
Received 28 May 2024; revised 24 June 2024; accepted 1 July 2024. Date of publication 3 July 2024;
date of current version 2 August 2024. The review of this article was arranged by Associate Editor Peng Li.

Digital Object Identifier 10.1109/OJCS.2024.3422686

A Taxonomy for Python Vulnerabilities
FRÉDÉRIC C. G. BOGAERTS 1, NAGHMEH IVAKI 1 (Member, IEEE), AND JOSÉ FONSECA 2

1 Department of Informatics Engineering, University of Coimbra, CISUC, DEI, 3004-531 Coimbra, Portugal
2 Department of Informatics Engineering, Polytechnic Institute of Guarda, University of Coimbra, CISUC, 6300-559 Guarda, Portugal

CORRESPONDING AUTHOR: FRÉDÉRIC C. G. Bogaerts (e-mail: fbogaerts@dei.uc.pt).

This work was supported by the FCT - Foundation for Science and Technology, I.P./MCTES through national funds (PIDDAC), within the scope of CISUC R&D
Unit- UIDB/00326/2020 or project code UIDP/00326/2020 (2023.00319.BD).

ABSTRACT Python is one of the most widely adopted programming languages, with applications from
web development to data science and machine learning. Despite its popularity, Python is susceptible to
vulnerabilities compromising the systems that rely on it. To effectively address these challenges, developers,
researchers, and security teams need to identify, analyze, and mitigate risks in Python code, but this is not
an easy task due to the scattered, incomplete, and non-actionable nature of existing vulnerability data. This
article introduces a comprehensive dataset comprising 1026 publicly disclosed Python vulnerabilities sourced
from various repositories. These vulnerabilities are meticulously classified using widely recognized frame-
works, such as Orthogonal Defect Classification (ODC), Common Weakness Enumeration (CWE), and Open
Web Application Security Project (OWASP) Top 10. Our dataset is accompanied by patched and vulnerable
code samples (some crafted with the help of AI), enhancing its utility for developers, researchers, and security
teams. In addition, a user-friendly website was developed to allow its interactive exploration and facilitate
new contributions from the community. Access to this dataset will foster the development and testing of safer
Python applications. The resulting dataset is also analyzed, looking for trends and patterns in the occurrence
of Python vulnerabilities, with the aim of raising awareness of Python security and providing practical,
actionable guidance to assist developers, researchers, and security teams in bolstering their practices. This
includes insights into the types of vulnerabilities they should focus on, the most exploited categories, and the
common errors that programmers tend to make while coding that can lead to vulnerabilities.

INDEX TERMS Computing milieux, error handling and recovery, management of computing and informa-
tion systems, reliability, software engineering, software/software engineering, software quality/SQA, security
and protection, testing and debugging.

I. INTRODUCTION
Python has emerged as one of the most widely adopted
programming languages, with applications spanning web
development, data science, machine learning, and beyond.
According to the TIOBE index [1], Python was ranked the
most popular programming language in February 2024, with
a market share of 15.16%. However, despite its popular-
ity, Python is susceptible to security vulnerabilities that can
compromise systems relying on it. Moreover, Python’s ver-
satility across multiple platforms (Windows, MacOS, Linux,
Unix) has led to its widespread adoption, but also increases
its attack surface. Addressing these vulnerabilities is crucial
for ensuring the confidentiality, integrity, and availability of
Python-based applications [2].

A. PROBLEM STATEMENT
Security vulnerabilities are flaws or weaknesses in software
design, implementation, or operation that attackers can exploit
to cause harm or gain unauthorized access [3].

In our previous research, we introduced a preliminary ver-
sion of Vulnerability Attack and Injection Tool for Python
(VAITP) [4], and we underscored the importance of having
a comprehensive dataset of Python vulnerabilities, which can
serve as a valuable resource for developers and researchers
alike. Such a dataset, containing Python code samples encom-
passing both vulnerable and secure instances, is essential to
train both practitioners and artificial intelligence (AI) models
capable of detecting, injecting, exploiting, and patching vul-
nerabilities.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

368 VOLUME 5, 2024

https://orcid.org/0000-0002-9816-3216
https://orcid.org/0000-0001-8376-6711
https://orcid.org/0000-0003-4710-9292

The characterization and classification of security vul-
nerabilities play pivotal roles: they empower developers to
proactively create secure code, assist quality assurance teams
in designing effective tests to identify and rectify vulnerable
code, enable the vulnerability detection and injection com-
munities to develop effective tools and facilitate the broader
security community in enhancing the training of security
teams, among others. However, these tasks are not trivial
and require a comprehensive and systematic understanding
of each vulnerability’s nature, characteristics, impact, and
mitigation, which can only be found incomplete and spread
across the web in several repositories. Moreover, these tasks
are challenging, as they involve dealing with a large and di-
verse set of vulnerabilities, each with its own specificities and
complexities.

While established taxonomies such as Orthogonal De-
fect Classification (ODC) [5], Common Weakness Enu-
meration (CWE) [6], and Open Worldwide Application
Security Project (OWASP) Top 10 [7], provide valuable
taxonomies for understanding and classifying vulnerabilities,
our research underscores the necessity for a more comprehen-
sive approach to classify Python vulnerabilities. In addition
to these taxonomies, in the classification of our dataset, we
introduce categories based on the root cause and specificities
of vulnerabilities (e.g., CVE-2019-17526 refers to a “Com-
mand Injection” due to insufficient “Input Validation and
Sanitization” of data that is passed to the eval function call),
providing a more detailed perspective on the nature of se-
curity vulnerabilities in Python, cross-referencing with these
well-established taxonomies, to narrow the divide between
conventional categorizations and the dynamically evolving
threat landscape that is specific to the Python programming
language, its packages,1 and libraries.2 Thus, this approach
improves the understanding of Python vulnerabilities and pro-
vides a valuable and comprehensive resource for developers,
researchers, and security teams alike.

B. CONTRIBUTIONS
In this article, we present a comprehensive dataset of 1026
publicly known Python vulnerabilities, classified according to
several existing taxonomies, such as ODC [5], CWE [6], and
OWASP Top 10 [7].

In addition, we constructed a vulnerability taxonomy, com-
prising 10 custom categories and 41 subcategories based on
vulnerability type and specificities.

Our study began with an examination of multiple online
repositories, such as CVE Details [8], CVE.org [9], Snyk [10],
NVD [11], and CVE Fixes [12],3 as well as security tools,
such as Bandit [13], Semgrep [14], and Sonar Lint [15]. This

1A Python package is a collection of related modules.
2A Python library is a broader term that refers to a collection of modules

and packages.
3CVE Details, CVE.org, and Snyk websites gather and organize informa-

tion about standardized identifiers for publicly known security vulnerabilities.
CVE Fixes is an SQLite database that gathers git commits related to vulnera-
bility corrections in public GitHub repositories.

comprehensive review allowed us to identify known vulnera-
bilities in Python and construct a dataset for further analysis.
Additionally, we supplemented the dataset with data gener-
ated by AI models in an AI-in-The-Loop (AIiTL)4 approach,
wherein human confirmation verified the accuracy of the data,
mitigating the risk of dataset contamination with possible AI
hallucinations5 [16], [17].

Our work offers several potential contributions. The expert-
reviewed Python vulnerability code blocks can help security
teams deepen their understanding of vulnerability characteris-
tics, serving as a valuable resource for training. Additionally,
our code dataset enables further testing of vulnerability detec-
tion and injection tools.

We also provide a website that allows users to access and
explore the dataset interactively and in a user-friendly man-
ner [18] and contribute to the completeness and correctness of
the dataset’s information.

Finally, we present an exploratory data analysis (EDA) of
Python-related vulnerabilities, including trend analysis and
descriptive statistics, to provide insights into the current land-
scape of these vulnerabilities. The data for the EDA was
generated using Python scripts, which are also available on
the project’s website.

The current work also lays the foundation for future en-
deavors we intend to pursue, such as testing and evaluating
security tools, creating and refining AI models for vulnera-
bility detection, injection, and exploitation, and maintaining
VAITP designed to scan, inject, and exploit vulnerabilities.
The overarching goal of this research is to foster a deeper un-
derstanding of Python vulnerabilities, provide practical tools
and resources, and ultimately contribute to the development
of more secure and resilient Python applications.

C. OUTLINE OF THE ARTICLE
Section II reviews related work on vulnerability and fault clas-
sification. Section III describes the methodology, including
data sources, web and code scraping processes, and classifi-
cation criteria. Section IV presents and analyzes our dataset,
covering aspects such as the quantity and distribution of
vulnerabilities, trends, and patterns. Section V discusses the
public disclosure of data from websites and software, as well
as limitations and challenges. Section VI outlines planned
future endeavors, including completing code samples in our
dataset, engaging the community, training AI models and
agents for integration into our VAITP tool, evaluating their
performance, and exploring potential applications. Finally,
Section VII concludes the document and summarizes the main
contributions of our work.

II. RELATED WORK ON VULNERABILITY CLASSIFICATION
Problem classification has been demonstrated to aid in identi-
fying clusters where systematic errors are likely to occur [19].

4AI-in-the-loop (AIiTL) integrates AI into human processes, with AI con-
tributing insights or automation while humans oversee and validate outcomes.

5AI hallucinations refer to inaccurate or nonsensical outputs generated by
AI models, often stemming from unexpected or erroneous patterns learned
during training.

VOLUME 5, 2024 369

BOGAERTS ET AL.: TAXONOMY FOR PYTHON VULNERABILITIES

However, classification can be subjective and may not always
yield consensus [20]. In this section, we delve into defects,
faults, and vulnerability classification schemes and tools, how
these influence our work, and how our work is relevant in the
presented context.

In software security, vulnerability classification is crucial
for understanding and addressing potential threats. Estab-
lished practices like Orthogonal Defect Classification (ODC)
have been used to systematically categorize defects [5]. ODC,
introduced by Chillarege et al., uses semantic information to
elucidate cause-effect relationships in the development pro-
cess [21]. This approach has had a significant impact on
subsequent works, including research on software fault emu-
lation. A field data study conducted by Madeira et al. provides
practical insight into software fault emulation and introduces
Code Defects Classification (CDC) [21], [22], further en-
hancing defect classification understanding. Both works have
influenced our taxonomy with minor adaptations, elaborated
in Section III-B.

Landwehr et al. presented a taxonomy for computer pro-
gram security flaws and documented 50 actual security flaws
from open literature [23]. Inspired by their work, we system-
atically documented, classified, and reviewed 1026 Python-
related vulnerabilities.

Avizienis et al. offer a comprehensive framework for de-
pendable and secure computing systems. This framework
covers fault tolerance, reliability, availability, safety, and
security. It’s applicable to Python vulnerabilities like in-
jection attacks, insecure deserialization, or inadequate input
validation.

Margarido et al. [20] explored defect classification tailored
to specific software contexts. Their work highlights the im-
portance of adapting defect classification to the nuances of
different software artifacts, which is particularly relevant for
Python vulnerabilities.

Li et al. proposed a vulnerability classification scheme
with four categories: Bohr-Vulnerability (BOV), Non-Aging-
Related Mandel Vulnerability (NMV), Aging-Related Vulner-
ability (ARV), and Unknown Vulnerability (UNK). Despite its
unique perspective, this categorization was not included in our
taxonomy, as it did not offer valuable insights for injecting or
exploiting Python-specific vulnerabilities.

Wei et al. conducted a comprehensive study on security
vulnerabilities, proposing a taxonomy based on root cause,
consequence, and location. Analyzing 1076 bug reports from
major projects in the National Vulnerability Database [24].
We incorporated parts of this classification relevant to Python
vulnerabilities, like Input Validation Errors, which are also
found in the Code Defects Classification (CDC) [21], [22].

Jiang et al. introduced a taxonomy for CPython6 vulnerabil-
ities, categorizing them into broad categories [25]. However,
this taxonomy lacks the granularity needed for a high-level

6CPython is the reference implementation of the Python programming
language. It is written in C and provides the standard for the Python language
specification.

language like Python, limiting its usefulness for developers,
researchers, and security teams.

While some taxonomies target low-level languages, they
are not suitable for high-level language vulnerabilities like
Python [2]. Our taxonomy separates root causes from poten-
tial impacts as distinct fields. For example, we consider Buffer
overflow not as the root cause, but rather as a symptom linked
to improper input data checking and validation, manifesting
as buffer overflow.

There are also several tools available that use their own
classification scheme, often not interchangeable with each
other. For example, Bandit’s detection of a call to subprocess
with the shell parameter set to True is categorized with a
test ID of B602. It also includes parameters such as the test
name (subprocess_popen_with_shell_equals_true), severity
(HIGH), confidence level (HIGH), CWE (CWE-78), and a
link to documentation providing a detailed description of the
vulnerability [13]. On the other hand, Semgrep’s detection
of the same function call has a rule ID of ruleid:dangerous-
subprocess-use-tainted-env-args, along with a description of
the vulnerability, test code, and references [14]. These dif-
ferences in classification and reporting can pose challenges
for users trying to compare or integrate results from different
tools. The unified approach that we use in our dataset will be
able to solve this problem, making it easier to see that the data
is the same.

The dynamic landscape of software security demands con-
tinuous advancements in vulnerability classification. Python
faces unique challenges from vulnerabilities within its code,
libraries, or packages, prompting efforts to refine defect clas-
sification specifically for Python vulnerabilities. Reviewing
the literature shows that merging traditional defect classifi-
cation taxonomies with domain-specific adaptations enhances
vulnerability analysis, improving our understanding of Python
vulnerabilities.

In this article, we analyze 1026 Python vulnerabilities,
offering a specific perspective on security flaws within the
Python programming language. Our classification scheme
covers a wide range of attributes: these include ODCs, CDC,
short and long descriptions of vulnerabilities, CVE and CVE
links, impact risk score, publication date, CWE and CWE
links, and OWASP Top 10 classifications. Besides the men-
tioned categorizations, which were scraped, we also classified
all vulnerabilities in our dataset into accessibility scope
(local/remote/both), category, subcategory, possible impact,
solution, and manually reviewed patched and vulnerable code
samples. Additionally, it offers information on whether the
vulnerability originates from Python itself or a third-party
package. Furthermore, it details whether existing detection
tools list the vulnerability in their documentation and if they
detect the vulnerable code sample. Finally, we have included
links to the sources we identified throughout our research.
This comprehensive set of attributes offers a detailed and
thorough perspective on the landscape of Python vulnerabil-
ities, enabling statistical analysis to correlate the relationship

370 VOLUME 5, 2024

FIGURE 1. Methodology overview.

between attributes (e.g., how vulnerability clusters of a partic-
ular ODC category tend to be publicly disclosed over time).
Moreover, all code samples have been rigorously tested to
ensure accurate execution.

III. METHODOLOGY
This section outlines our approach, detailing the data sources,
data scraping intricacies, classification criteria, and the pro-
cess for both scraping and AI-based generation of code
samples.

An overview of our methodology is presented in Fig. 1.

A. VULNERABILITY DATA COLLECTION
Our primary data source for Python vulnerabilities is the well-
known CVEDetails.com, a website that aggregates informa-
tion about Common Vulnerabilities and Exposures (CVEs),
standardized identifiers for publicly known security vulner-
abilities. We developed an HTML web scraper to gather
Python-related vulnerabilities from CVEDetails.com by pars-
ing all result pages obtained from querying the source with
the keyword Python (conducted on January 11, 2024). The

web scraper identified a total of 965 vulnerabilities, which
comprise 94% of our dataset.

We also developed a JSON vulnerability scraper to extract
all Python-related vulnerability information from the 236,637
JSON records existing in the cve.org dataset. This effort re-
sulted in a 6% increase over the CVEDetails data gathered,
identifying 61 more vulnerabilities for a total of 1,026 Python-
related vulnerabilities. Additionally, we created two more
scrapers: one for the cve.mitre.org dataset in XML format and
another for the nvd.nist.gov dataset in JSON format. From
these datasets, we extracted 844 and 749 Python-related vul-
nerabilities, respectively. However, neither of these datasets
contributed to an increase in the number of the already iden-
tified vulnerabilities. The lack of new findings from these
last two sources indicates a saturation in the gathered data,
suggesting that our research methodology was comprehensive
and effectively captured the breadth of Python-related vulner-
abilities in the available datasets.

To unify all scrapers, we developed a script that sequen-
tially executes all of them, optionally keeping a log of
each execution. All the mentioned web scrapers and the
vulnerability monitor can be found in the project’s GitHub
repository [26].7

The information collected includes CVE identifiers, de-
scriptions, scores, and publication dates. Less than 10% of the
collected data had missing elements that needed to be filled
in. To address this, as well as supplement additional catego-
rizations not available in the original source, we employed
an AI-in-the-loop (AIiTL) approach to review each output,
providing the AI models (e.g., OpenAI’s GPT-3.5/4) with
information about a vulnerability and using them to better
understand the nature and possible classifications that could
be applicable to each vulnerability.

B. CHARACTERIZATION AND CATEGORIZATION OF
VULNERABILITIES
We started the characterization and categorization processes
by selecting established taxonomies to classify defects, faults,
and vulnerabilities. The ODC by Chillarege [5] and the CDC
by Duraes and Madeira [21], [22] were selected as being the
most adequate taxonomies. Additionally, we drew insights
from various online resources, such as CVEdetails.com [8],
CWE [6], and OWASP [7].

ODC and CDC offer a systematic approach to understand-
ing software defects and faults, categorizing them according
to various semantic attributes. CWE provides a standardized
language for describing security vulnerabilities in software,
facilitating effective communication and analysis among di-
verse stakeholders. OWASP’s Top 10 offers a comprehensive
list of the most critical web application security risks, guiding
developers and security professionals in prioritizing efforts to
mitigate these risks.

7The community can contribute to the GitHub repository with new vulnera-
bility code examples. These examples are automatically loaded and presented
on VAITP’s website.

VOLUME 5, 2024 371

BOGAERTS ET AL.: TAXONOMY FOR PYTHON VULNERABILITIES

In addition to existing taxonomies, we developed our own
taxonomy, comprehensively enumerated and explained next
in this section.

Upon compiling the list of vulnerabilities, which primarily
included CVE identifiers, vulnerability descriptions, publica-
tion dates, and risk scores, we proceeded to systematically
characterize them based on various criteria sourced from on-
line resources, including ODC, CDC, CWE, and OWASP.
Additionally, we categorized vulnerabilities by their acces-
sibility scope (local or remote). Short descriptions of each
vulnerability were created, and source reference links were
gathered to provide comprehensive information.

We initiated the taxonomy proposal process by identifying
taxonomies relevant to Python vulnerabilities, as detailed in
Section II. Each identified vulnerability was then assessed
to determine the most appropriate category based on its de-
scription. The resulting taxonomy comprises 10 overarching
categories (such as Cryptographic for vulnerabilities pertain-
ing to encryption issues) and 41 subcategories (which provide
more specific classifications within each broader category,
such as Improper SSL/TLS Certificate Validation for vulnera-
bilities associated with inadequate validation of cryptographic
certificates; please refer to Table 3).

To finalize our dataset, we adopted an AIiTL methodology
to verify each vulnerability’s categorization and generate vul-
nerable and patched code samples. This approach involved in-
teraction with AI models using prompt engineering and rigor-
ous manual scrutiny, with a particular emphasis on addressing
instances of model hallucinations. To mitigate this issues, rig-
orous cross-validation with verified datasets was conducted,
and human oversight was incorporated to verify outputs.

To analyze and ensure data consistency in the dataset (e.g.,
no missing records, no duplicates), we utilized Data Analyst
GPT4, prompting it accordingly with our attached data set, a
technique proven to achieve performance comparable to that
of a senior data analyst [27].

Fig. 2 depicts the methodology utilized to establish clas-
sifications to categorize the identified vulnerabilities. The
website provides a platform for the community to review
these classifications and suggest modifications. Contributions
submitted through the website will contribute to enhancing
the accuracy of the proposed Python taxonomy and ensuring
the correct classification of vulnerabilities within the dataset,
keeping it up to date. Further elaboration on the features of the
website is provided in Section VI.

To systematically categorize and analyze the identified
Python vulnerabilities, a comprehensive classification scheme
was employed. This scheme draws upon established tax-
onomies and incorporates domain-specific adaptations tai-
lored to the intricacies of Python vulnerabilities. The ODC
framework served as a foundation for understanding the
types and nature of defects. Within ODC, Orthogonal De-
fect Type refers to the categorization of defects based on
their manifestation, such as functional deficiencies, inter-
face issues, or algorithmic flaws. Code Defect Classification

FIGURE 2. Classification process.

(CDC) classifies whether a defect stems from missing, incor-
rect, or extraneous functionality or logic. Complementing, the
CWE and OWASP Top 10 taxonomies provided standardized
languages for describing security weaknesses and prioritizing
web application risks, respectively. Additionally, a custom
taxonomy specific to Python vulnerabilities was developed,
encompassing categories such as input validation, crypto-
graphic flaws, and memory corruption, each with granular
subcategories to capture the nuances of these security issues.
Our dataset includes the following taxonomy components and
their attributes for classifying vulnerabilities:

1) Orthogonal Defect Type: According to an adaptation
of ODC [5], each vulnerability can be categorized into
different types: Function, Interface, Checking, Assign-
ment, Timing/Serialization, Build/Packet/Merge, or Al-
gorithm. Refer to Table 2 for details.

2) Code Defect Classification: According to the CDC
classification, the nature of each vulnerability can be
classified as Missing, Incorrect, or Extraneous [21],
[22]. Refer to Table 2 for details.

3) Vulnerability Description:
� Short Description: A concise one-line reference to

the vulnerability.
� Long Description: A detailed explanation of each

vulnerability, including manually reviewed infor-
mation and relevant research findings.

4) Common Vulnerabilities and Exposures (CVE):

372 VOLUME 5, 2024

TABLE 1. Summary of Data Origin

TABLE 2. Code Defects and Fault Nature

� CVE Identifier: Unique reference number for a vul-
nerability.

� CVE Link: Link to the CVE details page.
5) Risk Score: Severity of the vulnerability’s impact,

ranging from 0 (lowest) to 10 (highest), based on the
Common Vulnerability Scoring System (CVSS) [28].

6) Publication Date: Date the vulnerability was first pub-
lished on any of the sources.

7) OWASP Top 10 Categorization: Classification of the
vulnerability according to OWASP Top 10 (2021
list) [7].

8) Vulnerability Accessibility Scope: Classification as Lo-
cal Application Vulnerability indicating a vulnerability
arising from vulnerabilities that can only be exploited
having physical access to the system; and Remote
Application Vulnerability, which arises from vulnera-
bilities that can be exploited remotely without having
physical access to the system.

9) Category and Subcategory: Our defined categories for
Python vulnerabilities, including 1) Input Validation
and Sensitization, 2) Authentication, Authorization,
and Session management, 3) Cryptographic, 4) Design
Defects, 5) Configuration Issues, 6) Memory Corrup-
tion, 7) Information Leakage, 8) Race Condition, 9)
Resource Management, and 10) Numeric Errors. Each
Category includes several subcategories (see Table 3).

10) Impact and Threat: Possible consequences of the vul-
nerability, such as information disclosure or arbitrary
code execution.

11) Solution: Steps to correct the vulnerability.
12) Patched and Vulnerable Code Samples: Python code

samples of patched and vulnerable versions of the code
obtained from the CVEFixes database or generated by
AI models.

13) Python / Library: Field that indicates whether the vul-
nerability affects Python itself or a specific library or
package (e.g., Django).

14) Detection Tools Listing: Indicates whether tested vul-
nerability detection tools list the vulnerability in their
documentation.

15) Vulnerable Code Sample Detection: Indicates whether
tested vulnerability detection tools detect the vulnera-
ble code sample.

16) References: Links of the sources obtained during re-
search.

This classification and these attributes play an important
role in systematically categorizing and analyzing Python
vulnerabilities and provide a structured approach to un-
derstanding their nature, impact, and mitigation strategies.
By leveraging established taxonomies, along with our own
tailored classifications, we provide a comprehensive and nu-
anced perspective on the vulnerabilities. Attributes such as
risk score, publication date, and proof of concept facili-
tate accurate assessment and prioritization of vulnerabilities,
enabling effective vulnerability management and mitigation
efforts. Additionally, the inclusion of patched and vulnerable
code samples enhances the practical relevance of the dataset,
empowering developers and security professionals to better
understand and address Python vulnerabilities.

An overview of the data that could be automatically gath-
ered through scraping and the data that needed to be generated
afterward using an AI-in-the-Loop (AIiTL) approach is de-
picted in Table 1. The data that could not be scraped from the
sources includes some ODC and CDC classifications, several
code snippets, determining the accessibility scopes, cate-
gories, subcategories, impacts, and possible solutions (e.g.,
updating to a specific Python or library version).

VOLUME 5, 2024 373

BOGAERTS ET AL.: TAXONOMY FOR PYTHON VULNERABILITIES

TABLE 3. Categories and Subcategories of Vulnerabilities

374 VOLUME 5, 2024

C. GENERATION OF CODE SNIPPETS
We developed a code scraper for CVEFixes [12], collecting
171 pairs of vulnerable and patched code samples, while the
remaining 855 examples were generated using GPT models.
Leveraging the contextual awareness and proficiency of GPT
models in understanding programming languages and security
concepts [29], we interacted with the AI models to classify
vulnerabilities and generate code samples. Our process in-
volved providing the model with CVE ID and vulnerability
descriptions, reviewing the output for accuracy, and recording
the reviewed values for each vulnerability. This interaction
demonstrated the efficacy of prompt engineering with GPT
models in vulnerability classification and code generation.
However, recent interactions with GPT-4 revealed inconsis-
tencies in generating vulnerable code, highlighting ongoing
challenges in optimizing AI models for specific tasks, par-
ticularly those involving ethically sensitive content. Further
refinement is needed to address such inconsistencies.

D. CREATION OF VAITP DATASET
Each collected Python code snippet was subsequently re-
viewed and categorized as either belonging to the vulnerable
or patched vulnerability cluster. These were then pushed to
VAITP’s GitHub repository [26].

IV. PYTHON VULNERABILITY DATA ANALYSIS
This section analyzes our dataset of vulnerabilities, focusing
on the number, distribution, and trends.

Our dataset comprises 1026 Python vulnerabilities, classi-
fied according to the attributes described in Section III-B.

Table 2 illustrates the distribution of vulnerabilities based
on ODC and CDC Defect Nature. The predominant category
of vulnerabilities pertains to Incorrect Functionality, suggest-
ing that functions within the underlying code exhibit incor-
rect behavior, needing modification to align with expected
functionality.

Table 3 displays the number of vulnerabilities for each
category and subcategory in our dataset. Input Validation and
Sanitization is the most common category, with 446 vulner-
abilities (43%), primarily attributed to Insecure Parsing or
Deserialization. The analysis also reveals a significant number
of vulnerabilities in the Memory Corruption and Authentica-
tion, Authorization, and Session Management categories. Our
analysis indicates an increase in publicly disclosed Python
vulnerabilities in recent years, peaking in 2022. Although the
scraping process was successful, a small amount of data (i.e.,
less than 5%) was missing from the impact score, the CWE,
and the OWASP fields. The origin of the missing data from
the web scraping process is detailed in Table 1. Most of the
missing data was generated using AI with an AIiTL approach
based on the vulnerability descriptions.

We conducted an analysis of the distribution of vulnerabili-
ties over time, examining correlations between categories and
their respective publication dates. Fig. 3 illustrates the number
of published CVEs related to Python per publication date.

FIGURE 3. Number of python-related CVE vulnerabilities published per
year.

FIGURE 4. Heat map of the relationship between the ODC and the
vulnerabilities’ publication year.

The graph indicates a noticeable increase in vulnerabilities
over time, with a peak observed in 2022, as expected. How-
ever, there is a slight decrease in the number of vulnerabilities
reported in 2023. This trend suggests a growing prevalence of
Python vulnerabilities, possibly influenced by the increasing
popularity and usage of Python, as well as heightened atten-
tion from the security community.

In Fig. 4, we observe the relationship between the ODC
classification and their corresponding publication dates. The
data reveals that a substantial number of defects reported
during this period are associated with function issues, with a
notable peak observed in 2022. This trend indicates a growing
prevalence of functional defects in Python code over time.

In Fig. 5, we examine the relationship between the Code
Defect Classification of vulnerabilities and their respective
publication dates. The data highlight a consistent trend, cor-
roborating the observations from Fig. 4, where the most
prevalent type of nature for Python vulnerabilities is attributed
to Incorrect Functionality. This trend underscores the impor-
tance of functional defects in Python code and suggests a
persistent challenge to ensure the correctness and reliability
of Python applications over time.

VOLUME 5, 2024 375

BOGAERTS ET AL.: TAXONOMY FOR PYTHON VULNERABILITIES

FIGURE 5. Relation between Nature and Publication year.

FIGURE 6. Relation between OWASP top 10 and publication year.

Fig. 6 depicts the relationship between the OWASP Top
10 classification of Python vulnerabilities and their respective
publication dates. This visualization provides insights into the
distribution of vulnerabilities across OWASP’s critical secu-
rity risks over time.

By examining this relationship, we gain a better under-
standing of how Python vulnerabilities align with OWASP’s
prioritized list of security concerns and how these trends
evolve over time.

The data indicates that the most prevalent OWASP classifi-
cation types for Python vulnerabilities in 2023 were:

1) A03 Injection
2) A08 Software and Data Integrity Failures
3) A06 Vulnerable and Outdated Components
The prevalence of vulnerabilities related to A03 Injection

in 2023 contrasts with the preceding year, where there was
a spike in A06 Vulnerable and Outdated Components-related
vulnerabilities.

Fig. 7 illustrates the relationship between the top ten cat-
egories of Python vulnerabilities and their publication dates.
The data indicates a consistent trend, with the most prevalent
category being Input Validation and Sanitization errors. This
finding underscores the importance of addressing issues re-
lated to user input and external data validation and sanitization
in Python code to improve security.

FIGURE 7. Relation between category and publication year.

FIGURE 8. Relation between the accessibility scope of vulnerabilities and
the most common libraries, packages, and Python versions.

TABLE 4. Descriptive Statistics for the Dataset

Analyzing the frequency of the top five subcategories
of Python vulnerabilities over time reveals that the most
prevalent subcategory is Insecure Parsing or Deserialization,
followed by Command Injection. This trend corroborates the
data observed in Fig. 4, further proving the need to secure
functions that deal with user input.

Fig. 8 demonstrates the relationship between the accessi-
bility scope of vulnerabilities (local or remote) and the most
common libraries, packages, and Python versions.

Table 4 summarizes the descriptive statistics for the vul-
nerability scores in our dataset, with a scale range from 1 to
10, representing low to high-risk scores. The average score
for Python vulnerabilities is 6.59, indicating a medium-high
level of risk. The score that occurs most frequently is 7.5,
which also suggests a medium-high level of risk. The standard
deviation of 1.76 reflects moderate variability in vulnerability
scores around the mean. The highest score recorded is 10.00,
representing a critical level of risk, while the lowest score is
1.2, indicating a very low level of risk.

376 VOLUME 5, 2024

FIGURE 9. Scatter plot of the score vs. ODC.

Fig. 9 shows the relationship between vulnerability scores
and the ODC classification. It is observable that most vul-
nerabilities with a high impact score are concentrated in the
Function ODC category and have mainly a Remote Accessi-
bility Scope (denoted by the blue dots). It is also observable
that most Local vulnerabilities are rather related to building
and packaging issues instead.

In summary, our analysis of Python vulnerabilities reveals
several key findings: Over time, there has been a noticeable
increase in reported vulnerabilities, with the majority being
remotely exploitable and posing significant risks such as ar-
bitrary code execution. Notably, the most prevalent types of
vulnerabilities are related to input validation and sanitization,
primarily attributed to insecure parsing or deserialization.
Furthermore, our investigation highlights the importance of
prompt updates, as only 16 out of 1026 vulnerabilities could
not be remediated by updating the library, package, or Python
to a higher version. This underscores the critical role of main-
taining up-to-date systems to mitigate potential security risks
effectively. However, cases such as CVE-2021-29921, where
it was the updating of Python to 3.8.0 or 3.9.0 that would
introduce the vulnerability, highlight the complex dichotomy
between the necessity of keeping systems updated to prevent
vulnerabilities and the risks associated with rapid release cy-
cles and rolling updates, emphasizing the inherent risks of
continuously updating systems without thorough testing, and
underscoring the importance of stability and rigorously vetted
updates in critical environments. These incidents serve as a
reminder of the delicate balance between agility and security
in software development and deployment, emphasizing the
need for comprehensive testing, validation, and risk assess-
ment protocols in update management strategies.

V. PUBLIC DATA DISCLOSURE
A. WEBSITE AND SOFTWARE TOOL
In addition to our dataset, we have developed a website to
showcase our research and facilitate user interaction with our
data and AI models. Here is an overview of the features
available:

� Statistics about Python vulnerabilities, including their
number and distribution by category, score, publication
date, and impact, are presented with visualizations such
as histograms and graphs to illustrate trends and pat-
terns. The website offers insights on common and severe
vulnerabilities, along with best practices and recommen-
dations for Python security. Due to space constraints, we
cannot include all analyses in this article. For a more
comprehensive examination, refer to the supplementary
material on our website.

� Access to dataset content, providing detailed informa-
tion and properties of each vulnerability, such as code
defect classification, nature, descriptions, etc. Users can
browse, search, filter, and download data based on their
research objectives.

� Community contribution feature that allows users to con-
tribute to the dataset and taxonomy. Contributors are
rewarded with our own token (see Section VI).

� General information about our AI models and software
(VAITP).

Our website and software tool serve as valuable resources
for the community, offering a comprehensive and interactive
platform to learn about and explore Python vulnerabili-
ties, as well as to test and enhance the security of Python
scripts.

B. LIMITATIONS AND CHALLENGES
Not all vulnerabilities were included in the dataset, either due
to the actual root cause of the vulnerability not lying in Python
code or not being related to code at all. For example, CVE-
2023–5625 and CVE-2021–24105 were excluded because
they do not directly pertain to code-related vulnerabilities.
The former involves a modification of the patch application
strategy to the python-eventlet by the Red Hat team, while
the latter concerns how attackers may exploit vulnerabilities
in the package manager configuration to introduce malicious
packages into the repositories. Such compromises could lead
to remote code execution during the development, build, and
release processes.

We have identified vulnerabilities in our dataset that in-
clude identical examples of vulnerable and patched code. For
instance, CVE-2022-28470, affecting the marcador package,
includes an incorrect reference to the requests package in its
setup script from versions 0.1 to 0.13. However, the actual
Python code a programmer can write using this package re-
mains unchanged between affected and nonaffected versions.
Similarly, several vulnerabilities associated with the pillow
package demonstrate this pattern, where the vulnerability
originates in the package’s C code, leaving the Python code
unaffected.

It is worth noting that relying solely on publicly disclosed
vulnerabilities has limitations that affect the generalization
of findings. Many vulnerabilities remain undiscovered or
undisclosed, which can result in biased analysis and limited
applicability across different environments. Although publicly

VOLUME 5, 2024 377

BOGAERTS ET AL.: TAXONOMY FOR PYTHON VULNERABILITIES

disclosed vulnerabilities provide valuable information, they
do not provide a complete picture, thereby limiting the scope
and applicability of research conclusions.

VI. FUTURE ENDEAVORS
Current research lays the foundation for further advancements
in the field of Python vulnerability analysis and mitigation.
Several avenues for future work have been identified, each
aimed at enhancing the comprehensiveness and effectiveness
of research results.

A. COMPLETION OF CODE SAMPLE COLLECTION
The ongoing effort to collect code samples associated with
vulnerabilities is crucial for enriching the dataset. Completing
this collection will provide a more exhaustive and represen-
tative set of vulnerabilities, contributing to a comprehensive
understanding of Python security issues. Furthermore, we will
be using Bandit, Semgrep, and SonarSource as static analysis
tools to test the code samples for vulnerabilities. We will use
the following steps to test the code samples:

1) Check tool documentation for a given vulnerability and
record if it is listed.

2) Run Bandit, Semgrep, and SonarSource on the vulnera-
ble code sample and record their results with respect to
the number of issues detected.

3) Compare the results with the expected results.

B. COMMUNITY INVOLVEMENT ON THE VAITP WEBSITE
The VAITP website serves as a user-friendly platform for
interacting with the dataset, exploring vulnerabilities, and
gaining insights into Python security issues. We aim to em-
power the security community, researchers, and practitioners
to access, analyze, and contribute to the wealth of information
provided. Additionally, community members can contribute
to data correction and refinement within the dataset and are
rewarded with VAITP Tokens for their valuable contributions.

C. VAITP TOKEN
The VAITP Token operates on Ethereum, recording trans-
actions based on user actions on the VAITP website. Our
upcoming article will delve into the token’s architecture, func-
tionality, and implications, highlighting blockchain’s role in
driving user engagement and collaboration within the cyber-
security community.

D. AUTOMATION OF VULNERABILITY IDENTIFICATION,
CLASSIFICATION AND CODE SCRAPING/GENERATION
Automating vulnerability identification accelerates research
and enhances efficiency. We aim to develop Python scripts
to automatically discover and incorporate new vulnerabilities
into our dataset, engaging the security community with each
disclosure.

AI agents will automate code example generation for newly
disclosed vulnerabilities, ensuring timely availability of com-
prehensive data for analysis and mitigation. Our dataset will

mirror recent trends and advancements in Python vulner-
abilities, augmenting its relevance and comprehensiveness
over time. The evolution of AI models remains key to our
future endeavors. Continuous refinement of AI models for
vulnerability classification, code generation, injection, and ex-
ploitation will enhance their accuracy and adaptability. Our
previous research demonstrates the high accuracy (>95%) of
our AI-based models in identifying potential locations for vul-
nerability injection [4], underscoring their potential impact.

E. VAITP DEVELOPMENT
The Vulnerability Attack and Injection Tool for Python
(VAITP) represents a practical solution for vulnerability test-
ing, empowering teams to scan, inject, and exploit Python
vulnerabilities effectively. Completing the development of
VAITP and ensuring its user-friendliness will facilitate thor-
ough analyses and exploitability assessments on Python ap-
plications by security practitioners.

These future work directions collectively aim to fortify the
research outcomes, contributing to the proactive and dynamic
field of cybersecurity. Embracing automation, enhancing AI
capabilities, and providing accessible tools will play a pivotal
role in advancing Python application security and fostering
collaborative efforts within the community.

VII. CONCLUSION
In this ongoing research, we have conducted a comprehensive
analysis of Python vulnerabilities, including data collection
and classification, with the aim of exploring potential injec-
tion and exploitation scenarios. Our methodology involved the
gathering of Python vulnerabilities from the most important
web repositories and applications, the use of web and code
scraping, and an AIiTL approach to classify, analyze, and
generate code for Python vulnerabilities. The resulting dataset
comprises 1026 identified vulnerabilities, enriched with code
samples and statistical analysis results.

Vulnerabilities were systematically classified according to
various mentioned criteria, including Orthogonal Defect Clas-
sification (ODC), Common Weakness Enumeration (CWE),
and OWASP Top 10. Additionally, vulnerable and patched
code samples were meticulously collected and generated,
accompanied by relevant payloads to facilitate practical anal-
ysis. To gain insights into the dataset, descriptive statistics
were calculated, including measures such as mean, median,
mode, standard deviation, minimum, and maximum values
for vulnerability scores. The analysis revealed a medium-high
level of risk, with an average score of 6.59 on a scale from
1 (low) to 10 (high). Furthermore, exploratory data analysis
was performed using visualizations and plots derived from
the dataset. These analyses provided valuable insights into
the landscape of Python vulnerabilities, notably highlighting
the increasing prevalence of remotely exploitable vulnera-
bilities in recent years. This trend underscores the growing
importance of addressing remote attack vectors and fortifying
Python applications against potential threats originating from
external sources.

378 VOLUME 5, 2024

The analysis of our data revealed notable trends and pat-
terns in Python vulnerabilities. Following ODC and CDC,
Input Validation and Sanitization emerged as the most com-
mon category, with a significant focus on Insecure Parsing
or Deserialization from user input fields and external sources.
These findings can be beneficial for developers, allowing them
to focus their vulnerability prevention efforts on the most
sensitive functions of their code.

The OWASP Top 10 classification indicated a prevalence
of vulnerabilities related to Vulnerable and Outdated Com-
ponents, Software and Data Integrity Failures, and Injection.
Furthermore, there was an increasing trend in the number
of vulnerabilities reported in recent years. This emphasizes
the security community involvement and the importance of
keeping systems up-to-date.

The website and software tool (VAITP) developed as part
of this research (and that will be publicly released upon com-
pletion of the test phase) serve as valuable resources to the
security community. The interactive platform enables users to
explore the dataset, analyze vulnerabilities, and contribute to
the evolving landscape of Python security. The VAITP tool
facilitates the use of AI models for vulnerability analysis,
injection, and exploitation, empowering security teams, re-
searchers, and developers alike with the ability to test their
systems’ resilience against different vulnerabilities.

This research advances our understanding of Python vul-
nerabilities, providing a comprehensive and ever-evolving
dataset, insightful analysis, and practical tools. The findings
and resources generated contribute to ongoing efforts to en-
hance awareness of Python application security and foster a
proactive approach to vulnerability management.

The following list summarizes the main contributions of the
current article:

1) Python Vulnerability Taxonomy: The research catego-
rized vulnerabilities into a taxonomy focused on Python
vulnerabilities.

2) Comprehensive Dataset: The research provides a de-
tailed dataset comprising 1026 identified Python vul-
nerabilities, meticulously classified, and enriched with
code samples and payloads.

3) Exploratory Data Analysis: This includes:
� Trend Analysis: Identifying notable trends and pat-

terns in Python vulnerabilities, including the most
common types.

� Descriptive Statistics: Computing descriptive statis-
tics to provide a quantitative assessment of risk
levels.

� Temporal Analysis: Examining the distribution of
vulnerabilities over time, revealing an increasing
trend with a peak in 2022.

Our findings can have significant implications for Python
developers and users. By identifying critical categories and
patterns of vulnerabilities, developers can prioritize their se-
curity efforts to address high-risk areas, enhancing the overall
security posture of Python applications.

REFERENCES
[1] Tiobe, “Tiobe (2024) tiobe index,” 2024. [Online]. Available: https://

www.tiobe.com/tiobe-index/
[2] WhiteSource, “What are the most secure programming languages?”

2023. [Online]. Available: https://www.mend.io/most-secure-
programming-languages/

[3] J. T. F. Transformation, “Guide for conducting risk assessments,” 2012.
[Online]. Available: https://doi.org/10.6028/nist.sp.800-30r1

[4] C. G. Frédéric Bogaerts, N. Ivaki, and J. Fonseca, “Using AI
to inject vulnerabilities in python code,” in Proc. IEEE/IFIP
53rd Annu. Int. Conf. Dependable Syst. Netw. Workshops, 2023,
pp. 223–230.

[5] R. Chillarege et al., “Orthogonal defect classification - a concept for
in-process measurements,” IEEE Trans. Softw. Eng., vol. 18, no. 11,
pp. 943–956, Nov. 1992.

[6] T. M. Corporation, “Common weakness enumeration (CWE),” 2023.
[Online]. Available: https://cwe.mitre.org

[7] OWASP, “Owasp top ten,” 2023. [Online]. Available: https://owasp.org/
www-project-top-ten/

[8] Cvedetails, “Python CVE security vulnerabilities, versions and detailed
reports,” 2023. [Online]. Available: https://www.cvedetails.com/

[9] Cve.org, “CVE security vulnerabilities,” 2024. [Online]. Available:
https://www.cve.org/

[10] Snyk, “Snyk - developer security - develop fast. stay secure. - snyk,”
2023. [Online]. Available: https://snyk.io/

[11] NIST. “National vulnerability database (NVD).” 2019. Accessed: 2024.
[Online]. Available: https://nvd.nist.gov/

[12] G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes: Automated col-
lection of vulnerabilities and their fixes from open-source software,”
in Proc. 17th Int. Conf. Predictive Models Data Analytics Softw. Eng.,
Aug. 2021, pp. 30–39.

[13] Bandit, “Blacklist calls – bandit documentation,” 2023. [Online].
Available: https://bandit.readthedocs.io/en/latest/blacklists/blacklist_
calls.html

[14] Semgrep, “Semgrep,” 2023. [Online]. Available: https://semgrep.dev/
[15] SonarSource, “Sonarsource rules,” 2023. [Online]. Available: https:

//rules.sonarsource.com/python/type/Vulnerability/RSPEC-5334
[16] J. M. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “On

faithfulness and factuality in abstractive summarization,” 2020,
arXiv:2005.00661.

[17] S. Lin, J. Hilton, and O. Evans, “TruthfulQA: Measuring how models
mimic human falsehoods,” 2021, arXiv:2109.07958.

[18] F. Bogaerts et al., “Vaitp,” 2023. [Online]. Available: https://netpack.pt/
vaitp

[19] D. N. Card, “Learning from our mistakes with defect causal analysis,”
IEEE Softw., vol. 15, no. 1, pp. 56–63, Jan./Feb. 1998.

[20] I. L. Margarido et al., “Classification of defect types in requirements
specifications: Literature review, proposal and assessment,” in Proc.
IEEE 6th Iberian Conf. Inf. Syst. Technol., 2011, pp. 1–6.

[21] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Trans. Softw. Eng., vol. 32,
no. 11, pp. 849–867, Nov. 2006.

[22] J. Duraes and H. Madeira, “Definition of software fault emulation
operators: A field data study,” in Proc. IEEE/IFIP 43rd Annu. Int.
Conf. Dependable Syst. Netw., 2003, pp. 105–114. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/DSN.2003.1209922

[23] C. E. Landwehr et al., “A taxonomy of computer program security
flaws,” ACM Comput. Surv., vol. 26, no. 3, pp. 211–254, 1994. [Online].
Available: https://doi.org/10.1145/185403.185412

[24] Y. Yang et al., “A comprehensive study on security bug characteristics,”
J. Softw., Evol. Process, vol. 33, no. 10 , 2021, Art. no. e2376. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2376

[25] C. Jiang, B. Hua, W. Ouyang, Q. Fan, and Z. Pan, “PyGuard: Finding
and understanding vulnerabilities in python virtual machines,” in Proc.
IEEE 32nd Int. Symp. Softw. Rel. Eng., 2021, pp. 468–475.

[26] F. Bogaerts et al., “Vaitp,” 2023. [Online]. Available: https://github.com/
netpack/vaitp

[27] L. Cheng, X. Li, and L. Bing, “Is GPT-4 a good data analyst?” 2023,
arXiv:2305.15038.

[28] A. Horváth, P. M. Erdósi, and F. Kiss, “The Common Vulnerability
Scoring System (CVSS) generations – usefulness and deficiencies,”
2016, pp. 137–153.

[29] T. B. Brown et al., “Language models are few-shot learners,” Adv.
Neural Inf. Process. Syst., vol. 33, pp. 1877–1901, 2020.

VOLUME 5, 2024 379

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.mend.io/most-secure-programming-languages/
https://www.mend.io/most-secure-programming-languages/
https://doi.org/10.6028/nist.sp.800-30r1
https://cwe.mitre.org
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://www.cvedetails.com/
https://www.cve.org/
https://snyk.io/
https://nvd.nist.gov/
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html
https://bandit.readthedocs.io/en/latest/blacklists/blacklist_calls.html
https://semgrep.dev/
https://rules.sonarsource.com/python/type/Vulnerability/RSPEC-5334
https://rules.sonarsource.com/python/type/Vulnerability/RSPEC-5334
https://netpack.pt/vaitp
https://netpack.pt/vaitp
https://doi.ieeecomputersociety.org/10.1109/DSN.2003.1209922
https://doi.org/10.1145/185403.185412
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2376
https://github.com/netpack/vaitp
https://github.com/netpack/vaitp

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

