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ABSTRACT Whitefly infestations have posed a severe threats to cotton crops in recent years, affecting farm-
ers globally. These little insects consume food on cotton plants, causing leaf damage and lower crop yields.
In response to this agricultural dilemma, we developed a novel method for detecting whitefly infestations
in cotton fields. To improve pest detection accuracy, we use the combined efficiency of visual transformers
and low-cost acoustic sensors. We train the vision transformer with a large dataset of cotton fields with and
without whitefly infestations. Our studies yielded encouraging results, with the vision transformer obtaining
an amazing 99% accuracy. Surprisingly, this high degree of accuracy is reached after only 10-20 training
epochs, outperforming benchmark approaches, which normally give accuracies ranging from 80% to 90%.
These outcomes underline the cost-effective potential of the vision transformer in detecting whitefly attacks
on cotton crops. Moreover, the successful integration of acoustic sensors and vision transformers opens
doors for further research and advancements in the domain of cotton pest detection, promising more robust
and efficient solutions for farmers facing the challenges of whitefly infestations.

INDEX TERMS Acoustic sensors, vision transformer, neural network, VGG16, cotton white fly attack.

I. INTRODUCTION
Every nation’s economy depends heavily on agriculture, and
India is considered a country with a robust agricultural ba-
sis. The production of healthy, disease-free crops is one of
the fundamental goals of agriculture. In India, the income-
producing yield that is most important is cotton. In terms of
global agricultural production, India comes in second. Farm-
ers here in India grow an unlimited range of crops. About
41.49% of the Indian population is employed there, con-
tributing 18% of the country’s total GDP. Around the world,
plant diseases are thought to be responsible for $60 billion
worth of crop losses each year [1]. Rapid agricultural expan-
sion is essential for earning lucrative foreign exchange and
achieving self-sufficiency. The early loss of leaves or the de-
velopment of diseases impacts cotton yields. As a result of the
increased need for food, agriculture is severely strained. The

agricultural information sector desperately needs a quick, ef-
fective, less expensive, and trustworthy method for identifying
cotton infestations since severe disease cases can lead to no
grain harvest. Accuracy, cost, and time might improve with a
computerized practice for spotting plant diseases.

Plant diseases are expensive for the agriculture sector. For
a consistent supply of high-quality food, crop disease con-
trol is crucial. Early diagnosis of plant illnesses is essential
for reducing disease transmission and enhancing effective
treatment strategies. Effective crop management depends on
assessing the health of the plant disease, which involves
predicting methods and models for treatment application.
The agronomist benefits from using computer methods for
identifying and diagnosing plant diseases. An arbitrary pro-
cess of determining disease detection is possible using older
methods.
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However, modern technology offers a way that may be
used to diagnose plant illnesses accurately. The traditional
approach for identifying plant diseases relies solely on visual
inspection, which requires additional human effort, laborato-
ries with specialized equipment, etc., which starts with hiring
a domain expert who visits the location and examines the crop
using the visual examination. This approach takes a lot of time
and effort. Crop monitoring must be done continuously as
well. On the other hand, for centuries, farmers and planting
specialists had to deal with various issues and persistent agri-
cultural challenges, such as many cotton diseases. Another
significant challenge is that farmers need access to profes-
sionals in some regions. The need to gather data on cotton’s
healthy growth and development in real-time is stressed in
intensive agriculture and hydroponics.

Crop diseases cannot always be found with optical tracking.
It will not be possible to accurately assess crop disease us-
ing conventional diagnostic techniques. Plant diseases cause
losses that are both qualitative and quantitative. Automatically
detecting disease signs as soon as they develop on plant leaves
is crucial in agricultural research because it allows for the
monitoring of vast fields of crops. Identifying numerous plant
diseases may be quite challenging for a farmer. Researchers
have increasingly concentrated on the agricultural sector to
find crop illnesses using automated approaches. Cotton is one
of the world’s most significant crops, with a global production
area of over 31 million hectares. However, the crop is vulnera-
ble to a variety of pests and illnesses, one of which is whitefly
infestation. The whitefly is a small insect that feeds on the sap
of the cotton plant, causing leaf damage and lowering crop
production.

The deep learning-based strategy suggested in this study
provides a more efficient and accurate solution for detecting
whitefly infestations in cotton fields, in comparison to pre-
vious manual methods. By utilising the vision transformer
architecture, the model is capable of identifying whitefly at-
tacks, even during the first stages when the harm is limited.
This allows for the prompt adoption of efficient management
strategies. Incorporating this cutting-edge technology for pest
identification has the potential to greatly enhance agricultural
sustainability and output. The main contributions of the article
are presented below:

1) Development of a comprehensive dataset featuring
32,000 images showcasing whitefly infestations on cot-
ton crops, accompanied by multi-class ground truth
annotations.

2) Introduction of an innovative approach that combines
vision transformers with cost-effective acoustic sensors
to improve pest detection accuracy in cotton fields.

3) Comparative evaluation against state-of-the-art mod-
els, including MobileNet, ResNet152v2, and VGG-16,
demonstrating the superior performance of our pro-
posed vision transformer method.

4) Acknowledgment of the potential of integrating vision
transformers and acoustic sensors for more effective
cotton pest detection in agricultural settings.

The previous studies on recognizing whitefly attacks on
cotton growing was conducted using various techniques in-
cluding Support Vector Machines, which is the common
machine learning algorithm of the traditional methods. Con-
volutional Neural Networks [2] and Hybrid Artificial Neural
Networks [3], which are the new and more developed meth-
ods. On the other hand, the SVM-based approach [4] dis-
played a perfect level of accuracy in categorizing the degrees
of the whitefly attacks though mostly there are such impedi-
ments as the complexity of computation, optimization of the
hyperparameters [5], [6] and interpretation of the results. Al-
though neural network-based systems have made significant
progress in disease detection and staging, the bottleneck of
overfitting combined with the hardware resource demands
mainly act as barriers to the enthroning of such systems in the
environment [7], [8], and [9]. In addition to this, other hybrid
models are also developed to tackle this pest attack. However,
there exist many challenges regarding hyperparameter tuning
and generalization of the model. (The summary of the litera-
ture review is shown in supplemental material). Our proposed
approach has proven to be a promising method for reducing
the negative effects of cotton whiteflies on crop output with an
excellent accuracy rate of 99%, which guarantees reliability,
saves time, and improves efficiency in detecting and managing
pests.

This article is organized as follows: Section II describes
the materials and methods which includes the dataset used in
this work, data preprocessing, and the role of acoustic sensors
in cotton pest detection. The methodology and experimental
setup of the proposed approach are presented in Sections III
and IV respectively. Section V concludes the article and Sec-
tion VI highlights the directions for future work.

II. MATERIALS & METHODS
A. DATASET
In this study, we first developed a dataset on whitefly at-
tacked and healthy leaves containing 20000 images with the
help of Kerala & Tamil Nadu agriculture department, which
are divided into different classes such as healthy, unhealthy,
mild, severe, and nutrition deficiency. The data for this study
was gathered by conducting thorough field surveys in cot-
ton fields that were impacted by infestations of whiteflies.
Comprehensive coverage of the agricultural environment was
achieved by capturing high-resolution photographs utilizing
mobile phones and digital SLR cameras. The AgriPK is the
other dataset that is used here for the experimental analysis
and study. In addition, cost-effective sensors were strategi-
cally positioned in the fields to capture insect sounds and
environmental cues, resulting in acoustic recordings. Subse-
quently, we proposed a vision transformer-based approach to
classify the image dataset.

To train the vision transformer, ResNet152v2, VGG16, and
MobileNet, cotton fields with and without whitefly infesta-
tions were photographed [10]. The total samples, which had
over 32,000 images, were compiled from various sources,

VOLUME 5, 2024 357



S ET AL.: POWER OF VISION TRANSFORMERS AND ACOUSTIC SENSORS FOR COTTON PEST DETECTION

including fieldwork and other repositories. Infested cotton
fields comprised half of the images, while uninfected cotton
fields made up the other half. The collected data set is fair,
clear, and has minimal interference. However, images taken in
real-life situations are prone to interference from factors such
as overlapping leaves, wind resistance, and intense sunlight.
To overcome these challenges, a controlled environment was
created to reduce the impact of environmental factors [5] and
[11].

B. DATA PRE-PROCESSING
The efficacy of our proposed system for detecting cotton
pests using ViTs and transfer learning techniques is extremely
dependent on data preprocessing. Early detection of cotton
pest infestations is crucial for efficient pest control. For this
research, we collected image data and acoustic data from
different sources. Then we included pertinent environmental
metadata and resized the images to a predetermined resolu-
tion to provide consistent data input for the proposed ViT
models. The detailed preprocessing methods are discussed in
the following sub-sections. We employed data normalization,
standardization, and sampling to minimize class imbalances
and divided the data into training, testing validation sets.
This preprocessed multimodal data is fed into the ViT model
through transfer learning.

1) DATA AUGMENTATION
Using this technique, the sensor-based and visual data are ran-
domly modified by flipping, rotating, zooming, and adjusting
brightness. To make the model more resilient and scenario-
adaptable, a variety of data augmentation techniques are used
in addition to this, including normalization, standardization,
contrast enhancement, and noise introduction. By using these
tactics, we can expand our training set of data and expose the
model to a wider range of events. Gaussian noise addition,
which involves randomly choosing noise from a Gaussian
distribution and merging it with the original data, was used
in this work to add noise to the data. By training the model
with additional permutations, this strategy improves its per-
formance and noise tolerance in a variety of circumstances.
The images were subjected to both contrast enhancement and
noise injection. This brings up subtle patterns and character-
istics, which help to identify infestations of whiteflies. One
common technique for enhancing contrast is histogram equal-
ization. The uniqueness is maximized by redistributing pixel
intensities. This improves the ability of the model to identify
pest traits.

Then the data is standardized to have a zero mean and one
standard deviation. This eliminates scale disparities that could
impair model learning. On the other hand, normalization ad-
justs pixel intensities or amplitudes to a range, usually from 0
to 1. This keeps numerical stability and prevents activation
function saturation in deep neural networks. We efficiently
prepared the dataset for ViT model training utilizing these
preprocessing methods. This makes the model significant

whitefly infection patterns in cotton fields. Noise injection,
contrast enhancement, standardization, and normalization in-
creased model performance and generalization.

Maintaining data integrity protects cotton pest detection
parameters including pest borders and environmental char-
acteristics. By using data augmentation methodologies, we
reduce overfitting and increase the model’s ability to process
cotton pest detection sensors and visual data with different
patterns and characteristics.

C. DATA ACQUISITION
In the data acquisition process for cotton pest detection, we
used different cameras and acoustic sensors. A structured
approach is employed to guarantee thorough coverage and
precision of data. At first, thorough planning is done for
field surveys, which involves identifying specific regions that
are prone to pest infestations. SLR cameras are strategically
positioned around the cotton fields to collect high-resolution
images. We can manually activate the cameras to ensure op-
timal timing and coverage. Assigning accurate geographical
information to each image by geotagging enables exact spatial
referencing. In addition, strategically placed acoustic sensors
capture insect sounds and environmental cues, enhancing the
visual data. Data integrity is maintained through the im-
plementation of quality assurance techniques, which include
real-time monitoring and regular calibration of cameras and
sensors. Post-acquisition validation is a process that confirms
the sharpness of images, the accuracy of colors, and the align-
ment with geolocation data. It also verifies the clarity and
consistency of sound recordings.

D. METHODS
Whitefly attack detection in cotton fields was accomplished
using neural network architecture of vision transformer
and compared with ResNet152v2, VGG16, and MobileNet
architectures. Several computer vision applications have
used the well-known convolutional neural network designs
ResNet152v2 and VGG16. The vision transformer archi-
tecture, which was created primarily to address this issue,
comprises several blocks of feedforward and self-attention
layers.

The Vision Transformer is an extension of the Transformer
architecture, initially introduced for NLP tasks, to computer
vision tasks such as image classification. The key idea is to
treat the image as a sequence of patches or feature maps,
which are then processed by the transformer encoder to gen-
erate a global representation of the image. The encoded data
is subsequently processed into a classifier, such as a linear
layer, to provide the eventual prediction. The VIT model
distinguishes itself from conventional convolutional neural
networks (CNNs) by employing self-attention methods to ex-
plicitly represent the connections among various regions in
the image, instead of relying on convolutional filters to extract
local characteristics [12].
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1) ROLE OF ACOUSTIC SENSORS IN COTTON PEST
DETECTION
Incorporating acoustic sensors is a significant improvement
in our method of detecting cotton pests. These sensors are
essential for quickly identifying cotton pests because they
pick up on the quiet sounds made by the pests as they move
or eat. This feature allows farmers to spot pests when they
are still young, making it easier to take action and protect
the crops from damage. One of the main advantages of these
sensors is that they provide a non-intrusive way of monitoring
cotton fields, ensuring that the harvest remains undisturbed.
They also offer a more cost-effective and environmentally
friendly option compared to existing methods, such as visually
inspecting the plants or using expensive chemicals.

In addition to this, the continuous observation of insect
activity within the cotton fields, and acoustic sensors provide
timely surveillance. The provision of live data to farmers
equips them with practical knowledge, enabling them to
promptly address the identification of pests. By leveraging
data-driven analysis, not only are insect control initiatives
enhanced, but also methods for safeguarding crops are opti-
mized. Acoustic sensors help to reduce the requirement for
wide-ranging chemical treatments in agriculture, thereby sup-
porting sustainable farming techniques.

Piezoelectric sensors are utilized for this indication, in this
research work. The operational mechanism of these sensors
involves the conversion of electrical signals from mechani-
cal vibrations, such as those produced by insects or feeding
activities in cotton fields. These vibrations are detected and
converted into electrical impulses. To improve the signal qual-
ity and discern significant attributes that signify insect activity,
the unprocessed sensor data undergoes preprocessing tech-
niques, including filtering and signal conditioning. To identify
and classify instances of pest infestation, the machine learn-
ing algorithms analyze data comprising temporal dynamics,
frequency components, and amplitude patterns. Insights into
instances of pest activity can be generated by machine learn-
ing models, which can aid in the implementation of suitable
pest management strategies and reduce crop loss in cotton
fields. As a result of their ability to detect minute mechanical
vibrations, piezoelectric sensors are highly beneficial for agri-
cultural pest detection and insect monitoring. These sensors
can transform cotton pest control, guaranteeing the durability
and success of cotton crops while preserving resources and
minimizing environmental harm.

2) TRANSFER LEARNING
Each image was downsized to 224 × 224 pixels to provide a
uniform size, and the pixel values were set to range from 0 to
1. Subsequently, we applied data augmentation techniques to
enlarge the training dataset and prevent overfitting. We applied
a pre trained EfficientNet-B0 model as a feature extractor.
Except for the final layer, whose weights were frozen, a new
fully connected layer with different output units, one for each
type, was added [13].

3) VISION TRANSFORMER
In the proposed method, we used a ViT architecture to classify
and detect the pest types. A feedforward neural network was
placed after several multi-head self-attention layers in the ViT
architecture. The Adam optimizer was used to train our model
across 20 epochs with a learning rate of 0.0001 and a batch
size of 32.

4) NETWORK ARCHITECTURES
ViT has recently gained prominence as a potent tool for di-
verse applications, particularly in the field of computer vision.
The significant potential for transforming the identification of
cotton pests is notably appealing owing to its exceptional effi-
cacy in visual data processing. ViT is exclusively employed to
analyze image data to accurately identify cotton pests through
this innovative approach.

The proposed methodology makes efficient use of the ca-
pabilities of the Vision Transformer architecture to analyse
image data. The implementation of the ViT model enables the
framework to accurately detect and classify cotton pests in im-
ages, thereby contributing to the improvement of cotton crop
management and pest detection. In general, ViTis composed
of the following layers: input, encoder, fully connected, and
output layer. The transformation in Fig. 1 depicts the various
components of the proposed model and their respective con-
nections. This contributes to an enhanced comprehension of
the model.

5) DIFFERENT PHASES OF VIT MODEL
1) Patch Embedding: The patch embedding technique is

employed to generate a sequence of non-overlapping
patches from the input image. Each individual patch
is encoded as a vector consisting of pixel values. De-
noted as X, the input image possesses the following
dimensions: H × W × C. The image is partitioned
into P × P non-overlapping patches, and a sequence of
patch vectors X = [x1, x2, . . ., xn] is generated, with the
dimension of xi being P × P × C. Every patch vector
is transformed into a solitary vector with the length
P2t imesC, represented as x′i .

2) Linear Embedding: In this stage, a learnable linear
projection is used to project each patch vector into a
higher-dimensional space. The model then acquires a
more expressive representation of each patch. Let W
be a learnable weight matrix, with dimensions D×
(P2 ×C), where D is the output dimension of the lin-
ear projection, resulting in a new sequence of vectors
H = [h1, h2, . . ., hn], where hi =W × xi′ where xi′ is
the patch vector.

3) Positional Encoding: To capture the spatial structure
of the image, the model also adds a learnable position
embedding to each patch vector. This provided a model
with information on the location of each patch within
the image. Let E be a learnable position embedding
matrix, with dimensions D× N , where N is the total
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FIGURE 1. The proposed model architecture.

number of patches in the image. We concatenate the
position embedding to each patch embedding, resulting
in a new sequence of vectors Z = [z1, z2, . . ., zn], where
zi = hi + ei.
The position embedding can be computed as follows:

ei, j =

⎧⎪⎪⎨
⎪⎪⎩

sin

(
j

(10000( 2i
D ))

)
for i = 0, 2.., D− 1

cos

(
j

(10000( 2i
D ))

)
for i = 1, 3, . . ., D− 1

(1)
Here in both cases j = 0, 1, 2,.., N-1

4) Transformer Layers: The L times repeated self-attention
and feedforward layers with ReLU activation function
make up the Transformer layers. Each layer receives
a set of patch embeddings with positional encodings
Xl as input and produces a new set of embeddings
Xl+1 which represents the transformer layer Xl . Each
transformer layer employs a self-attention mechanism
that calculates the weighted sum of each embedding
in Xl , with the weights determined by how similar
the embeddings are to one another. Like the residual
connections in other neural network architectures, the
resulting weighted sum was subsequently added to the
input embeddings. The skip connection is then used to
pass the output embeddings through [14].

5) Classification Head: The output embeddings of the fi-
nal transformer layer are averaged to generate a single
vector representation of the input image using the ViT
model. The classification head, which comprises a linear
layer and softmax activation function, is then fed into
this vector. The output of the linear layer is normalized
by the softmax activation function such that the values

add up to 1. Consequently, the model can forecast the
likelihood of each class. Let Q, K, and V be linear
projections of Z of dimensions D× N , and let Z be the
vector sequence that is input to the Transformer encoder
layer.
We compute the self-attention matrix A as follows:

A = softmax
(

(QT ∗ K )/
√

(D)
)
∗V (2)

where softmax is the softmax function applied element-
wise to each row of the matrix, and

√
(D) is a scaling

factor to reduce the variance of the dot product. The
connections between each pair of input vectors are
represented by self-attention matrix A. Standard gra-
dient descent and backpropagation methods are used
to train the ViT model. For improved outcomes, the
cross-entropy loss function was also used. By switching
out the classification head and retraining the model on
a labelled dataset, the model can then be fine-tuned for
a particular downstream task, such as image classifica-
tion. Each vector in the series was then subjected to FF
neural network with two linear transformations. Let W1

and W2 be D’ × D and D × D’, respectively, and be
the learnable weight matrices for the FFN. We created a
new sequence of vectors U = [u1, u2, . . ., un] by apply-
ing an FFN to each vector zi in the sequence. Therefore,
the vision transformer architecture takes advantage of
both transformers and convolutional neural networks
(CNNs) to enhance image analysis. However, to handle
different modalities, the original ViT design probably
needs to be modified. Additionally, to boost perfor-
mance, additional neural network topologies might be
combined.
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In summary, the vision Transformer architecture is de-
signed to leverage the strengths of both convolutional neural
networks (CNNs) and Transformers to improve image analy-
sis tasks.

III. PROPOSED METHODOLOGY
A. SYSTEM MODEL AND ARCHITECTURE
In the domain of cotton pest detection, the adoption of
cutting-edge neural network architecture, known as the vision
transformer, offers substantial advancements. Our approach
in this research leverages the power of pre-trained vision
transformer models for feature extraction, capitalizing on
their remarkable performance in various computer vision ap-
plications. More precisely, we employ a pre-trained vision
transformer model as the basis, augmenting it by incorporat-
ing fully connected layers to effectively carry out the essential
duty of pest categorization. The layers are tailored to cor-
respond with the distinct kinds of pests identified in our
databases, guaranteeing precise classification of pest species.
Furthermore, our model uses a multitask learning strategy
that allows binary and multiclass classification tasks to be
completed simultaneously. This flexible approach allows us to
identify a wide range of pests, which is essential for accurate
pest identification.

ViTs’ ability to recognize complex correlations between
images makes them a very effective tool for pest identification
in agricultural settings. Unlike traditional models that focus
on specific regions of an image, ViTs can scan the entire
image, allowing them to detect minute patterns associated
with insect infestations. These patterns could include colour
variances, distinct patterns of development, or the presence of
pests themselves.

1) ViTs analyse the images globally, which enables them
to gather contextual data and deep correlations for the
entirety of the image. CNNs deviate from this compre-
hensive method since they frequently rely on particular
regions of the image to extract information.

2) ViTs focus on important regions of the image and use
a self-attention mechanism that allows them to consider
the connections between different patches.

3) ViTs’ excel data handling capabilities make them ideal
for difficult computer vision tasks. This is particularly
crucial for agricultural pest identification because vast
datasets are needed to create accurate models.

4) Even though ViTs are smaller than other CNNs, they
require less training epochs to achieve acceptable ac-
curacy. The accuracy rate of the ViT model in this
investigation reached 99% after a maximum of 20 train-
ing epochs.

We improve our cotton pest monitoring system by us-
ing sound sensors, which provide an inexpensive and non-
intrusive way to identify insects early on. When insects are
active, these sensors listen for and analyse the noises they
make. The benefits of acoustic sensors and vision transformers
are combined in this architecture to produce a complete insect

detection system. It provides accurate categorization results
and fast analysis. This novel strategy can be used to greatly
improve cotton pest control and is also an economical and
environmentally responsible choice. Putting this strategy into
practice will improve crop vitality and long-term viability
while also lowering costs to the environment and the economy
[15].

During the model training phase, a 20-epoch training
method was used on the dataset, to train ViT. The ViT ar-
chitecture, comprised of FF and self-attention layers, was
developed to overcome the drawbacks of these approaches.
The ViT architecture forms the basis of a visual transformer
originally developed for NLP tasks [16]. The transformer’s
capability to interpret coincident data sequences simultane-
ously is one of its prime - advantages, coveted for CV
applications [17]. The self-attention mechanism of a vision
transformer is one of its primary characteristics. By doing so,
the network can discover fine-grained information necessary
for object detection and semantic segmentation tasks, by an-
alyzing smaller sections of an image instead of a complete
image. Besides, ViT is adept at managing enormous amounts
of data, which makes it suitable for sophisticated CV appli-
cations. The detailed Network architecture and workflow of
the vision transformer is shown in Fig. 2. In this study, ViTs
were utilized to handle large datasets, enabling the learning
of diverse features and patterns. The ViT model was trained
using a dataset obtained from the previous phase, with a
20-epoch training schedule and a batch size of 32 on the
Adam optimizer with a learning rate of 0.001. The dataset
was partitioned into training, testing, and validation sets in the
proportions of 60:20:20; evaluation metrics such as accuracy,
log loss, ROC, and AUC curves were employed to assess the
neural networks’ efficacy.

The proposed strategy was evaluated using a separate test
set, and performance metrics such as accuracy, precision, re-
call, and F1-score were calculated. Comparisons were made
with benchmark strategies, including ResNet152v2, VGG16,
and MobileNet. The model was trained using the Stochas-
tic Gradient Descent (SGD) optimizer with a learning rate
scheduler to prevent overfitting and improve generalization.
The training process was monitored using accuracy, loss, and
validation metrics, and early termination was applied to avoid
overfitting. The parameters were fine-tuned using the valida-
tion set to optimize the hyperparameters of the model. Overall,
the proposed approach showed promising results and areas
for further improvement were identified during evaluation and
the detailed analysis is explained in the results and discussion
section.

B. PSEUDO-CODE FOR VISION TRANSFORMER
ViT is a DL architecture for CV applications that manipulates
the transformer architecture, initially created for NLP. The
pseudocode for the ViT is described in Algorithm 1.

An input image is broken down into non-overlapping
patches, which are then linearly projected into flattened fea-
ture vectors. These vectors are fed into a typical transformer
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FIGURE 2. Network architecture of vision transformer.

encoder, where self-attention mechanisms capture global re-
lationships among the patches, allowing for effective feature
extraction. Relative positional embeddings are added to patch
embeddings to incorporate positional information.

The transformer encoder runs these embeddings through
successive layers, improving hierarchical representations, and
the final output of the last layer is used for classification tasks
through a conventional fully connected layer. During training,
the model is optimized, minimizing cross-entropy loss, and
the model’s parameters are modified through backpropaga-
tion. The modular and self-attention-based architecture of the
ViT empowers it to achieve competitive performance on many
image recognition benchmarks while demonstrating flexible
generalization capabilities.

IV. EXPERIMENT RESULTS
A. EXPERIMENTAL SETUP
We curated a diverse dataset for our project on the power of
Vision Transformers in cotton pest detection, drawing data
from multiple sources, including visual imagery and sensor
readings, to ensure a comprehensive representation of vari-
ous cotton pest indicators and data collection methods. We
scaled all of the images to a standard resolution and normal-
ized the sensor data before training the Vision Transformer
models. This ensured that the neural network would perceive
the data consistently. We used data preparation techniques
including rotation, flipping, and random cropping to enhance
the model’s capacity for generalization. The model’s ability to
handle the numerous cotton pest data types and their sources
was greatly enhanced by these techniques.

The visualization technique assists in identifying pat-
terns, relationships, and potentially anomalous data points
by presenting numerous elements about each other. These
understandings are necessary to verify the authenticity of
information, evaluate the significance of specific features,
and comprehend potential relationships between various parts.
Pair plots provide important information to enhance the ar-
chitecture of our system and its ability to accurately identify

FIGURE 3. Pairwise relationships based on the dataset.

and classify cotton pest problems [18]. Comprehending the
data and making critical decisions, including feature selection
and preprocessing, are crucial for enhancing the classification
model’s efficacy and accuracy. Fig. 3 shows pair plots repre-
senting various classes and traits.

The experimental results of the proposed approach demon-
strate that the vision transformer achieved a remarkable
accuracy of 99% even after undergoing twenty training
epochs. This technology represents a substantial advancement
compared to conventional manual techniques for detecting
whitefly infestations, which are often time-consuming and
susceptible to human error. Moreover, to handle substantial
volumes of data enables it to acquire a diverse set of charac-
teristics and patterns from the data, rendering it resilient and
capable of managing real-world situations [19], [20], and [21].
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Algorithm 1: Pseudo Code for Vision Transformer.
Input: Pre-trained model, dataset
Output: Trained ensemble model with transfer learning
and Vision Transformer

DataPreprocessing:
Image tensor of shape
(batchsize, numof channels, height,width)

Predicted class probabilities
Load the dataset, including images and corresponding
labels.

Resizeall images to a consistent resolution.
Normalize pixel values to the range [0, 1]
Perform data augmentation techniques (random rotation,
flipping) to enhance dataset diversity.

Transfer Learning: Load the pre-trained model
Replace the final classification layer(s) for the new task
Freeze pre-trained layers. If FineTuningLayers is not
None:

Model.FreezeLayersExcept(FineTuningLayers)
Train the model on the new data.
Evaluate the fine-tuned model
Training Procedure:
Settraining parameters, including the number of epochs,
batch size, and early stopping criteria.

For each training epoch
Initialize training metrics
For each batch in the fine-tuning dataset
For each batch in the fine-tuning dataset:
Load a batch of lesion images and their corresponding
labels.

Pass the images through the model to extract features.
Concatenate the feature maps
Pass the concatenated features through fully connected
layers.

Compute the loss between predicted and true labels.
Backpropagate the loss to update the weights of the
ensemble model.

Update training metrics.
Vision Transformer:
embeddings← convolut ionallayer(input )
embeddings←
reshape(embeddings, (batchsize, numof patches,
embeddingsize))

For i = 1 to numof layers do
attent ionout put ← mult iheadattent ion(embeddings)
attent ionout put ←
layernorm(embeddings+ attent ionout put )

f eedf orwardout put ← f eedf orward (attent ionout put )
embeddings←
layernorm(attent ionout put + f eedf orwardout put )

End For
classtokens← learnableparametervector(shape =
(batchsize, 1, embeddingsize)) Add learnable class
tokens to embeddings

embeddings←
concatenate([classtokens, embeddings], axis = 1)

out put ← globalaveragepooling(embeddings)
out put ← f ullyconnected (out put, numof classes)
return sof tmax(out put )

FIGURE 4. Correlation Heatmap of different features and classes.

The heatmap is a valuable tool for analyzing similarities
and variances among classes. It improves the precision of
the classification model, as seen in Fig. 4. Strong positive
correlations occur when there are shared image attributes that
result in challenges with categorization, whereas negative cor-
relations imply contrasting visual traits. Heatmap data can be
used to impact feature selection and model design, resulting
in improved classification performance and data augmenta-
tion operations. Furthermore, the heatmap exposes possible
disparities in class distribution, highlighting the necessity of
employing data balancing methodologies [22], [23], [24], and
[25]

The model’s performance can be improved by tweaking this
data. The model may be adjusted, for instance, to more accu-
rately depict the difference between the images of crops with
whitefly infestations and crops in good condition, according
to the distribution center [26] and [27].

Ensuring the convergence of the model is a primary objec-
tive for accuracy. As the model becomes more acquainted with
the data during the training process, its accuracy on the train-
ing set is expected to increase. Practitioners can determine if
the model is converging as expected by examining the train
accuracy graph, which provides a clear view of the learning
process. If the graph shows a significant increase in accuracy
during the early stages, it suggests that the model is learning
quickly and effectively generalizing to the training data.

If the accuracy graph shows slow or irregular growth, the
model may be either overfitting or underfitting to the training
data. Another possibility is that the training set is either too
small or too similar to the test set. In addition to monitoring
convergence, the training accuracy can also identify any prob-
lems with the model or the training process. If the graph shows
a sudden fall in accuracy, it could indicate that the model is
overfitting to the training data and needs to be regularised.
Conversely, if the accuracy graph levels out, it may indicate
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that the model has reached its maximum potential and further
training is unlikely to enhance its performance [29].

For instance, a specific model may be more appropriate
for the task if it exhibits a better trade-off between accuracy,
precision, and recall. Likewise, a model might be considered
more reliable if it generates a curve with a greater area under
the curve (AUC). This suggests an improved balance between
the ability to retrieve relevant results (recall) and the accuracy
of those results (precision) over a broader spectrum of thresh-
olds.

Evaluating the trade-off between the accuracy of correctly
identified cotton fly attacks and the rate of incorrectly iden-
tified attacks is essential when analyzing the ROC curve of
cotton fly attack detection using the MobileNet architecture.
Unlike the false positive rate, which measures the number of
negative samples that are mistakenly identified as positive, the
true positive rate quantifies the number of positive samples
that are accurately discovered.

Our project’s goal is to evaluate Vision Transformers’
ability to identify pests in cotton. To accomplish this, we
performed a performance assessment on three well-known
models: ResNet152v2, VGG16, and MobileNet. The goal was
to ascertain whether neural network designs were suitable for
this task [30]. Based on their demonstrated performance in a
variety of computer vision tasks, including the representation
of complex images, the choice to employ any of these models
was made. By employing several strategies, we were able to
assess their competence in the difficult task of recognizing
cotton pests. We carefully separated the data into sets for
testing, validation, and training, making sure to preserve the
class distribution for an objective assessment of the model.
To improve and fine-tune the model parameters and avoid
overfitting, the training data set has to be used.

The pre-trained weights of these neural network designs
were leveraged using transfer learning, which resulted in a re-
duction of training time and data requirements. Our main goal
was to fine-tune the network’s last layers such that they were
especially useful for recognizing pests that affect cotton. We
performed ablation tests to assess how different types of data
affected the multimodal system’s overall performance. This
complex experimental setup was designed to clarify which
neural network topologies function best and whether they
are suitable for using numerous detection techniques to find
cotton pests.

We used the concept of segmentation in our proposed cot-
ton pest identification approach. This comprises segmenting
specific interest regions such as the cotton fields and poten-
tial pest indicators inside the dataset. We carefully marked
off these sections, examined the characteristics of the cotton
plants, and looked for evidence of insect infestations. We
combined bespoke rules that are specifically created based on
our knowledge in the sector with traditional image process-
ing approaches to achieve accurate segmentation results. Our
multimodal analysis, which employed Vision Transformer in a
transfer learning approach, was predicated on the segmented

FIGURE 5. A set of input images and its detection results.

regions. This method produced positive results in accurately
identifying and classifying cotton pests as shown in Fig. 5.

B. ANALYSIS BASED ON PERFORMANCE METRICS
In the suggested approach, assessing the deep learning model
comes last. A test set that wasn’t used during training was
used to evaluate the model’s performance. Several measures,
such as accuracy, precision, recall, and F1-score, were used to
determine the model’s performance. Using the same criteria,
the model was contrasted with various benchmark techniques,
including ResNet152v2, VGG16, and MobileNet. The per-
formance of the suggested strategy was evaluated using the
assessment data, and any potential improvement areas were
noted.

ResNet152v2, an enhanced version of ResNet152, ad-
dresses the vanishing gradient issue in deep neural networks
during training. It’s suitable for recognizing multimodal im-
ages as it consists of residual blocks with convolutional and
batch normalization layers, allowing the network to learn
complex features. VGG16, originally designed for image
categorization, can identify infestations in photos by prepro-
cessing images with scaling, grayscale conversion, and pixel
value normalization. Its architecture, with max-pooling and
convolutional layers, aids feature extraction from images. Mo-
bileNet, designed for mobile and embedded devices, uses
depth-wise separable convolutions to speed up processing.
Depth-wise convolution filters input channels individually,
while point-wise convolution combines filtered outputs. This
design optimizes computation for less powerful devices.

In our experimental design, applying transfer learning with
pre-trained weights was a successful approach. The pre-
trained models, which were initialized with information from
sizable image datasets, permitted faster convergence during
training, and showed that the learned features could be applied
to detection problems. The performance of the model was
enhanced by fine-tuning the final few layers to conform to the
special features images.

The strong generalization of the models to new data was
supported by their strong performance on the test set. The con-
sistency of our multimodal categorization approach in terms
of performance metrics across many evaluation measures was
reassuring the efficiency. Compared with traditional manual
procedures, the proposed methodology is designed to provide
a more efficient and accurate means of detecting infestations.
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TABLE 1. Analysis of Performance Metrics for Different Models

FIGURE 6. Comparative ROC-AUC analysis across benchmark methods.

Using a vision transformer as a deep learning model can effec-
tively detect multimodal images because it can achieve high
accuracy even with a constrained number of training epochs.

ViTs substantially improve over conventional manual ap-
proaches as they are less prone to human error besides faster
processing. Large datasets can be processed by ViTs, allow-
ing them to learn a variety of characteristics and patterns,
boosting their robustness in dealing with real-world scenarios.
Incorporation of a self-attention mechanism into the network
is a crucial advantage, as it enables the network to focus on
specific areas of an image instead of the entire image. This
capability helps the network to identify fine-grained details
in an image, which is essential for various tasks. The pro-
posed strategy successfully achieved a classification accuracy
of 99.3%. This shows that DL-based multimodal classification
has the potential to increase classification accuracy. The per-
formance of the proposed method was evaluated on different
machine learning models, and a comparison between the pro-
posed model and the various benchmark models is presented
in Table 1.

The ROC-AUC compares the TPR to the FPR,and a curve
above the diagonal line indicates a model with greater per-
formance, on the other hand, indicating a model with random
performance. We can assess the model’s performance at var-
ious potential thresholds by analyzing the ROC curve. We
compared the different benchmark methods against ROC-
AUC which is shown in Fig. 6.

TABLE 2. Computational Resource Comparison

TABLE 3. Hyperparameter Tuning Comparison

TABLE 4. Model Complexity Comparison

The combination of diverse imaging modalities and transfer
learning techniques resulted in accurate and reliable - classifi-
cation outcomes. Another comparison has been done based on
computational resource, complexity of the model and hyper
parameter tuning. Table 2 defines the level of required com-
putational power by each model: ResNet-152 and VGG-16 as
worst-case scenarios requires roughly three times more power
than ViT. Table 3 reports that except for the proposed ViT
model, all other models promptly adjust other hyperparam-
eters, but the ViT model does this automatically. Methods
such as grid search, cross-validation, etc. were applied for the
determination of optimal model parameters of other models as
well. Table 4 gives us information about the number of layers
and the computational complexity that is associated with each
model. On the other hand, although ViT complexity is high
in the number of parameters, they are smaller than that of the
SVM and KNN models with low complexity.

V. CONCLUSION
The strategic implementation of a vision transformer, coupled
with acoustic sensors, for the detection of pests in cotton
fields, presents a groundbreaking approach that promises to
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revolutionize the precision and efficiency of pest identifica-
tion. Utilizing the unique properties of a vision transformer
allows the system to effectively handle large datasets, facili-
tating the extraction of a wide range of features and patterns.
The system’s adaptability improves its perseverance, ensuring
its ability to effectively tackle the complexities of real-world
pest detection scenarios. The vision transformer enhances the
network’s capacity to recognize intricate and unique features
by incorporating a self-attention mechanism that enables the
network to selectively focus on specific regions of an image.
This is a significant step in the right direction towards better
pest identification, and it highlights the need for additional
research and development in this field. This technology is the
finest choice for cotton pest detection and other applications
because of its cost and user-friendliness.

FUTURE ENHANCEMENT
The recommended approach can smoothly integrate into
a computerized system designed specifically for detecting
whiteflies. This transformation presents a hopeful opportunity
to simplify the labor-intensive procedure of manual inspec-
tion, greatly improving efficiency and precision. In addition,
the automated ability to continuously monitor enables early
detection of attacks, effectively reducing possible harm. Al-
though the performance of the model appears favorable when
evaluated using an image dataset, it is crucial to conduct
real-world testing of the suggested strategy to completely
determine its usefulness. Conducting real-world testing will
yield vital insights into the model’s performance under actual
field situations and uncover any difficulties that may need to
be addressed. An exciting future research direction is con-
ducting a comparative analysis, where the proposed strategy
is compared to traditional manual whitefly detection methods
to determine the practical benefits of this unique methodology.
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