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ABSTRACT Computation offloading in Internet of Vehicles (IoV) networks is a promising technology for 

transferring computation-intensive and latency-sensitive tasks to mobile-edge computing (MEC) or cloud 

servers. Privacy is an important concern in vehicular networks, as centralized system can compromise it by 

sharing raw data from MEC servers with cloud servers. A distributed system offers a more attractive 

solution, allowing each MEC server to process data locally and make offloading decisions without sharing 

sensitive information. However, without a mechanism to control its load, the cloud server’s computation 

capacity can become overloaded. In this study, we propose distributed computation offloading systems 

using reinforcement learning, such as Q-learning, to optimize offloading decisions and balance computation 

load across the network while minimizing the number of task offloading switches. We introduce both fixed 

and adaptive low-complexity mechanisms to allocate resources of the cloud server, formulating the reward 

function of the Q-learning method to achieve efficient offloading decisions. The proposed adaptive 

approach enables cooperative utilization of cloud resources by multiple agents. A joint optimization 

framework is established to maximize overall communication and computing resource utilization, where 

task offloading is performed on a small-time scale at local edge servers, while radio resource slicing is 

adjusted on a larger time scale at the cloud server. Simulation results using real vehicle tracing datasets 

demonstrate the effectiveness of the proposed distributed systems in achieving lower computation load 

costs, offloading switching costs, and reduce latency while increasing cloud server utilization compared to 

centralized systems.  

INDEX TERMS Computation offloading, radio resource slicing, reinforcement learning, Q-learning, 

distributed system, mobile-edge computing (MEC), cloud computing, Internet of vehicles. 

 

I. INTRODUCTION 

   In modern Internet of Vehicles (IoV) transportation 

systems, vehicles are connected in networks to support 

applications like smart driving, traffic management or 

augmented reality (AR). These tasks may require significant 

computing power and low-latency processing [1]. To manage 

these demands, vehicles can offload some of their 

computational tasks to nearby servers, such as edge servers, 

or to more powerful servers, such as cloud servers. This 

process, called task computation offloading, helps reduce the 

load on vehicles and improves efficiency. It is important to 

ensure that server computing capacity and radio 

communication resources are used optimally, to achieve a 

balanced computational load while meeting task transmission 

rates, latency and reliability requirements. Radio access 

network (RAN) slicing enables resource sharing among base 

stations (BSs) for finer orchestration, improving utilization 

and ensuring quality-of-service (QoS) isolation. Network 
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function virtualization (NFV) virtualizes radio resources into 

a centralized pool, which is then managed and dynamically 

allocated by a software-defined networking (SDN)-enabled 

slicing controller based on network traffic and QoS demands 

[2]. 

   Centralized systems involve offloading computational tasks 

from vehicles to a central cloud server via a macro base 

station (MBS), which can handle complex tasks efficiently 

than vehicles, but may compromise privacy due to the 

collection of sensitive raw data such as location and 

behavioural information from vehicles. An inherent 

limitation of centralized cloud computing system is the long 

propagation distance from mobile vehicles to the remote 

cloud server, which is not suitable for massive data and delay 

sensitive tasks [3]. Moreover, existing centralized methods 

suffer from dramatic increase in control overhead especially 

as the system scale increases, hence limiting their application 

in vehicular networks [4]. In contrast, distributed systems 

with mobile-edge computing (MEC) paradigm distribute the 

computation tasks among edge servers located at small base 

stations (SBSs), preserve privacy in vehicular networks by 

reducing data exposure to a central point, release the burden 

on the MBS, and support latency-critical and computation-

intensive applications [5]. Deploying MEC servers near BSs 

enables local processing of computational tasks, reducing 

latency and supporting time-sensitive applications like 

autonomous driving and real-time analytics. This proximity 

makes MEC practical for dynamic vehicular networks in 

dense urban and suburban areas. 

   The increasing demands of advanced vehicle applications 

can overwhelm the distributed servers, resulting in longer 

computation times and higher power consumption. 

Additionally, the resources of the distributed servers are 

expensive and increase the cost of the system [6]. Hence, the 

resources of the cloud server can be shared among the SBSs, 

allowing vehicles to offload tasks either to the edge server at 

SBS within its coverage area or to the cloud server at MBS 

[7]. However, the cloud server can be overloaded by vehicles 

at certain SBS without given portion of the resource to other 

vehicles presented at other SBS.  Furthermore, the challenge 

is still present by limited radio resources and the dynamic 

nature of vehicular networks that require sophisticated 

strategies to maintain seamless connectivity and 

performance. Due to the correlation between the two 

problems, computing task offloading and radio resource 

slicing, it is important to design a joint optimization 

framework to determine an optimal radio resource slicing 

ratio and computation capacity for efficient computation load 

balancing. 

   Unlike existing distributed approaches, our framework 

introduces a novel joint two-timescale optimization with a 

threshold ratio mechanism incorporated into optimization 

problem constraints for cloud resource allocation, balancing 

computational load while minimizing task-switching cost. 

We formulated the reinforcement learning (RL) reward 

function to fairly allocate the computation resources of the 

cloud server located at macro base station (MBS). Two 

threshold-ratio based distributed approaches are proposed, 

the first approach, fixed-threshold distributed system (Dist-

fixed), uniformly distributes the resource among the small 

base stations (SBSs). The second approach, adaptive-

threshold distributed system (Dist-adptv), dynamically 

distributes the cloud computation resource among the SBSs 

using a fair-proportional approach based on the load 

requirements which are calculated from previous time slot 

and sent to the main server to compute suitable ratios for 

each agent. Q-learning (QL) is used by each agent to 

optimize the task offloading decisions across scheduling slots 

in small timescale, to balance the computation load across the 

network while controlling the number of task offloading 

switching. A large time-scale convex optimization problem is 

then solved at the main server, which does not require 

sensitive data to be shared by the agents, to compute optimal 

radio resource slicing ratio that maximizes the overall 

communication resource utilization with guaranteed QoS. 

The advantage of the Dist-fixed approach is to ensure 

fairness by uniformly distributing cloud resources across 

BSs, reducing the risk of overloading specific BSs and 

simplifying implementation. This makes it well-suited for 

stable or predictable traffic load environments. Meanwhile, 

the Dist-adptv approach dynamically adjusts resource 

allocation based on load requirements, allowing the system to 

respond effectively to rapid changes in traffic patterns or load 

imbalances, making it ideal for highly dynamic and dense 

vehicular scenarios. These mechanisms enable fair and 

efficient resource utilization while jointly optimizing task 

offloading and radio resource slicing. Specifically, the 

contributions of our work can be summarized as follows: 

1) We consider a vehicular network that includes 

distributed edge servers and a cloud server. The vehicles 

can choose to offload the task either to MBS or SBS. 

Our solution model consists of two timescales. At the 

small timescale, we solve stochastic optimization 

problem using Q-learning technique to minimize the 

total system cost that includes imbalanced computation 

load cost and offloading switching cost, and takes into 

consideration the cloud server computation resource. 

The Q-learning agents are deployed at each SBS. At the 

large timescale, convex optimization problem is solved 

at the main server to obtain radio resource slicing ratios 

to maximize the overall communication resource 

utilization.  

2) Since the distributed system without a mechanism to 

control the MBS server resource can cause imbalance 

load distribution (unaware of the cloud server 

workload), we propose a fixed distributed (Dist-fixed) 

approach to fairly share the cloud server resource, and an 

adaptive (Dist-adptv) approach to divide the 

computation resource among BSs based on computation 

load requirements obtained from each agent at the 

previous time slot. 
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3) Extensive simulation results are presented using real 

vehicle traffic dataset to demonstrate the effectiveness of 

the proposed distributed frameworks compared to 

centralized scheme in terms of cost of imbalanced 

computation load, offloading switching, latency, MBS 

overload rate and utilization.  

   The remainder of this paper is organized as follows: 

Section II provides a review of related works. Section III 

presents the system model that includes network model, 

communication model, small time-scale computing task 

offloading model, problem formulation, and large timescale-

based radio resource slicing model. Section IV presents our 

proposed approaches. Section V provides information about 

the dataset, network simulation parameters, experimental 

results and discussion for small-time scale and large-time 

scale analyses. Finally, the conclusion is drawn in Section 

VI. 

II. RELATED WORKS 

   Existing centralized methods [8] suffer from inherent 

property of depending on a central controller to handle large 

computing tasks, causing a dramatic increase in control 

overhead, especially as the system scale increases, hence 

limiting their application in vehicular networks [6]. 

Reinforcement learning (RL) methods have shown great 

potential in computation task offloading. Papers [9-11] 

designed different task offloading schemes based on RL 

techniques, which behave well in reducing average delay and 

improving resource utilization. However, to fully utilize the 

resources in the vehicular networks and further enhance the 

QoS, there is a need to jointly optimize task offloading 

decisions, allocation of radio resources at the RAN and 

computation resources at the cloud computing server.  

   Jiang et al. [12] used Q-learning to obtain an optimal policy 

for computation offloading and resource allocation in a 

multi-user MEC system, considering different resource 

requirements and time-varying system conditions in a 

dynamic system. The objective was to minimize the long-

term energy consumption of all the UEs considering the 

latency constraint and dynamic computation resource 

requirements of heterogeneous computation tasks. Dab et al. 

[13] employed Q-learning in multi-user WiFi-based MEC 

architecture for task assignment and radio resource allocation 

to minimize the energy consumption on the mobile terminal 

side while considering latency constraint. Due to the limited 

computation capability of the mobile edge computing (MEC) 

systems, which restrict the scalability of offloading, Gao et 

al. [14] proposed to jointly optimize the computation 

resource allocations and offloading decisions for 

collaborative computing system that combines local 

computing (mobile device), MEC (edge cloud) and central 

mobile cloud computing (MCC). Once the task is received by 

edge cloud, it will be split into parts, one part will be 

transferred to the central cloud and the other part is executed 

on the edge-cloud server, enabling parallel processing. Q-

learning was used to minimize the system loss function 

formulated based on time and energy consumptions to 

optimize offloading decisions. Jiang et al. in [15] proposed to 

solve the task offloading and resource allocation problem for 

Internet of Vehicles (IoV) networks using Q-learning. 

Bayesian classifier was first implemented to classify the task 

according to latency and energy consumption requirements. 

Then each vehicle selects one of the two available offloading 

modes. The first mode is to offload the task to other vehicles 

through vehicle-to-vehicle (V2V) communication, if the 

vehicle has a higher energy requirement. Otherwise, it selects 

to offload the task to an edge server through the MEC 

offloading mode. In the V2V offloading mode, the radio 

resources need to be allocated, and in the MEC offload 

mode, the computing resources need to be designated.  

   Deep RL often struggles to achieve good performance and 

the trained system may behave unpredictably if the 

environment differs even slightly from the training data [16]. 

To address the problem of instability in the multi-agent 

environment and to attain queue stability during resource 

allocation, Kumar et al. [17] proposed a Lyapunov-based 

multi-agent deep deterministic policy gradient (L-MA 

DDPG) technique to jointly optimize the task offloading and 

radio resource allocation. The main objective was to 

minimize the energy consumption and meet delay 

requirements between vehicles and edge servers due to 

vehicle mobility and dynamic environment. Since existing 

deep learning techniques suffer from slow learning rate and 

weak adaptability to dynamic multi-user conditions, Sharma 

et al. [18] proposed using first-order meta-learning with a 

deep Q-learning method for multi-task offloading in edge-

cloud networks. In conventional actor-critic RL network, the 

large number of parameters makes the training model 

inefficient, and the usage of one-step temporal difference 

learning causes slow convergence. Hence, Geng et al. in [6] 

proposed to use an improved actor–critic with 2D 

convolution and LSTM layers to extract features, and joint 

mechanism of prioritized experience replay and adaptive 

learning to enhance the learning efficiency. The proposed 

method was used for distributed computation offloading in 

vehicular edge computation networks with the objective to 

minimize the delay and energy consumption. 

   Ye et al. [7] proposed a two-tier framework that integrates 

radio access network (RAN) slicing and computation 

offloading for autonomous vehicular networks (AVNs) to 

address the dynamic nature of AVNs. On a smaller timescale, 

they optimized task scheduling using a cooperative multi-

agent deep Q-learning (MA-DQL) with fingerprint 

algorithm, to learn the stationary task offloading policy with 

stabilized learning performance, and to balance 

computational load and minimize task offloading variations. 

On a larger timescale, they optimized radio resource slicing 

among base stations to maximize network utility while 

ensuring QoS for autonomous driving tasks. However, all 

local agents’ actions need to be synchronized at the main 

server to calculate a joint system reward, which is then sent 

back to the agents to train the module.  In addition, MA-DQL 

algorithm can suffer from unstable convergence due to 
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factors like insufficient training data and suboptimal 

exploration strategies leading to divergence in the learned Q-

values. Huang et al. [19] used deep RL technique to jointly 

optimize computation offloading and resource allocation 

with the aim to minimizing the system cost of processing 

tasks while meeting the processing latency and transmission 

rate constraints for IoV networks. The cost of processing 

tasks contains computation cost and communication 

bandwidth rental cost. The central controller hosts the DRL 

agent to make the task offloading and resource allocation 

decisions. To tackle the challenges of random traffic flow 

and dynamic network environment scenario, Markov 

decision process model was employed for formulating the 

problem, then twin delayed deep deterministic policy 

gradient (TD3) technique was used to deal with the 

continuous states and action spaces. However, their proposed 

method consists of two neural networks, a main network and 

a target network, each with one actor network and two critic 

networks. The complexity in the proposed technique was 

introduced to make the training process more stable. In 

addition, the DRL agent was employed at the centralized 

controller which collects private data such as status of 

vehicles tasks, bandwidth resources and edge server 

computation resources.   

   Compared to existing works, our approach differs in 

methodology and focus. Unlike [7], which maximizes 

network utility through cooperative MA-DQL for task 

scheduling, where the rewards of the RL agents are 

synchronized at the centralized server, our proposed method 

updates the rewards locally while taking into consideration 

the limited cloud resources. Specifically our framework 

employs fixed and adaptive-threshold mechanisms to ensure 

balanced computation load by fairly and dynamically 

allocating cloud resources among BSs. Additionally, while 

studies like [7, 12, 14] optimize delay or energy 

consumption, our approach incorporates a switching cost to 

minimize task offloading variations, enhancing stability in 

dynamic vehicular networks. In contrast to centralized 

methods such as [19], which require sharing sensitive vehicle 

data, our framework preserves privacy by enabling efficient 

distributed optimization without raw data exposure to the 

centralized server. Furthermore, both our work and [7] adopt 

a two-tier framework, with the upper layer optimizing RAN 

slicing over a longer timescale and the lower layer focusing 

on distributed computation offloading. While [7] employs 

DQL, our work uses QL for its simplicity, computational 

efficiency, and suitability for low-complexity scenarios in 

vehicular networks. Unlike Deep QL or DDPG, QL does not 

rely on extensive computational resources or large datasets, 

making it a more practical choice for efficient decision-

making in resource-constrained settings. Table 1 summarizes 

the related studies.    

III. SYSTEM MODELS 

   In this section, we introduce the system models, including 

the network, communication channel, computation task, 

offloading switching models, and define their associated 

variables. Then, we present the problem formulation for both 

small timescale and large timescale.  

A. NETWORK MODEL 

   We consider a macro-cell network centered around a single 

main base station (MBS) called   , positioned at the center of 

a cell to offer broad communication coverage along a road 

segment for vehicles, as illustrated in Fig. 1. This macro-cell 

is supplemented by several smaller cells, each centered 

around a small base station (SBS), labelled as             . 

These SBSs are placed near the road within the macro-cell's 

coverage area to improve network capacity. To support the 

network's computational needs, there is a main server linked 

to the MBS for heavy-duty computations. Additionally, each 

SBS is accompanied by a local server equipped with 

lightweight computing resources. These local servers are 

physically connected to their respective SBSs. As vehicles 

travel along the road segment, they may enter or exit it over 

time. We assume that each vehicle remains within the 

coverage range of both the MBS and one of the SBSs, thus 

maintaining a connection to both base stations. To enable 

TABLE 1: Summary of related works 

Ref. Key Approach Optimization Focus Framework Type Learning Algorithm 

[6] Distributed computation offloading  

Optimizing computation 

offloading for delay and energy 
efficiency 

Distributed approach 
Deep RL (improved 

actor–critic network) 

[7] Joint RAN slicing and computation offloading 

Optimizing RAN slicing and task 

offloading (load balancing and 
offloading switching) 

Two-tier framework 

(centralized and 
distributed) 

DQL 

[12] 
Joint computation offloading and MEC resource 

allocation 

Minimizing energy consumption 

for task offloading 

Distributed (one MEC 

considered) 
QL 

[14] 
Task offloading and resource optimization in a 

collaborative cloud computing system 

Task offloading optimization with 
resource constraints 

Task splitting ratio. 

Centralized (tasks 
partially executed on 

edge and cloud) 

QL 

[19] 
joint optimization of computation offloading and 

bandwidth resource allocation scheme 

Total cost of processing tasks 

includes computation cost and 
bandwidth leasing cost 

Centralized approach 

Twin delayed deep 

deterministic policy 
gradient (TD3) 

Our 

work 

+ Joint RAN slicing and computation offloading. 

+ Dist-fixed and Dist-adptv mechanisms for 
resource allocation of cloud server. 

Optimizing RAN slicing and task 

offloading (load balancing and 
offloading switching) 

Two-tier framework 

(centralized and 
distributed) 

QL 
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tractable analysis, we divide the road segment under the 

MBS's coverage into distinct zones, denoted as     
                . Each zone represents a segment of the 

road. At any given scheduling slot, we assume that the task 

of offloading decisions for all vehicles within a particular 

zone are the same. We denote the number of vehicles present 

in zone z of base station,   , at time slot, t, as       , and we 

assume that this number remains constant during the time 

slot. 

 

 
Fig.1. Illustration of the vehicular network with one MBS and three 

SBSs  

B.  COMMUNICATION MODEL 

According to the Shannon capacity formula, the uplink 

transmission rate from each vehicle in a specific zone (z) to 

base station (BS)    at a particular scheduling slot (t) is 

determined by the following equation [7]: 

       
  

∑      
             

    (        ) (1) 

where    represents the available bandwidth, which equals 

   if       (indicating the MBS), and     otherwise (for 

SBSs). The radio resources on    are divided equally among 

the vehicles connected to it for task offloading at slot t. The 

term ∑      
              represents the total number of tasks 

offloaded from vehicles in zone z to server    at time slot t. 

       is the task offloading indicator for vehicles in zone z of 

   at slot t. It is set to 1 when all tasks from zone z are 

offloaded to    and 0 otherwise. This decision is dynamic, 

based on server capacity and latency requirements.        

represents the uplink signal-to-noise ratio (SNR) or signal-to-

interference-plus-noise ratio (SINR). It is calculated 

differently based on whether k equals 0 (MBS) or not (SBS) 

as follows: 

  

       
            

  
                                             (2) 

       
            

∑                                
            (3) 

 

In (2) and (3),    represents the uplink transmission power, 

which remains constant and uniform for all vehicles under 

base station    during a given planning window. The term 

       signifies the uplink channel gain from vehicles within 

zone z to base station    at slot t. This channel gain includes 

path loss and log-normal shadowing, and is averaged across a 

group of vehicles within the zone.      denotes the small-

scale Rayleigh fading component under base station    at 

slot t, and    indicates the average background noise power 

[20]. Additionally, for SBSs, the interference experienced by 

a vehicle in zone   under    originates from uplink 

transmissions from vehicles occupying the same zone    

position under every other SBS. These factors play a crucial 

role in determining the effectiveness and reliability of 

communication within the network. 

C.  COMPUTING TASK AND OFFLOADING SWITCHING 
MODELS (SMALL TIME-SCALE) 

   We assume that each computing task has a fixed size of H 

bits and a latency bound requirement, D, which is set to be 

equal to the duration of a scheduling slot, T. Initially, we 

compute the computation load ratio of the server connected 

to base station     (where k = 0, 1, . . ., n) at scheduling slot t 

as: 

     ∑                
  

   
    

 (4) 

where    denotes the computation capacity of the server 

connected to base station   , measured in CPU cycles per 

second. Additionally, φ denotes the computation intensity, 

indicating the number of CPU cycles needed to process one 

bit of information. The load ratio should be less than one, if it 

exceeds one, it indicates that the server is overloaded. 

   The cost associated with having an imbalance distribution 

of computation load among the servers at slot t, denoted as 

    , is represented by the maximum instantaneous 

computation level as [7]: 

        
    

{    } (5) 

where the set B = {  ,   , . . .,   } refers to all the base 

stations being considered. The cost      is designed to 

support an even distribution of computational tasks, 

preventing server overload and underutilization. The cost 

associated with changing task offloading decisions from slot 

    to slot t, denoted as     , involves determining the total 

number of offloading switching events between the MBS and 

one of the SBSs for vehicles across all road zones, given by: 

     ∑ ∑ ∑                

               

 
(6) 

where  ’ represents the set comprising both the MBS and the 

SBS that covers zone z.  

   The overall cost of balancing computation load, while also 

considering the cost associated with switching task 

offloading decisions at slot t, is determined as a weighted 

sum of      and     , given by [7]: 

                   (7) 

where   is a real-valued weighting factor ranging between 0 

and 1. Our primary objective is to balance computation loads 
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among BSs while minimizing variations in task offloading. 

Constraints include computation capacity and task offloading 

latency. We achieve this by employing an MDP (Markov 

Decision Process) formulation, which captures network states 

and model the relationship between network states and 

offloading actions. At each scheduling slot t, the formulation 

includes network states   , task offloading actions    

extracted from policy        that maximize the 

instantaneous reward function         , and state transition 

probabilities                .    includes parameters such as 

numbers of vehicles   , uplink SINR (or SNR)   , and task 

offloading actions      taken for previous slot      . The 

problem is presented as a stochastic optimization framework, 

aims to balance computation load while minimizing 

variations in task offloading, given by: 

 

       
 

                 

   

{
 
 
 

 
 
       ∑         

     

                               

      ∑              

    

 
   

  
                         

       
 

      

                                      

 
(8) 

where constraint (8a) specifies that vehicles in zone z must 

offload tasks to either the MBS or the SBS covering the zone 

during each time slot, constraint (8b) states that the 

computation load per time slot on each server must not 

exceed its capacity, and lastly constraint (8c) dictates that the 

time needed to offload task (offloading latency) must be less 

than the required latency bound, D. 

D.  RADIO RESOURCE SLICING (LARGE TIME-SCALE) 

   In order to accomplish computation load balancing with 

nominal task offloading switching, we optimized the task 

offloading decisions across the small time slots. Based on 

stationary task offloading policy, it is possible to further 

optimize the radio resource slicing between the available BSs 

of the vehicular network to efficiently maximize the total 

communication resource utilization. The average uplink 

transmission rate from the vehicles in zone z to BS can be 

calculated as [7]: 

     
           

    

 (9) 

where           represents the total radio resources, 

   is bandwidth allocated for MBS and    is bandwidth 

allocated for SBS.    represents the ratio of radio resources 

sliced for base station   , (where     is the radio resources 

of the MBS, and         is the radio resource of each 

SBS).      is the efficiency of the uplink spectrum averaged 

over L time slots, given by: 

     
 

 
∑      (        )

 

   

 (10) 

     represents the average fraction of radio resources 

reserved for the vehicles in zone z of   , given by: 

     {

    

∑              

           

           

 (11) 

where      is the average number of the vehicles in road 

zone z of base station   , averaged over L time slots. 

To determine the average network utility achieved when the 

tasks are offloaded from the vehicle in zone z of   , a 

concave logarithmic function with diminishing marginal 

value can be used: 

                  (12) 

To maximize the network utility for task offloading, a large 

time-scale RAN slicing problem can be formulated to 

determine the optimal ratios,    , of sliced radio resources on 

   , given the optimum average fraction of radio resources, 

    , reserved for the vehicles in zone z of   , as function of 

      and     , to ensure QoS. The objective function is 

expressed as follows [7]: 

 

       
  

∑ ∑                 

        

  

   

{
 

 
                                          

                                         

                                                   

                                                      

 

(13) 

where      is minimum average uplink task transmission rate 

(in bps) used to statistically ensure the task offloading delay 

is within the delay bound D, given by [21]: 

      
       

    (  
    
  

)
 (14) 

where   is the probability bound of delay violation, and 

       , where   is the average task generation rate, 

given as        where    is probability of Bernoulli 

distribution that was assumed to be used to generate the task 

at each time slot,    is also known as vehicle activation 

probability. In P2, constraint (a) is used to ensure the 

probability delay bound for task offloading is met, constraint 

(b) ensures the tasks receive the minimum required frame 

rate, constraint (c) indicate all the SBSs reuse the same 

portion of the sliced resources. Finally, the slicing ratio 

constraint (d) is used to ensure that its value is between 0 and 

1. For each large timescale, MATLAB CVX toolbox can be 

used to solve the convex optimization problem P2, where 

different network parameters are initiated, and different task 

offloading policy is obtained based on solving P1. 

IV. PROPOSED APPROACH 

   In this section, we present our proposed methods to solve 

the task offloading decision at small timescale, and radio 

resource slicing at large time-scale. 

A.  SMALLTIME-SCALE BASED DISTRIBUTED TASK 
OFFLOADING  

   The MDP formulation described in (8) can be addressed 

using reinforcement learning (RL) methods such as Q-

learning. Q-learning is a fast and efficient RL technique.  Q-
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learning solves MDP by iteratively learning an optimal 

policy. The policy is implicitly defined by selecting actions 

based on the Q-values stored in the Q-table. The process 

involves initializing a Q-table to store state-action values, 

selecting actions based on exploration-exploitation trade-offs, 

and updating Q-values based on observed rewards and state 

transitions. Specifically, the Q-value for each state-action 

pair is iteratively adjusted using the Bellman equation, given 

by [22]: 

                       

  [        

     
    

            ] 

(15) 

where   is the learning rate, influencing the weight of new 

information, and   is the reward discount factor, impacting 

the importance of future rewards. This iterative process 

continues until convergence, allowing the agent to learn the 

optimal policy for decision-making in the given environment. 

Then, the optimal policy is extracted from the action with the 

highest Q-value for each state from the Q-table. In this 

context,    denotes the network state characterized by 

environment observation    {                   } at 

scheduling slot t, where                   ,      
                    , and                       . The 

action is taken by agent at time slot t to determine a system 

reward function,   , formulated as:  

          ∑  (∑              

    

 
  

  

  
)

    

    ∑ ∑  (
 

      

        )

        

 

(16) 

where    and    represent the penalties incurred when 

constraints (8b) and (8c) are violated in (P1), respectively. 

The function      is an indicator function that equals 1 if a 

condition is met and 0 otherwise. The variable    is 

expressed as a negative function of the computation load 

balancing cost, incorporating penalties for breaching 

computation capacity and task offloading latency constraints. 

For the centralized system and distributed system without 

threshold value (Dist-NoThrs),   
     in equation (16), 

however, for the distributed system with threshold, it is given 

as: 
  

                       

  
                                

 (17) 

where     represents the ratios that are feedback by the MBS 

for each SBS to determine how much cloud server resource 

is allowed for utilization in the next time slot. The proposed 

algorithm for task offloading can be summarized as follows:  

 

Algorithm 1: Task offloading based on QL: 
Initialize total Bandwidth, W, and Initialize bandwidth slicing 

ratio for MBS,    

   = W*  ;         = W*(1-  ); 

Initialize Zone number 

Obtain number of vehicles        at each zone, and their locations 

from dataset 

Generate environment state:         ,          ,         . 

Initialize Q-learning parameters: 

- Q-table 

- Learning rate, discount factor and total Episodes 

for any time slot, t = 1: L     

 // initialize action for current time slot 

Action zones  = zeros(Zone number,1); 

for any episode = 1: total Episodes 

  Current zone = 1; 

Total reward = 0; 

while Current zone <= Zone number 

   Take Action based on greedy algorithm (exploit the Q-

table or explore the environment) 

// Update the action for the current zone 

Action zones(Current zone) = Action; 

// Calculate reward 

Reward is calculated based on equation (16) with 

inputs  (Old action, Action zones,         ,          , 

      ,   ,   , …) 

// Update total reward 

Total reward = total reward + reward; 

// Move to next zone 

Next zone = Current zone+1; 

// Update Q table based on Bellman equation as:  

Q(current zone, Action)=(1-α) Q(current zone, Action)+ 

α(Reward+ γ max(Q(next zone,:) ) ); 

// Update to move from current zone to next zone for 

next step 

Current zone = Next zone; 

  end 

Save episode reward; 

 end 

// Extract policy from Q-table 

[~, act]  = max(Q,[],2); 

// Store the optimized action for the current time slot 

Action zones per slot (t) = act;  

// Update the old action for next time slot 

Old action = act; 

// Based on the optimized action, metrics such as computation 

load ratio, cost 1, cost 2, total cost and latency can be 

calculated and saved. 

end 

 

   For a centralized single-agent system, where the main 

server can control all the network communications, and 

perform data processing and storage, the RL algorithm is 

applied only at the main cloud server, however, for our 

proposed distributed systems; the RL algorithm is applied 

at each local edge server. We discuss three distributed 

systems called no threshold value (Dist-NoThrs), fixed 

threshold value (Dist-fixed) and adaptive threshold value 

(Dist-adptv). In Dist-NoThrs approach, the system is 

unaware of the workload on the MBS server, therefore, it 

can increase the cost of imbalanced computation load. 

However, by formulating the reward function given to task 

offloading agent, we design two low-complexity distributed 

computation offloading strategies to achieve balanced and 

efficient offloading decisions, reduce latency and increase 

MBS utilization. The first strategy, Dist-fixed, equally 

divides the resources of the MBS server among all BSs, for 

instance,     in equation (17) is set to    . This scheme 
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does not require feedback from the agents and does not 

require assistant from the main server. In the second 

strategy, Dist-adptv, we assume the main server receives 

information about the MBS load from each SBS at time slot 

t,       . Based on this information, the main server 

performs simple calculation based on fair-proportional 

strategy to determine the normalized MBS load,         , 

and obtain ratio values that divide the MBS resources 

among the available SBS for next time slot    . A higher 

ratio indicates a higher MBS resource assigned to handle 

the load.  The ratio is then feedback to the SBS for RL 

agents to be used in the reward function, equation (16). The 

proposed adaptive algorithm can be summarized as follows:  

 

Algorithm 2: Cloud server computing resource allocation 

used in Dist-adptv scheme 
// Set initial ratio: 

       ,   where K is the number of SBSs 

// Calculate total load on the MBS server from all SBSs (i) at time 

slot t: 

      ∑      

 

   

 

// Calculate normalized MBS loads from all SBSs at time slot t:  

                          

// Obtain ratios for each local server at SBS for next time slot t+1: 

            

 

   In a distributed system where there is no load control over 

the MBS resources, although it offers flexibility, it can lead 

to overloading the MBS if all local servers offload heavily. 

Thus, unbalanced load distribution across the network can 

decrease overall performance. The fixed distributed 

approach may address  this issue; if one SBS experiences a 

heavier workload, it cannot offload tasks beyond a fixed 

limit, which might result in underutilization of MBS 

resources. The adaptive distributed approach offers a good 

balance between flexibility and resource utilization. Hence, 

the local server can offload tasks to MBS as needed, 

potentially up to its full capacity while not exceeding load 

ratio of 1, thereby maximizing the overall resource 

utilization. The adaptive distributed approach is suitable for 

systems with variable and unpredictable workloads. 

B.  LARGE TIME-SCALE BASED RADIO RESOURCE 
SLICING 

   In the previous section, on small timescale, we optimize the 

task offloading decision across scheduling time slots to 

achieve computation load balance and minimize offloading 

switching costs. If the radio resources are not properly sliced, 

it may lead to an imbalance in the network-wide computation 

load, potentially violating the task transmission delay 

constraint given in (8c) of P1 [7]. To ensure balanced task 

offloading, the radio resource slicing ratios on each BS must 

be optimized as in (P2). Hence, the two-timescale problems 

(P1) and (P2) should be solved together to obtain a set of 

optimal slicing ratios for computation load balancing so that 

the communication and computing resource utilization is 

jointly optimized. In this context, the large-time scale 

network slicing optimization technique is conducted at MBS 

main server every large timescale interval, which only 

requires non-privacy-sensitive parameters that were 

introduced in section 3.4 to solve P2, such as     ,     , and  

    . To achieve that the following algorithm can be 

implemented to establish a joint optimization framework 

with algorithm 1, that is used for solving the small timescale 

problem. Algorithm 3 starts by initializing the slicing ratio, 

performing algorithm 1 to get the offloading decision using 

RL, then obtaining the stationary task offloading policy, and 

solving P2 optimization problem by using the CVX tool to 

achieve optimal slicing ratio that will be used for the next 

large timescale slot. 

 

Algorithm 3: Large timescale radio resource slicing 
// Initialize Q-table and          to zeros. 

// Initialize total Bandwidth, W. 

Initialize bandwidth slicing ratio for MBS,   . 

for any large scale-time, t = 1: period 

 // Calculate the allocated bandwidth for MSB and SBS based 

on   : 

   = W*  ;         = W*(1-  ); 

// Perform the small time-scale to get the offloading action 

       (as in Algorithm 1) 

for any time slot, t = 1: L 

      Apply algorithm 1 for task offloading based on QL  

end 

// Large time-scale equations: 

- Calculate uplink spectrum efficiency averaged over L 

scheduling slots, eq (10). 

- Calculate average fraction of radio resources, eq (11). 

- Calculate average uplink transmission rate, eq (9). 

- Solve the objective function P2 by CVX toolbox, eq (13) to 

get   . 

- Update    for next large time-scale. 

end 

 

 

 
Fig. 2. The interaction between algorithms 1, 2, and 3 to form the 

proposed joint computation offloading and RAN slicing framework 

 

   Based on algorithm 3, the RAN slicing of the 

communication resources, such as bandwidth, can be 

dynamically allocated based on the network load 

requirements while adhering to constraints like delay bound 

and a minimum guaranteed frame rate for task transmission. 

The purpose of this optimization process is to maximize the 
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overall communication and computing resource utilization 

while ensuring QoS in the vehicular network. The interaction 

between Algorithms 1, 2 and 3 is highlighted at Fig. 2. The 

framework operates iteratively, with Algorithms 1 managing 

local task offloading decisions, Algorithm 2 handling cloud 

server resource allocation, and Algorithm 3 optimizing high-

level radio resource slicing. This process ensures coordinated 

optimization across the framework's layers. 

V. RESULTS AND DISCUSSION 

   This section presents the traffic dataset used in our 

analysis, simulation parameters, a comparison between 

traditional centralized and distributed systems, and our 

results and discussion for small timescale and large 

timescale analyses. 

A.  DATASET 

   The used dataset contains records of vehicular mobility 

along a three-lane highway called A6 in Madrid City [23]. 

It captures the position of each vehicle every 500 

milliseconds along a 10-kilometer stretch of the road. The 

dataset includes columns for timestamp, vehicle label, 

vehicle position, lane number, and vehicle speed (ranging 

from 45 to 110 kilometers per hour). For our analysis, we 

focused on the first 1.5 kilometers of the highway over a 

period of 30 minutes. Each minute is divided into 120 time 

slots, each lasting 500 milliseconds. We assumed the road 

segment is divided into 15 zones, each with a length of 

100m. We assumed there is one MBS and three SBSs, each 

SBS covers five zones, and all the zones are under the 

coverage area of the MBS. Based on this assumption, we 

extracted the number of vehicles and their locations at each 

zone for each time slot over a 30–minute period from the 

given dataset. 

   Fig. 3 illustrates the count of vehicles present within the 

first 1.5 km of the highway during each time slot over the 

30-minute duration. The figure highlights the dynamic 

nature of the traffic flow, where the volume rapidly 

increases and then fluctuates over the time. The highest 

volume is recorded between the 12-minute and 19–minute 

marks, with the highest number of vehicles reaching 124. 

B.  SIMULATION 

   The parameters used in our simulation for vehicular 

network setup, load computation, and Q-learning are given 

in Table 2. Our simulations include two analyses. In the 

first part, small time-scaling is evaluated for achieving 

offloading balance and minimizing the offloading switching 

using Q-learning at each time slot, where the radio resource 

is fixed during all time slots. In the second part, large time-

scale is evaluated at each minute for optimizing the 

allocated radio resource using the CVX toolbox, where the 

Q-learning is used again to achieve load balancing and 

minimize the offloading switching but based on the 

optimized or allocated radio resource for each minute. 

 
 

 

 

TABLE 2: Simulation parameters 

System parameters Value 

The uplink transmission power from 

each vehicle to the MBS  

 27dBm 

The uplink transmission power from 

each vehicle to the SBS 

23dBm 

Total Bandwidth (radio resource) 20MHz 

MBS height  25m 

SBS height 15m 

MBS distance to road 25m 

SBS distance to road 15m 

Number of zones 15 

Zone length 100m 

Path Loss model                   , where 

d is in km 

Noise power -104 dBm 

Log-normal shadowing 8 dB 

Computation parameters Value 

Task size, H 100kbits 

MBS server capacity,    3.6 GHz (CPU cycles per 
second) 

SBS server capacity,    2.4 GHz (CPU cycles per 

second) 

Computation intensity,   300 cycles per bit 

Time slot duration, T 500 ms 

Delay bound, D 500 ms 

Q-Learning parameters Value 

Learning rate 0.1 

Discount factor 0.9 

Episode 200 

Penalty (E1, E2) 2000, 10000 

Large time-scale parameters Value 

Activation probability,    0.6 

Probability bound of delay violation,        

 

 
Fig.3. Number of vehicles extracted from the dataset within the first 

1.5 km of the highway over 30-minute duration 

 
Fig.4. Average reward obtained by QL for centralized system, and 

distributed systems for the three SBSs, with       ,          

and task size of 100kbits 
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C.  SMALL RIME-SCALE ANALYSIS 

   In this section, we conduct a small timescale analysis 

focusing on the costs associated with computation load and 

offloading switching. Throughout this analysis, the 

bandwidth slicing ratio remains fixed at a certain value. It's 

important to highlight the differences in approach between 

the centralized and distributed systems. In the centralized 

system, reinforcement learning (RL) is applied at the main 

server, and the cost function is influenced by the maximum 

load among the MBS, and all the SBS 1, 2, and 3. 

Conversely, in the distributed system, RL is applied at the 

local servers of SBS 1, 2, and 3. Each local server only 

considers its own load and the load of the MBS, rather than 

the combined load of all stations.  

  The results in this section are smoothed by using a moving 

average (MA) technique to remove short-term fluctuations 

and emphasize longer-term patterns [24]. Specifically, the 

results presented in this section are averaged across 120 

time slots, each representing one minute. 

   Fig. 4 depicts a comparison of the average reward 

achieved by the QL at each minute (averaged over 120 time 

slots using the MA filter) for the three approaches. The 

results of the distributed systems show the average reward 

received by each QL agent working at each SBS. As 

previously explained in equation (15), negative penalties 

are imposed for exceeding computation capacity and task 

offloading latency constraints. We can see that the 

centralized system has greater penalties than the distributed 

 

 
(i) 

 

 
 (ii) 

 

 
(iii) 

(a)  

 

 
(i) 

 

 
(ii) 

 

 
(iii) 

(b)  

 
(i) 

 
(ii) 

 
(iii) 

(c)  

Fig.5. (i) Computation cost (cost 1), (ii) switching cost (cost 2), and (iii) total cost with (a) 𝜸𝟎  𝟎 𝟗 𝜷  𝟎 𝟗𝟗𝟗𝟗, (b) 𝜸𝟎  𝟎 𝟗 𝜷  𝟎 𝟗𝟗𝟗𝟗, 

and (c)  𝜸𝟎  𝟎 𝟔 𝜷  𝟎 𝟓, at task size of 100kbits. 
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systems, particularly during peak vehicle traffic between 12 

and 19 minutes. This indicates that the QL faced a difficult 

task in achieving offloading decisions that reduced 

computation load and offloading switches when compared 

with distributed systems.  This is because the centralized 

system must optimize the offloading problem across three 

SBSs, whereas with distributed systems, each SBS has a 

QL agent that optimizes the problem independently of the 

other SBS. Distributed system with fixed thresholding 

value performs better than adjustable thresholding scheme. 

The distributed system without thresholding value achieves 

the best performance, with extremely minimal penalties 

given to QL agents; however, further investigation is 

required to evaluate other metrics.  
     Fig. 5 illustrates the computation load cost, offloading 

switching cost, and total cost based on equations (5), (6), 

and (7) respectively, for both centralized and distributed 

systems. The plots for the distributed system represent 

average costs across the three local servers. Notably, the 

overall pattern of the maximum computation load ratio 

(cost 1) is proportional to the number of vehicle plot given 

in Fig. 3. The results demonstrate that distributed systems 

offer lower computation load and offloading switching 

costs compared to centralized systems. This is attributed to 

the fact that while centralized systems consider the overall 

system load, distributed systems distribute decision-making 

among local servers, enabling more efficient decisions 

based on local load constraints only. Additionally, Fig. 5 

presents costs under various scenarios, with different values 

for the bandwidth slicing ratio    and cost weight  . It can 

be seen that, when        and           (as shown in 

Fig. 5(a)), the centralized computation cost is notably high, 

aligning with random offloading decisions. However, as    

decreases to 0.6 (as depicted in Fig. 5(b)), the computation 

cost of the centralized system decreases accordingly. 

However, the computation costs of the distributed systems 

tend to slightly increase, but they remain lower than the 

centralized system. Furthermore, the distributed system 

demonstrates lower switching offloading costs (cost 2) 

compared to the centralized system. The random method 

tends to result in higher switching costs, given that 

offloading decisions are made randomly. The value of   

significantly impacts the total cost; a very small   places 

more emphasis on cost 1, while a high   value emphasizes 

more on cost 2, as evident in the plots (iii) of Fig. 5. When 

comparing the three distributed systems, we notice slight 

differences in the first and third scenarios. However, in the 

second scenario, when         we observe that the 

distributed model with adaptive-thresholding achieves a 

lower cost than the fixed-thresholding method. Meanwhile, 

the distributed system without thresholding offers the best 

costs but comes with the trade-off of increasing other 

metrics, as we'll explore in the next figures. 
  

 
(a) 

 
(b)  

Fig.6. Average standard deviation of the loads with (a)       , (b) 

      , with          and task size of 100kbits. 

 
Fig.7. Example of the computation load ratio among the MBS and the 

three SBSs at                 with task size of 100kbits for 

different methods 

 

   The average standard deviations (STD) of the loads are 

depicted in Fig 6. It is observed that the distributed system 

without thresholds exhibits a high standard deviation, 

sometimes even exceeding that of the random offloading 

method as in Fig. 6a. This occurs because it fails to achieve 

load balancing among the MBS and SBSs, occasionally 

excessively utilizing resources from the MBS, as 

exemplified in Fig. 7. Moreover, individual local servers 

may consume high resources from the MBS compared to 

others, leading to the total computation load of the MBS 

exceeding the desired ratio of 1. In other words, the 

distributed system with no thresholding doesn’t take into 

consideration the limited resources of the main server. 

However, distributed systems with threshold values, such as 

fixed or adaptive thresholds, can effectively limit and 

regulate the load on the MBS to an acceptable level 

compared to the absence of thresholding methods, as 

demonstrated by the computation load bars in Fig. 7. The 

distributed method with a fixed threshold value yielded 

lower STD performance because each local server is 

allocated a predetermined and uniform amount of 

computation resources to utilize. 
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(a) 

 
(b)  

Fig.8. MBS overload with (a)       , (b)       , with   
       and task size of 100kbits. 

 

 

   MBS overload rate is depicted in Fig. 8 for various 

methods, it measures how often the load on MBS exceeds 

ratio of 1. The centralized system performs best at an MBS 

bandwidth slicing ratio of       , whereas the Dist-fixed 

and Dist-adptv techniques perform similarly to the 

centralized system in the second scenario (      ). The 

adaptive strategy has a little greater overload rate than the 

Dist-fixed method at       , but this comes with an 

increase in MBS utilization, as we will see in the next 

discussion. The distributed system without thresholds has 

high overload rate at various settings; however, the 

distributed system with thresholding value (fixed or 

adaptive) was able to lower this overload rate significantly. 

MBS utilization rate is illustrated in Fig. 9, quantifying how 

the MBS resources are utilized for different methods. It is 

calculated based on the MBS load ratio and averaged over 

the 30 periods. It is noted that, in contrast to the random 

decision-making system, the distributed system without 

thresholds displays a high MBS usage at various settings, 

however, as seen earlier in Fig. 8, it is highly overloads the 

MBS. At       , the adaptive strategy outperforms the 

centralized and fixed approach by 2% and 7%, respectively. 

The centralized system is then outperforms the Dist-adptv 

and Dist-fixed systems at lower   . However the adaptive 

approach still performs better than the Dist-fixed scheme 

when the bandwidth slicing ratio is reduced to    = 0.6 with 

6% improvement in MBS utilization. 

 

 
(a) 

 
(b)  

Fig.9. MBS utilization with (a)       , (b)       , with   
       and task size of 100kbits. 

 

   Fig. 10 depicts the maximum task offloading delay per 

time slot, taking into account the time it takes to transmit 

task data from vehicles to either the MBS server or the SBS 

server. The general pattern of the latency plots are 

proportional to the number of vehicle plots shown in Fig. 3. 

We can observe that the random offloading decision 

 
(a)  

(b)  (c) 

 

 

 
 

Fig.9. Maximum task offloading latency versus time plot with (a) 𝜸𝟎  𝟎 𝟗, (b) 𝜸𝟎  𝟎 𝟔, (c) 𝜸𝟎  𝟎 𝟒, with 𝜷  𝟎 𝟗𝟗𝟗𝟗 and task size of 

100,000 bits. 

 

 

 

 

 

 
 

 

Fig.11. Overall performance metrics at 𝜸𝟎  𝟎 𝟗 with different task size  
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approach has the maximum latency. At a bandwidth slicing 

ratio of       , the centralized system has higher 

offloading latency than distributed systems. Reducing the 

slicing ratio to 0.6 improves the offloading latency of the 

centralized system. As    decreases to 0.4, the fixed and 

adaptive techniques perform similarly to the centralized 

system, but the distributed system without thresholding has 

higher latency. 

   In Fig. 11, we investigated the average performance of 

different metrics such as cost1, cost2, total cost, STD, 

latency, and MBS utilization at different task sizes with 

      . Increasing the task size causes the cost1, total 

cost, STD, latency and MBS utilization to increase 

accordingly. The results confirm that distributed systems 

have lower computation and offloading switching costs 

than centralized system. The centralized system performs 

better than the distributed systems in term of STD at task 

size of 50kbits and 150kbits, indicating that the centralized 

system can achieve a more balanced load distribution 

compared to other methods; nevertheless, it should be 

mentioned that at large task sizes, such as 150 kbits, the 

computation cost of the centralized system exceeds the ratio 

of one. Moreover, this results in increasing the offloading 

delay of the centralized scheme. Distributed systems have 

lower latency performance than centralized systems at task 

size of 50kbits and 150 kbits. The MBS utilization of the 

distributed schemes is better than centralized system at task 

size of 50 kbits, and it is nearly fully exploited by all 

methods at 150 kbits task size (96%, 98%, 96%, and 97% 

by centralized, Dist-NoThrs, Dist-fixed, and Dist-adptv 

respectively). The Dist-adptv scheme shows slight MBS 

utilization than Dist-fixed scheme at task size of 100 kbits 

and 150 kbits. 

D.  LARGE TIME-SCALE ANALYSIS 

   In this section, we discuss large time-scale analysis. We 

evaluated the centralized and distributed schemes by 

solving P2, with the initial slicing ratio of MBS’s radio 

resource (  ) set to 0.9 and for the SBS is set to 0.1 

(     MHz and     MHz).  

   Fig. 12 (a) illustrates the radio slicing ratio    (right y-

axis) and total cost (including load computation and 

offloading switching) (left y-axis) over 30 minutes after 

applying the large time-scale algorithm for the four 

approaches. The figure demonstrates the adaptation of the 

centralized, Dist-fixed and Dist-adptv schemes to the 

network load variations due to vehicles mobility change 

over time. Most methods start adapting to the load 

variations after 3 minutes. We observe that the slicing ratio 

   is adjusted every minute, and it is proportional to 

computation load. The maximum and minimum    values 

obtained by the four schemes are [0.8, 0.54], [0.67, 0.5], 

[0.77, 0.52] and [0.76, 0.47] for centralized, Dist-NoThrs, 

Dist-fixed and Dist-adptv, respectively. The centralized, 

    
Fig.12. Adaptation of the radio resource slicing ratio 𝜸𝟎 with total cost 

 

 

 

 

 
 

Fig.13. Performance metrics with MBS radio slicing ratio, 𝜸𝟎, for small time-scale (with fixed 𝜸𝟎) and large time-scale (variable ratio 𝜸𝟎) at 

task size of 100kbits 
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Dist-fixed and Dist-adptv shows good correlation with 

computation load compared to Dist-NoThrs scheme. 

   In Fig. 13, we investigated the impact of decreasing the 

MBS bandwidth slicing ratio,   , from 0.9 to 0.6 and 0.4 

(fixed slicing ratio all time), and using variable slicing 

ratios (var.) (dynamic ratio changes over large time-scale, 

i.e., one minute in our case) obtained after applying the 

large time-scale algorithm. As the fixed slicing ratio 

decreases, we observe a significant increase in throughput, 

and a notable decrease in latency, MBS overload rate, and 

MBS utilization. Reducing the slicing ratio from 0.9 to 0.4 

markedly boosts throughput by 49 Mbps, 53 Mbps, 49 

Mbps, and 49 Mbps, while substantially reducing 

offloading delay by 50 ms, 28 ms, 45 ms and 40 ms for 

centralized, Dist-NoThrs, Dist-fixed and Dist-adptv, 

respectively. At       , centralized, Dist-fixed and Dist-

adptv schemes achieved almost equivalent latency. For 

variable slicing ratios case, throughput increases compared 

to fixed slicing ratio       , but is slightly less than when 

       and 0.4, specifically, increasing by 35 Mbps, 49 

Mbps, 26 Mbps and 31 Mbps in throughput and decreasing 

by 38 ms, 33 ms, 41 ms and 35 ms in latency, for 

centralized, Dist-NoThrs, Dist-fixed and Dist-adptv, 

respectively. The slight improvement in variable slicing 

ratios case compared to the fixed ratio occurs because, in 

the variable ratios scenario, the slicing ratios fluctuate 

between 0.8 and 0.5 based on network demands. It is also 

observed that the MBS overload rate for the distributed 

system without a threshold is significantly higher compared 

to other counterparts at       . The centralized system 

and Dist-fixed exhibit low MBS overload, with a lower 

MBS usage percentage for the Dist-fixed scheme at 

      . However, the MBS overload rates of centralized, 

Dist-fixed and Dist-adptv drop dramatically to 0% by 

reducing the slicing ratio to 0.6 and 0.4. On the other hand, 

the Dist-NoThrs shows overload rate of 6% and 5% at 

slicing ratios of 0.6 and 0.4, respectively. For variable 

ratios, the Dist-NoThrs overload reduces to 1.5%, while the 

centralized and Dist-adptv schemes reduce to 0.26% and 

1.2%, respectively, while the Dist-fixed reduces to 0%. 

Finally, the MBS utilization for all schemes exceeds 70% at 

      , however, this percentage decreases by reducing 

the MBS radio resource from 18MHz to 12MHz and 

8MHz. The centralized system maintains similar MBS 

utilization at         and with variable ratios, but, the 

Dist-fixed and Dist-adptv schemes demonstrate better MBS 

utilization in variable ratio scenario compare to        

and 0.4 cases. The Dist-adptv scheme achieves 3% better 

utilization than the centralized and Dist-fixed schemes. Our 

investigation reveals that using variable MBS slicing ratios 

strategy enhances throughput and reduces latency 

effectively. The Dist-adptv method achieves the best MBS 

utilization and the Dist-fixed method demonstrating the 

lowest overload rates, highlighting their effectiveness in 

optimizing task offloading in dynamic vehicular networks. 

VI. CONCLUSION  

   In this work, we studied jointly two time-scale task 

offloading and RAN slicing in vehicular networks using both 

centralized and distributed approaches. We proposed two 

distributed schemes for the allocation of cloud server 

resources: Dist-fixed and Dist-adptv. In the small time-scale, 

task offloading was optimized using the Q-learning method, 

considering constraints such as server capacity and 

offloading latency. The objective was to achieve load 

balancing with minimal offloading variations among edge 

and cloud servers. The analysis of the small time-scale 

technique showed that distributed systems demonstrated 

lower balanced computation load costs, offloading switching 

cost and task completion latency compared to the centralized 

system at different task sizes. The centralized system showed 

better standard deviation (STD) at task sizes of 50 kbits and 

150 kbits, while Dist-fixed achieved better STD at a task size 

of 100 kbits. Distributed systems exhibited good MBS 

utilization compared with the centralized system at lower 

task sizes and nearly equivalent MBS utilization at higher 

task sizes. A large time-scale RAN slicing strategy was 

further investigated to dynamically adjust the radio resource 

slicing ratios proportionally to the network’s load to 

maximize the overall radio resource utilization. The analysis 

of the large times-scale technique showed that the RAN 

slicing ratios for all schemes, except Dist-NoThrs, effectively 

adapted to dynamic network loads caused by vehicle 

mobility. A significant observation was the substantial 

performance improvement observed with distributed systems 

such as Dist-fixed and Dist-adptv. For instance, the 

throughput of Dist-adptv scheme increased by 31 Mbps, and 

latency decreased by 35 ms compared to the fixed slicing 

ratio of       . Additionally, Dist-adptv achieved up to 

3% better MBS utilization than both Dist-fixed  and 

centralized systems, while the Dist-fixed scheme reduced 

overload rates to 0% with task size of 100 kbits, 

demonstrating the effectiveness of the distributed schemes in 

optimizing task offloading in dynamic vehicular network 

environments. In future work, we aim to explore the 

proposed scheme in more secure approach such as federated 

reinforcement learning, and compare its performance with 

other RL techniques to further validate its effectiveness. 

APPENDIX 

TABLE 3 Main symbols with their definitions 

Symbol Definition 

   The k th base station (BS) under consideration 

       
Task offloading decision in zone z  of base station,   , at 

time slot, t 

       Number of vehicles in zone z of    at time slot, t 

   The available bandwidth for k th BS 

       
Uplink channel gain from vehicles within zone z to    at slot 

t 

       Uplink SNR/SINR for vehicles in zone z of    at slot t 

       Uplink transmission rate 

   Uplink transmission power for vehicles under    

     Small-scale Rayleigh fading component under    at slot t 

   Average background noise power 

     Computation load associated with    at slot t 

  Computation intensity 

  Computing task size 

   Computation capacity on the server connected to    

  The duration of a task scheduling slot 
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  Task offloading latency requirement 

   Total cost of computation load balancing at slot t 

     Stationary task offloading in zone z of    

     
Average uplink transmission rate from the vehicles in zone z 

to    

   Ratio of sliced radio resources on    

     
Average fraction of radio resources reserved for vehicles in 

zone z of    

     Uplink spectrum averaged over L time slots 

     Average number of vehicles in zone z of    
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