY CALIBRATION
In the literature, uncertainty calibration for DL systems in a
multi-class context is typically defined in two primary ways.
The most prevalent method, outlined in [7], extends the bi-
nary classification problem to a multi-class scenario using
a one-vs-all approach, focusing solely on the calibration of
the prediction with the highest confidence. Conversely, other
studies, such as [27], adopt a more comprehensive definition
that considers all the confidence values within the predicted
probability distribution. As in [25], we differentiate between
a calibrated model and a strongly calibrated model according
to the definitions presented below. It is important to note that
for binary classifiers, those definitions are equivalent.

Definition 1: Calibrated model
Let us consider a pair of random variables (X,Y ), where X

represents an input space (or feature space) and Y the corre-
sponding set of true labels. Let us now take a model f : X →
�k (this setting corresponds to a classification problem with k
different classes). The model f is considered calibrated if

P

(
Y = arg max

j∈{1,...,k}
f (X )

∣∣∣∣∣ max
j∈{1,...,k}

f (X )

)

= max
j∈{1,...,k}

f (X ). (1)

Definition 2: Strongly calibrated model
Following the statements of Definition 1, the model f is

considered strongly calibrated if, ∀y ∈ {1, . . . , k},

P (Y = y| f (X ){y}
) = f (X ){y}. (2)

B. EVALUATING UNCERTAINTY CALIBRATION
The probability values in the left hand side of both (1) and
(2) cannot be computed using finitely many samples. Conse-
quently, there is no ground-truth for the true likelihood values,
which brings unique challenges when considering the evalua-
tion of the calibration of the models. As such, there is a need
for metrics tailored specifically for this type of evaluation. In
this context, two variations of the well established ECE metric
are described in this subsection, to address both “common”
and strong calibration.

1) EXPECTED CALIBRATION ERROR
The ECE computes the bin-wise difference between the aver-
age confidence and the average accuracy of a given set of pre-
dictions. We start by creating the sets of bins {B1, B2 . . . , BM},

where each bin is a bag of confidence scores defined as

B1 =
{

p : p ∈ max
j∈{1,...,k}

f (X )
}

∩ [0, 1/M], (3)

Bi =
{

p : p ∈ max
j∈{1,...,k}

f (X )
}
∩ ](i − 1)/M, i/M], (4)

for i = 2, 3, . . . , M. We define the confidence per bin as

con f (Bi ) = 1

|Bi|
∑
p∈Bi

p, (5)

and the accuracy per bin as

acc(Bi ) = 1

|Bi|
∑
p∈Bi

δ(p), (6)

where δ(p) equals 1 if the true class corresponds to the predic-
tion and 0 otherwise. Finally, for a total of N predictions (i.e.,
N represents the number of samples used for evaluation) and
a binning scheme {B1, B2, . . . , BM}, the ECE is defined as

ECE =
M∑

i=1

|Bi|
N

|con f (Bi ) − acc(Bi )|. (7)

As is made clear by the binning scheme definition in (3), (4),
the ECE addresses the calibration related to the maximum
value of the prediction vector, being therefore associated with
“common” calibration (Definition 1).

2) MULTI-CLASS ECE
To assess strong calibration (Definition 2) the previous metric
can be modified by altering the space of confidence values
that constitute each bin. Therefore we simply define a new
binning scheme {B∗

1, B∗
2 . . . , B∗

M}, where each bin is a bag of
confidence scores defined as

B∗
1 =

{
p : p ∈ f (X ){ j},∀ j ∈ {1, . . . , k}

}
∩ [0, 1/M], (8)

B∗
i =

{
p : p ∈ f (X ){ j},∀ j ∈ {1, . . . , k}

}
∩ ](i − 1)/M, i/M], (9)

for i = 2, 3, . . . , M. Now, for a new space of samples of
dimension N∗ = kN , the multi-class ECE (mc-ECE) can be
defined as

mc-ECE =
M∑

i=1

|B∗
i |

N∗ |con f (B∗
i ) − acc(B∗

i )|. (10)

Following the guidelines present in [13], we will only consider
predictions with a confidence value above a given threshold
(in our case 0.05), when computing the mc-ECE; this avoids
a bias to the behaviour of low-confidence prediction (close to
0), that is common in this type of multi-class bin-wise metrics.

IV. PROPOSED METHOD
Before going into a detailed description of the proposed
ADDE, we will start by making some introductory consid-
erations about ensembles of DNNs.
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For n models fθi : X → �k (i = 1, 2, . . . , n), where θi

represent the set of parameters/weights of the model fθi , a
classical average-based approach to a Deep Ensemble (who
has shown to be an effective method for improving uncertainty
calibration [8], [14], [18], [20]), approximates the probability
vector

P(Y |X ) ≈ 1

n

n∑
i=1

P
(
Y | fθi (X )

)
. (11)

A natural extension of this concept is to consider a weighted
average to combine to outputs of the different models. In this
context, we take a vector of weights w = (w1,w2, . . . ,wn)
and make the estimation

P(Y |X ) ≈ h(w) · [P (Y | fi(X )
]T

i∈�
, (12)

where � = {θi : i = 1, 2, . . . , n} and h : Rn → �n is a nor-
malization function. The vector w defines different biases with
respect to different members of the ensemble. Additionally,
a filtering/pruning mechanism can also be added by defining
a set � ⊂ {1, 2, . . . , n} and �̃ = {θi : i ∈ �}, therefore con-
sidering only part a subset of the members of the ensemble,
approximating the probability vector in the form

P(Y |X ) ≈ h̃ ([wi]i∈� ) · [P (Y | fi(X ))
]T

i∈�̃
, (13)

where h̃ : R|�| → �|�|. This process of reducing the size of
an ensemble through a given criteria is usually referred as en-
semble pruning [16]. The preliminary work developed in [3]
is an example of an DNN ensemble strategy of the form (13).

As previously referred, the main motivation behind this
work is to leverage the key insights from [3] while improving
the biggest disadvantage of that preliminary method, that is
a decrease in accuracy when compared to an average-based
Deep Ensemble. From that work it is possible to conclude that,
while an average-based Deep Ensemble is a better decider
(i.e., it is better at defining the predicted class, which will
naturally result in higher accuracy values), the ECE-based
Deep Ensemble is better at encoding the predictive uncertainty
of most predictions. Therefore, ADDE is based in a simple
yet effective strategy to combine both of these properties,
by proposing a dynamic convex combination of an ensemble
of type (11) and another of type (13). This type of convex
combination will be based on two principles:

1) ADDE works dynamically i.e., the behaviour of the al-
gorithm can differ from prediction to prediction.

2) The final prediction of ADDE is dependent on the nature
of the class-related agreement between two parts: a) an
ECE-based Deep Ensemble, b) an average-based Deep
Ensemble.

The description of the ADDE algorithm follows in the
next subsection. We start by formalizing the idea behind the
method and then describe its practical application.

A. AGREEMENT-DRIVEN DYNAMIC ENSEMBLE
Let us consider a pair of random variables (X,Y ), where
X represents an input space and Y the corresponding set of

true labels. Let us now take a set of n models fθi : X → �k

(i = 1, 2, . . . , n). Let us also consider � ⊆ {1, 2, . . . , n} and
� = {θi : i ∈ �}; for now, � can be considered a generic sub-
set, as its nature will be defined when discussing the practical
computation of ADDE. To simplify the notation let us take
p̂θi = max j∈{1,...,k} fθi (X ), ŷθi = arg max j∈{1,...,k} fθi (X ) and

Di = P(Y = ŷi| p̂i ) − p̂i. (14)

In this context, the ADDE algorithm will approximate the
probability vector

P(Y |X ) ≈ γ

n

n∑
i=1

P
(
Y | fθi (X )

)

+ (1 − γ )σ (E[Di]i∈� ) · [P (Y | fθ̃ (X )
)]T

θ̃∈�
,

(15)

where γ equals 0 if

arg max
j∈{1,...,k}

n∑
i=1

P
(
Y | fθi (X )

)
(16)

equals

arg max
j∈{1,...,k}

σ (E[Di]i∈� ) · [P (Y | fθ̃ (X )
)]T

θ̃∈�
, (17)

and 1 otherwise.
In the computation of ADDE, the values for P(Y | fθi (X ))

are approximated by the members of the Deep Ensemble
(independently trained DNNs with random initialization),
whereas E[P(Y = ŷ�| p̂�) − p̂�] is approximated through the
computation of the ECE on a validation set [7]. Additionally,
the subset � is defined by selecting the τ ≤ n elements of the
Deep Ensemble that perform best regarding the referred ECE
computation, where τ is a previously defined threshold param-
eter. In Algorithm 1 we describe the practical application of
ADDE. Additionally, in Fig. 1 is illustrated an example of the
ADDE inference process using an ensemble with 10 DNNs
and threshold value of τ = 2.

V. EXPERIMENTS AND RESULTS
The following experimental section is made by leveraging
three different datasets - EuroSAT [11], Aerial Image Dataset
(AID) [26] and NWPU-RESISC45 (RESISC45) [2] (details
on each dataset can be found in the Appendix), as well as
two different DNN architectures, EfficientNet-B0 [22] and
ResNet-50 [10]. The referred datasets are randomly divided
into 70%, 10%, 20% for training, validation and test, respec-
tively. All the DNNs used - either as members of an ensemble
or for single-network baselines - are trained in an analogous
manner for 40 epochs, using an Adam optimizer with learning
rate of 0.001 and random initialization of weights.

Besides the proposed ADDE, we used in the experiments
two other types of Deep Ensembles: an average-based Deep
Ensemble (that we will from here onwards refer solely as
Deep Ensemble) and an ECE-based Deep Ensemble (ECE
Ensemble) [3]. The experiments are made separately for each
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FIGURE 1. Graphical representation exemplifying the ADDE inference process, when using an emsemble of 10 DNNs and a threshold value of τ = 2.

Algorithm 1: Agreement-Driven Dynamic Ensemble.

DNN architecture, meaning that each ensemble is composed
by 10 randomly initialized DNNs of the same architecture.
Additionally, some single-network baselines are also included
in the experimental section, including a vanilla baseline
(i.e., the DNN without any additional methodology applied)
and different calibration methods: temperature scaling [7],

L2-norm Dirichlet calibration (Dirichlet calibration) [12],
ODIR Dirichlet calibration (ODIR calibration) [12] and MC-
dropout [4]. MC-dropout is used by leveraging the existing
dropout layers of the trained DNN; as such, this method is
not included when using the ResNet-50 architecture, since the
original model does not have dropout layers. The methods
chosen in this article (besides ECE Ensemble which is the
preliminary method that inspired ADDE) are widely used in
the literature and have shown strong results in recent studies
on uncertainty calibration of DNNs [3], [4], [7], [8], [12], [14],
[18], [20].

In the following experiments, the threshold parameter τ of
the ADDE is set as τ = 2, following the recommendations
made in [3] regarding the use of an ECE-based ensemble.
Nonetheless, the nature of the ADDE algorithm opens the
possibility for experimentation with different threshold pa-
rameter values. Naturally, the ECE Ensemble baseline follows
the same guidelines.

In the following subsections, each experiment is described
and its results discussed. All the results presented are ob-
tained using the respective test set from each of the three
datasets. In summary, each subsection can be categorized
as follows:

Reliability diagrams: Improvements on calibration result-
ing from the application of ADDE are illustrated through
reliability diagrams.

General quantitative results: The performance of ADDE in
terms of accuracy, ECE and mc-ECE, is evaluated using the
three datasets, with both DNN architectures, against multiple
baselines.

Accuracy-calibration divergence from optimum: We evalu-
ate how ADDE balances the improvements on both accuracy
and calibration, compared to multiple baselines.
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FIGURE 2. Reliability diagrams illustrating the graphical differences in terms of calibration between ADDE and a vanilla approach, using both
EfficientNet-B0 and ResNet-50 DNN architectures, on the test sets of the EuroSAT, AID, and RESISC45 datasets.

Additional results: Additional experiments and respective
results for deeper insights on the previous findings and on the
behavior of ADDE.

A. RELIABILITY DIAGRAMS
In the present subsection, we leverage a graphical represen-
tation of calibration in the form of reliability diagrams -
presented in Fig. 2 - to intuitively illustrate the effects of
ADDE against a vanilla approach. Unlike a traditional relia-
bility diagram, like those presented in [7] (that are presented in
the form of bar charts) we take advantage of connected scatter
plots for the graphical representation of calibration, since it
allows for clearer comparisons.

To plot these diagrams, the interval [0, 1] is divided into
10 equally spaced bins, where the confidence values are
distributed (similar to the computation of the ECE). Then,
in each dot we plot the average confidence per bin against
the average accuracy per bin. The confidence values used in
this graphical representation are the maximum value and its
counterpart (1 − maximum) resulting in a one-vs-all repre-
sentation for each prediction. In Fig. 2 we show, for each
dataset and DNN architecture, the reliability diagrams of both
a vanilla approach and the proposed ADDE; additionally,
the expected behavior of a perfectly calibrated model is also
represented.

Although an intuitive look into calibration, reliability di-
agrams can be misleading. For example, in Fig. 2(a) the
behaviour of the vanilla DNN and the ADDE seem closely

similar; however, since most predictions are situated at the
initial and last bins, the difference in behaviour at the extrem-
ities will result in clear differences in terms of calibration (as
will be clear in the following subsection). Nonetheless, it is
already possible to illustrate - especially when considering
the ResNet-50 architecture, i.e., Fig. 2(b), (d), and (f) - the
improvements in calibration caused by ADDE.

Finally, it is possible to observe that while the vanilla out-
puts are are consistently over-confident, the ADDE confidence
values are sightly under-confident, which is illustrated by the
behavior of the respective curves in relation to the perfectly
calibrated curve.

B. GENERAL QUANTITATIVE RESULTS
In Tables 1 and 2 are presented the values obtained for
accuracy, ECE and mc-ECE in each experiment, allowing
a comparison of the performance of ADDE against all the
different baselines. We highlight in bold the best obtained
value(s), while the values that are less than 2 p.p. from the best
value are underlined (for accuracy this means less then 2 p.p.
bellow the best value, and for ECE and mc-ECE it translates
as less then 2 p.p. above that value). ECE and mc-ECE are
computed using 15 bins.

We begin by comparing the two DNN architectures and
their responses to different ensemble and single-network
strategies. Without applying any additional techniques
(vanilla), EfficientNet-B0 generally outperforms ResNet-50
in terms of both accuracy and calibration, except on the
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TABLE 1. Results for ADDE and All the Different Baselines, Regarding Accuracy, ECE and mc-ECE, Using the EfficientNet-B0 DNN Architecture on the Test
Sets of the EuroSAT, AID, and RESISC45 Datasets

TABLE 2. Results for ADDE and All the Different Baselines (Except MC-Dropout), Regarding Accuracy, ECE and mc-ECE, Using the ResNet-50 DNN
Architecture on the Test Sets of the EuroSAT, AID, and RESISC45 Datasets

AID dataset. The accuracy advantage of EfficientNet-B0 be-
comes even more pronounced when various methodologies
are applied. However, considering calibration, ResNet-50 -
when paired with temperature scaling, ODIR calibration,
and ADDE - can achieve comparable or even superior re-
sults to EfficientNet-B0. Despite this, the other two ensemble
strategies (Deep Ensemble and ECE Ensemble) -which show
decent calibration results with EfficientNet-B0 - perform sig-
nificantly worse with ResNet-50.

Discussing now the differences found across the different
datasets, we start by observing that the stronger results are
achieved in the EuroSAT dataset, especially when considering
accuracy. One important observation to take from this com-
parison is that the behaviour of the different methodologies
is generally consistent across different datasets (i.e, there is

no evidence of dataset-dependent behaviour), despite some
observable differences.

Finally, we now discuss the performance of the proposed
ADDE algorithm against the different baselines. In terms of
accuracy, ADDE is consistently the best performing method,
alongside Deep Ensemble; however, ADDE systematically
outperforms Deep Ensemble in terms of calibration (in both
ECE and mc-ECE evaluation). Temperature scaling and ODIR
calibration are the methods that best perform in terms of cal-
ibration; nonetheless, these methods are fairly bellow ADDE
when evaluating classification accuracy (temperature scaling
does not alter the accuracy of a vanilla approach by design).
We can finally observe that ADDE reaches an interesting
balance between the improvements on accuracy and calibra-
tion, since it is in most cases substantially close to the best
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FIGURE 3. Bar plots comparing the ACDO results for ADDE and multiple baselines, using both EfficientNet-B0 and ResNet-50 DNN architectures, on the
test sets of the EuroSAT, AID, and RESISC45 datasets.

calibration values, while always showing optimal accuracy.
This balance between accuracy and calibration improvements
is closely evaluated in following subsection.

C. ACCURACY-CALIBRATION DIVERGENCE FROM
OPTIMUM
In this subsection we evaluate how the methods perform when
considering both accuracy and calibration under the same
metrics. For this purpose we propose the use of accuracy-
calibration divergence from optimum (ACDO) that, for a
given method, averages both the differences of accuracy and
calibration from the optimal value (obtained on that experi-
ment). Specifically, we first calculate how the accuracy result
diverges from the best accuracy value in the experiment

ADO = Acc.best − Acc., (18)

an then we perform analogous calculation for calibration, this
time considering both ECE and mc-ECE,

CDO = (ECE − ECEbest ) + (mc-ECE − mc-ECEbest )

2
.

(19)

Finally we average both these divergences

ACDO = ADO + CDO

2
. (20)

In this way, we evaluate the methods on their overall relative
performance regarding both accuracy and calibration.

Fig. 3 presents the results for ACDO with EfficientNet-B0
(Fig. 3(a), (c) and (e)) and ResNet-50 (Fig. 3(b), (d) and (f)),
on each of the three datasets. The value for MC-dropout is not
presented in Fig. 3(a), (c) and (e) for the sake of symmetry,
given that it is far from being a competitive result.

When using the EfficientNet-B0 architecture, it is ob-
servable that the ensemble-based methods achieve the best
performance, with ADDE always obtaining the stronger re-
sults. On the other hand, with ResNet-50, ODIR calibration is
capable of outperforming Deep Ensemble and ECE Ensemble
(on most cases), but ADDE can still consistently obtain the
best ACDO value by a comfortable margin. With these results,
it is possible to observe the robustness of ADDE in terms of
overall performance improvements, related to both accuracy
and calibration.
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FIGURE 4. Box plots illustrating the distribution of the different ensemble members used, in terms of how they perform under different metrics
(accuracy, ECE, and mc-ECE). The results are shown for both DNN architectures (EfficientNet-B0, ResNet-50) as well as the three datasets (EuroSAT, AID,
and RESISC45).

D. ADDITIONAL RESULTS
We finalize Section V by outlining some additional results,
that provide supplementary insights into our earlier findings
and foster a deeper understanding of ADDE through ablation
studies.

Fig. 4 illustrates how the DNN ensemble members - that
constitute not only ADDE but also the average-based Deep
Ensemble and ECE Ensemble benchmarks - distribute in
terms of their performance, across the different experimen-
tal scenarios. Interestingly, despite the performance disparity
between the DNN architectures observed in this plot, ADDE
effectively closes this gap, achieving strong results with both
architectures (as detailed in the previous subsections).

In Fig. 5, we illustrate the effect that the threshold param-
eter (referred as τ in Section IV), affects de performance of
ADDE, by gradually increasing it. We care to note that given
the dynamic nature of ADDE, accuracy is not affected by the
different threshold parameter values and as such only the ECE
and mc-ECE are evaluated. Although not consistently the best
performing, a choice of τ = 2 shows to be the best all-around
choice (specially with ResNet-50), which is in line with the

findings outlined in the preliminary work developed in [3]
(with respect to ECE-based ensembles).

Finally, Fig. 6 illustrates the effect of reducing the number
of DNNs used in ADDE, in terms of accuracy, ECE and
mc-ECE, across the different experimental scenarios. Com-
pared to the impact of the threshold parameter (Fig. 5) the
ensemble size has a relatively weaker effect on calibration
metrics, paired with only a minor effect on accuracy, (typically
resulting in differences of less than 1 p.p.). Thus, although the
effect of reducing the ensemble size is shown to be dependent
on the data and model architecture, the impact is generally
modest (and in some cases even positive), making this a viable
option when computational resources are limited.

VI. FINAL REMARKS
This article proposes an ensemble based strategy for DNNs,
designated by ADDE, that combines the advantages of both an
average-based Deep Ensemble and a calibration-based Deep
Ensemble, in terms of their improvements on accuracy and
calibration, respectively. Through dynamic behaviour and by
leveraging the class-related agreement of those two ensemble
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FIGURE 5. Connected scatter plots illustrating the effect that different threshold parameter values have on the performance of ADDE in terms of ECE and
mc-ECE. The results are shown for both DNN architectures (EfficientNet-B0, ResNet-50) as well as the three datasets (EuroSAT, AID, and RESISC45).

FIGURE 6. Connected scatter plots illustrating the effect that the ensemble size has on the performance of ADDE in terms of accuracy, ECE and mc-ECE.
The results are shown for both DNN architectures (EfficientNet-B0, ResNet-50) as well as the three datasets (EuroSAT, AID, and RESISC45).
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strategies, ADDE shows good results on calibration-related
metrics, like ECE and mc-ECE, while always achieving the
best accuracy values against multiple baselines.

From the experimental section, some general observations
can be made that are consistent across the different experi-
mental setups:
� In terms of accuracy evaluation, ADDE performs at the

same level as average-based Deep Ensemble (by design),
with both showing consistently the best results. Nonethe-
less, the improvements in calibration are significantly
higher with ADDE than with the average-based coun-
terpart.

� When solely discussing calibration evaluation, temper-
ature scaling and ODIR calibration obtain the best
performance. However, these methods have a signifi-
cantly lower performance in terms of accuracy, when
compared to the aforementioned ensemble strategies.

� When leveraging the ACDO, that evaluates the overall
performance in terms of both accuracy and calibration,
ADDE shows to be the most robust method, consistently
outperforming all the other baselines.

It is important to additionally observe that, despite the
overall robust performance of ADDE, this method (like all
ensemble-based methods) has bigger computational costs than
single-network strategies, since it requires the training of mul-
tiple DNNs. Nonetheless, we showed that reducing ADDE
size can be a viable option in the case of computational re-
straints, resulting in small differences in performance.

Finally, it is possible to propose different avenues for future
work. ADDE can be adapted to different problems like object
detection or semantic/instance segmentation scenarios, by ad-
justing both of the ensemble strategies that (in cooperation)
define the proposed algorithm, taking in consideration the
particularities of each of these problems. On the other hand,
even in pure classification scenarios, the main ideas behind
ADDE can be leveraged to combine the properties of other
ensemble strategies and be applied to contexts beyond both
accuracy and calibration evaluation.
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