
Received 7 July 2024; revised 8 October 2024; accepted 11 October 2024. Date of publication 16 October 2024;
date of current version 28 October 2024. The review of this article was arranged by Associate Editor Wei Liu.

Digital Object Identifier 10.1109/OJCS.2024.3481000

An Innovative Dense ResU-Net Architecture
With T-Max-Avg Pooling for Advanced Crack

Detection in Concrete Structures
ALI SARHADI 1, MEHDI RAVANSHADNIA 1, ARMIN MONIRABBASI 2, AND MILAD GHANBARI 3

1Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran
2Department of Civil Engineering, Payame Noor University, Tehran 19395-4697, Iran

3Department of Civil Engineering, East Tehran Branch, Islamic Azad University, Tehran 15847-43311, Iran

CORRESPONDING AUTHOR: MEHDI RAVANSHADNIA (e-mail: ravanshadnia@srbiau.ac.ir).

ABSTRACT Computer vision which uses Convolutional Neural Network (CNN) models is a robust and
accurate tool for precise monitoring and pixel-level detection of potential damage in concrete structures.
Using a state-of-the-art Dense ResU-Net model integrated with T-Max-Avg pooling layers, the present study
introduces a novel and effective method for crack detection in concrete structures. The major innovation of
this research is the introduction of the T-Max-Avg pooling layer within the Dense ResU-Net architecture
which synergistically combines the strengths of both max and average pooling to improve feature retention
and minimize information loss during crack detection. In addition, the incorporation of Residual and Dense
blocks within the U-Net framework significantly enhances feature extraction and network depth, resulting in
a more robust anomaly detection. The implementation of extensive data augmentation techniques improves
the robustness of the model while the application of spatial dropout and L2 regularization techniques
prevents overfitting. The proposed model showed a superior performance, outperforming traditional and
state-of-the-art models. It had a Dice Coefficient score of 97.41%, an Intersection-over-Union (IoU) score
of 98.63%, and an accuracy of 99.2% using a batch size of 32. These results confirmed the reliability and
efficacy of the Dense ResU-Net with T-Max-Avg pooling layer for accurate crack detection, demonstrating its
potential for real-world applications in structural health monitoring. By taking advantage of advanced deep
learning techniques, the proposed method addressed the limitations of traditional crack detection techniques
and offered significant improvements in robustness and accuracy.

INDEX TERMS Crack detection, deep learning, dense ResU-net, image segmentation.

I. INTRODUCTION
Crack detection in concrete structures is a critical and chal-
lenging task. The existing cracks in structures are important
indicators of the damage and durability in them. Many
countries require regular crack detection as part of their con-
struction inspection programs which are typically conducted
by a technician visually. The technician records the infor-
mation including the position, thickness, and other features
of the cracks. The periodic inspections of infrastructure sys-
tems are crucial for maintaining their service capabilities and
ensuring public safety. Structural health monitoring (SHM)
is a methodology used to perform structural assessments

and involves detecting, locating, identifying, and quantifying
damages.

However, these stages often rely on subjective human as-
sessment and can be inaccurate. To address this issue, more
quantitative and advanced statistical approaches have been
proposed. In terms of deep learning-based techniques, crack
detection methods for concrete structures can be divided into
‘intelligent’ and ‘unintelligent’ categories [1], [2]. Conven-
tional methods, such as Schmidt Hammer or ultrasonic wave
generator devices, are effective in detecting cracks. How-
ever, researchers are moving towards more innovative and
precise methods. Unintelligent methods include the Schmidt
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Hammer method and visual assessment, while intelligent
methods include laser image processing, ultrasonic image
processing, and digital image processing. Intelligent methods
offer some advantages such as not needing direct access to the
site or experts and having high precision and speed. However,
preparing these systems is also challenging as they require
large datasets and robust hardware [3]. Advances in science
and technology have allowed humans to create systems (such
as artificial intelligence (AI)) that imitate their behavior. AI
has many practical applications in our daily lives includ-
ing image-processing-based crack detection in assessments
of structural health and maintenance. AI-based methods use
various statistical features of cracks, imaging, and machine
learning algorithms to identify, classify, and analyze cracks
among other tasks.

The recent integration of deep learning, specifically con-
volutional neural networks (CNNs), into crack detection
methods is a major development in this field. Deep learning
offers several advantages over traditional image processing
and feature-based machine learning techniques including in-
dependence from expert-defined thresholds and engineering
features, superior precision, and robust analysis of different
images. CNNs are a driving force in the field of computer
vision research [4]. Image segmentation, which divides an
image into its components, is an important part of visual
systems and is used in a wide range of applications including
medical image analysis, self-driving vehicles, image monitor-
ing, and virtual reality, among others [4]. In recent years, deep
learning-based models have revolutionized image segmenta-
tion with significantly improved performance and precision.
As a result, the use of these methods for crack detection has
increased [5]. Dung investigated cracks in concrete structures
and introduced a semantic segmentation approach utilizing
CNNs. This research used 40000 images as well as a VGG16
model which resulted in an accuracy of 90%. The proposed
model was then tested using experimental footage showing
that it was able to determine crack density accurately [6].
Dorafshan et al. employed a hybrid approach combining edge
detection and CNNs to detect cracks. The images were pre-
processed using various edge detection techniques, such as
Laplacian of Gaussian, Sobel, etc., and were processed with
an AlexNet-based architecture. The model was trained to de-
tect cracks with a width greater than 0.1 mm and had an
accuracy range of 53% to 79%. These researchers also utilized
an image classification model with an accuracy of 99% and
applied it to a transfer-learning model with an accuracy of
86%. The hybrid model was capable of detecting cracks as
small as 0.08 mm, whereas the transfer-learning model was
able to detect cracks as small as 0.04 mm. The proposed
hybrid model was able to reduce noise effectively [7]. Qing
Guo et al. developed a framework for identifying cracks in
concrete surfaces using the region-growing and edge detection
algorithms. They also utilized an optimization method to im-
prove and speed up the retrieval process. The final algorithm
was presented as an integrated approach capable of classifying
different cracks based on image topology [8]. Inspired by the

ImageNet algorithm, Li et al. conducted a research on trans-
fer learning and created a database by collecting construc-
tion images. They implemented a two-step transfer-learning
strategy on the organized database and trained the model.
Gradient-weighted Class Activation Mapping (Grad-CAM)
was used to find the locations of the subsurface cracks. The
proposed framework was applied to detect cracks in concrete
dam structures and the analysis results showed its excellent
performance [9].

The major contribution of this research is the creation of
a state-of-the-art Dense ResU-Net architecture by integrating
a novel T-Max-Avg pooling layer, particularly devised for
detecting cracks in concrete structures. This pooling method
combines the advantages of both max and average pooling.
Moreover, it enhances the extraction of significant features
and reduces information loss which are the main challenges in
crack detection tasks. In addition, using Dense and Residual
blocks within the U-Net architecture improves feature reuse
and network depth. This improves training stability, model
performance, and precision in the detection of complex crack
patterns. The contributions of this article address the draw-
backs of contemporary and traditional deep learning-based
methods and set a novel benchmark in the field of automated
structural health monitoring.

II. RELATED WORK
Yi et al. explored the use of deep learning to detect cracks in
railroads through a rapid crack detection framework. Given
the vulnerability of railroads to various environmental fac-
tors, fast and accurate crack detection is crucial for their
maintenance and repair. The study collected numerous rail-
road images and developed a deep learning-based network
architecture for crack detection. The proposed network, called
STCNet 1, reduced the training parameters by 96.03% and
93.28% and the computation time by 49.94% and 73.27%,
respectively, compared to the VGG16 and ResNet50 models
[10]. Cha et al. conducted a research on the detection of cracks
in concrete structures through learning methods. They em-
ployed image processing to identify concrete cracks. Lights
and shadows were among the most significant challenges
that they faced. The method consisted of a CNN architecture
trained on a 40000-image database (256 × 256 pixels) and
achieved an accuracy of 98% [11]. Zhu et al. developed a
deep learning network for crack detection in concrete bridges
which achieved an accuracy of 96% and outperformed other
conventional models. The model used a new pooling tech-
nique (ASPP) that enabled the network to extract multi-scale
context information and reduced the computational costs [12].
Yang et al. proposed an automatic pixel-level crack detection
model to address the limitations of existing methods. The deep
learning model was trained and evaluated using various crack
images. The results showed the quantitative representation
of the crack regions whose characteristics such as the crack
topology, maximum width, maximum length, and mean crack
width were extracted [13]. Hacıefendioğlu and Başağa pro-
posed a Faster-R-CNN architecture-based approach to detect
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cracks in concrete structures to extend the lifespan of the
structure and address the maintenance issues. The approach
was evaluated using 323 images with an aspect ratio of 9:16
and a resolution of 4128 × 2322 under different weather
conditions (sunny, foggy, and cloudy). The results showed a
similar crack detection performance on sunny and foggy days
but a 50% decrease in detection from sunset to moonrise, a
25% decrease from 6:00 PM to 7:00 PM, and an 85% decrease
from 7:00 PM to 8:00 PM [14].

Wang and Su studied automatic concrete crack segmen-
tation using transformers. They employed new transformer-
based architectures to supervise and inspect concrete struc-
tures. The new model, known as SegCrack, was implemented
with a hierarchical structure for image segmentation at the
pixel level using transformer encoder networks. The encoder
layers were utilized to identify the cases better and to im-
prove feature extraction. According to the results of the
proposed model, the recall, F1, and MIoU metrics were 96%,
95.46%, and 96.05% on the testing data, respectively [15].
Xu et al. developed an intelligent crack detection method for
the maintenance procedure. They compared and adopted the
best method using Faster R-CNN and Mask R-CNN. The
results indicated that being trained on merely 130 images,
these two techniques outperformed YOLO v3 under identical
conditions. Additionally, a training method was developed to
improve the results [16]. Fan et al. proposed a method to
tackle the noise issue using a parallel ResNet. They examined
the proposed method on two databases, i.e., CrackTree and
CFD. The results of recall, precision, and F1 for CrackTree
were 92.55%, 94.27%, and 93.08%, respectively, while for
CFD, they were 96.21%, 95.12%, and 95.63%, respectively.
In addition, the crack morphology was extracted from the
images to measure the crack length, width, and area accurately
so that the geometry of the crack could be determined [17].
Lui and Wang proposed a model to detect concrete cracks
using the U-Net algorithm to have better visual descriptions.
Despite the frequent use of CNNs due to their significant
advances, they are hard to interpret and are considered black
boxes. Thus, a U-Net-based model was proposed to improve
the image descriptions. It exploited simple CNN models, in-
cluding UNet-inceptionResNetv2, UNet-VGG19, and UNet-
EfficientNetb3 (sorted by their output accuracy), for complex
computations. However, several limitations, such as rough or
dark backgrounds, affected the output results [18]. Barisin
et al. presented a model to identify cracks in 3D images.
This article used all classical image processing techniques in-
cluding edge-detection filters and region-growing algorithms.
Furthermore, learning methods such as deep learning and
random forest (RF) were utilized and evaluated. The evalu-
ation results showed that the learning methods had a better
detection, especially with respect to thin cracks with low-
contrast images [19]. Rajadurai and Kang presented a method
to detect concrete cracks automatically at a high rate using
image processing techniques based on machine vision and
machine learning methods. Using the AlexNet architecture,
this method classified images into two categories, i.e., ‘crack’

and ‘no-crack’. Some modifications were performed to im-
prove the final accuracy, such as tuning the neuron weights,
displacing the final layer for binary classification, and aug-
menting the data with stochastic variations. In addition, this
method used stochastic gradient descent (SGD) for optimiza-
tion and reached an accuracy of 99.9% with a 0.1% error
rate [20]. Reghukumar and Anbarasi studied deep learning
and image processing methods for concrete crack detection.
In this research, to better detect cracks, a method based on
Mask R-CNN integrated with an active contour model and
a Chan–Vese algorithm was applied on 40000 training data.
The output results of these models showed that deep learn-
ing methods were good alternatives for visual concrete crack
inspection methods [21].

Ji et al. recommended a technique for crack detection us-
ing deep CNNs optimized by an enhanced chicken swarm
algorithm which had a higher accuracy and robustness than
conventional optimization methods. This approach empha-
sized the potential of combining CNN architectures with
evolutionary algorithms to improve performance in demand-
ing structural conditions [22]. Zhou et al. offered a set of
deep convolutional neural networks paired with decision-level
data fusion for the evaluation of coating and corrosion draw-
backs in coal handling and preparation plants (CHPP). This
approach permits the combination of multiple CNN models
which enhances the detection capability by taking advantage
of different model strengths. This improves the robustness of
defect detection [23].

Moreover, Wang et al. presented a vision-based concrete
crack detection technique which incorporated a hybrid ap-
proach that considered the effect of noise on detection ac-
curacy. By integrating various noise reduction methods into
the deep learning model, the recommended hybrid framework
obtained a significant improvement in detecting cracks under
varying real-world conditions. This showed the significance
of considering noise effects in practical applications [24].

These recent studies provide insights into the diverse
methodologies and innovations being employed in the field
of defect detection using deep learning, which include op-
timization techniques, ensemble models, and noise-handling
mechanisms. Incorporating these advancements into the cur-
rent literature review will provide a more comprehensive
overview of the state-of-the-art techniques, showing how the
proposed Dense ResU-Net with T-Max-Avg pooling layer
aligns with and advances upon recent developments.

The detection of cracks in concrete structures plays a cru-
cial role in ensuring their health as well as public safety.
Conventional inspection methods are laborious, inconsistent,
and imprecise for detailed analysis. The present study intro-
duces an advanced deep learning technique utilizing a Dense
ResU-Net model for an effective crack detection through
image segmentation. The motivation for this research arises
from the need for more reliable and automated inspection
methods that can supplement manual processes. Significant
contributions include the design and integration of dense and
residual blocks within the U-Net framework with T-Max-Avg
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FIGURE 1. A few examples of the used images.

FIGURE 2. Samples of augmented images and masks.

FIGURE 3. Effectiveness of data augmentation techniques based on
percentage.

pooling layers, presenting sophisticated data augmentation
methods to enhance the training process, and the application
of spatial dropout and L2 regularization techniques to improve
the model generalization. The proposed method has been
rigorously tested and compared with three benchmark models
and other related researches, demonstrating its superior per-
formance in terms of accuracy and robustness.

III. MATERIALS AND METHODS
A. DATASETS
This study utilized the four datasets, containing 30000 train-
ing images and 25000 testing images with corresponding
masks, which indicates the relevant sections of the image.
Fig. 1 shows some of the data used in this study on a ran-
dom basis. These data are original images and their masked
versions are shown as grayscale images. The dataset was also

TABLE 1. Random Changes to the Images With Their Descriptions

configured to deal with complex background scenarios such
as hands, building accessories, non-focused objects, stones,
leaves, etc. which commonly occur. The surface damage was
obtained from cylindrical concrete, mortar, beam test, and
concrete wall specimens. Since there were few training data,
the image data augmentation technique was utilized for train-
ing the network. Data augmentation is a technique for adding
new simulated data to reinforce and train the network by
applying some changes to the existing images without the
need to provide new original images. Here, the purpose was to
produce new images with new features enabling the network
to learn better beyond the original images.

The changes made to the images included shifting, rotat-
ing, magnifying, and introducing intentional noise. CNNs can
learn the features of an image regardless of their positions
in the image. Therefore, the data augmentation technique can
facilitate learning and yield a well-trained network. Typically,
this technique is also applied to the training data. As men-
tioned before, the data augmentation technique was used in
this study to insert new data into the training process. The
changes made to the images at random, along with their de-
scriptions, are listed in Table 1.

As shown in Fig. 2, samples of augmented images and their
corresponding masks were used for training. Fig. 3 illustrates
the effectiveness of these data augmentation techniques based
on percentage improvement.

Validating the augmented data is crucial to ensure that
the data augmentation process enhances the performance of
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FIGURE 4. Architecture of the U-Net algorithm.

the model without introducing bias or errors. To validate the
augmented data effectively, the following methods were used:

IV. VALIDATION OF THE AUGMENTED DATA
A. VISUAL INSPECTION
Random Sampling: A random sample from the augmented im-
ages was visually inspected to ensure that the transformations
were applied correctly and the images were still realistic and
relevant.

Comparison with the Original Image: The augmented im-
ages were compared with the original images to check for any
anomalies or unrealistic artifacts.

B. STATISTICAL ANALYSIS
Analysis of Distribution: The distributions of pixel values,
image features, or other relevant metrics were analyzed before
and after augmentation to ensure consistency.

Feature Consistency The augmented images were checked
to ensure that the essential features of the original images
were retained and that the augmentation did not distort the
important aspects of the data.

C. CONSISTENCY CHECKS
Class Consistency: It was ensured that the augmented data did
not change the class labels and maintained the integrity of the
labeled data.

Augmentation Consistency: Augmentation techniques were
applied consistently across the dataset to prevent the introduc-
tion of any biases by an uneven application.

V. MODEL ARCHITECTURE
The model utilized in this study was an improved U-Net
network designed in 2015 to enhance speed and precision.
Since this network had a fully connected layer, it did not
require a large number of image segmentation data [25]. As
the following image shows, the model was a fully symmetric
network in which the numbers of shrinking and expansion
layers were equal. Any information removed in the shrinking
path was recovered in the expansion path.

In Fig. 4, the shrinking and expansion paths are thoroughly
illustrated. As can be seen, convolutional layers in the 3 × 3
shrinking path were used to apply filters to the image. After
every convolutional layer, there was a rectified linear unit
(ReLU) activation function layer, also called ‘the nonlinear
activation function’. A 2 × 2 Max Pooling layer slid with a
stride of 2 over the extracted features. In this research, some
colorful images were gathered and integrated as training data
to have multiple types of detection.

FIGURE 5. The operation of the convolutional layer: - Input image: The
initial 5x5 matrix with specific numerical values. - Filter: The 3x3
convolutional filter with predefined values. - Output image: The resulting
3x3 matrix after applying the convolution operation, showing the feature
map.

FIGURE 6. The pooling layer operation - Input image: The initial 4x4
matrix with specific numerical values. - Max pooling: The maximum value
from each 2x2 region of the input image. - Average pooling: The average
value from each 2x2 region of the input image.

Equation (1) represents the characteristic equation of the
i-th mapping:

Yi =
d∑

j=0

Fj = (Xi ) + Bi (1)

where Y is the characteristic mapping, X is the input tensor, B
is the bias vector shared with the output characteristic map-
ping, and d is the input tensor depth.

The convolutional operation has pre-defined kernels and
strides. The images are processed via the application of non-
linear activation functions on convolutional layers. According
to their computational performance, the sigmoid, hyperbolic
tangent, arc tan, and ReLU functions are successful in deep
neural network (DNN). To simplify the calculations, facili-
tate the training process, and enjoy its simple derivations, the
ReLU function was used in this research [26].

The pooling layer reduces the size of the processing data,
the main approach for data reduction. There are two types
of pooling operation: max and average pooling. Max pooling
calculates a single maximum value for a window/kernel by
sliding over the input tensor stride by stride, whereas the
average pooling calculates a single average value [27]. Fig. 5
demonstrates the convolution operation process, showing how
the feature map is generated from the input image. The pool-
ing operation, which reduces the data size using max and
average pooling, is depicted in Fig. 6.

A. T-MAX-AVG POOLING LAYER
The pooling layer reduces the size of the processing data.
It was used as the main approach for data reduction in the
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FIGURE 7. 3 × 3 T-Max-Avg pooling [25].

present study. According to a new research, T-Max-Avg pool-
ing layer was used in the present study. The T-Max-Avg
pooling method continuously selects the K highest pixel val-
ues from the input data and uses parameter T to control the
output which is a combination of the average and maximum
values of these K highest pixel values. This new pooling
approach aims to leverage the strengths of both max and
average pooling, providing a more robust feature extraction
mechanism [28].

F
(
T − Max − Avg (X )

) = T × max (Y 1,Y 2, . . . ,Y K )

+ (1 − T ) × avg (Y 1,Y 2, . . . ,Y K ) (2)

Where:
X represents the set of elements with pixels selected based

on the pool size values obtained from the convolutional layer
data.

Yi represents the i-th largest item in X.
T is a parameter which ranges from 0 to 1 and balances the

contributions of the maximum and average values.
K represents the number of high-value items.
F (T − Max − Avg(X )) represents the final result.
Fig. 7 illustrates the operations for K=3 in a T-Max-Avg

pooling operation with a filter size of 3 × 3 in a 6 × 6 pixel
input.

These instances show that the T-Max-Avg method yields
values according to both maximum pooling and Avg-TopK.
The values acquired from this method can derive the most
significant information from the image to a large extent [25].

Also known as transposed convolutional layers, non-
convolutional layers are considered as backpropagation, up-
sampling, and fractal layers. A non-convolutional layer is
a transposed convolutional layer with a specific stride size
and layering that transforms the coarse input tensor into a
dense output tensor. First, every element in the input tensor
is multiplied by the non-convolutional kernel. Then, these
intermediate matrices are aggregated with long strides in both
horizontal and vertical axes. If the coefficients overlap, they
are aggregated to build an expanded matrix from the input.
Finally, the matrix is cut to the required size and the bias
vector is added. The output size is larger than the input size
which leads to an efficient upsampling approach. The utiliza-
tion of non-convolutional layers is the same as that of standard

FIGURE 8. A sample residual block.

FIGURE 9. A sample Dense block.

convolutional layers. However, non-convolutional layers use
the typical transposed filter.

B. RESIDUAL BLOCKS
ResU-Net is a variation of the standard U-Net network. It was
first used for the semantic segmentation of roads in aerial
images. Moreover, due to its high performance, it has also
been used in other fields. The aim of designing this network
is to increase efficiency with fewer trainable parameters us-
ing the advantage of residual blocks along with the U-Net
structure. Using residual blocks allows for designing deeper
networks with easier training and without worrying about
vanishing or exploding gradient problems. Additionally, the
skip connections in this architecture help to improve the flow
of data between layers. Like the U-Net network, the Res-Unet
network has an encoder path, a decoder path, and a bridge that
connects these two paths. However, unlike the U-Net network
which uses 3 × 3 convolutional layers with ReLU activation
function, this architecture uses residual blocks [29].

C. DENSE BLOCK
A dense block is a chief part of the Dense ResU-Net architec-
ture designed to improve feature reuse as well as gradient flow
in the network. The dense block was inspired by DenseNet
and comprises several layers each of which receives input
from all preceding layers and gives its own feature maps to
all following layers. This dense connectivity pattern leads to
a considerable boost in the flow of information as well as an
efficient feature reuse [30]. Fig. 8 presents a sample residual
block, while Fig. 9 shows a dense block, highlighting the
dense connectivity used in the architecture.

1) KEY CHARACTERISTICS OF A DENSE BLOCK
Dense Connectivity: Each layer is linked to all other layers in
a feed-forward manner. This signifies that the input to each
layer encompasses the outputs of all previous layers within
the same block.
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Feature Reuse: By concatenating the feature maps from
all preceding layers, each layer can use the features learned
by earlier layers. This promotes feature reuse and improves
efficiency.

Improved Gradient Flow: Dense connections help reduce
the vanishing gradient problem by assuring better gradient
propagation in the network.

Reduced Overfitting: The improved feature reuse and flow
help reduce the probability of overfitting and make the model
more robust [30].

2) STRUCTURE OF A DENSE BLOCK
A common dense block comprises several convolutional lay-
ers each of which is followed by batch normalization and
activation functions. The inputs of all following layers are
concatenated with the output of each layer. This leads to a
growth of feature maps as we advance into the block [27].

Encoder
Like the U-Net network, the encoder is responsible for ex-

tracting pixel-level features. This architecture employs three
encoder blocks which are placed one after the other. The out-
put of each of these blocks is connected to the decoder layer
as a skip connection. To decrease the dimensionality of the
feature vectors extracted from each layer, the first convolution
layer in the blocks employs a stride of 2. This reduces the
dimensions from 256 to 128.

Bridge
In this architecture, a residual block with a stride of 2 is

utilized.
Decoder
The task of the decoder part is to receive the feature maps

from the bridge and the skip connections from different layers
and to learn the best semantic representation for illustrating
the segmented mask. This part of the architecture is also
composed of three decoder blocks. After each block, the di-
mensions of the feature maps double and the feature channels
decrease.

D. REGULARIZATIONS
There are two important aspects to consider regarding the
dataset. First, it is relatively small in size. Second, the images
in the dataset have a complex foreground which could lead to
overfitting during the training and validation phases. To over-
come this issue, regularization techniques are employed to
enhance the generalization ability of neural networks. In this
study, two regularization techniques (namely spatial dropout
and L2) were used.

1) SPATIAL DROPOUT
To address overfitting in the image recognition task, the spatial
dropout technique was proposed as a means of randomly deac-
tivating a feature, leading to model averaging. However, since
adjacent pixels in images are often highly correlated, this tech-
nique may not regularize the model effectively. To overcome
this issue, the spatial dropout technique was introduced by
Tompson et al. [28]. This technique works by deactivating the

entire feature maps rather than the individual pixels. Several
studies have shown that using the spatial dropout technique
in CNN models can improve performance. In this study, the
U-Net model uses the spatial dropout technique with a rate
of 0.5 which is implemented after every convolution layer,
following the approaches in previous studies.

2) L2 REGULARIZATION
L2 regularization owes its name to the L2 norm of the vector
w. The two-dimensional norm is as follows:

‖w‖2 = (|ω1|2 + |ω2|2 + . . . + |ωN |2)
1
2 (3)

The 2-norm (also known as the L2 norm or the Euclidean
norm)

A linear regression model that implements the (squared)
L2 norm for regularization is called ‘the ridge regression’. To
implement the model, note that the linear regression model
stays the same:

ŷ = ω1x1 + ω2x2 + . . . + ωN xN + b (4)

However, it is the calculation of the loss function that in-
cludes these regularization terms:

Loss = Error (y, ŷ) + λ

N∑

i=1

ω2
i (5)

The last equation (ridge regression) is a loss function with
the squared L2 norm of the weights (note the remainder of the
square root). The regularization terms are constraints to which
an optimization algorithm must adhere when minimizing the
loss function besides having to minimize the error between
the true y and the predicted ŷ.

E. POST-PROCESSING TECHNIQUES
Though chiefly created for crack detection, the recommended
Dense ResU-Net model has the ability to assess crack features
using post-processing steps. After the model has detected the
crack regions, different image processing and analysis tech-
niques are utilized to obtain the geometric features of the
cracks. The following steps are particularly taken:

1) Crack Length Estimation: After the crack is detected,
the connected components labeling method is employed
to trace the path of the crack. The crack length is
calculated by adding up the pixel distances along the
identified crack path. To carry out real-world measure-
ments, the pixel-based length is scaled according to
established reference dimensions from the input image.

2) Crack Width Calculation: The crack width is assessed
by computing the distance between the crack boundaries
at different points along its length. A skeletonization
process is employed to reduce the crack to a single-
pixel width. Afterward, the perpendicular distance to the
crack edges is computed at various locations. Then, the
average and maximum widths are obtained from these
measurements which can indicate the severity of the
cracks.
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3) Crack Orientation Analysis: The crack orientation is
obtained by fitting a line to the identified crack points
by employing such techniques as the Principal Com-
ponent Analysis (PCA) or the Hough Transform. The
angle of this fitted line with regard to a reference axis
gives the crack orientation which is essential for a better
understanding of the potential effect of this method on
structural integrity.

By using these post-processing methods in tandem with the
crack detection capabilities of the Dense ResU-Net model, a
thorough assessment of the crack features is carried out. This
makes a more detailed evaluation of structural safety beyond
simple crack detection possible, providing quantitative mea-
surements of crack characteristics that are vital for repair and
maintenance decisions.

VI. EVALUATION METRICS
There are four commonly used evaluation measures for the
classification task including true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). In the
multi-class segmentation problem, each class is evaluated sep-
arately by considering the other classes in the foreground. For
instance, when calculating the parameters for cracks, TP indi-
cates that both the ground truth and the prediction are cracks,
TN means that both the ground truth and the prediction are
non-cracks, FP signifies that the ground truth is a non-crack,
while the prediction is a crack, and FN means that the ground
truth is a crack, while the prediction is a non-crack [29].

A. ACCURACY
The accuracy metric shows the percentage of correct predic-
tions the model makes which is calculated by (6) [30].

Accuracy = (T P + T N ) / (Total examples) (6)

B. DICE LOSS
The Sorensen–Dice coefficient, also known as the Dice sim-
ilarity coefficient, was used for Boolean data types. Today it
is used for the evaluation of image segmentation. This metric
is defined by (7) based on the classification of each voxel (the
smallest structural component in a 3D image) [34]:

DSC = 2T P/ (2T P + FP + FN ) (7)

C. IOU
The IOU metric shows the overlapping extent of two areas.
The more extensive the overlap, the larger the IOU. It is typi-
cally used in image segmentation systems and is calculated by
(8) [35].

IOU = Area of the intersection of two boxes

Area of the union of two boxes
(8)

D. ADAM OPTIMIZER
The primary objective of an optimizer is to minimize the
errors of a neural network model by performing the required
learning steps through a gradient descent algorithm. These

FIGURE 10. The accuracy and error of the network.

FIGURE 11. The left graph displays the IOU error rate and the right graph
illustrates the dice coefficient error rate.

learning steps use the backpropagation method to modify the
weight and bias in the neural network. The Adam optimizer is
a widely used optimizer that has proven to be highly effective
for most deep learning tasks. Furthermore, it is regarded as
one of the top-performing optimizers based on evaluations
[31], [34].

E. HARDWARE AND SOFTWARE CONFIGURATIONS
The network was trained after its parameters were tuned. The
network was trained on Google Colab with a 16 GB NVIDIA
Tesla T4, and a Ryzen 7 CPU. The number of epochs for
training was set to 200. TensorFlow (ver. 2.16.0) and PyTorch
(ver. 2.0) were used for the calculations. However, due to its
simplicity and efficient computation, TensorFlow was chosen
as the software API.

VII. RESULTS AND DISCUSSION
The datasets used in this study contained 30000 training im-
ages and 25000 testing images of concrete cracks, each with
its corresponding mask. These images were collected from
three different databases on Kaggle, cumulated together, and
randomly selected for training and testing to ensure a diverse
and comprehensive dataset. The images were augmented us-
ing 16 different techniques to enhance the robustness of the
model.

In Fig. 10, the left chart illustrates the accuracy of the model
in the training phase. The blue line shows the accuracy of the
model in the training phase, while the orange one indicates
its accuracy in the validation phase. The right chart shows the
network error rate. Similarly, the blue line shows the training
phase error, whereas the orange line indicates the validation
phase error.

In Fig. 11, the IOU is shown in the left chart and the
Dice loss is plotted in the right chart. The blue and orange
lines illustrate the error in the training and validation phases,
respectively.
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FIGURE 12. Samples of the input image, predicted mask, and real mask.

The evaluation results of the testing data can be seen in
Fig. 12. The original image, the masked image, and the pre-
dicted image are depicted.

A. COMPARATIVE ANALYSIS OF STATE-OF-THE-ART PAPERS
Dung achieved an accuracy of 90% using a VGG16 model and
Zhu et al. reported an accuracy of 96% using a new pooling
technique (ASPP), the proposed model in the present study
demonstrated a higher accuracy and better performance met-
rics. Additionally, the proposed method showed significant
improvements over the hybrid approaches of Dorafshan et al.
as well as the CNN-based methods of Cha et al. and Fan et al.
Which can be seen in Fig. 13. Table 2 presents a comparison
of the proposed method with existing benchmark models,
highlighting improvements in accuracy and robustness.

The proposed model was particularly created to improve
robustness against different types of noise that may impact
the images of concrete cracks. To do this, multiple strategies
were utilized in the development and evaluation phases of
the model. First, several data augmentation methods includ-
ing random transformations, varying brightness, and adding
Gaussian noise were applied to the training dataset to simulate
real-world conditions in which noise is unavoidable. These
augmentations assured that the model was exposed to various
noise scenarios to improve its ability to generalize to noisy

FIGURE 13. Comparison of the errors of the methods.

TABLE 2. Comparison of the Proposed Method With the Benchmarks

data. Furthermore, the hybrid pooling mechanism (T-Max-
Avg pooling) had an essential role in improving the robustness
of the feature extraction process. By taking advantage of the
strengths of both max and average pooling, the model was
better able to retain the relevant features while mitigating the
effect of noisy or unrelated information in the feature maps.

During assessment, some experiments were precisely per-
formed to evaluate the model performance under different
levels of noise. According to the results, the recommended
model had a high accuracy and a stable performance across
different noise levels, showing its robustness. Compared
with baseline models, the Dense ResU-Net demonstrated less
degradation in performance when it was subjected to noisy
inputs. This can be ascribed to both the noise-robust training
process and the architecture design.

To sum up, the recommended model showed a strong ro-
bustness against noise effects through the use of targeted
evaluation, hybrid pooling mechanism, and data augmenta-
tion under noisy conditions. These measures assured that
the model was dependable for real-world applications where
noise is a typical challenge.

VIII. CONCLUSION
In this study, an innovative and efficient method was in-
troduced for detecting cracks in concrete structures using a
Dense ResU-Net model with T-Max-Avg pooling layer. This
approach addressed the limitations of traditional crack de-
tection methods by leveraging deep learning techniques to
achieve high accuracy and robustness in image segmentation
tasks. The proposed Dense ResU-Net architecture underwent
a systematic and rigorous hyperparameter tuning process
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to ensure optimal performance. A combination of grid and
random search methods was used for tuning the critical hy-
perparameters including the learning rate, batch size, dropout
rate, and the number of filters in each convolutional layer. The
batch size also varied (16, 32, 64) to make a balance between
the training speed and stability of the model. The learning rate
was adjusted in a range between 0.0001 and 0.01 to determine
the most effective value for faster convergence while avoiding
overfitting or underfitting.

Cross-validation was utilized to validate the performance
of the model across different parameter settings. During the
training phase, a learning rate scheduler was employed to
adjust the learning rate dynamically based on the validation
loss, further improving the convergence and stability of the
model. The dropout rate was carefully selected (ranging from
0.2 to 0.5) to prevent overfitting, especially given the complex
nature of the dataset used for crack detection. Regularization
techniques, such as L2 regularization, were also applied to
control the model complexity.

The optimizer also played a critical role in achieving a
high accuracy. After experimenting with various optimizers,
including Adam, RMSprop, and SGD, the Adam optimizer
was chosen owing to its adaptive learning rate capabilities.
Adam provided the best results in terms of convergence speed
and accuracy.

To assure robustness, different experiments were performed
to assess the effect of each hyperparameter on the perfor-
mance of the model. The final hyperparameter settings were
selected according to the combination that consistently gave
the highest prediction accuracy on the validation set to assure
that the model had a good balance for robustness and general-
ization.

A. DENSE BLOCKS
Dense blocks are a key component of DenseNet designed to
improve feature reuse and gradient flow.

Dense Connectivity
Advantage: This connectivity ensures maximum informa-

tion flow between layers, leading to better feature reuse and
learning efficiency.

Feature Reuse
Advantage: This reduces the number of parameters needed

and mitigates the risk of overfitting, especially when working
with smaller datasets.

Improved Gradient Flow
Advantage: This alleviates the vanishing gradient problem,

making it easier to train deeper networks.

B. RESIDUAL BLOCKS
Residual blocks, introduced in ResNet, address the issue of
training deep neural networks by allowing layers to learn
residual functions.

Skip Connections
Advantage: These connections allow gradients to flow

directly through the network. This stabilizes training and en-
ables the construction of very deep networks.

Learning Residual Functions
Advantage: This simplifies the learning process and im-

proves the convergence of the network.
Prevention of Vanishing/Exploding Gradients
Advantage: This prevents the gradients from vanishing or

exploding which is a common issue in deep networks.

C. INTEGRATION WITHIN THE U-NET FRAMEWORK
Combining Dense and Residual blocks within the U-Net
architecture leverages the strengths of both approaches, en-
hancing the overall performance of the network for image
segmentation tasks.

Enhanced Feature Extraction
Advantage: This combination results in more accurate and

detailed feature maps which are crucial for tasks requiring
precise segmentation such as crack detection.

Improved Network Depth and Performance
Advantage: This enhances the ability of the network to

capture intricate patterns and details in the images.
Better Generalization
Advantage: This is particularly important in real-world ap-

plications where the model must perform reliably with diverse
datasets.

The experimental results demonstrated the superior perfor-
mance of the proposed method, achieving a Dice Coefficient
score of 97.41%, an IOU score of 98.63%, and the overall
accuracy, precision, recall, F1, and sensitivity scores of at least
0.99. These metrics showed that the proposed model outper-
formed several existing models in the literature and provided
more reliable and accurate crack detection capabilities.

D. REAL-WORLD APPLICATIONS AND IMPLICATIONS
Infrastructure Monitoring

The proposed Dense ResU-Net with T-Max-Avg pooling
can be effectively deployed for real-time monitoring of con-
crete infrastructures such as bridges, tunnels, and dams. By
providing accurate crack detection, the model can help in
the early identification of structural weaknesses, preventing
potential failures and enhancing public safety.

Disaster Mitigation and Prevention
In regions prone to natural disasters such as earthquakes or

floods, continuous monitoring using this model can provide
critical data on the structural health of buildings and infras-
tructures. This information is vital for disaster preparedness
and mitigation efforts, ensuring timely interventions and re-
ducing the risk of catastrophic failures.

E. CONSTRAINTS
While the proposed method demonstrated significant im-
provements in the accuracy and robustness of crack detection,
several constraints need to be acknowledged:

1) Size and Diversity of the Dataset: The size and diversity
of the dataset used for training and testing play a crucial
role in the performance of the model. Although data
augmentation techniques were employed to enhance the
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training process, the limited size and scope of the origi-
nal dataset could affect the generalizability of the model
to different types of cracks and concrete structures.

2) Computational Resources: Training deep learning mod-
els, especially those with complex architectures like
the Dense ResU-Net with T-Max-Avg pooling layers,
requires substantial computational resources. Access
to high-performance GPUs and sufficient memory is
essential for their efficient training and real-time im-
plementation which may not be readily available in all
practical settings.

3) Generalization to Different Structures: The model was
primarily trained on specific types of concrete structures
and crack patterns. Therefore, its ability to generalize
across different types of structures, materials, and dam-
age patterns may require additional training with more
diverse datasets.

F. FUTURE RESEARCH
The proposed method significantly improved the accuracy
and robustness of crack detection. However, future research
should focus on extending the capabilities of the model in
several key areas. First, expanding the dataset to include di-
verse types of concrete structures, environmental conditions,
and damage patterns will help improve the generalizability
of the model to different real-world scenarios. Additionally,
future work could explore integrating multi-modal data, such
as thermal or ultrasonic imaging, to enable the model to detect
subsurface defects that are invisible to the naked eye.

Another potential area for future research is the develop-
ment of light versions of the model that can be deployed on
edge devices for real-time monitoring of infrastructure. This
would enable efficient crack detection in remote or resource-
limited environments. Moreover, incorporating state-of-the-
art self-supervised learning methods could mitigate the need
for extensive labeled datasets, which is usually a limitation in
training deep learning models for structural health monitoring.

Finally, applying the recommended model for predicting
crack propagation over time using temporal data can give
helpful insights into structural damage progression. Such pre-
dictive capabilities are vital for proactive maintenance and
assuring the long-term safety of the infrastructure.
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