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ABSTRACT Unmanned aerial vehicles (UAVs), commonly known as drones, have gained widespread
popularity due to their ease of deployment and high agility in various applications. In scenarios such as search
missions and target tracking, conducting complex and computation-intensive tasks in multi-UAV systems
have become essential. Recent investigations have explored the integration of collaborative centralized
learning (CL) and federated learning (FL) into multi-UAV systems. However, CL methods raise privacy
concerns and may suffer from communication delays, while FL methods demand high UAV-side computation
capability. To address these challenges, split learning (SL) emerges as a promising alternative, offering
reduced learning iteration time and improved accuracy in resource-constrained edge clients. In this study, we
leverage SL and Stitch-able Neural Network (SN-NET) to propose a novel Stitch-able Split Learning (SSL)
approach for multi-UAV systems. The proposed SSL approach is capable of tackling challenges in terms of
device instability and model heterogeneity that associated in multi-UAV systems. Comparative simulations
are conducted, evaluating its performance against CL, FL, traditional SL and SFLV1 (SplitFed Learning V1)
approaches to establish its superiority.

INDEX TERMS Split learning (SL), federated learning (FL), unmanned aerial vehicles (UAVs), privacy
preservation, distributed learning, model stitching.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs), also known as drones
or remotely piloted aircraft, have become more and more
popular for their ease of deployment and high agility in
various applications in recent years. In certain application
scenarios, such as executing search and rescue missions or
tracking targets, the multi-UAV system is required to conduct
complex and computation-intensive tasks. To this end, incor-
porating centralized learning (CL) and federated learning (FL)
methods [1], [2] into a multi-UAV system has recently been
investigated. However, the CL based methods have the privacy
concern and may suffer from high communication delay, and
the FL based methods require high UAV-side computation
capability. To address these challenges, split learning [3], [4]
has emerged as a promising alternative to execute complex

tasks in resource-constrained clients, proving to be useful in
domain such as medical imaging.

Nevertheless, conducting distributed learning tasks within
multi-UAV systems consistently presents significant chal-
lenges, particularly in relation to device instability and model
heterogeneity. These challenges create substantial obstacles
to implementing conventional distributed learning methods,
such as Centralized Learning (CL), Federated Learning (FL),
and Split Learning (SL), in multi-UAV systems. Even in
SFLV [4], a recent method that attempts to combine the
strengths of FL and SL, these issues remain unresolved.

To maintain the computational efficiency provided by SL
while also enabling the independent learning capability of FL,
there is a need to facilitate information transfer between dif-
ferent models. Model distillation [5] is frequently employed
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to transfer knowledge between dissimilar models, but when
used on devices with limited computing resources, it can
inadvertently exacerbate latency issues. In response, model
stitching [25] has emerged as a technique that links neural
networks with varying architectures or those trained using
different strategies. Unlike knowledge distillation, stitching
simply creates a mapping connection without iterating the
model parameters themselves.

However, the strategic integration of model stitching within
the SL framework remains an unresolved research question.
More research is needed to explore its potential for enhancing
distributed learning systems in multi-UAV environments.

In this study, to executing computation-intensive tasks on
resource-constraint UAVs, we initially propose to employ the
SL approach in multi-UAV systems. Subsequently, to address
challenges related to device instability and model hetero-
geneity, we introduce an improved Stitch-able Split Learning
(SSL) approach tailored for multi-UAV systems. This en-
hanced approach integrates SL methodology with Stitch-able
Neural Networks (SN-NET). The contributions of this study
are summarized below.
� We introduce a SL assisted multi-UAV system exe-

cuting with computation-intensive tasks such as image
classification. The system comprises multiple UAVs
seamlessly orchestrated by a central base station (BS),
each equipped with specialized computing, caching,
and communication gear, in addition to an on-board
camera for comprehensive area surveying. By employ-
ing SL method, we effectively alleviate the computa-
tional load on the UAV side and demonstrate supe-
riority in total computation and communication time
consumption.

� To address the challenges encountered by SL assisted
multi-UAV systems, we propose a novel SSL approach
which integrates SL and SN-NET. By leveraging model
stitching technology, our approach could transfer respec-
tive knowledge between UAVs and BS effectively. The
proposed SSL approach persists in training tasks even
when the network is totally offline, and it can complete
training and inference tasks with other UAVs that have
heterogeneous models.

� We evaluate the effectiveness of our proposed multi-
UAV system assisted by stitch-able split learning using
an aerial perspective geographic dataset. The simulation
results demonstrate that the SL-based system achieves
high accuracy in image classification with low computa-
tion costs in an ideal network environment. Particularly
noteworthy is SL’s ability to handle data imbalances
among multi-UAV systems, significantly outperform-
ing FL-based methods. Furthermore, the proposed SSL
approach demonstrates resilience in managing device
instability and client model heterogeneity, leading to
improved classification accuracy. These thorough eval-
uation outcomes emphasize the versatility and efficacy
of our proposed system across various scenarios.

II. RELATED WORK
Federated learning (FL) has emerged as a preeminent
distributed learning method in recent years, garnering
widespread attention and extensive research efforts aimed at
optimizing its performance. A plethora of works has explored
diverse avenues for enhancing FL, encompassing the de-
sign of multi-tier FL frameworks to accommodate numerous
devices [6], [7], and the development of model aggrega-
tion and compression techniques to mitigate communication
overhead [8], [9]. Moreover, to support FL in dynamic
wireless networks, pioneering research efforts have focused
on tailoring resource allocation algorithms, accounting for
communication link unreliability [10], [11] and emphasiz-
ing energy efficiency [12], [13]. Recent surveys on federated
learning [14], [15], [16] have been conducted for further in-
sight.

In contrast, researches on split learning (SL) are still in
their early stages. The foundational concept of SL was ini-
tially introduced in [14]. SL has been applied across various
distributed learning domains, including medical imaging [3],
[17], IoT [18], and large-model distributed computing [19].
It holds the promise of facilitating more privacy-preserving
machine learning by enabling organizations to train mod-
els without sharing raw data with external entities [20],
[21]. As the improvement over SL, Cluster-based Parallel
SL (CPSL) [23] has been presented, which could reduce
training latency in a first parallel and then sequential train-
ing manner. AdaSplit [24] enables efficiently scaling SL to
low resource scenarios by reducing bandwidth consumption
and improving performance across heterogeneous clients.
In contrast to FL, SL emerges as a promising method for
building machine learning models across vast distributed
networks.

The concept of model stitching was initially introduced
by Lenc et al. [25] to explore the equivalence of representa-
tions. They demonstrated that the early segment of one trained
network could be seamlessly connected with the final seg-
ment of another trained network using a 1 × 1 convolution
stitching layer, resulting in minimal performance degrada-
tion. In a more recent study, Yamini et al. [26] extended
this idea, revealing that neural networks, even with distinct
architectures or trained using different strategies, could also
be stitched together with negligible impact on performance.
Concurrently, Adrian et al. [27] investigated model stitch-
ing as an experimental tool for aligning neural network
representations. Their work demonstrated that common sim-
ilarity indices (e.g., CKA [28], CCA [29], SVCCA [30])
were not correlated with the performance of the stitched
model. Building on this, Pan and Cai et al. introduced SN-
NET [31], a novel approach that unleashes the potential of
model stitching as a general strategy for leveraging pretrained
model families in the expansive model zoo. This enables
the creation of a single scalable neural network at a low
cost, capable of instantly adapting to diverse deployment
scenarios.
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III. MAIN CHALLENGES OF DISTRIBUTED LEARNING IN
MULTI-UAV SYSTEMS
In this section, we elaborate the main challenges and the po-
tential negative effects when employing traditional distributed
learning methods in a multi-UAV system.

A. DEVICE INSTABILITY
In IoT applications, the presence of a myriad of devices
characterized by variations in hardware specifications (CPU,
memory), network conditions (4G, 5G, WiFi), and power
resources (battery level) introduces substantial heterogeneity.
This diversity extends to computing, storage, and communica-
tion capacities, thereby posing challenges in distributed learn-
ing, such as elevated communication costs, the emergence of
stragglers, and the imperative need for fault tolerance.

The context of UAV settings exacerbates these challenges,
particularly concerning wireless communication quality over
increasing distances between the BS and the UAV. It hampers
the distributed training of models by not only constraining
the computing power of individual devices but also impeding
progress through network latency. In FL, where synchronous
updates are required, devices with limited computing capaci-
ties may become stragglers, prolonging the reporting of their
model updates compared to other devices in the same iter-
ation. Similarly, in the synchronous updates of SL, network
delays impede the transmission of concatenated data at the
cut layer, leading to queues of subsequent UAVs participating
in learning, resulting in inefficient use of computing power.

Compounding these issues, participating devices may drop
out of the learning process due to connectivity issues and
energy constraints, thereby detrimentally affecting distributed
learning outcomes. Given the prevalence of stragglers and
faults arising from the inherent device instability in complex
IoT environments, addressing these practical challenges are of
paramount significance.

B. MODEL HETEROGENEITY
Within the original framework of distributed learning, a
consensus among participating devices regarding a specific
training model architecture is imperative to effectively derive
the global model. This is achieved through the aggregation of
model weights collected from local models or by transmitting
the concatenated data and gradients.

However, in practical IoT applications, individual devices
aspire to tailor their own models to adapt to their unique
application environments and resource constraints, such as
computing capacity. This need for model customization is par-
ticularly prevalent in multi-UAV systems comprising different
types of UAVs. Moreover, concerns related to privacy may
result in reluctance to share intricate model details. Conse-
quently, the model architectures derived from distinct local
models exhibit diverse configurations, rendering traditional
FL methods impractical for straightforward aggregation. The
inherent model heterogeneity prevalent in IoT environments
has garnered significant research attention owing to its practi-
cal importance in the context of intelligent IoT applications.

FIGURE 1. The model of federated learning.

Algorithm 1: Federated Learning.
Input: Initial model parameters θ , number of iterations T
1: Initialize θ on a central server
2: for t = 1, 2, . . . , T do
3: Distribute θ to participating parties
4: for each party i do
5: Train model on local data and update model

parameters θi

6: Send updated θi to central server
7: end for
8: Average updated θi to produce new global model θ

9: end for
Output: Federated model parameters θ

IV. PRELIMINARIES
A. FEDERATED LEARNING
FL is a distributed learning technique that allows models to be
trained on multiple decentralized devices or edge nodes, with-
out the need to share raw data with a central server. The model
of FL and its basic algorithm are given in Fig. 1 and Algo-
rithm 1, respectively. By training the model on decentralized
devices, FL allows for privacy-preserving machine learning
and can improve the accuracy of the model by leveraging a
larger, more diverse dataset. Specifically, the global model
are updated by averaging the local model updates from each
device by (1), and the global model weights are then updated
by adding the global updates to the current weights by (2).
This process is repeated until the model has converged.

�θglobal = 1

n

n∑

i=1

�θ i
local (1)

θglobal ← θglobal +�θglobal (2)

B. SPLIT LEARNING
Unlike FL, SL divides a deep learning model into two parts
via a cut layer: a client model and a server model. The
client model is trained on data from a user’s device, while
the server model is trained on a centralized server. Through
communication with each other, the client and server models
can perform learning tasks together. This approach allows
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FIGURE 2. The model of split learning.

for privacy-preserving machine learning, and can also enable
efficient model training and inference on resource-constrained
devices.

The model of SL and its basic algorithm are given in Fig. 2
and Algorithm 2, respectively. Let D be the smashed data after
passing through the client model, f be the model, and θ be
the model’s parameters, the process of SL can be outlined
as follows. The SL divides the model into two parts, fclient

and fserver , such that f = fclient ◦ fserver . During the training
process, the client performs forward propagation based on its
local data and sends the smashed data D to the server. The
server uses this data and the label to perform forward propa-
gation and backward propagation, and sends the gradients of
the cut layer to the client, which is used for client’s backward
propagation. This process continues until the model has con-
verged, at which point the trained model, fθ , is returned.

Split learning allows for privacy-preserving machine learn-
ing, as the users’ data never leaves their devices. Meanwhile,
the computation burden at the user side could be largely alle-
viated, since parts of the model is trained at server side.

C. STITCH-ABLE NEURAL NETWORKS
Stitch-able Neural Networks (SN-NET) [31] present a
groundbreaking and versatile framework for elastic deep
learning by harnessing pretrained model families from public
model repositories through a process known as model stitch-
ing.

Inspired by the increasing availability of pretrained models
in public repositories, where individually trained models often
lack direct adaptability to dynamic resource constraints, as
depicted in Fig. 3, SN-NET introduces stitching layers to
seamlessly interconnect an array of pretrained models. This
results in diverse stitched networks that permit real-time net-
work selection.

A key attribute of SN-NET is its remarkable flexibility,
allowing the interchangeable replacement of the two-party
models involved in the stitching process. This flexibility em-
powers the choice of a server-side model finely tuned for
specific tasks within a distributed learning system, thereby
enhancing performance potential. Once an appropriate larger

Algorithm 2: Split Learning.
Input: smashed dataD, parameter θ , model f
1: Initialize fθ with random weights
2: while not converged do
3: Forward propagation:
4: The client performs forward propagation based on

its local data and sends the smashed data D to the
server.

5: The server obtains loss l through forward
propagation.

6: Backward propagation:
7: The server executes backward propagation and

sends the gradients �θserver of the cut layer to the
client.

8: The client updates θclient based on the gradients
�θserver

9: end while
10: Return fθ
Output: Trained model fθ

model is established, the selection of smaller models becomes
equally unrestrained.

Following the SN-NET algorithm, a small client model
could be stitched with a large server model. Here, multiple
anchors are strategically established to ensure seamless model
performance. From this array of anchor points, a suitable
anchor is selected for each client, serving as a fixed reference
point throughout the model stitching process. This connection
will sew the two different models together like a sliding zipper
and selected anchor point plays a crucial role in subsequent
stitching calculations, contributing to the overall stability and
efficacy of the model stitching procedure.

V. STITCH-ABLE SPLIT LEARNING ASSISTED MULT-UAV
SYSTEMS
A. SYSTEM MODEL
Fig. 4 illustrates a multi-UAV system for image classification
tasks in the exploration of geographic areas. The BSs are con-
nected to UAVs within their respective operational ranges, and
acted as coordinators for the UAVs. Each UAV is equipped
with a transceiver, caching device, and processor, facilitat-
ing seamless communication with the BS through wireless
connections. The network topology adheres to a star config-
uration, ensuring direct connectivity between all UAVs and
the BSs. The exploration area is subdivided into smaller sub-
areas, each assigned to UAVs equipped with onboard cameras.
The primary mission of the UAVs is to identify specific ob-
jects like airports, parking lots, and facilities. The size of
each sub-area is determined by the optical camera’s resolution
requirements for precise image capture. To optimize coverage
and efficiently capture images during mission execution, we
assume that multiple UAVs are strategically deployed across
diverse locations to cover a larger expanse of sub-areas.
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FIGURE 3. llustration of the stitchable neural network, where 2 pretrained models are connected with simple stitching layers (1 × 1 convolutions).

FIGURE 4. Illustration of a multi-UAV system for image classification tasks in a geographic area exploration scenario.

B. SPLIT LEARNING ASSISTED MULTI-UAV SYSTEMS
SL emerges as a viable solution to tackle the challenge of
training deep learning models within resource-constrained
UAVs, under the coordination of the BS. Fig. 5 visually
represents the SL assisted multi-UAV system’s operational
framework, where a Convolutional Neural Network (CNN)
dedicated to image classification undergoes division into
client-side and server-side models, executed at the UAVs and
BS, respectively.

The UAV’s local training dataset comprises images stored
in its cache, serving as inputs for forward propagation within
the client model. Subsequently, the generated smashed data
at the cut layer, coupled with corresponding target labels, is
transmitted to the BS. The BS leverages this data for both
forward and backward propagation of the server-side model.
Consequently, the gradients of the cut layer are transmitted
back to the UAV for its backward propagation. Through this
distributed architecture, SL facilitates the UAVs in efficiently
training models with the aid of the BS. The division of the
CNN model into client-side and server-side models ensures
that the resource constraints of the UAVs do not impede their

participation in training deep learning models. The smashed
data at the cut layer transmitted to the BS, and the gradients
transmitted back to the UAV signify a bidirectional exchange
of information, fostering mutual learning between the client
and server models. This iterative knowledge exchange, or-
chestrated through SL, underscores its efficacy in enabling
UAVs to partake in complex deep learning tasks despite their
inherent resource limitations.

C. STITCH-ABLE SPLIT LEARNING ASSISTED MULTI-UAV
SYSTEMS
SL is capable of training deep learning models on resource-
constrained UAVs, with coordination from the BS. Never-
theless, it is crucial to underscore that SL assumes that the
machine learning model is unique and the connection be-
tween client and server is stable. This assumption implies
that SL cannot deal with heterogeneous models and lacks the
autonomous learning capabilities exhibited by FL when the
connection between client and server is poor. In response to
this limitation, we propose an enhanced SSL assisted multi-
UAV systems in this subsection.
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FIGURE 5. Illustration of SL assisted multi-UAV system for image classification tasks.

FIGURE 6. Process of the stitch-able split learning assisted multi-UAV systems.

We observed that in SL, a unified server-side model is
trained through the aggregated data uploaded by each client.
This segment of the model is then amalgamated with the
client-side model retained by each client, forming a complete
model. Conversely, FL employs a full-size model on the client
and delivers an entirely new model through server-side av-
eraging. We find that treating the models trained by these
methods as pre-trained models could allow the system to dy-
namically switch training strategies through the utilization of
model stitching technology.

To address these challenges posed by device instability
and model heterogeneity, we incorporate the model stitching
method SN-NET with SL in this study, and propose a novel
Stitch-able Split Learning (SSL) approach for multi-UAV
systems. To put it simply, our basic idea is to stitch a better-
performing model deployed on the BS with a local trained
model on the UAV, and generate a model of in-between sizes
with higher accuracy which is trained through SL to reduce
the computation load on the UAV. Specifically, the proposed
SSL approach is divided into four phases, which is depicted in
Fig. 6. The algorithm of the proposed SSL approach is given
in Algorithm 3.

1) OFFLINE PHASE
Initially, the SSL algorithm is initialized with all participating
devices, i.e., UAVs and the BS independently generate
new models of varying sizes. During this phase, the BS
strategically opts for a larger model deemed more suitable for
the specific task, while the UAV’s model exhibits flexibility,
necessitating effective iteration capacity on client devices. To
align with real-world application scenarios, the server-side
model is initialized using a constrained set of existing
datasets, serving as a pre-trained model.

After the initialization, similar to the procedures in FL, the
UAV trains the local model based on locally collected data.
Throughout this training process, the UAV flexibly selects
the range of image data collection based on area size and
endurance.

2) CONNECTION PHASE
Upon multiple UAVs establishing connections with the BS,
copies of the existing BS-side models are instantiated on the
BS. These copies operate in parallel with different UAVs’
models and are updated at fixed intervals by employing Fe-
dAvg algorithm. Following the creation of BS model replicas,

VOLUME 5, 2024 423



SUN ET AL.: STITCH-ABLE SPLIT LEARNING ASSISTED MULTI-UAV SYSTEMS

Algorithm 3: Stitch-Able Split Learning.
Input:dataD, smashed dataDs, parameter θ , client model

fc, server model fs

1: Initialize fc and fs with random weights
2: Train several times fs on small dataset similar to data

D
3: Server waiting for connection
4: if Client is offline then
5: Train fc locally until connected to server
6: else if Client is online then
7: Server check number of clients participating N
8: Create N + 1 th copies of the model fs f1 ∼ fN+1

9: Client update fc to server
10: Execute SN-NET algorithm to stitch fc and fs

11: if First connection then
12: Select a anchor as an SNNET fixed anchor ANC
13: else
14: Use fixed anchor ANC to stitch model fc and fs

and generate a stitched model f
15: end if
16: Select cut layer according to client situation and

split the model f and send the first half of the model
to client

17: while Connection do
18: Forward propagation:
19: Client performs forward propagation based on its

local data D and sends the smashed data Ds to
server.

20: Server use Ds to obtains loss l through forward
propagation.

21: Backward propagation:
22: The server executes backward propagation and

sends the gradients �θserver of the cut layer to the
client.

23: The client updates θclient based on �θserver

24: Iterate model f
25: Update model fN+1 by f parameters.
26: Average model f1 to fN+1 of each client to update

participation part of server model fs

27: end while
28: end if
29: Return f for for inference
Output: Trained model f

the UAV initiates a connection to the BS, simultaneously
uploading its local model. This local model undergoes trans-
mission to the BS and stitch with a server-side model’s replica
using the SN-NET algorithm. For each client and server
replica, an SN-NET anchor is strategically selected based on
the UAV’s computation time consumption, this anchor point
determines the relative position of the model during stitch and
serves as a fixed reference point for all subsequent stitching
calculations. This stitching process does not actually produce
a brand new model, but changes the connection relation-
ship through the SN-NET anchor to connect the two parties

together, so all part of the original model involved in this
process will be updated during the training process.

As depicted in Fig. 6, by leveraging the SN-NET algorithm
we combine server-side and client-side models to generate a
new model with a size between them. Notably, in contrast to
FL, which mandates uniformity among client models, this step
enables the system to smoothly accommodate the coexistence
of heterogeneous models.

3) ONLINE PHASE
During the online phase, the previously stitched model is split
according to the principles of the Split Learning (SL) method,
reducing the computational load on the client and enabling
drones to train new global models more efficiently. Unlike
the automatic generation of anchor points by SN-NET, this
splitting process requires manual specification. While model
stitching provides flexibility, it is essential to have a solid
understanding of the model’s architecture before selecting the
client model, in order to correctly determine the cut layer. Af-
ter the data is processed at the cut layer, it is transmitted to the
base station (BS) along with the corresponding target labels.
These inputs are then used in both the forward and backward
propagation processes of the server-side model. Ideally, all
UAVs would participate in this phase, engaging in continuous
training until a superior-performing global model is achieved.

It is crucial to note that, particularly when using a CNN in
this system, the model should be split after the pooling layer
or any layer responsible for reducing data dimensions. This
approach is recommended to minimize the network traffic
generated during data transmission.

4) DISCONNECTION PHASE
Finally, the UAV downloads the stitched model from the BS
and updates the UAV’s original model based on it, and returns
to offline phase. This model is the final model and is only used
for inference while the UAV is performing its task.

If we incorporate traditional methods into these four stages
for comparison, we obtain Table 1. This table provides a
comparison of the operations performed by CL, FL, SL, and
SSL at different connection stages.

VI. EVALUATION RESULTS
This section presents the evaluation results for the proposed
SL and SSL assisted multi-UAV system for image classifica-
tion task.

A. DATASET
We use the aerial image dataset (AID) [22] to evaluate the
performance, which is a large collection of aerial images that
have been sourced from Google Earth. These images have
undergone post-processing using RGB renderings of the orig-
inal optical aerial images, but have been found to have no
significant difference from the original one when it comes
to pixel-level land use mapping. Noted that the AID dataset
is widely used for evaluating scene classification and object
identification algorithms.
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TABLE 1. Comparison of CL, FL, SL, and SSL in Different Phases

FIGURE 7. Aerial image dataset: some examples.

The dataset consists of 30 different scene classes, each
of which includes a range of 200 to 400 images that are
600× 600 in size. These images have been carefully labeled
by experts in the field of remote sensing image interpretation,
ensuring that they are accurately classified and easy to work
with. Some examples of the different scene classes are shown
in Fig. 7, to provide a glimpse into the diverse range of aerial
images included in the dataset.

B. PERFORMANCE OF SL ASSISTED MULTI-UAV SYSTEMS
1) THE IMPACT OF SL CUT LAYER
In our simulations, A ResNet18 CNN model is applied, and
the AID dataset [22] with 1× 105 samples are used. By taking
into consideration the limited computation capability of each
UAV, we first evaluate the impact of SL’s cut layer on the
classification accuracy. We designate the 3rd, 5th and 9th
convolutional layers of ResNet18 as cut layers to make client’s
model size approximate to 19%, 31% and 53% of the whole
model.These layers are located after the pooling layer and can
effectively reduce the size of the data. As shown in Fig. 8,
we observed that the choice of split size does not significantly
impact the convergence speed of the model, and all models
achieves a high level of accuracy finally. To keep the model
retained by the UAV as compact as possible, we choose to cut
the first block of ResNet18, i.e., 19%, as the client-side model
in subsequent simulations.

2) PERFORMANCE ON IID DATASET
Next, we evaluate its performance on IID (Independent and
Identically Distributed) dataset by comparing with FL and
CL based methods. Specifically, we assume that the number
of UAV is 5, and thus 1× 105 samples are partitioned into

FIGURE 8. The impacts of different cut layers.

FIGURE 9. Classification accuracy on IID dataset in a system with 5 UAVs.

5 subsets as IID dataset, i.e., each UAV holds 2× 104 local
training samples. For the CL, the locally captured images at
all UAVs are directly transmitted to the BS, where a unique
CNN model is trained for image classification. In FL, an
equal-weight parameter setting for fedAVG is adopted with
λ1=λ2=λ3=λ4=λ5=1 for the sake of simplicity. The image
classification accuracy of SL, FL and CL varying with number
of iterations is illustrated in Fig. 9. We can observe that as
the number of iterations increases, the classification accuracy
improves for all methods. Our SL based approach shows faster
convergence in the initial stages with an overall accuracy
difference of less than 5% compared with CL. Meanwhile, FL
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TABLE 2. Computation and Communication Delay Comparison

achieves an approximately 73% accuracy, which is slightly in-
ferior to the SL and CL methods throughout the same number
of iterations.

Next, Table 2 compares the communication and compu-
tation delay of SL, FL and CL based methods in one local
iteration. In our simulation, we calculate the bandwidth con-
sumption of each method by assuming a WiFi5 protocol for
wireless connection. We use a workstation with an A6000
GPU as the server, and a notebook with an RTX 3070lap-
top GPU as the client, to simulate the computation delays.
Specifically, the size of the CNN model is measured in MACs
(Multiply-Accumulate Operations), and all computation de-
lays are actually measured using our machines.

As shown in Table 2, the bandwidth of the SL method is
significantly higher than that of the FL method. For instance,
the SL with 19% model on UAV consumes a bandwidth of
5.8GB which takes 16.95 seconds to complete the transmis-
sion in a WiFi5 network setting, which is even longer than
transmitting the original image dataset to the BS. Notice that,
this result is based on original image size with 600× 600 .
The bandwidth consumption for CL will increase if the orig-
inal image size becomes larger. On the other hand, we could
confirm that SL can significantly reduce computation delays
at UAVs compared to FL. Notice that in the experiment, we
used a high-performance GPU notebook as the client, while in
reality UAVs may not have such computing resources, which
will result in much longer computation delay.

Overall, due to the reduction in client’s computation time,
the total delay of SL is substantially lower than that of
FL. This gap is likely to be substantially larger in lower-
performance UAVs. Although the CL method has the shortest
duration, we should notice that it could not preserve the pri-
vacy of the UAVs, and its delay will largely increase when
the high-resolution image is transferred. In summary, thanks
to the advances in wireless communications, we notice that
the communication delay is only a small portion of the total
delay compared to the computation time at UAV. In summary,
SL can effectively reduce the local computation time and thus
achieve a lower total learning time.

3) PERFORMANCE ON NON-IID DATASET
We evaluate the performance of the proposed SL-based ap-
proach on a non-IID dataset, i.e., each UAV could only gather
specific classes of data samples. In the non-IID setting, each
UAV only has 6 classes of data among total 30 classes. We
use 20% of the samples as test data to characterize the classi-
fication accuracy. The accuracy of the image classification on

FIGURE 10. Classification accuracy on non-IID dataset.

non-IID dataset is illustrated in Fig. 10. We compare SL and
FL’ accuracy by setting the number of local epoch at 1 and
5. It is obvious that the performance of FL method degrades
drastically on a non-IID dataset, and the label distribution
skew also causes client’s model to over-fit. Compared with
FL, SL is only slightly affected by the non-IID dataset, and
it can attain a higher accuracy rate by increasing the number
of local epoch. We can conclude that SL performs well when
handling imbalanced data, and it requires less data in the early
stages of training than FL.

C. PERFORMANCE OF SSL ASSISITED MULTI-UAV SYSTEMS
1) THE IMPACT OF STITCHING PROCESS
In our simulations, we employ the ResNet18 model as the
small model on the UAV side, which is stitched with a
ResNet50 model on the BS side initialized with a small sam-
ple dataset. Initially, we conducted a preliminary experiment
in which both models were fully trained on the AID dataset.
Subsequently, utilizing the SN-NET algorithm, we seamlessly
stitch these two models and evaluate the accuracy across var-
ious SN-NET anchors on the test set. Fig. 11 illustrates the
accuracy achieved with different stitching anchors. These an-
chors function as flexible connection points, allowing the net-
work to be effectively connected at various positions. Notably,
as the stitched model size increases, there is a correspond-
ing improvement in accuracy. This observation highlights the
minimal loss in accuracy during the stitching process and
provides a strong foundation for our subsequent experiments.

2) PERFORMANCE ON IID DATASET
In this experiment, for split the stitched model in online phase,
we still use the pooling layer(first block of ResNet18) as the
boundary to split the model. We compare the image classi-
fication accuracy of SSL, SFLV1 (SplitFed Learning V1) [4]
and traditional SL, and depict the results in Fig. 12. SFLV1, as
the primary comparison subject, represents an early enhance-
ment approach for split learning and has gained considerable
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FIGURE 11. Effect of stitching model, demonstrating the accuracy of
stitching with different anchors.

FIGURE 12. Classification accuracy versus the number of global iterations.

traction in the distributed learning domain. It integrates the
federated learning algorithm, transmitting all models upon
connection establishment, and averaging the models at des-
ignated intervals. SFLV1 expects to demonstrate a commend-
able convergence speed and accuracy in this evaluation. While
the convergence speed of our SSL during the initial training
phase may not match that of SFLV1, it demonstrates superior
accuracy than SL and SFLV1 after convergence.

In order to ascertain the effect of the sub-dataset used
to initialize the BS-side model, which was derived from a
small portion of the AID dataset, we conducted an additional
evaluation. Specifically, we assessed the performance of the
ResNet50 model trained solely on this subset of the AID by
testing it on the AID dataset. This evaluation aimed to provide
insights into the influence of the sub-dataset on the accuracy
of our proposed SSL method. The noticeable difference in

TABLE 3. Communication Comparison of Single UAV

TABLE 4. Computation Comparison of UAV and BS

accuracy between this data-constrained model and SSL un-
derscores the effectiveness of our innovative approach. This
efficacy is evident in the proficient iteration of the server-side
model, enabling the assimilation of knowledge from the data
contributed by the client.

Tables 3 and 4 present the communication and computation
overhead incurred by a UAV in our experimental setup, where
the client and server utilize ResNet18 and ResNet50 models,
respectively. As delineated in Table 3, the communication
overhead of SSL during both the online and the disconnection
phases varies depending on the configuration of SSL during
stitching and splitting. This variability is also evident in the
computation overhead depicted in Table 4. Notably, Table 4
indicates that SSL imposes a heavier computational burden on
the server side compared to other methods, while still preserv-
ing the characteristic of SL whereby the computational load
on the client side remains minimal. This attribute contributes
to the enhanced accuracy observed in SSL.

Overall, the communication overhead of SSL is comparable
to that of SL and SFLV1. Furthermore, given that UAVs in the
SSL system can autonomously learn in offline states similar to
FL, the bandwidth requirements of SSL fall between FL and
SL when certain UAVs are offline.

3) IMPACT OF DEVICE INSTABILITY
In this section, we conduct an evaluation of the impact of
device connectivity status on SSL with 5 UAVs. Through sim-
ulations, we analyze how the performance of SSL is affected
by the presence of different numbers of online UAVs. Fur-
thermore, we show the performance of FL utilizing ResNet18,
equipped with offline independent learning capabilities, when
all 5 clients are online, to provide a comparative analysis.

Specifically, each client remains online for an equal du-
ration, with a corresponding number of clients randomly
selected to establish connections during the simulation. As
depicted in Fig. 13, our results reveal that as the number of
online devices deceases, the accuracy of the system also ex-
periences a decline. Notably, when only one device is online,
the system’s accuracy exhibits considerable fluctuations. Nev-
ertheless, as the iterations progress and the full connectivity is
achieved with each device, the accuracy rate exceeds 80%.
Overall, SSL outperforms FL, showing superior performance
even when most of the clients are offline.
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FIGURE 13. The impact of device instability on classification accuracy.

FIGURE 14. The impact of model heterogeneity on classification accuracy.

4) IMPACT OF MODEL HETEROGENEITY
In the proposed SSL approach, the selection of client models
is not strictly constrained, allowing for practical deployment
scenarios that may involve heterogeneous client models. To
evaluate the system’s accuracy under these conditions, we re-
placed some of the ResNet18 models with GoogleNet, which
has a similar model size. The results, as shown in Fig. 14,
indicate that accuracy fluctuates and declines notably in the
presence of model heterogeneity, especially as the number of
heterogeneous models increases. Nevertheless, the system still
achieves an accuracy of over 80%. This outcome highlights
the effectiveness of SSL in iterating and integrating knowl-
edge from clients, even in heterogeneous model environments.
We believe this capability can be extended to more model
combinations, and we plan to further investigate the impact
of different model types on this method in future work.

VII. CONCLUSION
In this article, we propose to employ SL in multi-UAV sys-
tems and present a new stitch-able split learning approach to
overcome the challenges encountered in multi-UAV scenarios.
To evaluate the viability of the proposed system, we use an
aerial image dataset to validate the performance. Comprehen-
sive evaluation results reveal that SL-based approach could
greatly diminish local computation demands compared to FL,
resulting in expedited overall learning time. Moreover, our
enhanced SSL approach surpasses SFLV1 and SL in clas-
sification accuracy and exhibits robustness in the presence
of poor device connectivity and heterogeneous client model
conditions. SSL enables a solitary UAV to persist in the train-
ing tasks even when the network is offline. Additionally, it
empowers us to modify the server-side model, adapting it to
varied tasks to attain heightened accuracy.

REFERENCES
[1] B. McMahan et al., “Communication-efficient learning of deep net-

works from decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist.,
2017, pp. 1273–1282.

[2] H. Zhang and L. Hanzo, “Federated learning assisted multi-UAV net-
works,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14104–14109,
Nov. 2020.

[3] P. Vepakomma et al., “Split learning for health: Distributed deep learn-
ing without sharing raw patient data,” 2018, arXiv:1812.00564.

[4] C. Thapa et al., “Splitfed: When federated learning meets split
learning,” in Proc. AAAI Conf. Artif. Intell., 2022, vol. 36, no. 8,
pp. 8485–8493.

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” 2015, arXiv:1503.02531.

[6] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hier-
archical federated learning,” in Proc. IEEE Int. Conf. Commun., 2020,
pp. 1–6.

[7] W. Zhang et al., “Optimizing federated learning in distributed industrial
IoT: A multi-agent approach,” IEEE J. Sel. Areas Commun., vol. 39,
no. 12, pp. 3688–3703, Dec. 2021.

[8] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 2022–2035, Mar. 2020.

[9] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification
for efficient federated learning: An online learning approach,” in Proc.
IEEE Int. Conf. Distrib. Comput. Syst., 2020, pp. 300–310.

[10] J. Zhang, N. Li, and M. Dedeoglu, “Federated learning over wireless
networks: A band-limited coordinated descent approach,” in Proc. IEEE
Conf. Comput. Commun., 2021, pp. 1–10.

[11] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 269–283, Jan. 2021.

[12] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei,
“Energy efficient federated learning over wireless communication net-
works,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949,
Mar. 2020.

[13] X. Mo and J. Xu, “Energy-efficient federated edge learning with joint
communication and computation design,” J. Commun. Inf. Netw., vol. 6,
no. 2, pp. 110–124, Jun. 2021.

[14] M. Chen et al., “Distributed learning in wireless networks: Recent
progress and future challenges,” IEEE J. Sel. Areas Commun., vol. 39,
no. 12, pp. 3579–3605, Dec. 2021.

[15] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani, “Reli-
able federated learning for mobile networks,” IEEE Wireless Commun.,
vol. 27, no. 2, pp. 72–80, Apr. 2020.

[16] X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic
network virtualization and pervasive network intelligence for 6G,” IEEE
Commun. Surveys Tuts., vol. 24, no. 1, pp. 1–30, Firstquarter 2022.

[17] M. G. Poirot et al., “Split learning for collaborative deep learning in
healthcare,” 2019, arXiv:1912.12115.

428 VOLUME 5, 2024



[18] Y. Gao et al., “End-to-end evaluation of federated learning and
split learning for Internet of Things,” in Proc. Int. Symp. Reli-
able Distributed Syst. (SRDS), Shanghai, China, 2020, pp. 91–100,
10.1109/SRDS51746.2020.00017.

[19] S. Baek et al., “Visual transformer meets cutmix for improved accuracy,
communication efficiency, and data privacy in split learning,” 2022,
arXiv:2207.00234.

[20] O. Li et al., “Label leakage and protection in two-party split learning,”
2021, arXiv:2102.08504.

[21] J. Jeon and J. Kim, “Privacy-sensitive parallel split learning,” in Proc.
IEEE Int. Conf. Inf. Netw., 2020, pp. 7–9.

[22] G. S. Xia et al., “AID: A benchmark data set for performance evalua-
tion of aerial scene classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 7, pp. 3965–3981, Jul. 2017.

[23] W. Wu et al., “Split learning over wireless networks: Parallel design
and resource management,” IEEE J. Sel. Areas Commun., vol. 41, no. 4,
pp. 1051–1066, Apr. 2023.

[24] A. Chopra et al., “AdaSplit: Adaptive trade-offs for resource-
constrained distributed deep learning,” 2021, arXiv:2112.01637.

[25] K. Lenc and A. Vedaldi, “Understanding image representations by
measuring their equivariance and equivalence,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 991–999.

[26] A. Bansal, P. Nakkiran, and B. Barak, “Revisiting model stitching to
compare neural representations,” in Proc. Adv. Neural Inf. Process.
Syst., 2021, pp. 225–236.

[27] A. Csiszárik et al., “Similarity and matching of neural network rep-
resentations,” in Proc. Adv. Neural Inf. Process. Syst., 2021, vol. 34,
pp. 5656–5668.

[28] S. Kornblith, M. Norouzi, H. Lee, and G. E. Hinton, “Similarity of
neural network representations revisited,” in Proc. Int. Conf. Mach.
Learn., 2019, vol. 97, pp. 3519–3529.

[29] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical
correlation analysis: An overview with application to learning
methods,” Neural Computation, vol. 16, no. 12, pp. 2639–2664,
Dec. 2004.

[30] M. Raghu et al., “SVCCA: Singular vector canonical correlation anal-
ysis for deep learning dynamics and interpretability,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, vol. 30, pp. 1–17.

[31] Z. Pan, J. Cai, and B. Zhuang, “Stitchable neural networks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023,
pp. 16102–16112.

TINGKAI SUN received the M.E. degree in elec-
trical and electronic systems engineering from
the Graduate School of Science and Engineer-
ing, Ibaraki University, Mito, Japan, in 2024. He
is currently working toward the Ph.D. degree in
computer science with the University of Tsukuba,
Tsukuba, Japan. His research interests include
communication security, privacy in data analy-
sis and machine learning, as well as distributed
learning.

XIAOYAN WANG (Senior Member, IEEE) re-
ceived the B.E. degree from Beihang University,
Beijing, China, and the M.E. and Ph.D. degrees
from the University of Tsukuba, Tsukuba, Japan.
From 2013 to 2016, he was an Assistant Professor
(by special appointment) with the National Insti-
tute of Informatics, Tokyo, Japan. He is currently
an Associate Professor with the Graduate School of
Science and Engineering, Ibaraki University, Mito,
Japan. His research interests include intelligent
networking, wireless communications and sensing,

cloud computing, Big Data systems, security and privacy.

XIUCAI YE (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Tsukuba, Tsukuba Science City, Japan, in 2014.
She is currently an Associate Professor with the
Department of Computer Science, and Center
for Artificial Intelligence Research, University of
Tsukuba. Her research interests include machine
learning algorithms and their applications, as well
as bioinformatics.

BIAO HAN (Member, IEEE) received the B.S.
and M.S. degrees from the National University of
Defense Technology (NUDT), Changsha, China,
in 2007 and 2009, respectively, and the Ph.D. de-
gree in computer science from the University of
Tsukuba, Tsukuba, Japan, in 2013. He is currently
an Associate Professor with the School of Com-
puter, NUDT. He has also been a Visiting Scholar
with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville,
FL, USA. He has authored or coauthored more than

50 research papers in peer-reviewed journals, such as IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON PARAL-
LEL AND DISTRIBUTED SYSTEMS, and Computer Networks, and conferences,
such as INFOCOM and IWQoS. His research interests include UAV swarm
networking, multi-path transmission and physical layer security. He was the
recipient of the Best Paper Award at IEEE LANMAN’2014. He is the Poster
Chair of APNet 2022, an Academic Editor of Security and Communication
Networks, and Guest Editor of International Journal of Distributed Sensor
Networks.

VOLUME 5, 2024 429

https://dx.doi.org/10.1109/SRDS51746.2020.00017


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


