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ABSTRACT Large scale enterprise networks often use Enterprise Key-Management (EKM) platforms
for unified management of cryptographic keys. Monitoring access and usage patterns of EKM Systems
(EKMS) may enable detection of anomalous (possibly malicious) activity in the enterprise network that
is not detectable by other means. Analysis of enterprise system logs has been widely studied (for example at
the operating system level). However, to the best of our knowledge, EKMS metadata has not been used
for anomaly detection. In this article we present a framework for anomaly detection based on EKMS
metadata. The framework involves automated outlier rejection, normal heuristics collection, automated
anomaly detection, and system notification and integration with other security tools. This is developed
through investigation of EKMS metadata, determining characteristics to extract for dataset generation, and
looking for patterns from which behaviors can be inferred. For automated labeling and detection, a deep
learning-based model is applied to the generated datasets: Long Short-Term Memory (LSTM) auto-encoder
neural networks with specific parameters. This generates heuristics based on categories of behavior. As a
proof of concept, we simulated an enterprise environment, collected the EKMS metadata, and deployed
this framework. Our implementation used QuintessenceLabs EKMS. However, the framework is vendor
neutral. The results demonstrate that our framework can accurately detect all anomalous enterprise net-
work activities. This approach could be integrated with other enterprise information to enhance detection
capabilities. Further, our proposal can be used as a general-purpose framework for anomaly detection and
diagnosis.

INDEX TERMS Anomaly detection, deep learning, enterprise key-management system, framework, meta-
data analysis.

I. INTRODUCTION
Enterprise information systems produce massive volumes of
data across a range of business operations. Much of this in-
formation is transmitted over communications networks. In
response to rising security concerns, encryption is increas-
ingly used to protect stored and transmitted enterprise data [1].

Applying encryption requires the use of cryptographic
keys [2], [3]. Successful key management [4], [5] is necessary
to achieve organizational data protection objectives. Orga-
nizations may use an Enterprise Key Management (EKM)

platform for unified management of the various cryptographic
keys required to secure organizational data.

Although encryption is intended as a security measure, it
may also be used by attackers to facilitate exfiltration of data
from an organization without detection, as network traffic in-
spection devices are unable to inspect encrypted payload data
under these circumstances. EKM usage provides additional
data that may be useful for anomaly detection [6]. This article
presents the results of analysis of the metadata associated with
the use of an EKM platform to determine the information
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FIGURE 1. The EKM network model.

revealed about the use of encryption within the organization
is useful in inferring whether activity is normal or abnormal.

The workflow of an EKM architecture and communication
model can be considered as a Client-Server model, as illus-
trated in Fig. 1. Requests and responses commonly use the
Key Management Interoperability Protocol (KMIP) [7] for-
mat. The client makes a request (e.g., a “Create-key” request)
through the Application Programming Interface (API), using a
client-specific representation. This can be encoded in a KMIP
format and transmitted to the server. The server decodes the
request using a KMIP decoder to form an intermediate rep-
resentation, which is used by the server API to process the
request.

Data is a collection of information such as observations,
measurements, facts, and descriptions of certain things. Meta-
data is data about the information, but not the information
itself. If it is created and handled properly, metadata can
improve the usability of data [8]. In the context of EKMS,
metadata includes data about the creation and use of the cryp-
tographic keys, but not the keys themselves.

As an example of EKMS metadata, Listing 1 shows meta-
data associated with a “Create-key” request from a user,
extracted from a log file generated using Rsyslog [9]. Note
that the metadata colored in Red contains information needed
to understand the creation of a cryptographic key, but it is not
the value of the key itself.

Referring to Listing 1, we see that the following important
questions are answered using the metadata in the log file:
� When was the connection established? Line 1
� Who was talking to us? Line 2
� What was the key derived from? Line 8
� Who was performing this request? Line 14
� Who authorized this client connection? Line 15
� What was the requested message size? Line 16
� What was the requested operation? Line 20

A. RESEARCH MOTIVATION
Collecting and analyzing metadata associated with enterprise
activities under normal use conditions reveals patterns that
can be used to generate heuristics-based rules that describe
this normal behavior. Once these rules are established, future
monitoring of systems and corresponding metadata analysis
can be compared with the established baseline to identify

anomalous events. A substantial difference from the baseline
data may indicate a cyber security breach in the enterprise
network.

B. RESEARCH AIM AND OBJECTIVES
The aim of this research is to develop a framework that can
be applied to EKM metadata to generate heuristics based on
categories of behavior that are useful in detecting anomalous
enterprise network activities (perhaps indicating malicious
activity on the enterprise network) involving cryptographic
keys. The investigation of EKM metadata for use in this way
represents a novel case study in metadata analysis.

The process of metadata analysis for anomaly detection
involves four main stages: automated outlier rejection (A),
normal heuristics collection (B), automated anomaly detec-
tion (C), and system notification and integration (D) with
other security tools. We introduce a framework that summa-
rizes relations among different stages of the development of
our analysis and detection tool.

C. RESEARCH CHALLENGE
Over the last ten years the use of cryptographic techniques to
protect enterprise data has grown, resulting in increased need
for EKM systems. Such systems have been described in exist-
ing literature, including standards (See NIST SP800-57 [10]).
Metadata analysis techniques have been widely applied in
network security to build profiles of normal and anomalous
behavior for use in intrusion detection [11]. However, to the
best of our knowledge, there is no public research on the appli-
cation of metadata obtained from EKM systems for anomaly
detection. This additional EKMS metadata may be useful in
enhancing anomaly detection.

A challenging aspect of this research project is determining
specific EKM metadata characteristics to extract and use for
anomaly detection, in a range of enterprise contexts. Factors
to consider include time variant characteristics of the envi-
ronment, changes in user habits, and variations in workload
across different periods (time of day, day of week, time of
year, public holiday etc) and context dependent variables:
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number of entities making use of the system, entity role in or-
ganization, industry sector and data protection requirements.

D. RESEARCH APPROACH
Machine Learning (ML), and particularly Deep Learning
(DL) solutions have been used to establish effective in-
trusion detection systems in large enterprise systems [12].
Auto-encoders are commonly applied in scenarios where, to
develop an effective model, the process needs to learn to
represent a time-series. Such an approach has previously been
successfully applied to operating system log files to develop
time-series-based intrusion detection using Long Short Term
Memory (LSTM) [13]. Furthermore, when the underlying
data is inherently unpredictable, reconstruction-based detec-
tion has been shown to be more efficient than prediction-based
detection [14].

The LSTM based approach seems well-suited to mod-
eling EKM activities. This research is performed in two
stages. We first build a framework to generate EKM metadata
datasets to capture normal enterprise behaviors. Then, the
generated EKM metadata datasets are analyzed to establish
heuristics indicative of specific enterprise activity states (nor-
mal/abnormal). Automating this process permits exploration
of the datasets to determine optimal factors and weightings
for a given context to form a model capable of detecting
anomalous behavior.

E. RESEARCH BRIEF
This research makes use of EKM metadata to generate heuris-
tics based on categories of behavior, to enable differentiation
between normal and abnormal (possibly malicious) behavior.
The heuristics from the metadata are then imported into se-
curity measures. Statistical and deep learning-based pattern
recognition methods are applied for anomaly detection. We
simulated various enterprise contexts and operations using
an EKM system, and captured the associated metadata. We
used the TSF (Trusted Security Foundation) EKM solution
provided by QuintessenceLabs [15]. Simulations could have
been similarly performed with another EKM system.

To enable differentiation between normal and abnormal en-
terprise behavior using information obtained from the EKM
metadata, datasets are generated for a variety of use condi-
tions. The generated EKM metadata datasets are analyzed to
establish heuristics indicative of specific enterprise activity
states (normal/abnormal). This is performed in a Behavioral
Security Analysis Engine (BSAE). Automating this process
permits exploration of the datasets to determine optimal
factors and weightings for effective indicators of abnormal
behavior.

F. RESEARCH CONTRIBUTION
This is the first article exploring the use of EKM metadata
for enterprise network anomaly detection. Our contributions
in developing this framework include:

1) A process to generate datasets1 containing EKMS meta-
data for enterprise activities.

2) A process to identify EKMS metadata elements dis-
tinctly associated with normal and abnormal behaviors.

3) Application of LSTM auto-encoder neural networks
with specific parameters for automated labeling (outlier
rejection) and anomaly detection.

We provide a proof of concept by applying our framework
using two case studies. We implemented a small network
and included an Enterprise Key and Policy Manager solution
provided by QuintessenceLabs [15]. We simulated some en-
terprise operations and performed EKMS metadata analysis.
Our experiments clearly show that our approach identifies
anomalous enterprise network activities with high accuracy.

G. ORGANIZATION OF THE ARTICLE
This article is organized as follows. Section II gives an
overview of existing anomaly detection proposals. Section III
introduces the network model, discusses the security ob-
jectives and assumptions and defines the capabilities of an
adversary. Section IV introduces our framework for anomaly
detection using EKMS metadata. Section V describes our case
studies where the framework is applied. Section VI explains
our experimental settings for implementation and defines the
metrics used for evaluating our model. In Section VII, data
generation and preparation for automated labeling and detec-
tion are discussed. Section VIII reports on our experimental
results and discusses the model performance; the detection
capability is clearly demonstrated. We conclude the article in
Section IX.

II. EXISTING WORK ON ANOMALY DETECTION
The IEEE Standard 1044-2010 [16] defines the term
“anomaly” as “any abnormality, irregularity, inconsistency,
or variance from expectations. It may be used to refer to a
condition or an event, to an appearance or a behavior, to a
form or a function.” Anomalies can be grouped into three ma-
jor categories: point anomalies (where a single data sample is
anomalous to the rest of the data), collective anomalies (where
a collection of data samples occuring together appear to be
anomalous although the individual instances may not be), and
contextual anomalies (where the data appear to be anomalous
in a specific context defined for a particular problem) [6].

Anomaly detection methods based on machine learning
can be classified into two broad categories: supervised and
unsupervised. Classification is based on the machine learning
techniques employed and the type of data involved [6]. In su-
pervised methods, model training requires labeled data points
that clearly specify the normal instances and the abnormal
instances. Then, the trained model can maximize discrimina-
tion between normal and abnormal instances. In unsupervised

1The open-source datasets produced and shared by this re-
search study to provide a support, accessible via: https://baeeco-
my.sharepoint.com/:f:/g/personal/mar_baee_co/ErYVmj7gYoVMg-
CTAInuagsBqxzDyxi2It09GKHH5ibLDw
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methods, model training does not need labels. Unsupervised
training works where abnormal instances are observed to be
outlier points that are distant from other instances. Unsuper-
vised learning techniques, such as clustering, can be applied.

A detailed review and evaluation article by He et al. [17]
compares six state-of-the-art log-based anomaly detection
methods. These are three unsupervised methods (Principal
Component Analysis (PCA) [18], Invariant Mining [19], and
Log Clustering [20]) and three supervised methods (Decision
Tree [21], Support Vector Machines (SVM) [22], and Logistic
Regression [23]). He et al. [17] noted that supervised meth-
ods can detect anomalies in a much shorter time (less than
one minute) than unsupervised methods. However, supervised
methods require labeled datasets, and these are not always
available, particularly in network security applications.

Recently, Bitton and Shabtai [24] proposed a network-
based intrusion detection system for securing remote desktop
connections at the operating system level. Their proposal
utilizes machine learning for detecting malicious network
packets, which may carry dangerous exploits to the remote
desktop server. Their approach comprises multiple anomaly
detection models such as k-means clustering and the Cluster-
Based Local Outliers Factor (CBLOF) [25]. They conducted
an empirical evaluation on an avionic system setup consisting
of a commercial tablet connected to a real electronic flight
bag server through a remote desktop connection. Their re-
sults show that the proposed method can detect malicious
packets carrying known exploits. The model is shown to be
accurate at anomaly detection. A very low false positive rate
and a high true positive rate were obtained, outperforming
current state-of-the-art algorithms. In addition, the computa-
tional complexity of their proposed model is linear with the
size of the packets. Empirical analysis of the model shows
that the average processing delay is not noticeable by the
user. However, this proposal is based on a supervised learning
approach, as the entire training dataset contained labeled data
points (for both legitimate and malicious sessions).

In the last few years, deep machine learning techniques
have been widely used for log anomaly detection at the op-
erating system level due to their significant improvement in
performance over classical machine learning approaches. For
instance, Du et al. [26] introduce DeepLog, which first models
log entries as a sequence and then trains the normal sequence
with LSTM networks. DeepLog is mainly designed for collec-
tive anomaly detection but it can also detect point anomalies.
It flags anomaly as “True” if there are data elements that do
not conform with the normal model. Extensive experimental
evaluations over large log data show that DeepLog outper-
formed other existing log-based anomaly detection methods
based on traditional data mining methodologies. DeepLog
applies a supervised approach in the training stage; all entries
must come from a normal system execution path. However,
normal system execution data is not always easily collectable
due to large number of entries in a log file that may contain
anomalies. Hence, this approach requires an additional strat-
egy to perform normal log collection.

Vinayakumar et al. [27] review the effectiveness of LSTM
network models to detect and classify the anomalous events
accurately in sensor log files. Unlike DeepLog [26], their
model was trained using data labeled as either normal or
anomalous. The model is shown to be accurate at anomaly
detection with a very low false positive rate and a high true
positive rate. However, such a supervised learning approach
that requires labeled datasets may not be suitable in network
security applications.

Insider threat detection has attracted a considerable atten-
tion from both academia and industry. Yuan et al. [28] provide
a framework to facilitate the detection of insider threats using
LSTM units that are trained in a supervised manner. The
LSTM units extract user behavior features from sequences of
user actions and generate fixed-size feature matrices, to be
classified as normal or anomalous. However, in addition to
the limitations imposed by the requirement of labels, they use
datasets with only 16 unique labels in model training.

Lu et al. [29] extend Yuan et al.’s work [28] and present
an LSTM-based anomaly detection system called Insider
Catcher. The LSTM model is trained based on employees’
online behavior to predict a user’s next possible action. As
long as the prediction and the real user action do not have
a significant difference, the user follows his or her normal
online behavior and the action is normal. After completing the
anomaly detection procedure, all records for potential threat
event will be stored and passed to the insider threat analysis.
These records will be compared with the user’s historical
records before the identification of insider threat. However,
this approach requires an additional strategy to perform nor-
mal log collection from employees’ online behavior.

Villarreal-Vasquez et al. [30] present LADOHD (LSTM-
based Anomaly Detector Over High-dimensional Data), a
generic LSTM-based anomaly detection framework to protect
against insider threats. The training data contain the behav-
ior of different actors collected by monitoring 30 isolated
machines operated in normal situation where no attack was
reported during the collection period. The authors highlight
that LSTM-based models perform better compared to other
models in the detection of anomalies. However, their ap-
proach requires an additional strategy to perform normal log
collection.

To reduce the amount of noise and outliers in the training
data, a well-designed framework to guide collection of such
data in an automated manner is needed. Maleki et al. [31]
propose a probability criterion based on the classical central
limit theorem. This allows evaluation of the likelihood that a
data point is drawn from non-anomalous data. Hence, this ap-
proach enables labeling of the data on the fly and ensures that
no anomalous data is passed for training. However, their work
assumes that much of the initial training data is clean, i.e., it
requires that temporal datasets have been up and running for
a sufficient time and that it is relatively anomaly-free.

Kennedy et al. [32], [33] present a methodology for learn-
ing without class labels. Their procedure iteratively cleans the
training dataset by removing instances that have an error value
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FIGURE 2. The network model including adversary.

above a value computed during the training steps (outliers).
As the iterative process executes, the training dataset is in-
crementally cleaned of the minority instances, while leaving
as much of the majority class as possible. The next iteration’s
learner is trained on a subset of data that contains a higher per-
centage of the majority class, its performance on unseen test
data improves. However, outliers do not necessarily represent
abnormal behavior. After the unsupervised outlier rejection
stage, detected outliers must be verified to ensure that abnor-
mal activities occurring with high frequency (majority) are
not considered as normal. In this case, legitimate activities
occurring less frequently (minority) may appear as an outlier.

The anomaly detection proposals discussed in this section
were applied to log data particularly at the operating system
level. To the best of our knowledge, there has been no pub-
lic research into the application of metadata obtained from
EKM systems for anomaly detection purposes. We fill this
gap in the current article In addition, most of these proposals
require labeled datasets for training. This is not a suitable
approach for detecting unknown anomalous events accurately.
Further, normal datasets containing non-anomalous event logs
are not always easily collectable. A well-designed framework
to guide collection of such data in an automated manner is
needed.

To address the above-mentioned limitation, this study
provides a framework that not only facilitates automated
anomaly detection in EKM systems, but can be used as a
general-purpose tool to improve the design of past (e.g.,
DeepLog [26]) and future proposals in anomaly detection.

LSTM seems to be one of the most prominent methods for
time-series data modeling and capturing long-range temporal
dependencies across time steps [27]. As a proof of concept
for our framework, in this study the LSTM networks [34] are
used as the auto-encoder.

III. PROBLEM STATEMENT
This section outlines the network model and assumptions, the
adversary’s capabilities, and the design objectives.

A. NETWORK MODEL AND ASSUMPTIONS
The EKM network model considered in this study consists
of a Client, an EKM Server, and an Adversary. This EKM

architecture and communication model is illustrated in Fig. 2.
We discuss each component below.

Client: sends different cryptographic-key-related requests
to the EKM Server in accordance with a predefined protocol
such as the KMIP. Once the client’s credentials are verified
(they have been authenticated and authorized), the server pro-
vides the requested services.

EKM Server: controls the distribution, use, update, and re-
vocation of cryptographic keys. The server may provide some
additional services, such as generating authentication tags or
encrypting data on behalf of the clients.

Adversary: is a hostile actor with the following assump-
tions:
� Their goal is to steal sensitive data.
� They have established a position in the enterprise net-

work.
� They have credentials to access some secret keys on the

EKMS.
� The data generated by Adversary is anomalous due to

either:
� the use of invalid credentials to retrieve existing keys (or

the previously destroyed keys) which belong to others.
� the use of valid credentials but originating from an IP

address that differs from expected address.

B. ADVERSARY’S CAPABILITIES AND MOTIVATIONS
In this work, we define the capabilities of an adversary in the
EKM as monitoring data exchange between the clients and
server, stealing sensitive data, delaying their transmission, as
well as tampering with messages and replacing the original
messages with modified versions. Furthermore, a malicious
adversary may deliberately generate large amounts of both
legitimate and invalid messages in a relatively short period of
time to tie up server resources in processing those requests,
denying its services to legitimate clients. In Section V, we
outline four important scenarios that specifically address this
definition and clarify the security objectives.

C. PROBLEM FORMULATION
We implement a sequence-to-sequence LSTM auto-encoder
model to identify anomalous activities within the EKMS net-
work. The objective is to reconstruct the log data samples
using an encoded representation of the time-series input se-
quences.

Such a model is capable of learning what constitutes
authentic system activities by removing noise during the en-
coding process, without the need for attack examples. Then,
once it learns the non malicious patterns of the data, anything
that differentiates from it would be flagged as an anomaly.

Ideally, as long as the input is non-malicious, the ideal
model will always output the same sequence that was used
as input. However, the reconstructed traffic originated from
malicious sequences would present a high-degree of recon-
struction error, thus indicating an anomaly in the source
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FIGURE 3. Our proposed framework. The framework involves automated outlier rejection (Stage “A”), normal heuristics collection (Stage “B”), automated
anomaly detection (Stage “C”), and system notification and integration (Stage “D”) with detailed explanations in Sections IV-A, IV-B, IV-C, and IV-D,
respectively.

sequence. A post-processing module is thus required to pro-
cess this information and to generate a configurable anomaly
score that might indicate an attack.

IV. THE PROPOSED FRAMEWORK
In this work, the process of metadata analysis for anomaly
detection involves four main stages: automated outlier rejec-
tion (A), normal heuristics collection (B), automated anomaly
detection (C), and system notification and integration (D) with
other security tools. We introduce a framework that summa-
rizes relations among different stages of the development of
our analysis and detection tool. Our framework can be used to
provide guidance in automating metadata analysis to use for
anomaly detection.

The design and implementation of an automated metadata
analysis tool is not a simple and straightforward process.
Fig. 3 shows the proposed framework for anomaly detection
in EKM systems. The framework uses specific ordered stages,
with input to each stage defined with respect to the previous
stage.

A. AUTOMATED OUTLIER REJECTION (STAGE “A”)
In this stage, we capture the generated log associated with
various enterprise contexts and operations within the EKM
system. The log contains two general categories of network
activity: normal and abnormal. Note that our final model needs
to learn from the non-malicious patterns of the data; anything
that differs from it will be flagged as an anomaly.

The initial log must be fed into an initial analysis model to
detect any observations that are distant from the mean or lo-
cation of a distribution. These observed data points are called
outliers, and do not necessarily represent abnormal behavior.
If the training data (final dataset) contains anomalies, our
model learns to reconstruct anomalies with a minimal error,
resulting in the dismissal of similar types when new data is
processed.

Before outlier rejection begins, we need to generate datasets
of metadata. These metadata must satisfactory answer four
important questions: when (operation time), who (the user
name and IP), what (the requested operation), and how (policy
rules and operation success status). This is an unsupervised
approach, as we prepare datasets of unknown (unlabeled)
behavior associated with both categories of network activity:
normal and abnormal. This dataset is then fed into our LSTM
auto-encoder model (refer to Fig. 4), to detect any data points
with high reconstruction loss value as outliers. Please note
that each new dataset requires a new automated data labeling
for outlier rejection. However, the trained model for anomaly
detection can be saved for future anomaly detection purposes.

The architecture of our applied LSTM auto-encoder model
for outlier rejection and anomaly detection is illustrated in
Fig. 4. Given a multivariate sequence dataset {x1, x2, . . ., xT },
where xT ∈ Rm represents the m-dimensional vector at time
step T , the input data is squeezed into a single latent vector
with smaller dimension than the original input.

This architecture applies LSTM neural network cells in the
auto-encoder model based on the four steps of creating the
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FIGURE 4. The architecture of our applied LSTM auto-encoder model for
outlier rejection and anomaly detection.

input sequence, encoding, decoding, and measuring recon-
struction loss for detecting anomalies. As a proof of concept,
this study utilizes two LSTM hidden layers in both encoder
and decoder.

In the encoding stage, the model builds a fixed-length
vector that contains all of the information and time-wise
relationships of the input sequence. This stage provides a
compressed representation of the input data. Then, a repeat
vector layer (code space) distributes the compressed repre-
sentational vector across the time steps of the decoder. In the
decoding stage, the model expands the compressed vector.
The goal is to create an output that is as close as possible to
the original input.

B. NORMAL HEURISTICS COLLECTION, MODEL TRAINING,
AND CALIBRATION (STAGE “B”)
After the unsupervised outlier rejection stage, detected out-
liers must be verified by a system administrator. This ensures
that abnormal activities occurring with high frequency are not
considered as normal. In this case, legitimate activities occur-
ring less frequently may appear as an outlier in an automated
process. Hence, a system administrator must perform this ini-
tial check manually until sufficient data history is acquired.
Once sufficient log entries associated with normal activities

have been collected, the manual administrator role will be
reduced significantly, and most of the outlier rejection can be
automated.

The aim is generating datasets of metadata associated with
normal behavior. Similar to the previous stage, we generate
datasets of metadata from which four questions are answered:
when (operation time), who (the user name and IP), what
(the requested operation), and how (policy rules and operation
success status). This is a supervised approach, as we prepared
datasets of normal behavior, but these are unlabeled. That is,
there is no one-to-one correspondence between samples and
the associated input features, and their corresponding output
labels.

We use this dataset to train our model which is a combina-
tion of LSTM and auto-encoder. This permits determination
of optimal factors and weightings to establish heuristics for
effective detection of anomalies based on the analysis of time-
series data.

Once our model (refer to Fig. 4) is trained, a suitable
threshold value for identifying anomalies is determined. The
distribution of the calculated loss in the training set can help
us to find such a threshold. To calibrate our model, we can set
a threshold above the “loss level” so that false positives are
not triggered. A false positive corresponds to identification of
an anomalous event, when the event is actually legitimate.

C. AUTOMATED ANOMALY DETECTION (STAGE “C”)
In this stage, the trained model with a calibrated threshold
value is saved into the BSAE. For example, one can save
the trained model and its learned weights in the “.h5” format.
This can be deployed for future anomaly detection. Using an
established (saved) learning process rather than performing a
new one permits us to save time in future applications.

When new EKM activities are observed, the associated
metadata is extracted into a dataset and sent to the BSAE for
differentiation between normal and abnormal enterprise be-
havior. Note that the observed log may contain both “normal”
data (within the norm) and “abnormal” data corresponding to
anomalies (exceptions to the norm). We aim to detect anything
that deviates from the normal pattern “norm”. This includes,
for example, those data points which have not been seen be-
fore by machine.

D. SYSTEM NOTIFICATION AND INTEGRATION (STAGE “D”)
The detected anomalous EKMS behavior should be integrated
with existing Security Information and Event Management
(SIEM) products to sharpen anomaly detection capabilities.
For example, requests for key material from processes asso-
ciated with staff accounts for staff known to be on leave can
be indicators of potential enterprise system compromise. In
such a case, a notification is sent to the SIEM dashboard to
alert the administrator. If “Abnormal State” was falsely called,
then the system administrator amends that specific data point
into the datasets of normal behavior to prevent these false
positive flags in future.
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The corrected dataset of normal behavior can be fed into
our model on a regular basis. For example, each night (at a
fixed time) the model may undergo regular learning, with the
old model values being replaced with new values, within the
BSAE.

V. CASE STUDIES
This section defines four scenarios across two case studies
that we use to demonstrate the effectiveness of our proposed
framework.

A. CASE STUDY 1
This case study focuses on scenarios in which a change in
normal requests is detected by the BSAE. Below, we explain
two such scenarios and the associated system symptoms.

Scenario 1: A trusted system user, who has credentials to
access some keys on the EKMS, turns rogue and decides to
steal sensitive research data before decamping to another com-
pany. The user is aware that the company monitors activity on
their workstations and does not want to be too obvious about
their activities. They plan to download and exfiltrate the data
using a colleague’s computer.

Symptom: Valid “Get” request for specific Key IDs origi-
nating from an address (e.g., IP or MAC) that doesn’t usually
request those keys, or valid requests using credentials of em-
ployees not currently in the building.

Scenario 2: A hostile actor has managed to obtain an
encryption key used to protect network traffic on a link en-
cryptor, and is decrypting and monitoring that traffic. The
actor is aware that the organization implements date-based
key rotation, and does not want the supply of intelligence
to dry up. Using a credential stolen from an administrative
work station, the actor sends a request to the EKMS server
to modify the “Deactivation Date” and “Protect Stop Date”
attributes of the currently used key, ensuring automated key
rotation is delayed.

Symptom: Valid “Modify” requests which are not part of
the usual EKM activities.

B. CASE STUDY 2
This case study focuses on scenarios in which a spike of
requests is received by the EKMS. Below, we explain two
such scenarios and their associated system symptoms.

Scenario 3: A hostile actor has managed to log in to
the computer of a trusted employee. The credentials needed
to retrieve encryption keys are saved on this computer. The
hostile actor retrieves the keys required to locally decrypt data
stored in a remote database for local processing. The actor
starts bulk downloading and decrypting the data, intending to
exfiltrate it and sell it on the black market.

Symptom: The frequency of “Get-key” requests for this
particular user spikes; for example, going from one request
per minute to one request per second.

Scenario 4: A hostile actor has exploited a vulnerability
in a web-based management screen and gained administrative
access to the corporate EKMS. They have the ability to create

FIGURE 5. The network topology, actors, and nodes.

new credentials, and they become aware that the EKMS is
a virtual system and lacks a high-volume source of entropy.
The actor attempts to exhaust the entropy pool of the server
during a small time window, with the goal that keys created
during this window will be weak (easily guessed). Using their
administrative access, they create multiple new EKMS clients
to avoid large spikes in the traffic of any particular user, or
existing users.

Symptom: A spike in new user credentials being cre-
ated/observed in use; a spike in “Create-Key/Key-Pair” re-
quests, aggregated across all requests from all users.

VI. IMPLEMENTATION AND EVALUATION
In this section, we explain the experimental settings applied in
our implementation, and define the metrics used for evaluating
our model.

A. EXPERIMENTAL SETTINGS
We extend the network model shown in Fig. 2 to a model
which consists of a Client, an EKM Server, an Adversary,
a Management Server, an Analysis Server, and the commu-
nication hardware between these entities. This enables the
collected metadata to be used in the subsequent analysis
phase. We deploy an environment to simulate this extended
network model. Fig. 5 shows our implemented network topol-
ogy, actors, and nodes. There are three networks, namely:
� network 192.168.27.0 that includes a client and an ad-

versary,
� network 192.168.17.0 that includes an EKM Server and

a Management Server, and
� network 192.168.37.0 that includes an Analysis Server.
The Management Server pulls the log files from the EKM

Server and pushes them to the isolated Analysis Server, which
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FIGURE 6. The simulation environment configuration.

is responsible for parsing log files, training our model, and au-
tomating the outlier/anomaly detection. The result of analysis
is then pushed into the Management Server for notification
and integration.

We have configured our experimental environment as il-
lustrated in Fig. 6. Three Virtual Machines (VMs) run on a
VMWare Workstation. These include a TSF VM (the EKM
solution provided by QuintessenceLabs), a KALI Linux VM
(the Analysis Server), and a Windows 10 VM (the Man-
agement Server). These are real-world commercial software
products. The VMWare Workstation runs on a Windows 10
operating system, hosted by an Intel Core Desktop Machine.

Our Deep Learning model implementation makes use of
Python 2.7 and libraries including: Numpy 1.16.1, Scipy
1.2.3, Scikit_learn 0.20.4, Theano 1.0.5, TensorFlow 2.1.0,
Keras 2.7.0, Pandas 0.24.2, and Matplotlib 2.2.5 installed on
a KALI GNU/Linux 2021.2.

B. EVALUATION METRICS
This section defines the metrics used in our evaluation. These
are precision, recall, F1, and accuracy.

Precision is the ratio of the number of true positives to the
sum of true and false positives. Recall focuses on measuring
the ability of the methods to detect anomalous events. We can
calculate precision by:

precision = T P

T P + FP
(1)

and calculate recall by:

recall = T P

T P + FN
, (2)

and use (1) and (2) to calculate F1:

F1 = 2 × precision × recall

precision + recall
, (3)

where T P is true positives, FP is false positives, and FN is
false negatives. The accuracy score is calculated by dividing
the number of correct predictions by the total prediction num-
ber.

VII. DATA GENERATION AND PREPARATION
As the objective of the project is to be able to differentiate
between normal and abnormal (possibly malicious) enterprise

behavior using information obtained from the EKM metadata,
data must be generated for a variety of use conditions. For
the set of predefined scenarios outlined in Section V, we have
generated the Client to Server requests, including: Get-key,
Create-key, Activate-key, Add-attribute, Modify-attribute,
Revoke-key, and Destroy-key, for both normal and adversarial
activities. Through the Management Server, we pulled the
collected metadata on the EKM Server and pushed to the
Analysis Server for processing.

We parsed [35] the EKMS metadata and generated datasets
for training and testing. This includes the removal of charac-
ters that are common across all files (e.g., “.”, “_”, and blank
characters) and unnecessary words (e.g., “byte”). Also, empty
cells are replaced with “0”. The Analysis Server is to perform
the tasks discussed in this stage.

VIII. PROCESS, RESULTS, DISCUSSION, AND
COMPARISON
In this section, we first report on the process and our exper-
imental results for the two case studies, in line with the four
stages of our framework: automated outlier rejection (A), nor-
mal heuristics collection (B), automated anomaly detection
(C), and system notification and integration (D). Then, we
discuss our framework and model performance, and compare
it to the other approaches published in literature.

A. PROCESS AND RESULTS
This section reports on the process and our experimental re-
sults.

Stage “A” (Identical for Case Studies 1 and 2): We cap-
ture the EKMS metadata and generate a dataset associated
with various enterprise contexts and operations on the EKM
Server (as outlined in Section VII). The initial dataset in Stage
“A” of our framework contains 1526 data points, representing
mostly normal activities, with some outliers which need to be
removed.

Each parsed and normalized data cell must be converted
into an 8-digit hash value. This is to ensure that any change in
the cell information (before conversion) makes a huge change
after conversion, which helps our model to output a large
reconstruction loss for values with lower occurrence. Listing 2
shows an example of EKMS metadata and the hash value
associated with an “Activate-key” request from a user.

The initial dataset is then fed into our LSTM auto-encoder
model (refer to Fig. 4). Stage “A” utilizes two LSTM hidden
layers in both encoder and decoder, with 40 and 10 LSTM
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FIGURE 7. Automated outlier rejection in Stage “A”.

units, respectively. Note that our model incorporates the Rec-
tified Linear Activation Unit or “ReLU” which is the most
common choice of activation function in multi-layer neural
networks or deep neural networks. We set “Adam” as our
neural network optimizer algorithm. Adam is a learning rate
optimization algorithm for training deep learning models, de-
signed to accelerate the optimization process. This decreases
the number of function evaluations required to reach good
results. We set Mean Squared Error (MSE) for calculating our
loss function. For regression tasks, MSE is a popular choice
of loss function [13]. Compared to the Mean Absolute Error
(MAE), MSE is more sensitive to outliers. The number of
epochs and batch size are 256 and 64, respectively.

Fig. 7 shows the detected outliers in Stage “A” using our
LSTM auto-encoder model. These minority instances (within
the highlighted rectangle) are distant from the mean or lo-
cation of the distribution, with a reconstruction loss value
greater that 10−2. These observed outliers represent abnor-
mal behavior. If the final training dataset contains anomalies,
our model learns to reconstruct anomalies with a minimal
error, resulting in the dismissal of similar types when new
data is processed. Hence, this stage is necessary, to identify
only those EKM metadata elements distinctly associated with
normal behaviors.

After removing these outliers, we have a dataset of behav-
iors under normal operating conditions. This dataset enables
us to proceed to the Stage “B” in which the trained model for
anomaly detection can be saved for future anomaly detection
purposes. Please note that a newly generated dataset in Stage
“A” of our framework requires a new outlier rejection.

Stages “B”, “C”, and “D” (for Case Study 1): The dataset
used in Scenarios 1 and 2 contains 1404 data points, repre-
senting normal operating conditions. This is achieved after
passing the “Stage A” of our framework. The Testing dataset
contains 54 data points, which represents a mix of normal (4
samples) and abnormal (50 samples) operating conditions.

Each parsed and normalized data cell is converted into an
8-digit hash value. This is to ensure that any change in the cell
information (before conversion) makes a huge change after
conversion, which helps our trained model to output a large
reconstruction loss value for any new input data that has never
seen before.

Stage “B” in Case Study 1 utilizes two LSTM hidden layers
in both encoder and decoder, with 40 and 10 LSTM units,

FIGURE 8. The training losses.

FIGURE 9. Distribution of calculated loss in Training set.

FIGURE 10. The results of anomaly detection over time.

respectively. Our model incorporates the “ReLU” activation
function, the “Adam” neural network optimizer algorithm, and
MSE for calculating our loss function.

The dataset is split for training and validation. We instan-
tiate and train our model on 1333 samples, and validate our
model on 71 samples, where the number of epochs and batch
size are 256 and 64, respectively.

Fig. 8 shows the training losses, and is used for evaluating
our model’s performance. We need to determine a suitable
threshold value for identifying an anomaly. The distribution of
the calculated loss in the Training set can help us to find such
a threshold (refer to Fig. 9). Hence, we can set a threshold
above the “loss level” so that false positives are not triggered.

From the above loss distribution (Fig. 9), we see that the
maximum loss value is ≈ 0.01. Therefore, we set an anomaly
threshold value of 0.01, a threshold above the “loss level” so
that false positives are not triggered. This flags an anomaly
when the reconstruction loss in our Test set is greater than
0.01. Fig. 10 visualizes the results over time, where the red
line indicates our threshold value of 0.01.

Our LSTM auto-encoder model for anomaly detection is
able to flag the anomalous activities within an observed log
(Stage “C”), with 100% accuracy. Listing 3 shows four rows
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FIGURE 11. The number of requests received in each one second (Training
set).

in the final report generated for Testing set in Stage “D”.
Observing these four rows, three rows contain anomalous
events (flagged as True) where:

1) the request from user name “client” does not usually
come from IP address “192.168.27.5” at “02” o’clock,

2) the request from IP address “192.168.27.2” does not
usually come from user name “Insider”, and

3) ‘the ‘Modify Attribute” request is not part of the usual
EKM activities.

Hence, the loss value for each of the above three items goes
over the Threshold value 0.01. However, the last request in the
list is a part of usual EKMS activities, and as a result, the loss
value for this item goes under the Threshold value 0.01.

Stages “B”, “C”, and “D” (for Case Study 2): The dataset
used in Scenarios 3 and 4 contains 2149 data points, repre-
senting normal operating conditions within 706 seconds. This
is achieved after passing the “Stage A” of our framework.
The Testing dataset contains 1309 data points within 232 sec-
onds, which represents a mix of 70 normal seconds (105 data
points) and 162 abnormal seconds (1204 data points). In each
one second, a different number of requests (data points) was
recorded. For instance, at “01:06:08” on “2021.09.05” four
requests were received. This format for recording the number
of requests per second is used for both training and testing.

Fig. 11 shows the frequency of requests received in each
one second in our Training dataset. The highest number of
requests received per second is 5. Therefore, we consider the
upper bound to be 5 requests per second.

FIGURE 12. The number of requests received in each one second (Testing
set).

FIGURE 13. The training losses.

FIGURE 14. Distribution of calculated loss in Training set.

Fig. 12 show the frequency of requests received in each one
second in our Testing dataset. The highest number of requests
received per second is 10. Therefore, we expect our automated
model to detect any one-second time period in which the
number of received requests is higher than our upper bound
that is 5 requests per second.

Stage “B” in Case Study 2 utilizes two LSTM hidden layers
in both encoder and decoder, with 16 and 4 LSTM units,
respectively. Our model incorporates the “ReLU” activation
function, the “Adam” neural network optimizer algorithm, and
MAE for calculating our loss function. Please note that both
MSE and MAE can be used in this Case Study. As we reduced
the number of features to only the number of requests per
seconds, MAE can produce enough sensitivity to outliers.

The dataset is split for training and validation. Then, we
instantiate and train our model on 670 samples, and validate
our model on 36 samples, where the number of epochs and
batch size are 100 and 10, respectively.

Fig. 13 shows the training losses, and is used for evaluating
our model’s performance. We need to determine a suitable
threshold value for identifying an anomaly. The distribution
of the calculated loss in the Training set can help us to
find such a threshold (refer to Fig. 14). Hence, we can set
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FIGURE 15. The results of anomaly detection over time.

a threshold above the “loss level” so that false positives are
not triggered.

From the above loss distribution (Fig. 14), we see that the
maximum loss value is ≈ 0.003. Therefore, we set an anomaly
threshold value of 0.003, a threshold above the “loss level” so
that false positives are not triggered. This flags an anomaly
when the reconstruction loss in our Test set is greater than
0.003. Fig. 15 visualizes the results over time, where the red
line indicates our threshold value of 0.003.

Our LSTM auto-encoder model for anomaly detection is
able to flag the anomalous activities within an observed log
(Stage “C”), with 100% accuracy. Listing 4 shows four rows
in the final report generated for Testing set in Stage “D”. Ob-
serving these four rows, two rows contain anomalous events
(flagged as True) where the number of requests per second
goes over 5 which means the loss value goes over the Thresh-
old value 0.003.

B. DISCUSSION
According to our investigations, the required data for training
to reach the highest level of accuracy can be reduced. In Case
Study 1, we used 1404 samples under “normal” condition.
We can get equivalent accuracy with only 400 samples with-
out changing the Threshold. However, for further reductions
(from 400 to 100 samples) to retain this accuracy we needed
to increase the Threshold value to ≈ 0.1.

While we did not use a GPU with TensorRT, the processing
time for the model was short. The recorded training time in
Case Studies 1 and 2 are ≈ 17 and ≈ 18 seconds, respectively.
Also, the saved model could perform detection in a dataset of
1500 samples in ≈ 20 milliseconds.

In some scenarios there may be a level of false-positive
detection. For example, if new staff come on or take on new
responsibilities, “normal” access patterns change. This change
in pattern could be detected as abnormal which is important in
resilient systems where the system must continue to carry out

its mission in the face of adversity. This issue can be solved
by excluding the new staff member from the datasets during
data preparation. The new staff member’s activity can be sep-
arately monitored and logged (e.g., for one week) before its
amendment into the main dataset of normal behavior.

C. COMPARISON
Table 1 presents a summary of the focus and details found
in the prior work [26], [27], [28], [29], [30], [31], [32], [33]
discussed in Section II, for comparison purposes with our
research.

Compared to the other approaches published in literature
(e.g., [26] and [27]), our framework guarantees 0% false neg-
ative detection. Also, in both Case Studies, the results prove
that our framework can perform automated detection with
100% accuracy.

The outlier rejection method presented by Maleki et al. [31]
applies a probabilistic approach that assigns a probability to
the data points; a probability criterion which evaluates the
likelihood that a data point deviates from the normal pattern,
addressing the outlier rejection problem. The main limitations
of this approach is availability and reliability of the histori-
cal data. It is assumed that the underlying system has been
working for some time, and sufficient data has been observed.
Additionally, it is also assumed that the underlying system is
correctly designed so that an abnormal operation’s probability
is considerably lower. The approach presented in this study
does not introduce such a limitation. Our proposed outlier
rejection in “Stage A” generates datasets of normal behavior
without the need for reliability of the historical data. This is
illustrated in Fig. 7.

The detection method presented by Maleki et al. [31] fails
to produce a large reconstruction error against minor changes
in a given EKM observed log (in “Stage C”). For example,
the requests from an unseen IP address from a known user
is not detected. In our proposed “Stage A” (for both Case
Studies) and “Stage B” (for Case Study 1), each parsed and
normalized data cell must be converted into an 8-digit hash
value. This is to ensure that any change in the cell information
(before conversion) makes a huge change after conversion,
which helps our model to output a large reconstruction loss for
values with lower occurrence or minor change (e.g., change in
IP address or arrived packet size). This is outlined in Listing 3.

Table 2 shows the performance comparison of our work to
the detection method presented by Maleki et al. [31] which
is an LSTM auto-encoder based solution. This comparison is
based on different datasets. A detailed performance compar-
ison based on EKM metadata is provided in Table 3 which
demonstrates the superiority of our approach where minor
changes occur in the IP address and packet size information.

IX. CONCLUSION AND FUTURE DIRECTION
This article presented a framework for anomaly detection
based on EKMS metadata. To the best of our knowledge,
this is the first article exploring the use of EKM metadata for
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TABLE 1. Comparison With Existing Frameworks

TABLE 2. Comparison With Existing LSTM Auto-Encoder - Different
Datasets

TABLE 3. Comparison With Existing LSTM Auto-Encoder - EKM Dataset
(Refer to Note 1)

enterprise network anomaly detection. We demonstrated that
our approach is successful.

The framework involves four stages: automated outlier
rejection, normal heuristics collection, automated anomaly
detection, and system notification and integration with other
security tools. This framework is developed through investiga-
tion of EKMS metadata, determining characteristics to extract
for dataset generation, and looking for possible patterns from
which behaviors can be inferred. For automated labeling and
detection, a deep learning-based model was applied. Our
framework not only facilitates automated anomaly detection
in EKM systems, but also can be used as a general-purpose
framework to help improving the design of past and future

proposals in anomaly detection. The framework should per-
form in exactly the same way if hardware modules are used.

As noted in Section I, the client requests can be encoded
in a KMIP format and transmitted to the EKM server. The
server decodes the request using a KMIP decoder to form an
intermediate representation, which is used by the server API
to process the request. However, to the best of our knowledge,
there have been no research efforts that explore the use of
KMIP metadata for enterprise network anomaly detection.
This is a potential avenue for future research.
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