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ABSTRACT Non-Lambertian surfaces are special surfaces that can cause specific type of reflectances called
specularities, which pose a potential issue in industrial SLAM. This article reviews fundamental surface
reflectance models, modern state-of-the-art computer vision algorithms and two public datasets, KITTI and
DiLiGenT, related to non-Lambertian surfaces’ research. A new dataset, SPINS, is presented for the purpose
of studying non-Lambertian surfaces in navigation and an empirical performance evaluation with ResNeXt-
101-WSL, ORB SLAM 3 and TartanVO is performed on the data. The article concludes with discussion
about the results of empirical evaluation and the findings of the survey.

INDEX TERMS Monocular depth estimation, navigation, computer vision, non-Lambertian surfaces, specu-
larities.

I. INTRODUCTION
Computer vision has since 1970s sought the visionary ideal
of a machine that could see and perceive like a human be-
ing [1]. In spite of the optimism of the early days, the ultimate
solutions have turned out to be elusive. One of the essential
challenges of modern computer vision lies in featurelessness,
which can be roughly translated as the lack of anything to
be observed by image sensors, eg. in uniformly coloured
walls or strongly reflecting surfaces called non-Lambertian
surfaces [2]. The immediate consequence of featurelessness
is the absence of useful quantifiable information, which may
then disturb the functionality of computer vision algorithms
as a whole.

The aforementioned non-Lambertian surfaces cause chal-
lenges especially to computer vision based navigation [3], [4],
as the tasks of localization and image patch feature matching
become increasingly difficult for the regions occupied with
the reflections [2]. This challenge brings forth the risk of
significant loss in accuracy and also the inevitable research
question of how to effectively address the issue in terms of
the algorithm and equipment. While challenges associated
with non-Lambertian surfaces have long been recognized and

considered in research, the rise of autonomous operations has
thrust this issue back into the spotlight. Drones are now in-
creasingly utilized in safety-critical operations, such as search
and rescue missions, as well as for entertainment at large
public events. As their usage grows, so does the prevalence
of radio jamming attacks [5], necessitating a heavy reliance
on computer vision for perception. However, computer vision
systems are known to operate less reliably over water and
highly reflective, transparent surfaces [6], which are examples
of non-Lambertian surfaces. The ongoing expansion of terres-
trial autonomous driving also grapples with challenges posed
by non-Lambertian surfaces [7].

Our research ultimately aims at developing methods for
industrial robots’ autonomous indoor navigation using Simul-
taneous Localisation and Mapping (SLAM) and monocular
cameras. As automation increasingly infiltrates industrial op-
erations [8], discussions regarding non-Lambertian surfaces
are also gaining relevance within this domain. Our goal
is to develop a deep learning-based SLAM method with
improved depth estimation, which is an essential step for
accurate monocular vision-based navigation solution. The
industrial environment includes various non-Lambertian sur-
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faces however, which creates challenges for SLAM and depth
estimation. Another complication emerges from the collec-
tion of the data: the industrial data is often confidential, and
thus testing of different algorithms in industrial setting is
practically impossible. We will address these challenges by a
comprehensive survey into non-Lambertian surfaces’ research
involving multiple fields of computer vision, and concluding
from the survey, propose a new outdoor dataset reflecting the
expected properties of industrial environment. The proposed
dataset will also give the possibility of exploring generality of
different autonomous driving solutions, as the data is collected
from a seaside promenade accessible to cars. Finally, we will
perform an empirical study on the dataset and propose next
steps for further research.

This article will start by presenting the fundamental surface
reflectance models of non-Lambertian surfaces in Section II,
and then continue on relevant studies from various fields of
computer vision in Section III. Then in Section IV, we will
review two datasets, KITTI [9] and DiLiGenT [10], used in
the surveyed studies, and present a new dataset, SPINS, which
is, as far as we know, the first one especially targeted for
non-Lambertian surfaces’ study in navigation. In Section V,
we will perform an empirical evaluation with a modern state-
of-the-art algorithm, ORB SLAM 3, on the new dataset to
demonstrate its performance with non-Lambertian surfaces.
The article is finished with discussion about the results, con-
clusions of the survey and recommended next steps for further
research in Section VI.

The Sections II, III and IV are based on the corresponding
author’s master’s thesis [11], which is a publicly available
document but not a peer-reviewed publication. Sections V
and VI regarding the new dataset and its empirical testing are
novel and continued research.

II. THEORETICAL BACKGROUND
The theoretical background for the proposed solutions so far
regarding non-Lambertian surfaces, is a convoluted mix of
knowledge spanning diverse topics and four decades of re-
search [10], [12]. To better put the solutions into the context,
the physical models related to the problem formulation are
presented first briefly. For a complete treatise of the physics
and physical quantities regarding the problem formulation, we
refer the reader to McCluney’s book [13].

A. LAMBERTIAN REFLECTANCE MODEL
One of commonly used models to approximate light reflection
is the Lambertian reflectance model, where a light hitting
a matte surface is reflected diffusely according to Lambert’s
cosine law [14]. Mathematically formulated, the surface’s re-
flected luminous intensity, denoted by Iv;r , is a function of
θ , the angle between the two-dimensional surface normal n
and specular reflection’s direction; I0, the reflected luminous
intensity of the surface; and the surface colour C,

Iv;r = C · I0 · cos θ. (1)

FIGURE 1. Two-dimensional diagrams depicting different surface
reflectance models. The blue arrow marks the specular reflection, while
the red arrow is the incident light. The gray arrows on the left mark the
diffuse reflection. The vertical and thick black line is the surface normal
and the other horizontal black line the surface level. C stands for colour, Ir
for the reflection’s intensity and l for the directional vector of incident
light. Ei denotes the incident light’s irradiance and Lr is the reflection’s
radiance. θi and θr mark the angles of incident and reflected light’s
direction with respect to the surface level.

In many contexts, the C as a constant is omitted however, as
it only affects the scale of the reflected luminous intensity.
An alternative formulation of the model is that the luminous
intensity of the surface follows Lambert’s cosine law and the
luminance is isotropic, ie. uniform in all directions [14]. Then
the model can be expressed in the vector form as

Iv;r = 〈n, l〉︸ ︷︷ ︸
cos θ

·C · I0, (2)

where 〈· , ·〉 denotes dot product, n is the surface normal vector
and l is the normalized incident light’s direction vector.

This model has coined diffusely reflecting surfaces as Lam-
bertian surfaces and their opposite as non-Lambertian surfaces
with specular reflections, or shortly put, specularities [15].
Intuitively the visual difference between these can described
as if the non-Lambertian specular reflection is concentrated
on a random surface point, instead of being scattered evenly
around the point where the light hits the surface as with the
Lambertian diffuse reflection. The specular reflection there-
fore creates a lobe, a teardrop-shaped ray formation, bouncing
off the surface, whereas the diffuse reflection creates a half-
circle of rays, as illustrated in Fig. 1(a) [14].

While the model is attractive for its simplicity and ease
of use, it is generally regarded as too inaccurate due to its
failure in following conditions: i) the model can’t account for
bright surfaces’ non-diffuse reflections and, ii) with appropri-
ately large angles, surfaces are known to exhibit properties
of both Lambertian and non-Lambertian surfaces [14]. As
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the model ignores these spectrums at large, a more intricate
model is needed to quantify the difference in this situation.
Thus, a bi-directional reflectance distribution function is often
more accurate and is used instead, as the non-Lambertian
reflectance is only a special case in its framework.

B. BI-DIRECTIONAL REFLECTANCE DISTRIBUTION
FUNCTION
The bi-directional reflectance distribution function (BRDF) is
a more general and fine-grained model, which can be used in
two or three dimensions to model the reflected radiant energy
in a given direction [15]. Mathematically put, it is the ratio of
reflected ray’s radiance, Lr , to the incident ray’s irradiance, Ei,
given their directions with respect to the surface normal n, de-
noted as θr and θi and called the elevation angles, formulated
as

fr (θr, θi ) = dLr (θr )

dEi(θi )
. (3)

The name for the model stems from the fact that the directions
of incident and reflected ray can actually be reversed without
changing the function’s value [16], a property which is called
the Helmholtz reciprocity [1].

In three dimensions, two more angle parameters called the
azimuth angles, φr and φi, are added to measure the rays’
direction with respect to the surface tangent (z-axis), forming
a polar coordinate system of the form

fr (θr, θi, φr, φi ) = dLr (θr, φr )

dEi(θi, φi )
. (4)

The three-dimensional BRDF can additionally be para-
metrized with a half-angle bisector coordinate system, formu-
lated as the following equation,

fr (θd , θh, φd , φh) = dLr (θh, φh)

dEi(θd , φd )
, (5)

where h is the half-angle vector for the light rays, φh and
θh are this vector’s polar coordinates in the surface normal
coordinate system and φd and θd are the incident light’s po-
lar coordinates in the transformed coordinate system. A 2D
BRDF is illustrated in Fig. 1(b) and the 3D BRDF in each
coordinate system is illustrated in Fig. 2. To simplify the
setting, the coordinate system is normalized so that the x-axis
is the surface tangent, then y-axis is the surface normal and the
z-axis is the viewing direction, as is common in the computer
vision context.

As the BRDFs are thus characterized by the incident light,
surface normal and half-angle vector between the lights and
their angles with respect to each other, it is common practice
to present them in the following vectorized form, where n
is the 3D surface normal vector, v is the 3D viewing point,
h is the 3D half-angle vector and l is the 3D incident light
vector [10]. Then the BRDF becomes

fr (θr, θi, φr, φi ) = fr (n, l), (6)

fr (θd , θh, φd , φh) = fr (v, l),

h = l + v
||l + v|| ,

FIGURE 2. Diagrams of three-dimensional BRDF models in two different
coordinate systems. The parameters of the BRDF are different depending
on the coordinate system. Red indicates incident light, blue reflected light
and black the half-angle vector. The gray circle represents the object’s
surface and the coordinate axes the surface level (x), normal (y), and
tangent (z), respectively.

θh = 〈n, h〉= arccos
(
nT h

)
,

θd = 〈l, h〉 = arccos
(
lT h

)
. (7)

From now on, we shall use (6) and (7) to refer to the BRDF
formulation, for the sake of brevity.

Further generalizations of the BRDF model have been
presented. One of these is the spatially varying BRDF
(SVBRDF), where two parameters are added to measure inci-
dent ray’s location on the surface, so as to model the spatially
varying surface normals. Another is a bi-directional surface
scattering reflectance distribution function (BDSSRDF) with
eight parameters, to quantify surface’s internal scattering [13].
However, the true power of BRDF lies in the fact that the
bi-directional function fr can be defined case-wise, allowing
flexibility over suitable functions and different cases [15]. For
example, the Lambertian reflectance is a special case, where
fr is a constant function [10].

The main observation from the model is, however, that
non-Lambertian surfaces’ specular reflections are dependent
on a viewing angle, as the angle parameters change depending
on the viewing direction. Thus when the incident light is kept
constant, and the viewing direction is changed — or equiva-
lently, the non-Lambertian surface is tilted and the viewing
direction and incident light are kept constant — a visible
difference in brightness and colour of the surface can be ob-
served. Consequently, the non-Lambertian reflectance violates
the following assumptions: brightness constancy, where it is
assumed that the brightness of pixels stays constant across
images; and colour constancy, where it is assumed that the
colour of objects stays constant across images [1].

Due to these violations, non-Lambertian surfaces can, for
example, lead to false image patch feature matches or surface
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reconstruction results relying on texture, colour or brightness
values, as specularities distort the values in one frame but
not the other, depending on whether the viewing point and
illumination stays fixed [17]. Furthermore, as various depth
estimation methods and LiDAR sensors rely on sufficient tex-
turing and Lambertian reflection for reliable depth info, the
information can be erroneously estimated for non-Lambertian
surfaces [4]. Another notable subclass of problems arises
in medical computer vision, where local, sparse and strong
specularities occur in closed non-adjustable environments of
human bodies during medical endoscopies [10]. The mucous
fluids in human body act as non-Lambertian surfaces obscur-
ing the investigated tissue underneath, as seen in the studies
by Meslouhi et al. [18], Mirko et al. [19], and Saint-Pierre
et al. [20]. These far-reaching complications along with the
computer vision’s natural interest in optical exceptions has led
to versatile research about non-Lambertian surfaces, encom-
passing numerous fields of computer vision.

III. COMPUTER VISION ALGORITHMS FOR
NON-LAMBERTIAN SURFACES
The major field actively studying non-Lambertian surfaces
since 1980s is photometric stereo, which tries to enable ac-
curate 3D reconstruction of objects under different lighting
conditions and the extraction of surface normal maps from
objects [10]. As such, non-Lambertian surfaces pose an imme-
diate problem, as the specularities block the information that
is meant to be extracted. Available methods vary depending
on the test setting of the study, which we shall present next.

A. PHOTOMETRIC STEREO
In photometric stereo, there are multiple adjustable light
sources present in the environment [1], and the research ques-
tion is generally formulated as modelling the specularities’
behaviour under different lighting conditions [10]. Likewise
the name “photometric stereo” [21], alludes to the multiple
light sources present in the environment taking up the role of
image sensors in a traditional stereo system. The usage of ad-
ditional different sensors, such as intensity and image sensors,
is not out of the question in the studies of photometric stereo,
contradicting the term “stereo camera”, which generally refers
to the camera’s characteristics only [22].

1) PROBLEM FORMULATION
To study photometric stereo, a mathematical-physical frame-
work for reflectance must be assumed as the starting point.
The most flexible theoretical model for modelling reflections
is the BRDF, which was presented previously in Section II.
Assuming this model in the form presented in (6), the
mathematical formulation for the problem with calibrated
photometric stereo is the following: given I, the m × k-matrix
of m observed points in k lighting conditions, L, the 3 × k-
matrix of k observed three-dimensional lighting vectors l, and
a fixed viewing direction vT = (0, 0, 1), we are trying to solve
NT , the m × 3 matrix of the three-dimensional surface normal

FIGURE 3. An illustrative diagram of a general test set-up in photometric
stereo. Red arrows indicate incident lights and the blue arrow is the
reflected light encoded by the BRDF. A dark gray box indicates the image
or light sensor, and the light gray circle the object surface.

vectors n in m points, from the following equation, where ◦
denotes the element-wise multiplication,

I = max{ fr (n, l) ◦ (
NT L

)
, 0}, (8)

by using different assumptions and constraints on the m ×
k-dimensional BRDF, fr (n, l) [10]. Respectively in uncal-
ibrated photometric stereo, the matrix L is unknown, and
it needs to be estimated before solving the N. The second
argument of the max function, zero, represents the apparent
shadow of the surface, which doesn’t give up any information
about the BRDF. The environment and test set-up is illustrated
in Fig. 3.

2) LAMBERTIAN REFLECTANCE
The logical next question is what kind of different assump-
tions and constraints might be of use in solving the problem.
One is naturally the Lambertian reflectance model, mathemat-
ically put as

fr (n, l) ≈ D, (9)

where D is a diagonal matrix with each row being a constant,
representing the constant diffuse radiance [10]. If the L is
known and has three different light vectors, the N can be
uniquely solved by the linear least squares, and the reflectance
values are the normalized rows of the N [21]. As this solution
assumes the surface to be Lambertian and the linear least
square is not able to reject the non-linear non-Lambertian
surfaces, the accuracy suffers greatly from specularities [23].
Additionally it does not apply outdoors due to sun’s nigh
planar trajectory causing the inverse of the N to disappear.
Finally, it is not truly useful in other realistic use cases ei-
ther, as the assumption of Lambertian surfaces is rarely met
sufficiently due to surfaces exhibiting both Lambertian and
non-Lambertian properties [14]. Thus more recent efforts fo-
cus on a general unknown fr that doesn’t directly comply with
the Lambertian reflectance model.

3) OUTLIER REJECTION METHODS
Another useful assumption for solving the problem would
then be the local and sparse nature of specularities and shad-
ows. In other words, they are spatially apart and occupy only
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a small portion of the image, even as groups. This gives us
a possibility to detect and discard shadows and specularities
as outliers. There exists various outlier rejection methods de-
tection and rejection criteria [24]. For example, in studies by
Verbiest et al. [25] and Wu et al. [23], outliers are modeled
as Markov random fields due to their non-isolated grouped
nature, thus capitalizing on the expectation maximization
algorithms capable of optimizing the surface normals and
realistic visual reconstructions of the surfaces. In contrast,
a more recent avenue assumes the outliers to form a sparse
matrix E, which is added to the Lambertian reflection matrix
D, formulated as

fr (n, l) ≈ D + E. (10)

Consequently by minimizing the rank of E with more elabo-
rate statistical criteria — which translates as the reduction of
linearly dependent noise present in the system of equations
formed by fr and D — we can achieve more robust rejection
of specularities. An example of this approach can be made
from [26], where a hierarchical Bayesian approximation is
used to estimate surface normals while modeling the E and
enforcing its rank to three based on the same rank of the
surface normals and lighting vectors formulating the m × k
-dimensional image, thus limiting the number of possible
Lambertian reflections available for the image.

The inherent weakness of any outlier rejection method lies
in the implicit assumption of local and sparse outliers: when
met with large (global) specularities occupying a large part
of the image (dense), the algorithms’ accuracy decreases [10].
Additional problems arise from non-Lambertian diffusive sur-
faces that don’t fit in the statistical model [26]. Other aspects
worth considering are the computational complexity of the
EM models regarding the fine-tuning of the parameters and
amount of input images needed for reliable and valid statisti-
cal analysis. For example, a dense set of images means having
over 100 images per reconstructed object [23], [25]. Hence,
despite being robust approaches, the research in photometric
stereo has veered towards analytical BRDFs.

4) ANALYTICAL BRDFS
Analytical BRDFS aim to solve the problem by accounting
for outliers [10]. Some analytical BRDFs include methods
modelling the surfaces as a set of microfacets, microscopic
surface areas acting as individual specular reflectors. The dis-
tribution of microfacets’ normals then differ from the surface
normal depending on the surface’s characteristics specified by
the model. For example, microfacets can be assumed to be
perfectly specular and thus only the microfacets with their
normal equal to the half-angle vector h can cause specularities
in the viewing direction [27]. This model has been adapted, for
instance, in a study of uncalibrated photometric stereo [28]. In
general though, more studies have been dedicated to the Ward
model, which assumes an elliptical Gaussian distribution for
the isotropic microfacet normals, thus having no preference
over the reflectance direction [16]. The studies by Chung and
Jia in 2008 [29], Goldman et al. in 2010 [30] and Ackermann

et al. in 2012 [31] all use the Ward model or a derivation of it.
The exact approach to the outliers in the Ward model varies.
Some examples include shadows to estimate the parameters
of the BRDF [29], the optimization of the object shape and
model parameters, and pixel-wise parameters and surface nor-
mals in alternating turns [30], and finally, selecting the less
shadowed pixels, which are most likely to offer viable info
about the BRDF [31].

In the end though, while analytical approaches have the
strength of accuracy on their side, little can be done about their
weaknesses: the analytical models are material-specific [10],
the models can be non-linear, requiring careful and long op-
timization and finally, there is no guarantee that an analytical
model fits the observed BRDF well [15]. For example, while
Goldman et al. observe that there are “fundamental materials”,
which make up most of the objects in real-life use cases and
even constrain the materials’ amount to two per object in
their study, their assumption of linear combinations for the
materials’ BRDFs still leads to the task of solving a non-
linear equation and estimating the surface normal at the same
time [30].

5) GENERALIZED BRDFS
Another avenue in photometric stereo aims to overcome the
challenge of generalizable BRDFs by using the general prop-
erties of BRDF, such as monotonicity, Helmholtz reciprocity
and isotropy [10]. These generalized BRDFs are further sup-
ported by the fact that materials often show structured BRDF
values in real life, implying isotropy. Isotropy simplifies the
mathematical formulation of the BRDF in a half-angle coordi-
nate system, presented in (7): the function has now only three
parameters, as the φh is no longer necessary [32]. Monotonic-
ity, in the other hand, implies that the intensity increases as
the input increases in value, giving a unique inverse function
for the BRDF. These constraints open various possibilities,
including the bi-polynomial approximations as various mod-
els don’t anymore show significant dependency on φd either,
as demonstrated in [15]. The bi-polynomial model is then
formulated in the following fashion as

fr (v, l) ≈ g (θh, θd ) . (11)

A bi-polynomial model with the assumption that the afore-
mentioned equation can be factored into two separate terms
g1(θh) and g2(θd ) is used by Shi et al. in their study [33]. This
model enables the iterative estimation of the surface normal in
a suitable slow-varying low-frequency domain with shadow
and specular cut-off thresholds. Another generalized BRDF
without the bi-polynomial model assumes the incident light
to be collocated with the viewing point, allowing to decouple
the surface normal from the BRDF [32]. These generalized
approaches bring reasonable approximations of multitude of
reflections with various computational complexities, but they
have difficulties dealing with anisotropic reflections, which
remains as an actively studied challenge [10].
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Another avenue implicitly used both in generalized and
analytical BRDFs is the component-wise structure of the re-
flection [15]. In this case, the overall reflection is built as a sum
of two or three separate components, such as mirror, specu-
lar or diffuse reflection components, which can individually
accommodate different reflectance models [14]. An example
of this approach is the use of a pseudo-specular and diffuse
Lambertian component. These component models tend to be
approximations of the actual mappings, and thus some loss
of accuracy is often present, where the observed reflectance
doesn’t fit the components directly.

6) NEURAL NETWORKS
The most recent venture in photometric stereo involves us-
ing neural networks that learn the reflectance mapping di-
rectly [39]. While this approach tends to have the advantage
of dealing with majority of reflectance at ease, a few limits ex-
ist: significant error with noisy light intensities, long runtime
and decreased performance in complex reflections [41] and
problems with concave shapes [40]. Another notable neural
networks study is nLVMS-Net [52], which uses a shape-
from-shading network to formulate probability densities for
per-pixel surface normals in each view and finally volume cost
filtering to learn the true per-pixel surface normal and also
depth.

Another avenue involving neural networks has a different
approach. This approach investigates how neural networks
or machine learning could be used in tandem with physical
models, bringing together the best of the two worlds: the
accuracy and explainability of physical models and flexible
and robust computations of neural networks. The first results
are already available, for example by Geourgoulis et al. with
a CNN learning the reflectance map of single non-Lambertian
material and then fitting parameters to it [42], Li et al. with
a SVBRDF-modeling CNN [43], and Rhee and Lee with a
GAN-guided CNN [44]. For a multi-spectral setting, thus
accounting for wavelength as well, there is a study by Lv
et al. [53]. Similar ideas are used for the purpose of object
reconstruction by Chen et al. [54] and Sang et al. [45], while
Iwaguchi and Kawasaki [55] optimize the training phase of
photometric stereo using DNNs.

7) UNCALIBRATED PHOTOMETRIC STEREO
As noted earlier, uncalibrated photometric stereo has to esti-
mate the lighting matrix L in along with the surface normal
matrix N Equation (8) [10]. Mathematically, uncalibrated
photometric stereo is based on the assumption that the re-
flectance is Lambertian so that the albedo-scaled lighting
matrix L and surface normal matrix S formulate the observed
image [56]. As the normals are scaled, we can solve the am-
biguity caused by scaling, denoted as A, by the singular value
decomposition or matrix factorization [57]. Thus the whole
problem can be stated as the following equation,

I = max{D ◦ (
NT L

)
, 0} = ST L

= ŜT AT A−1L̂. (12)

where Ŝ and L̂ are the unscaled pseudo-normal and pseudo-
lighting matrices respectively [56]. However, solving the final
ambiguity matrix AT A−1 requires additional steps in the test-
ing or calibration phase, which is an intricate and onerous
process [10]. For instance, the rotation ambiguity can be
solved with six different surface points with constant albedo
or intensity, but more common constraints are the integrability
of the surface or the observation of shadow boundary. These
reduce the problem to the Generalized Bas-Relief ambiguity,
stated as

I = max{D ◦ (
NT L

)
, 0} = ST L = ŜT AT A−1L̂

= ŜT GT G−1L̂. (13)

For solving the matrix G with three unknown variables, there
are numerous alternative solutions to choose from, such as the
perspective camera model, a ring of light sources or an anal-
ysis of the specularities. Each approach comes with their own
limitations and advantages. For contrast, chromatic clustering
can be used to detect points, which have equal albedo [46],
locating the points where n = l [47], and minimizing the en-
tropy after assuming a limited amount of dominant colours
in the image [48]. The first method is unsuitable to grayscale
images, the second is limited solely to the diffuse component
and the third requires intricate pre-processing steps. Recently,
neural networks have also been utilized to solve the uncali-
brated problem in a general form without the assumption of
the Lambertian reflectance or the uniform distribution of light
sources required for solving general BRDFs, in a computa-
tionally costlier manner [49].

A notable study using neural networks in uncalibrated pho-
tometric stereo is the LCNet [49], which uses convolutional
layers and max pooling to detect global features from local
features. The network has been further enhanced in the studies
by Chen et al. [39] and Kaya et al. [40], ranking it as a
state-of-the-art system in photometric stereo. However, it still
has performance issues with ambiguous special cases, such
as piece-wise planar surfaces, planar surfaces with uniform
albedo and concave shapes.

Another avenues outside the Equation (12) are the manifold
embedding methods, which acquire the surface normals up
to a rotational ambiguity and then use additional constraints,
such as integrability or shadow boundary, to solve that [10].
A few examples include the studies by Sato et al. [50] and Lu
et al. [51].

8) OTHER APPROACHES
Finally, aside from solving the (8) and (12), there are nu-
merous solution methods involving the change of the data
collection method or the input [10]. For example, a multi-
spectral light field may be used, which gives additional
constraints of multiple viewpoints and point lights and thus
more accurate measurements of the surface normals’ orien-
tation [36]. Object motion works in a similar albeit stricter
manner [34], [35]. An alternative solution can be found from
the colour channels, which reveal specularities when studied
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TABLE 1. A Table Describing Briefly the Proposed Solutions in Photometric
Stereo

individually. This approach has also been utilized to create
sophisticated masking methods for medical endoscopies, [18],
[19], [20]. Another interesting method is the use of depth
priors: by fusing a priori depth info as regularizers for the
final reconstructions, corrections can be made in problematic
low-frequency domains, [37] [38]. Lastly, other alternative
solutions to photometric stereo include also colored lighting,
a perspective camera model, which is more accurate than
the traditional model, and cameras with non-linear response,
among many other methods. While these solutions have gen-
erally gained interesting results, their weaknesses tend to be
often the lack of robustness or the specialized data collec-
tion method, which is often not practically feasible, easily
adjustable and possibly not even usable outdoors or outside
any controlled environment.

This concludes our survey on photometric stereo. All pre-
sented studies are summarized in Table 1. As we have now
gone over photometric stereo in an extensive manner, we turn
our sights into navigation, where non-Lambertian surfaces
play a significant role as well.

B. NAVIGATION
Computer vision research of autonomous robot navigation
started at 1980s [1]. The research has progressed rapidly in
various areas, producing a new golden standard for today: Si-
multaneous Localization And Mapping (SLAM) [12]. SLAM
solves localization (“where we are”) and mapping (“what is
around us”) at the same time. Consequently, the availability of

different sensors has been a major driving force in the emer-
gence of new SLAM methods. Regardless of the used sensors
however, non-Lambertian surfaces pose a veritable challenge
for SLAM via its problem formulation, as is demonstrated
next.

1) PROBLEM FORMULATION
The most basic mathematical formulation of the SLAM is
probabilistic and consists of state, observation, control in-
put and landmark vectors [58]. The state vector x describes
the pose, location and orientation of the sensor at a state t .
Spanning t discrete states, the control input vector c defines
the transition from each state to the next in the system, for
example the speed and direction of the sensor system. An
i-dimensional vector of observed landmark points l along the
way is recorded from the t-dimensional observation vector o,
which includes for example camera images or inertial sensor
measurements. We then need to compute the following joint
probability distribution using the Bayes theorem,

P(xt , l|c, o, x0). (14)

This task is solved via updating the prior distribution of cur-
rent state, and the posterior distribution of measurements,
deriving accurate observation and motion models for the sen-
sor system in the process. The determination of motion model
is referred to as localization, which can performed in various
ways. When it is done by computing the motion between
consecutive images, it is referred to as visual odometry. In
contrast, mapping is the process of creating a map of the envi-
ronment to help with the localization, presented as the vector
of landmark points. The problem formulation is demonstrated
in Fig. 4.

2) APPROACHES
General approaches how to construct these observation and
motion models can be categorized based on the sensors and
input data [12]. An alternative categorization of SLAM is
between indirect (feature-based) and direct methods based on
their general method of solving the problem. The indirect
methods use only features derived from the observations and
their respective descriptors, whereas the direct methods use
all of the observed data. Another categorization can be done
based on the density of the environment maps, as dense or
sparse environment maps may be sought [58]. We shall use
the split of direct and indirect SLAM methods from now
on, as it provides the most relevant framework of inspecting
non-Lambertian surfaces’ and their challenges.

Indirect SLAM methods detect features, match those be-
tween subsequent images and track them over image se-
quences, which is called tracking [12]. Let us now observe
that non-Lambertian surfaces are ideal to cause problems for
feature-based tracking, as specularities can lead to a loss of
tracking information via false or missing feature matches.
This is due to colour and brightness constraints violated by
the non-Lambertian surfaces, as these characteristics can play
an important role in feature detection.
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FIGURE 4. A two diagrams illustrating the SLAM problem in an urban
setting, prevalent in applications for autonomous navigation. The black
dashed line with an arrow marks the trajectory of the black car, and the
blue circles and dashed lines mark the observed landmark points lt . The
control inputs (here driving cues) at a time step t are denoted by ct ,
whereas the observations (eg., images) are denoted by ot and the car’s
current location by xt and the initial location by x0.

However, non-Lambertian surfaces are not simple triviali-
ties for direct methods either. Both direct and indirect SLAM
systems can correct their mapping and localization when
entering a previously visited area in a process called loop clo-
sure. Loop closure takes place to prevent drifting, a gradually
occurring deviation between the actual and predicted location
of the sensor system [59], resulting in better performance in
the localization task. In the case of enough drifting, a loop-
closure might be skipped and the drifting continues to grow,
decreasing the localization accuracy. Hence non-Lambertian
surfaces are a notable and diverse issue in navigation as well.

Finally, one last research question related to navigation and
non-Lambertian surfaces at large is the research regarding
LiDAR depth measurement accuracy of the non-Lambertian
surfaces, such as water. We shall not address this question here
and instead we shall refer the reader to Paul et al. for that [60].

Having summarized the main problem formulation, we can
move on to relevant studies. To highlight the evolution of
SLAM systems, we shall primarily proceed chronologically
through the survey.

3) SLAM SYSTEMS
Often heralded as the first semantic SLAM [36], SLAM++
was published in 2011 [61]. While the preceding SLAM
systems had been mapping sparse point features and other

geometric primitives from the environment, SLAM++ opted
for an object-oriented approach constructed on top of geomet-
ric primitives. Using KinectFusion and LiDAR sensors [62]
to build an object database, pixels in the picture could be
classified into different objects. This process is generally
referred to as semantic segmentation nowadays [36], thus
terming SLAM++ as semantic SLAM. In contrast, the con-
cept of obtaining prior information of objects in the form
of parameter vectors is nowadays referred to as shape priors
and is still widely used in fields of SLAM and object detec-
tion [63], [64], [65], [66]. Semantic SLAM systems mark also
a very prominent avenue for producing methods capable of
coping with non-Lambertian surfaces, as the shape priors can
fill in the info that specularities block from the images. Thus a
few more notable studies are presented later on, which can be
regarded as the current state-of-the-art or the enabling basis
for them.

ORB-SLAM2 from 2017 [67] is even today considered
as the state-of-the-art of indirect SLAM system due to its
enhanced optimization and loop closure techniques, the wide
range of applicable input from monocular and stereo images
to RBG-D data [12], and a modern feature matching algo-
rithm “Oriented FAST and rotated BRIEF” (ORB) which is
built on the preceding algorithms of FAST and BRIEF, but
with accelerated speed and better rotation invariance [68]. In
ORB-SLAM2 the tracking, local mapping and loop closing
are separated into their own threads, and the global bundle
adjustment and motion optimization is performed only af-
ter the threads are completed. The drawbacks of this widely
used lightweight open-source solution stem from the weak
robustness for motion blur and featureless regions, which ac-
cumulate drift considerably in monocular input [2].

The next relevant milestone was the emergence of neural
networks in SLAM systems around 2017 [12]. One of the first
precursors was the CNN-SLAM, which utilized convolutional
neural networks (CNN) with the ResNet architecture to per-
form semantic segmentation, and predict depth densely even
in featureless regions by assuming a baseline stereo and then
refining the keyframe depth maps with the baseline stereo,
regularizer and each new frame’s depth estimations and depth
uncertainty maps [69]. CNNs continue to be widely used in
semantic segmentation today [70]. DeepSDF [71] uses feed-
forward networks in a probabilistic auto-decoder architecture
to learn continuous signed distance functions (SDFs), which
output the distance of a point coordinate x to a surface of
interest.

With the decision boundary of fd the surface of interest
can be constructed via ray-tracing or the marching cubes
algorithm [71]. By the universal application theorem, the feed-
forward networks in DeepSDF are harnessed to approximate
this function up to a computationally feasible precision with
the loss function of L( fθ (x), s) = | fc( fd (x), δ) − fc(s, δ)|,
where fθ is the approximation of fd produced by the network,
defined by its parameter vector θ ; δ is the control distance
parameter to the surface of interest maintaining the metric
SDF; and fc is the real-valued “clamp function”, defined as
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fc(x, δ) := min(δ, max(−δ, x)). Using this loss function to
learn the latent low-dimensional variables of surfaces, which
can be directly inputted into the auto-decoder to be further
optimized via back-propagation, gives a possibility to model
varying SDFs. While admittedly DeepSDF is not a SLAM
system, but a 3D object detection and reconstruction system,
it is a vital part of a notable semantic SLAM system later on,
which is why it is presented alongside other SLAM systems.

CubeSLAM, also a semantic SLAM, unites the fields of
monocular 3D object detection and SLAM systems [64]. By
feeding the pose estimation info of SLAM system to the
object detection and the object detection information in turn
to the SLAM pose and scale estimation, the benefit is mu-
tual and amplifies both systems’ performance. Aside from
this symbiotic info recycling, the novelties of CubeSLAM
lie in the mathematical approaches to the bounding boxes,
measurement functions between objects, cameras and points
and lastly memory efficiency to storing the objects. Two other
semantic SLAMs addressing the non-Lambertian challenges
are NodeSLAM [72] and From Detections to 3D Objects
(FroDO) [73]. FroDO uses the DeepSDF and encoder archi-
tecture to further refine the monocular object detection via
shape priors and other estimation steps, whereas NodeSLAM
uses RGB-D data to optimize the embeddings with the help
of a new rendering volumetric function, which needs fewer
measurements and is capable of dealing with occlusion.

D3VO, a monocular visual odometry system [74], brings
together the lessons of photometric stereo and SLAM united
under brightness affine transformation and deep learning.
Assuming

1) an affine brightness transformation due to a change of
camera exposure, with It ′ being the new changed inten-
sity and It is the previous unchanged intensity, defined
as It ′ = aIt + b, a > 0, b > 0

2) a photometric error with comparison functions l , c and
s for luminance, contrast and structure [75], defined as

r(It , It ′ ) = λ

2
(1 − SSIM(It , It ′ )) +

(1 − λ) ||It − It ′ ||1 ,

SSIM(It , It ′ ) = [l (It , It ′ )]
α · [c(It , It ′ )]

β · [s(It , It ′ )]
γ ,

α > 0, β > 0, γ > 0, 0 < λ < 1,

and thirdly
3) an uncertainty map of true pixel intensity y with Lapla-

cian noise, defined as

− log p(y|ŷ, σ ) = |y − ŷ|
σ

+ log σ + C,C ∈ R,

and embedding all three of these equations into a self-
supervised re-projection error, D3VO can then adjust the
weighting of the residual for areas with high uncertainty,
which in turn achieves greater robustness against featureless-
ness.

The final state-of-the-art semantic SLAM we survey is
DSP-SLAM [76]. DSP-SLAM uses ORB-SLAM2 architec-
ture for sparse tracking and mapping and DeepSDF for the

shape embedding, to produce sparse backgrounds and dense
shape reconstructions via deep shape priors as its environment
mappings. The input data can be monocular or stereo, the
latter optionally with LiDAR, while the system runs at 10
frames per second. Being a sequential SLAM with both local
feature and global object optimization, it differs from FroDO’s
batch implementation and NodeSLAM’s local optimization
based on depth images, but borrows inspiration from both. In
the end, it brings about considerably good visual results in a
low frame rate of 10 Hz.

We are going to close the survey by regarding the modern-
state-of-art visual SLAM and odometry systems, who have
touched on the problem of non-Lambertian surfaces espe-
cially. Firstly there is the direct and sparse odometry system,
DSO, by Engel et al. from 2017 [77], who opted for photo-
metric error around each pixel instead of using a geometric
smoothness prior for all of the image data. Using this ap-
proach, Engel et al. report increased robustness and accuracy
compared to other state-of-the-art systems, such as ORB
SLAM 2. They mention that using the photometric error in-
stead of geometric error in the is the cause for increased
robustness and that no significant issues with non-Lambertian
surfaces were present. However, most of the specularities
are present in high-gradient points, where other information
is aplenty. In the end, DSO fails under significant lighting
changes, such as the time of the day or the direction of the
light.

DynaSLAM, a visual SLAM system by Bercos et al. from
2018, builds on ORB SLAM 2 by adding dynamic object
detection and background inpainting [78]. Resulting from
motion segmentation, the tracking accuracy is decreased in
KITTI’s less textured sequences, where the reference points
are far away and static. A continuation of this study as
Dynamic-SLAM by Xiao et al. [79] in 2019, a semantic
monocular SLAM. Combining an single-shot object detector
based on CNN and prior knowledge to a feature-based SLAM
pipeline, the system achieves increased tracking accuracy. The
deep learning remains yet to be incorporated into backend,
however, and the object detection is accelerated with GPU to
achieve real-time performance.

Another study from 2019 is the visual SLAM by Dong
et al. [3]. By using a novel feature matching system and
traffic signs as landmarks, the system is able to increase
the localization accuracy even in low-textured environments.
However, the system reports weaker accuracy and robustness
on initialization due to the use of regression trees in the
process.

From 2021, there is the visual and direct SLAM sys-
tem, DSV, by Mo et al. and a continuation of DSO [80].
Using LiDAR sensors, they extend the DSO framework by
optimizing the 3D points’ scale and then utilize a point de-
scriptor for more efficient loop closures. The system does
not incorporate IMU signals and thus uses the assump-
tion of forward-moving camera. In the evaluation, the sys-
tem failed in direct sunlight and other sudden brightness
changes.
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TABLE 2. A Summary Table of Presented SLAM and Odometry Systems

This concludes our survey on navigation. All presented
studies are summarized in Table 2.

C. OTHER FIELDS
As we have now covered both photometric stereo and SLAM
in the context of non-Lambertian surfaces, it is natural to

move on to a field that is a synthesis of SLAM and photo-
metric stereo, called fusion methods [81]. The idea of fusion
methods is to use photometric stereo to define the surface
normals, which can then be used to recover depth information
needed for more fine-grained object reconstruction. Recent
related studies include exploring different penalty functions
for converting the surface normals to a depth estimate by
Antensteiner et al. from 2018 and the usage of neural networks
simultaneously to predict surface normals and depth by Zhan
et al. [82] from 2019.

The approach of fusion methods nevertheless heralds an
interesting approach to the question of depth estimation. Sur-
face normals and gradients have been proven to be a viable
source of depth information in studies by Zhang et al. [83]
and Joshi et al. [84], and photometric stereo can be regarded
as the most versatile and resourceful field regarding the esti-
mation of surface normals. The major questions in utilizing
photometric stereo techniques in depth estimation lie in the
problematic special cases and error margin. A small angu-
lar error in surface normals may lead to a significant depth
error [81], and secondly, there is the question of penalizing
the edges and planar surfaces so that the depth estimation
remains accurate in both cases. One difficult aspect is the com-
putational complexity driven by this approach, as it has not
been accurately commented in the papers. In other hand, while
traditional and less costly BRDF models have been accurately
fitted for a variety of materials and even general classes of
materials [10], the neural networks so far have been most
robust and general models with the expense of computation.
Thus, a very promising avenue lies in the union of analytical
BRDF models and neural networks, as they can account for
each other’s weaknesses.

Finally in our survey, we shall consider a multi-faceted
field of computer vision called illumination invariance. The
research of this topic covers diverse tasks, such as object
detection [85], SLAM [86], and face recognition [87], but
the essential question remains roughly the same across them:
how can we extract the same information under illumination
changes. While the question may very well seem to cover the
specularities, the field is more focused on seasonal, daily or
situational human-made changes in illumination rather than
specularities, which are a direct effect of the prevailing illu-
mination while not being a source of illumination or a change
in the sources per se. As such, the methods are not particularly
tested against non-Lambertian surfaces and further studies
are required to determine whether the illumination invariant
techniques would be fitting to cope with specularities.

IV. DATASETS
In the preceding section, we covered many existing methods
regarding specularities. A crucial key question in this sur-
vey was how good exactly are these presented methods, but
additionally, we must now ask what are the datasets used
for these methods. If the used datasets don’t show speculari-
ties properly, the methods’ performance and applicability can
rightfully questioned. Thus, it is time to cast a critical look
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FIGURE 5. A frame from then KITTI dataset (a) and a picture of the object
“Lamb” from the DiLiGenT dataset (b). The specularities in KITTI are soft,
local and sparse, centered around cars’ corners and windows. The
specularities in DiLiGenT are dense but not rather strong, and local as well
depending on the object.

into the most common datasets, KITTI in navigation [9] and
DiLiGenT in photometric stereo [10]. Other datasets in these
fields, such as TUM-monoVO [88] and Malaga [89], are not
considered, as they are not standardised benchmarks for the
field or have not been adopted into as general use due to
various reasons, like poor availability, limited scope of input
data or weak applicability to different navigation tasks. For
example, both TUM-monoVO and Malaga utilize grayscale
images. As such, while there could be specularities present in
less used datasets, they do not offer viable information for the
solution of SLAM nor research regarding the non-Lambertian
surfaces, which are the center focus of this survey.

A. KITTI
KITTI was first recorded in countryside of Germany, in 2012,
primarily for the research of autonomous driving [9]. The
dataset can be loosely described as a continuous feed of
images corresponding to views of a driver driving around a
medium-sized city and its highways on a clear sunny day,
as can be seen from Fig. 5(a). Specularities in a such setting
are rather unequivocally sparse, local and soft, appearing only
as few slightly lighter pixels focused on cars and other ob-
jects comprised of common non-Lambertian surfaces, such as
glass and metal. Consequently due to KITTI’s popularity [12],
SLAM systems at large are not extensively researched regard-
ing global and dense specularities. In contrast, only a rare
few systems have actively paid attention to local and sparse
featurelessness in their approaches to the best of authors’
knowledge, even though the issue is of utmost importance in
industrial SLAM.

B. DILIGENT
The second dataset to be inspected is DiLiGenT, a bench-
mark dataset in photometric stereo [10]. While DiLiGenT,
unlike KITTI, was specifically designed with specularities in
mind, the special settings presiding in the dataset are worth
noting. DiLiGenT consists of dozens of static images taken

from a limited set of objects with a same viewpoint and
varying lighting, with the background completely blacked
out, as illustrated in Fig. 5(b). The purpose is to assist the
detection of specularities and to block out any noise regarding
the measurement of light with finicky equipment, but at the
same time it represents unnatural and highly ideal conditions
for both photometric stereo and navigation. Furthermore, the
specularities in DiLiGenT are mostly local, dense and soft in
nature, being relatively pale and small areas in the surface
of the object. Thus they do not properly account for global,
strong and dense specularities, blinding and large reflections
taking up a large portion of the image in total. Consequently
we propose an even more challenging benchmark with such
specularities in the next section, designed especially for use in
navigation.

C. SPATIOTEMPORAL IMAGES FROM NON-LAMBERTIAN
SEA (SPINS)
To demonstrate the impact of non-Lambertian surfaces and
associated reflections on monocular depth estimation and vi-
sual Simultaneous Localization and Mapping (SLAM), we
recorded a novel data sequence of 53,207 images by the
name of “SPatiotemporal Images from Non-Lambertian Sea”
(SPINS). This data was compiled during winter at a coastal
seaside located in Helsinki. In addition to reflections emerging
from the water, the presence of snow and ice creates further
complications as they exhibit non-Lambertian properties. The
data acquisition process was conducted on a winter morning
shortly after sunrise to encapsulate the reflections occurring
when the sun is relatively low, inducing an unfavorable reflec-
tion angle, particularly as the reflections directly interact with
the camera.

To gather the image data, we utilized two widely available
sensors: an iPhone 13 and a RealSense D455. Both devices
were temporally synchronized via Network Time Protocol
(NTP) during the entire experimental procedure. The Re-
alSense images are recorded in resolution 1280 × 720 and
30hz framerate. The iPhone captures HD pictures, but we
scale them down to 640 × 480 pixels before saving them to
disk to avoid a disk overload. To acquire the reference trajec-
tory for visual SLAM, the system was supplemented with a
tactical grade SPAN system, renowned for its post-processing
accuracy up to centimeter level. It contains a GNSS-Inertial
fusion solution that is aided by Precise Point Processing (PPP)
in postprocessing. We endeavored to capture the ground truth
depth using LiDAR, but the challenge of determining depth
towards water remains an unresolved issue within LiDAR
research [60]. Consequently, we refrained from utilizing the
LiDAR-measured ground truth for evaluation purposes. The
whole system is carried by a pedestrian, so that the cameras
are approximately on chest height pointing forward.

We aimed at quantifying the amount of non-Lambertian
surfaces across the SPINS dataset by converting color images
to gray-scale and thresholding at a value of 252 to detect
bright spots as proxies for reflections. The results of this
detection method are presented in Table 3. Due to the nature
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TABLE 3. Specular Reflection Quantity Measures for the SPINS Dataset

FIGURE 6. Illustrative samples showcasing reflection masks, with detected
reflective areas highlighted in red for clarity.

of auto-exposure, extremely bright pixel values can be found
in almost all images, but if no real reflection is visible, the
detected spots are generally very sparse outlier pixels. To
address this phenomena, we refined our approach by applying
a morphological opening operation to the identified bright
regions, followed by filtering to retain only those areas com-
prising of at least 20 pixels. This methodology effectively
minimized the impact of outlier pixels, enhancing the detec-
tion of genuine reflective surfaces. The compiled statistics
reveal that 48% of the images contain specular reflections,
with 14% having more than 1% of their pixels reflecting.
On average, specularly reflective pixels constitute 0.4% of an
image, and 0.8% of images present at least one specularity,
offering a nuanced view of the prevalence of non-Lambertian
reflections within the dataset.

To illustrate the application of our reflection detection
methodology, Fig. 6 displays four representative images with
an overlaid reflection-mask. The scenes depict various envi-
ronments, including waterfronts, a pedestrian pathway, and
a snow covered path. The red overlay specifically highlights
regions of significant brightness, which correspond to strong
and dense specularities from the sun and water, as well as
softer sparse specularities from various non-Lambertian sur-
faces, like windows and snow covered areas.

V. COMPARISON AND RESULTS
A. METRICS
We use Absolute Pose Error (APE) to evaluate the visual
odometry VO system’s accuracy by measuring the discrep-
ancy between predicted poses and ground truth poses at
each timestamp. To ensure a meaningful computation of the
APE, the predicted trajectory needs to be aligned first with
the ground truth trajectory using the Umeyama alignment
method [90]. This method performs a least-squares optimiza-
tion to minimize the differences between corresponding points
in the two trajectories. By aligning the trajectories, the APE
provides a reliable assessment of the true error in pose esti-
mates, thus offering a comprehensive evaluation of the VO
system’s performance.

B. MONOCULAR DEPTH ESTIMATION
Estimating depth from monocular images poses a significant
challenge, as it requires recovering the 3D structure of a scene
from a single 2D image. This process is inherently ambiguous
due to the loss of depth information when projecting the 3D
world onto a 2D plane. Consequently, distinguishing between
objects that are small and near the camera and those that
are large and far away, as well as inferring relative distances
between objects in the scene, becomes difficult. This problem
is further compounded by factors such as varying lighting
conditions, reflections, and textureless surfaces, which can
introduce additional complexity to depth estimation.

Monocular depth estimation methods can be broadly clas-
sified into two categories: supervised and self-supervised.
Supervised methods rely on labeled ground truth depth data
for training, whereas self-supervised methods exploit the in-
herent structure in the data, such as image sequences or stereo
pairs, without the need for explicit depth annotations. Su-
pervised methods learn the absolute scale from ground truth
depth data but often depend on strong assumptions, such
as the camera being at the same height during inference as
it was during training. In contrast, self-supervised methods
require additional information or assumptions to recover the
true scale. However, they offer greater flexibility during both
training, where differently annotated data can be fused, and
inference, as they predict relative depth.

To demonstrate the impact of non-Lambertian surfaces on
monocular depth estimation, we employed the state-of-the-art
model from Ranftl et al. [92], ResNeXt-101-WSL, which is
trained on a large variety of datasets and thus offers the best
generalization among monocular depth estimation models.
We present exemplary qualitative results of depth predictions
in Fig. 7. The results reveal that strong specular reflections of
the sun on the sea can disrupt the depth predictions. In the
bottom two images, the camera angle is favorable, and the
reflection level is low, resulting in accurate depth predictions
around the water that resemble a planar surface. In contrast,
the top images with reflections display clear deviations from a
plane in the lower central parts of the image. Additionally, the
reflection not only causes distortions in the depth predictions
of the water area but also affects other objects, such as the
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FIGURE 7. Color images from SPINS on the left and depth predictions
from MIDAS on the right. The erroneous areas have been marked with red
rectangles.

pedestrian in the first image and the land bridges in the third
image.

C. VISUAL SLAM
This section discusses the influence of non-Lambertian
surfaces on the performance of visual SLAM using Tar-
tanVO [91] and ORB SLAM 3 [93]. The established ORB
SLAM 3 framework was selected for evaluation due to its
state-of-the-art performance across various benchmarks. It
should be noted that ORB SLAM 3 struggles with tracking
and re-initialization in the monocular mode on the SPINS
dataset, and thus we do not include any results from that con-
figuration. Instead, we present the results obtained in RGB-D
mode utilizing the iPhone LiDAR depth map. In contrast, we
also assessed the monocular-based deep learning visual odom-
etry (VO) model, TartanVO. It differs from ORB SLAM 3 by
not maintaining an environment map and thus not susceptible
to tracking loss. Additionally, as it utilizes deep learning, it
can highlight possible challenges when using neural networks.

For both frameworks, a particular scene midway through
the sequence poses a significant challenge for both algorithms
due to strong rotational dynamics in environments character-
ized by specular reflections and feature sparsity. For ORB
SLAM 3, these environments result in a too small amount of
matched features which brings the tracking to a halt and starts
again from the starting position. To maintain continuity of
results for ORB SLAM, we also show results on two distinct
sections of 139 m and 272 m, respectively, divided at the
point of tracking failure. We computed the APE for the entire

TABLE 4. A Table About the Results on the SPINS Dataset Using the ORB
SLAM 3

trajectory and the subdivided sections to quantify the position
discrepancies at every timestep.

Table 4 presents the quantitative results, and Fig. 8 illus-
trates the trajectory. The first part of the trajectory (Fig. 8(a))
reveals challenges during initialization and tracking at the se-
quence’s beginning, where the field of view is predominantly
water and the motion mostly rotational. As a result, ORB
SLAM 3’s estimated trajectory only commences later when
the camera is primarily moving forward. Despite following
the correct path during the latter part of the sequence, the
system does fall short of the actual position, resulting in an
APE of approximately 2.8 m. This value does not account for
the starting part of the sequence. TartanVO, on the other hand,
accumulated a significantly larger error (2.8 m vs 18 m APE),
which is due to drift into the Up axis due to to erroneous pitch
estimations.

The analysis of the second trajectory section, as depicted
in Fig. 8(b), reveals a substantial APE, reaching 31.3 m and
76.1 m. This increase in error is predominantly due to initial
rotational estimation inaccuracies caused by an overall low
number of features and erroneous feature matches. Further-
more, Fig. 8(c) demonstrates that the same region causing
ORB SLAM to fail also leads to significant deviations for
TartanVO, resulting in a drift away from the true path.

These findings highlight the challenges that current SLAM
techniques face in environments with strong specular re-
flections, evident in the considerable errors from monocular
methods and the tracking interruptions observed in RGB-D
methods at the start and break-point of the sequence. Even
after re-aligning the trajectory’s second half, the positional
errors significantly outpace those recorded in well-established
benchmarks, such as the KITTI dataset [9], [67], emphasizing
the need for enhanced robustness in SLAM algorithms under
such conditions.

VI. CONCLUSION
As of now, we have gone through a wide range of studies
regarding non-Lambertian surfaces in photometric stereo and
monocular navigation, summarizing the modern state-of-the-
art research. However, as far as the authors are aware, there
is little or no data available regarding these methods’ perfor-
mance in industrial navigation abundant with global, dense
and strong specularities.

The absence of suitable public datasets is the main hurdle
for the emergence of vital new research regarding this topic.
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FIGURE 8. Trajectory comparison of SLAM algorithms against the
reference system on the SPINS.

The new dataset, SPINS, thus presents a notable milestone,
providing a viable means to test navigation systems’ perfor-
mance with various non-Lambertian reflections. Based on the
empirical results by ResNeXt-101-WSL, ORB SLAM 3 and
TartanVO, we conclude that specularities affect the perfor-
mance in a non-trivial fashion. We thus recommend targeted
algorithm development and more extensive performance test-
ing for monocular depth estimation and SLAM algorithms
regarding non-Lambertian surfaces, to better determine their
generality in challenging industrial and outdoor environments.
The results can be applied in autonomous industry operations
and autonomous driving, bringing forth robust and safe solu-
tions.

As a concluding remark, more research regarding spec-
ularities and the elemental issues underlying them — the
violations of brightness and colour constancies — should be
conducted. Promising research avenues include integration
of different information sources and robust inference meth-
ods into monocular depth estimation and SLAM, such as
uncertainty maps over observations, semantic or reflection
information about objects, the surface normal and gradient
estimation, and hybrid models utilizing physics and deep
learning. Complementary information or tailor-made infer-
ence targeting specularities. These can help computer vision
algorithms become more into versatile, reliable and robust,
and thus have the potential to increase the performance against
featurelessness with tolerable computational costs. Especially
in the special cases where the existing deep learning methods
fail, such as the concave specularities, hybrid models uniting
deep learning and physical models could provide beneficial
effects for performance and explainability.
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