

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 1

Received XX Month XXXX; revised X Month XXXX; accepted XX Month XXXX. Date of publication XX Month XXXX; date of current version XX Month XXXX.

Digital Object Identifier 10.1109/OJCOMS.2020.1234567

Joint Distributed Computation Offloading and Radio
Resource Slicing Based on Reinforcement Learning

in Vehicular Networks

Khaled A. Alaghbari
1
, Heng-Siong Lim

2,3*
, C. Zarakovitis

3
, N. M. Abdul Latiff

1
, Sharifah Hafizah Syed

Ariffin
1

AND S. F. Chien
3,4

1
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia.

2
Faculty of Engineering and Technology, Multimedia University (MMU), 75450 Bukit Beruang, Melaka, Malaysia

3
Axon logic IKE, ICT Department, 14122, Athens, Greece

4
MIMOS Berhad, 57000 Kuala Lumpur, Malaysia

CORRESPONDING AUTHOR: Heng-Siong Lim (e-mail: hslim@mmu.edu.my).

This research was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 101093069 (Programming
Platform for Intelligent Collaborative Deployments over Heterogeneous Edge-IoT Environments)

ABSTRACT Computation offloading in Internet of Vehicles (IoV) networks is a promising technology for

transferring computation-intensive and latency-sensitive tasks to mobile-edge computing (MEC) or cloud

servers. Privacy is an important concern in vehicular networks, as centralized system can compromise it by

sharing raw data from MEC servers with cloud servers. A distributed system offers a more attractive

solution, allowing each MEC server to process data locally and make offloading decisions without sharing

sensitive information. However, without a mechanism to control its load, the cloud server’s computation

capacity can become overloaded. In this study, we propose distributed computation offloading systems

using reinforcement learning, such as Q-learning, to optimize offloading decisions and balance computation

load across the network while minimizing the number of task offloading switches. We introduce both fixed

and adaptive low-complexity mechanisms to allocate resources of the cloud server, formulating the reward

function of the Q-learning method to achieve efficient offloading decisions. The proposed adaptive

approach enables cooperative utilization of cloud resources by multiple agents. A joint optimization

framework is established to maximize overall communication and computing resource utilization, where

task offloading is performed on a small-time scale at local edge servers, while radio resource slicing is

adjusted on a larger time scale at the cloud server. Simulation results using real vehicle tracing datasets

demonstrate the effectiveness of the proposed distributed systems in achieving lower computation load

costs, offloading switching costs, and reduce latency while increasing cloud server utilization compared to

centralized systems.

INDEX TERMS Computation offloading, radio resource slicing, reinforcement learning, Q-learning,

distributed system, mobile-edge computing (MEC), cloud computing, Internet of vehicles.

I. INTRODUCTION

 In modern Internet of Vehicles (IoV) transportation

systems, vehicles are connected in networks to support

applications like smart driving, traffic management or

augmented reality (AR). These tasks may require significant

computing power and low-latency processing [1]. To manage

these demands, vehicles can offload some of their

computational tasks to nearby servers, such as edge servers,

or to more powerful servers, such as cloud servers. This

process, called task computation offloading, helps reduce the

load on vehicles and improves efficiency. It is important to

ensure that server computing capacity and radio

communication resources are used optimally, to achieve a

balanced computational load while meeting task transmission

rates, latency and reliability requirements. Radio access

network (RAN) slicing enables resource sharing among base

stations (BSs) for finer orchestration, improving utilization

and ensuring quality-of-service (QoS) isolation. Network

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

function virtualization (NFV) virtualizes radio resources into

a centralized pool, which is then managed and dynamically

allocated by a software-defined networking (SDN)-enabled

slicing controller based on network traffic and QoS demands

[2].

 Centralized systems involve offloading computational tasks

from vehicles to a central cloud server via a macro base

station (MBS), which can handle complex tasks efficiently

than vehicles, but may compromise privacy due to the

collection of sensitive raw data such as location and

behavioural information from vehicles. An inherent

limitation of centralized cloud computing system is the long

propagation distance from mobile vehicles to the remote

cloud server, which is not suitable for massive data and delay

sensitive tasks [3]. Moreover, existing centralized methods

suffer from dramatic increase in control overhead especially

as the system scale increases, hence limiting their application

in vehicular networks [4]. In contrast, distributed systems

with mobile-edge computing (MEC) paradigm distribute the

computation tasks among edge servers located at small base

stations (SBSs), preserve privacy in vehicular networks by

reducing data exposure to a central point, release the burden

on the MBS, and support latency-critical and computation-

intensive applications [5]. Deploying MEC servers near BSs

enables local processing of computational tasks, reducing

latency and supporting time-sensitive applications like

autonomous driving and real-time analytics. This proximity

makes MEC practical for dynamic vehicular networks in

dense urban and suburban areas.

 The increasing demands of advanced vehicle applications

can overwhelm the distributed servers, resulting in longer

computation times and higher power consumption.

Additionally, the resources of the distributed servers are

expensive and increase the cost of the system [6]. Hence, the

resources of the cloud server can be shared among the SBSs,

allowing vehicles to offload tasks either to the edge server at

SBS within its coverage area or to the cloud server at MBS

[7]. However, the cloud server can be overloaded by vehicles

at certain SBS without given portion of the resource to other

vehicles presented at other SBS. Furthermore, the challenge

is still present by limited radio resources and the dynamic

nature of vehicular networks that require sophisticated

strategies to maintain seamless connectivity and

performance. Due to the correlation between the two

problems, computing task offloading and radio resource

slicing, it is important to design a joint optimization

framework to determine an optimal radio resource slicing

ratio and computation capacity for efficient computation load

balancing.

 Unlike existing distributed approaches, our framework

introduces a novel joint two-timescale optimization with a

threshold ratio mechanism incorporated into optimization

problem constraints for cloud resource allocation, balancing

computational load while minimizing task-switching cost.

We formulated the reinforcement learning (RL) reward

function to fairly allocate the computation resources of the

cloud server located at macro base station (MBS). Two

threshold-ratio based distributed approaches are proposed,

the first approach, fixed-threshold distributed system (Dist-

fixed), uniformly distributes the resource among the small

base stations (SBSs). The second approach, adaptive-

threshold distributed system (Dist-adptv), dynamically

distributes the cloud computation resource among the SBSs

using a fair-proportional approach based on the load

requirements which are calculated from previous time slot

and sent to the main server to compute suitable ratios for

each agent. Q-learning (QL) is used by each agent to

optimize the task offloading decisions across scheduling slots

in small timescale, to balance the computation load across the

network while controlling the number of task offloading

switching. A large time-scale convex optimization problem is

then solved at the main server, which does not require

sensitive data to be shared by the agents, to compute optimal

radio resource slicing ratio that maximizes the overall

communication resource utilization with guaranteed QoS.

The advantage of the Dist-fixed approach is to ensure

fairness by uniformly distributing cloud resources across

BSs, reducing the risk of overloading specific BSs and

simplifying implementation. This makes it well-suited for

stable or predictable traffic load environments. Meanwhile,

the Dist-adptv approach dynamically adjusts resource

allocation based on load requirements, allowing the system to

respond effectively to rapid changes in traffic patterns or load

imbalances, making it ideal for highly dynamic and dense

vehicular scenarios. These mechanisms enable fair and

efficient resource utilization while jointly optimizing task

offloading and radio resource slicing. Specifically, the

contributions of our work can be summarized as follows:

1) We consider a vehicular network that includes

distributed edge servers and a cloud server. The vehicles

can choose to offload the task either to MBS or SBS.

Our solution model consists of two timescales. At the

small timescale, we solve stochastic optimization

problem using Q-learning technique to minimize the

total system cost that includes imbalanced computation

load cost and offloading switching cost, and takes into

consideration the cloud server computation resource.

The Q-learning agents are deployed at each SBS. At the

large timescale, convex optimization problem is solved

at the main server to obtain radio resource slicing ratios

to maximize the overall communication resource

utilization.

2) Since the distributed system without a mechanism to

control the MBS server resource can cause imbalance

load distribution (unaware of the cloud server

workload), we propose a fixed distributed (Dist-fixed)

approach to fairly share the cloud server resource, and an

adaptive (Dist-adptv) approach to divide the

computation resource among BSs based on computation

load requirements obtained from each agent at the

previous time slot.

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

3) Extensive simulation results are presented using real

vehicle traffic dataset to demonstrate the effectiveness of

the proposed distributed frameworks compared to

centralized scheme in terms of cost of imbalanced

computation load, offloading switching, latency, MBS

overload rate and utilization.

 The remainder of this paper is organized as follows:

Section II provides a review of related works. Section III

presents the system model that includes network model,

communication model, small time-scale computing task

offloading model, problem formulation, and large timescale-

based radio resource slicing model. Section IV presents our

proposed approaches. Section V provides information about

the dataset, network simulation parameters, experimental

results and discussion for small-time scale and large-time

scale analyses. Finally, the conclusion is drawn in Section

VI.

II. RELATED WORKS

 Existing centralized methods [8] suffer from inherent

property of depending on a central controller to handle large

computing tasks, causing a dramatic increase in control

overhead, especially as the system scale increases, hence

limiting their application in vehicular networks [6].

Reinforcement learning (RL) methods have shown great

potential in computation task offloading. Papers [9-11]

designed different task offloading schemes based on RL

techniques, which behave well in reducing average delay and

improving resource utilization. However, to fully utilize the

resources in the vehicular networks and further enhance the

QoS, there is a need to jointly optimize task offloading

decisions, allocation of radio resources at the RAN and

computation resources at the cloud computing server.

 Jiang et al. [12] used Q-learning to obtain an optimal policy

for computation offloading and resource allocation in a

multi-user MEC system, considering different resource

requirements and time-varying system conditions in a

dynamic system. The objective was to minimize the long-

term energy consumption of all the UEs considering the

latency constraint and dynamic computation resource

requirements of heterogeneous computation tasks. Dab et al.

[13] employed Q-learning in multi-user WiFi-based MEC

architecture for task assignment and radio resource allocation

to minimize the energy consumption on the mobile terminal

side while considering latency constraint. Due to the limited

computation capability of the mobile edge computing (MEC)

systems, which restrict the scalability of offloading, Gao et

al. [14] proposed to jointly optimize the computation

resource allocations and offloading decisions for

collaborative computing system that combines local

computing (mobile device), MEC (edge cloud) and central

mobile cloud computing (MCC). Once the task is received by

edge cloud, it will be split into parts, one part will be

transferred to the central cloud and the other part is executed

on the edge-cloud server, enabling parallel processing. Q-

learning was used to minimize the system loss function

formulated based on time and energy consumptions to

optimize offloading decisions. Jiang et al. in [15] proposed to

solve the task offloading and resource allocation problem for

Internet of Vehicles (IoV) networks using Q-learning.

Bayesian classifier was first implemented to classify the task

according to latency and energy consumption requirements.

Then each vehicle selects one of the two available offloading

modes. The first mode is to offload the task to other vehicles

through vehicle-to-vehicle (V2V) communication, if the

vehicle has a higher energy requirement. Otherwise, it selects

to offload the task to an edge server through the MEC

offloading mode. In the V2V offloading mode, the radio

resources need to be allocated, and in the MEC offload

mode, the computing resources need to be designated.

 Deep RL often struggles to achieve good performance and

the trained system may behave unpredictably if the

environment differs even slightly from the training data [16].

To address the problem of instability in the multi-agent

environment and to attain queue stability during resource

allocation, Kumar et al. [17] proposed a Lyapunov-based

multi-agent deep deterministic policy gradient (L-MA

DDPG) technique to jointly optimize the task offloading and

radio resource allocation. The main objective was to

minimize the energy consumption and meet delay

requirements between vehicles and edge servers due to

vehicle mobility and dynamic environment. Since existing

deep learning techniques suffer from slow learning rate and

weak adaptability to dynamic multi-user conditions, Sharma

et al. [18] proposed using first-order meta-learning with a

deep Q-learning method for multi-task offloading in edge-

cloud networks. In conventional actor-critic RL network, the

large number of parameters makes the training model

inefficient, and the usage of one-step temporal difference

learning causes slow convergence. Hence, Geng et al. in [6]

proposed to use an improved actor–critic with 2D

convolution and LSTM layers to extract features, and joint

mechanism of prioritized experience replay and adaptive

learning to enhance the learning efficiency. The proposed

method was used for distributed computation offloading in

vehicular edge computation networks with the objective to

minimize the delay and energy consumption.

 Ye et al. [7] proposed a two-tier framework that integrates

radio access network (RAN) slicing and computation

offloading for autonomous vehicular networks (AVNs) to

address the dynamic nature of AVNs. On a smaller timescale,

they optimized task scheduling using a cooperative multi-

agent deep Q-learning (MA-DQL) with fingerprint

algorithm, to learn the stationary task offloading policy with

stabilized learning performance, and to balance

computational load and minimize task offloading variations.

On a larger timescale, they optimized radio resource slicing

among base stations to maximize network utility while

ensuring QoS for autonomous driving tasks. However, all

local agents’ actions need to be synchronized at the main

server to calculate a joint system reward, which is then sent

back to the agents to train the module. In addition, MA-DQL

algorithm can suffer from unstable convergence due to

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

factors like insufficient training data and suboptimal

exploration strategies leading to divergence in the learned Q-

values. Huang et al. [19] used deep RL technique to jointly

optimize computation offloading and resource allocation

with the aim to minimizing the system cost of processing

tasks while meeting the processing latency and transmission

rate constraints for IoV networks. The cost of processing

tasks contains computation cost and communication

bandwidth rental cost. The central controller hosts the DRL

agent to make the task offloading and resource allocation

decisions. To tackle the challenges of random traffic flow

and dynamic network environment scenario, Markov

decision process model was employed for formulating the

problem, then twin delayed deep deterministic policy

gradient (TD3) technique was used to deal with the

continuous states and action spaces. However, their proposed

method consists of two neural networks, a main network and

a target network, each with one actor network and two critic

networks. The complexity in the proposed technique was

introduced to make the training process more stable. In

addition, the DRL agent was employed at the centralized

controller which collects private data such as status of

vehicles tasks, bandwidth resources and edge server

computation resources.

 Compared to existing works, our approach differs in

methodology and focus. Unlike [7], which maximizes

network utility through cooperative MA-DQL for task

scheduling, where the rewards of the RL agents are

synchronized at the centralized server, our proposed method

updates the rewards locally while taking into consideration

the limited cloud resources. Specifically our framework

employs fixed and adaptive-threshold mechanisms to ensure

balanced computation load by fairly and dynamically

allocating cloud resources among BSs. Additionally, while

studies like [7, 12, 14] optimize delay or energy

consumption, our approach incorporates a switching cost to

minimize task offloading variations, enhancing stability in

dynamic vehicular networks. In contrast to centralized

methods such as [19], which require sharing sensitive vehicle

data, our framework preserves privacy by enabling efficient

distributed optimization without raw data exposure to the

centralized server. Furthermore, both our work and [7] adopt

a two-tier framework, with the upper layer optimizing RAN

slicing over a longer timescale and the lower layer focusing

on distributed computation offloading. While [7] employs

DQL, our work uses QL for its simplicity, computational

efficiency, and suitability for low-complexity scenarios in

vehicular networks. Unlike Deep QL or DDPG, QL does not

rely on extensive computational resources or large datasets,

making it a more practical choice for efficient decision-

making in resource-constrained settings. Table 1 summarizes

the related studies.

III. SYSTEM MODELS

 In this section, we introduce the system models, including

the network, communication channel, computation task,

offloading switching models, and define their associated

variables. Then, we present the problem formulation for both

small timescale and large timescale.

A. NETWORK MODEL

 We consider a macro-cell network centered around a single

main base station (MBS) called , positioned at the center of

a cell to offer broad communication coverage along a road

segment for vehicles, as illustrated in Fig. 1. This macro-cell

is supplemented by several smaller cells, each centered

around a small base station (SBS), labelled as .

These SBSs are placed near the road within the macro-cell's

coverage area to improve network capacity. To support the

network's computational needs, there is a main server linked

to the MBS for heavy-duty computations. Additionally, each

SBS is accompanied by a local server equipped with

lightweight computing resources. These local servers are

physically connected to their respective SBSs. As vehicles

travel along the road segment, they may enter or exit it over

time. We assume that each vehicle remains within the

coverage range of both the MBS and one of the SBSs, thus

maintaining a connection to both base stations. To enable

TABLE 1: Summary of related works

Ref. Key Approach Optimization Focus Framework Type Learning Algorithm

[6] Distributed computation offloading

Optimizing computation

offloading for delay and energy
efficiency

Distributed approach
Deep RL (improved

actor–critic network)

[7] Joint RAN slicing and computation offloading

Optimizing RAN slicing and task

offloading (load balancing and
offloading switching)

Two-tier framework

(centralized and
distributed)

DQL

[12]
Joint computation offloading and MEC resource

allocation

Minimizing energy consumption

for task offloading

Distributed (one MEC

considered)
QL

[14]
Task offloading and resource optimization in a

collaborative cloud computing system

Task offloading optimization with
resource constraints

Task splitting ratio.

Centralized (tasks
partially executed on

edge and cloud)

QL

[19]
joint optimization of computation offloading and

bandwidth resource allocation scheme

Total cost of processing tasks

includes computation cost and
bandwidth leasing cost

Centralized approach

Twin delayed deep

deterministic policy
gradient (TD3)

Our

work

+ Joint RAN slicing and computation offloading.

+ Dist-fixed and Dist-adptv mechanisms for
resource allocation of cloud server.

Optimizing RAN slicing and task

offloading (load balancing and
offloading switching)

Two-tier framework

(centralized and
distributed)

QL

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

tractable analysis, we divide the road segment under the

MBS's coverage into distinct zones, denoted as
 . Each zone represents a segment of the

road. At any given scheduling slot, we assume that the task

of offloading decisions for all vehicles within a particular

zone are the same. We denote the number of vehicles present

in zone z of base station, , at time slot, t, as , and we

assume that this number remains constant during the time

slot.

Fig.1. Illustration of the vehicular network with one MBS and three

SBSs

B. COMMUNICATION MODEL

According to the Shannon capacity formula, the uplink

transmission rate from each vehicle in a specific zone (z) to

base station (BS) at a particular scheduling slot (t) is

determined by the following equation [7]:

∑

 () (1)

where represents the available bandwidth, which equals

 if (indicating the MBS), and otherwise (for

SBSs). The radio resources on are divided equally among

the vehicles connected to it for task offloading at slot t. The

term ∑
 represents the total number of tasks

offloaded from vehicles in zone z to server at time slot t.

 is the task offloading indicator for vehicles in zone z of

 at slot t. It is set to 1 when all tasks from zone z are

offloaded to and 0 otherwise. This decision is dynamic,

based on server capacity and latency requirements.

represents the uplink signal-to-noise ratio (SNR) or signal-to-

interference-plus-noise ratio (SINR). It is calculated

differently based on whether k equals 0 (MBS) or not (SBS)

as follows:

 (2)

∑
 (3)

In (2) and (3), represents the uplink transmission power,

which remains constant and uniform for all vehicles under

base station during a given planning window. The term

 signifies the uplink channel gain from vehicles within

zone z to base station at slot t. This channel gain includes

path loss and log-normal shadowing, and is averaged across a

group of vehicles within the zone. denotes the small-

scale Rayleigh fading component under base station at

slot t, and indicates the average background noise power

[20]. Additionally, for SBSs, the interference experienced by

a vehicle in zone under originates from uplink

transmissions from vehicles occupying the same zone

position under every other SBS. These factors play a crucial

role in determining the effectiveness and reliability of

communication within the network.

C. COMPUTING TASK AND OFFLOADING SWITCHING
MODELS (SMALL TIME-SCALE)

 We assume that each computing task has a fixed size of H

bits and a latency bound requirement, D, which is set to be

equal to the duration of a scheduling slot, T. Initially, we

compute the computation load ratio of the server connected

to base station (where k = 0, 1, . . ., n) at scheduling slot t

as:

 ∑

 (4)

where denotes the computation capacity of the server

connected to base station , measured in CPU cycles per

second. Additionally, φ denotes the computation intensity,

indicating the number of CPU cycles needed to process one

bit of information. The load ratio should be less than one, if it

exceeds one, it indicates that the server is overloaded.

 The cost associated with having an imbalance distribution

of computation load among the servers at slot t, denoted as

 , is represented by the maximum instantaneous

computation level as [7]:

{ } (5)

where the set B = { , , . . ., } refers to all the base

stations being considered. The cost is designed to

support an even distribution of computational tasks,

preventing server overload and underutilization. The cost

associated with changing task offloading decisions from slot

 to slot t, denoted as , involves determining the total

number of offloading switching events between the MBS and

one of the SBSs for vehicles across all road zones, given by:

 ∑ ∑ ∑

(6)

where ’ represents the set comprising both the MBS and the

SBS that covers zone z.

 The overall cost of balancing computation load, while also

considering the cost associated with switching task

offloading decisions at slot t, is determined as a weighted

sum of and , given by [7]:

 (7)

where is a real-valued weighting factor ranging between 0

and 1. Our primary objective is to balance computation loads

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

among BSs while minimizing variations in task offloading.

Constraints include computation capacity and task offloading

latency. We achieve this by employing an MDP (Markov

Decision Process) formulation, which captures network states

and model the relationship between network states and

offloading actions. At each scheduling slot t, the formulation

includes network states , task offloading actions

extracted from policy that maximize the

instantaneous reward function , and state transition

probabilities . includes parameters such as

numbers of vehicles , uplink SINR (or SNR) , and task

offloading actions taken for previous slot . The

problem is presented as a stochastic optimization framework,

aims to balance computation load while minimizing

variations in task offloading, given by:

{

 ∑

 ∑

(8)

where constraint (8a) specifies that vehicles in zone z must

offload tasks to either the MBS or the SBS covering the zone

during each time slot, constraint (8b) states that the

computation load per time slot on each server must not

exceed its capacity, and lastly constraint (8c) dictates that the

time needed to offload task (offloading latency) must be less

than the required latency bound, D.

D. RADIO RESOURCE SLICING (LARGE TIME-SCALE)

 In order to accomplish computation load balancing with

nominal task offloading switching, we optimized the task

offloading decisions across the small time slots. Based on

stationary task offloading policy, it is possible to further

optimize the radio resource slicing between the available BSs

of the vehicular network to efficiently maximize the total

communication resource utilization. The average uplink

transmission rate from the vehicles in zone z to BS can be

calculated as [7]:

 (9)

where represents the total radio resources,

 is bandwidth allocated for MBS and is bandwidth

allocated for SBS. represents the ratio of radio resources

sliced for base station , (where is the radio resources

of the MBS, and is the radio resource of each

SBS). is the efficiency of the uplink spectrum averaged

over L time slots, given by:

∑ ()

 (10)

 represents the average fraction of radio resources

reserved for the vehicles in zone z of , given by:

 {

∑

 (11)

where is the average number of the vehicles in road

zone z of base station , averaged over L time slots.

To determine the average network utility achieved when the

tasks are offloaded from the vehicle in zone z of , a

concave logarithmic function with diminishing marginal

value can be used:

 (12)

To maximize the network utility for task offloading, a large

time-scale RAN slicing problem can be formulated to

determine the optimal ratios, , of sliced radio resources on

 , given the optimum average fraction of radio resources,

 , reserved for the vehicles in zone z of , as function of

 and , to ensure QoS. The objective function is

expressed as follows [7]:

∑ ∑

{

(13)

where is minimum average uplink task transmission rate

(in bps) used to statistically ensure the task offloading delay

is within the delay bound D, given by [21]:

 (

)
 (14)

where is the probability bound of delay violation, and

 , where is the average task generation rate,

given as where is probability of Bernoulli

distribution that was assumed to be used to generate the task

at each time slot, is also known as vehicle activation

probability. In P2, constraint (a) is used to ensure the

probability delay bound for task offloading is met, constraint

(b) ensures the tasks receive the minimum required frame

rate, constraint (c) indicate all the SBSs reuse the same

portion of the sliced resources. Finally, the slicing ratio

constraint (d) is used to ensure that its value is between 0 and

1. For each large timescale, MATLAB CVX toolbox can be

used to solve the convex optimization problem P2, where

different network parameters are initiated, and different task

offloading policy is obtained based on solving P1.

IV. PROPOSED APPROACH

 In this section, we present our proposed methods to solve

the task offloading decision at small timescale, and radio

resource slicing at large time-scale.

A. SMALLTIME-SCALE BASED DISTRIBUTED TASK
OFFLOADING

 The MDP formulation described in (8) can be addressed

using reinforcement learning (RL) methods such as Q-

learning. Q-learning is a fast and efficient RL technique. Q-

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

learning solves MDP by iteratively learning an optimal

policy. The policy is implicitly defined by selecting actions

based on the Q-values stored in the Q-table. The process

involves initializing a Q-table to store state-action values,

selecting actions based on exploration-exploitation trade-offs,

and updating Q-values based on observed rewards and state

transitions. Specifically, the Q-value for each state-action

pair is iteratively adjusted using the Bellman equation, given

by [22]:

 [

]

(15)

where is the learning rate, influencing the weight of new

information, and is the reward discount factor, impacting

the importance of future rewards. This iterative process

continues until convergence, allowing the agent to learn the

optimal policy for decision-making in the given environment.

Then, the optimal policy is extracted from the action with the

highest Q-value for each state from the Q-table. In this

context, denotes the network state characterized by

environment observation { } at

scheduling slot t, where ,
 , and . The

action is taken by agent at time slot t to determine a system

reward function, , formulated as:

 ∑ (∑

)

 ∑ ∑ (

)

(16)

where and represent the penalties incurred when

constraints (8b) and (8c) are violated in (P1), respectively.

The function is an indicator function that equals 1 if a

condition is met and 0 otherwise. The variable is

expressed as a negative function of the computation load

balancing cost, incorporating penalties for breaching

computation capacity and task offloading latency constraints.

For the centralized system and distributed system without

threshold value (Dist-NoThrs),
 in equation (16),

however, for the distributed system with threshold, it is given

as:

 (17)

where represents the ratios that are feedback by the MBS

for each SBS to determine how much cloud server resource

is allowed for utilization in the next time slot. The proposed

algorithm for task offloading can be summarized as follows:

Algorithm 1: Task offloading based on QL:
Initialize total Bandwidth, W, and Initialize bandwidth slicing

ratio for MBS,

 = W* ; = W*(1-);

Initialize Zone number

Obtain number of vehicles at each zone, and their locations

from dataset

Generate environment state: , , .

Initialize Q-learning parameters:

- Q-table

- Learning rate, discount factor and total Episodes

for any time slot, t = 1: L

 // initialize action for current time slot

Action zones = zeros(Zone number,1);

for any episode = 1: total Episodes

 Current zone = 1;

Total reward = 0;

while Current zone <= Zone number

 Take Action based on greedy algorithm (exploit the Q-

table or explore the environment)

// Update the action for the current zone

Action zones(Current zone) = Action;

// Calculate reward

Reward is calculated based on equation (16) with

inputs (Old action, Action zones, , ,

 , , , …)

// Update total reward

Total reward = total reward + reward;

// Move to next zone

Next zone = Current zone+1;

// Update Q table based on Bellman equation as:

Q(current zone, Action)=(1-α) Q(current zone, Action)+

α(Reward+ γ max(Q(next zone,:)));

// Update to move from current zone to next zone for

next step

Current zone = Next zone;

 end

Save episode reward;

 end

// Extract policy from Q-table

[~, act] = max(Q,[],2);

// Store the optimized action for the current time slot

Action zones per slot (t) = act;

// Update the old action for next time slot

Old action = act;

// Based on the optimized action, metrics such as computation

load ratio, cost 1, cost 2, total cost and latency can be

calculated and saved.

end

 For a centralized single-agent system, where the main

server can control all the network communications, and

perform data processing and storage, the RL algorithm is

applied only at the main cloud server, however, for our

proposed distributed systems; the RL algorithm is applied

at each local edge server. We discuss three distributed

systems called no threshold value (Dist-NoThrs), fixed

threshold value (Dist-fixed) and adaptive threshold value

(Dist-adptv). In Dist-NoThrs approach, the system is

unaware of the workload on the MBS server, therefore, it

can increase the cost of imbalanced computation load.

However, by formulating the reward function given to task

offloading agent, we design two low-complexity distributed

computation offloading strategies to achieve balanced and

efficient offloading decisions, reduce latency and increase

MBS utilization. The first strategy, Dist-fixed, equally

divides the resources of the MBS server among all BSs, for

instance, in equation (17) is set to . This scheme

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

does not require feedback from the agents and does not

require assistant from the main server. In the second

strategy, Dist-adptv, we assume the main server receives

information about the MBS load from each SBS at time slot

t, . Based on this information, the main server

performs simple calculation based on fair-proportional

strategy to determine the normalized MBS load, ,

and obtain ratio values that divide the MBS resources

among the available SBS for next time slot . A higher

ratio indicates a higher MBS resource assigned to handle

the load. The ratio is then feedback to the SBS for RL

agents to be used in the reward function, equation (16). The

proposed adaptive algorithm can be summarized as follows:

Algorithm 2: Cloud server computing resource allocation

used in Dist-adptv scheme
// Set initial ratio:

 , where K is the number of SBSs

// Calculate total load on the MBS server from all SBSs (i) at time

slot t:

 ∑

// Calculate normalized MBS loads from all SBSs at time slot t:

// Obtain ratios for each local server at SBS for next time slot t+1:

 In a distributed system where there is no load control over

the MBS resources, although it offers flexibility, it can lead

to overloading the MBS if all local servers offload heavily.

Thus, unbalanced load distribution across the network can

decrease overall performance. The fixed distributed

approach may address this issue; if one SBS experiences a

heavier workload, it cannot offload tasks beyond a fixed

limit, which might result in underutilization of MBS

resources. The adaptive distributed approach offers a good

balance between flexibility and resource utilization. Hence,

the local server can offload tasks to MBS as needed,

potentially up to its full capacity while not exceeding load

ratio of 1, thereby maximizing the overall resource

utilization. The adaptive distributed approach is suitable for

systems with variable and unpredictable workloads.

B. LARGE TIME-SCALE BASED RADIO RESOURCE
SLICING

 In the previous section, on small timescale, we optimize the

task offloading decision across scheduling time slots to

achieve computation load balance and minimize offloading

switching costs. If the radio resources are not properly sliced,

it may lead to an imbalance in the network-wide computation

load, potentially violating the task transmission delay

constraint given in (8c) of P1 [7]. To ensure balanced task

offloading, the radio resource slicing ratios on each BS must

be optimized as in (P2). Hence, the two-timescale problems

(P1) and (P2) should be solved together to obtain a set of

optimal slicing ratios for computation load balancing so that

the communication and computing resource utilization is

jointly optimized. In this context, the large-time scale

network slicing optimization technique is conducted at MBS

main server every large timescale interval, which only

requires non-privacy-sensitive parameters that were

introduced in section 3.4 to solve P2, such as , , and

 . To achieve that the following algorithm can be

implemented to establish a joint optimization framework

with algorithm 1, that is used for solving the small timescale

problem. Algorithm 3 starts by initializing the slicing ratio,

performing algorithm 1 to get the offloading decision using

RL, then obtaining the stationary task offloading policy, and

solving P2 optimization problem by using the CVX tool to

achieve optimal slicing ratio that will be used for the next

large timescale slot.

Algorithm 3: Large timescale radio resource slicing
// Initialize Q-table and to zeros.

// Initialize total Bandwidth, W.

Initialize bandwidth slicing ratio for MBS, .

for any large scale-time, t = 1: period

 // Calculate the allocated bandwidth for MSB and SBS based

on :

 = W* ; = W*(1-);

// Perform the small time-scale to get the offloading action

 (as in Algorithm 1)

for any time slot, t = 1: L

 Apply algorithm 1 for task offloading based on QL

end

// Large time-scale equations:

- Calculate uplink spectrum efficiency averaged over L

scheduling slots, eq (10).

- Calculate average fraction of radio resources, eq (11).

- Calculate average uplink transmission rate, eq (9).

- Solve the objective function P2 by CVX toolbox, eq (13) to

get .

- Update for next large time-scale.

end

Fig. 2. The interaction between algorithms 1, 2, and 3 to form the

proposed joint computation offloading and RAN slicing framework

 Based on algorithm 3, the RAN slicing of the

communication resources, such as bandwidth, can be

dynamically allocated based on the network load

requirements while adhering to constraints like delay bound

and a minimum guaranteed frame rate for task transmission.

The purpose of this optimization process is to maximize the

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

overall communication and computing resource utilization

while ensuring QoS in the vehicular network. The interaction

between Algorithms 1, 2 and 3 is highlighted at Fig. 2. The

framework operates iteratively, with Algorithms 1 managing

local task offloading decisions, Algorithm 2 handling cloud

server resource allocation, and Algorithm 3 optimizing high-

level radio resource slicing. This process ensures coordinated

optimization across the framework's layers.

V. RESULTS AND DISCUSSION

 This section presents the traffic dataset used in our

analysis, simulation parameters, a comparison between

traditional centralized and distributed systems, and our

results and discussion for small timescale and large

timescale analyses.

A. DATASET

 The used dataset contains records of vehicular mobility

along a three-lane highway called A6 in Madrid City [23].

It captures the position of each vehicle every 500

milliseconds along a 10-kilometer stretch of the road. The

dataset includes columns for timestamp, vehicle label,

vehicle position, lane number, and vehicle speed (ranging

from 45 to 110 kilometers per hour). For our analysis, we

focused on the first 1.5 kilometers of the highway over a

period of 30 minutes. Each minute is divided into 120 time

slots, each lasting 500 milliseconds. We assumed the road

segment is divided into 15 zones, each with a length of

100m. We assumed there is one MBS and three SBSs, each

SBS covers five zones, and all the zones are under the

coverage area of the MBS. Based on this assumption, we

extracted the number of vehicles and their locations at each

zone for each time slot over a 30–minute period from the

given dataset.

 Fig. 3 illustrates the count of vehicles present within the

first 1.5 km of the highway during each time slot over the

30-minute duration. The figure highlights the dynamic

nature of the traffic flow, where the volume rapidly

increases and then fluctuates over the time. The highest

volume is recorded between the 12-minute and 19–minute

marks, with the highest number of vehicles reaching 124.

B. SIMULATION

 The parameters used in our simulation for vehicular

network setup, load computation, and Q-learning are given

in Table 2. Our simulations include two analyses. In the

first part, small time-scaling is evaluated for achieving

offloading balance and minimizing the offloading switching

using Q-learning at each time slot, where the radio resource

is fixed during all time slots. In the second part, large time-

scale is evaluated at each minute for optimizing the

allocated radio resource using the CVX toolbox, where the

Q-learning is used again to achieve load balancing and

minimize the offloading switching but based on the

optimized or allocated radio resource for each minute.

TABLE 2: Simulation parameters

System parameters Value

The uplink transmission power from

each vehicle to the MBS

 27dBm

The uplink transmission power from

each vehicle to the SBS

23dBm

Total Bandwidth (radio resource) 20MHz

MBS height 25m

SBS height 15m

MBS distance to road 25m

SBS distance to road 15m

Number of zones 15

Zone length 100m

Path Loss model , where

d is in km

Noise power -104 dBm

Log-normal shadowing 8 dB

Computation parameters Value

Task size, H 100kbits

MBS server capacity, 3.6 GHz (CPU cycles per
second)

SBS server capacity, 2.4 GHz (CPU cycles per

second)

Computation intensity, 300 cycles per bit

Time slot duration, T 500 ms

Delay bound, D 500 ms

Q-Learning parameters Value

Learning rate 0.1

Discount factor 0.9

Episode 200

Penalty (E1, E2) 2000, 10000

Large time-scale parameters Value

Activation probability, 0.6

Probability bound of delay violation,

Fig.3. Number of vehicles extracted from the dataset within the first

1.5 km of the highway over 30-minute duration

Fig.4. Average reward obtained by QL for centralized system, and

distributed systems for the three SBSs, with ,

and task size of 100kbits

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

C. SMALL RIME-SCALE ANALYSIS

 In this section, we conduct a small timescale analysis

focusing on the costs associated with computation load and

offloading switching. Throughout this analysis, the

bandwidth slicing ratio remains fixed at a certain value. It's

important to highlight the differences in approach between

the centralized and distributed systems. In the centralized

system, reinforcement learning (RL) is applied at the main

server, and the cost function is influenced by the maximum

load among the MBS, and all the SBS 1, 2, and 3.

Conversely, in the distributed system, RL is applied at the

local servers of SBS 1, 2, and 3. Each local server only

considers its own load and the load of the MBS, rather than

the combined load of all stations.

 The results in this section are smoothed by using a moving

average (MA) technique to remove short-term fluctuations

and emphasize longer-term patterns [24]. Specifically, the

results presented in this section are averaged across 120

time slots, each representing one minute.

 Fig. 4 depicts a comparison of the average reward

achieved by the QL at each minute (averaged over 120 time

slots using the MA filter) for the three approaches. The

results of the distributed systems show the average reward

received by each QL agent working at each SBS. As

previously explained in equation (15), negative penalties

are imposed for exceeding computation capacity and task

offloading latency constraints. We can see that the

centralized system has greater penalties than the distributed

(i)

 (ii)

(iii)

(a)

(i)

(ii)

(iii)

(b)

(i)

(ii)

(iii)

(c)

Fig.5. (i) Computation cost (cost 1), (ii) switching cost (cost 2), and (iii) total cost with (a) 𝜸𝟎 𝟎 𝟗 𝜷 𝟎 𝟗𝟗𝟗𝟗, (b) 𝜸𝟎 𝟎 𝟗 𝜷 𝟎 𝟗𝟗𝟗𝟗,

and (c) 𝜸𝟎 𝟎 𝟔 𝜷 𝟎 𝟓, at task size of 100kbits.

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

systems, particularly during peak vehicle traffic between 12

and 19 minutes. This indicates that the QL faced a difficult

task in achieving offloading decisions that reduced

computation load and offloading switches when compared

with distributed systems. This is because the centralized

system must optimize the offloading problem across three

SBSs, whereas with distributed systems, each SBS has a

QL agent that optimizes the problem independently of the

other SBS. Distributed system with fixed thresholding

value performs better than adjustable thresholding scheme.

The distributed system without thresholding value achieves

the best performance, with extremely minimal penalties

given to QL agents; however, further investigation is

required to evaluate other metrics.
 Fig. 5 illustrates the computation load cost, offloading

switching cost, and total cost based on equations (5), (6),

and (7) respectively, for both centralized and distributed

systems. The plots for the distributed system represent

average costs across the three local servers. Notably, the

overall pattern of the maximum computation load ratio

(cost 1) is proportional to the number of vehicle plot given

in Fig. 3. The results demonstrate that distributed systems

offer lower computation load and offloading switching

costs compared to centralized systems. This is attributed to

the fact that while centralized systems consider the overall

system load, distributed systems distribute decision-making

among local servers, enabling more efficient decisions

based on local load constraints only. Additionally, Fig. 5

presents costs under various scenarios, with different values

for the bandwidth slicing ratio and cost weight . It can

be seen that, when and (as shown in

Fig. 5(a)), the centralized computation cost is notably high,

aligning with random offloading decisions. However, as

decreases to 0.6 (as depicted in Fig. 5(b)), the computation

cost of the centralized system decreases accordingly.

However, the computation costs of the distributed systems

tend to slightly increase, but they remain lower than the

centralized system. Furthermore, the distributed system

demonstrates lower switching offloading costs (cost 2)

compared to the centralized system. The random method

tends to result in higher switching costs, given that

offloading decisions are made randomly. The value of

significantly impacts the total cost; a very small places

more emphasis on cost 1, while a high value emphasizes

more on cost 2, as evident in the plots (iii) of Fig. 5. When

comparing the three distributed systems, we notice slight

differences in the first and third scenarios. However, in the

second scenario, when we observe that the

distributed model with adaptive-thresholding achieves a

lower cost than the fixed-thresholding method. Meanwhile,

the distributed system without thresholding offers the best

costs but comes with the trade-off of increasing other

metrics, as we'll explore in the next figures.

(a)

(b)

Fig.6. Average standard deviation of the loads with (a) , (b)

 , with and task size of 100kbits.

Fig.7. Example of the computation load ratio among the MBS and the

three SBSs at with task size of 100kbits for

different methods

 The average standard deviations (STD) of the loads are

depicted in Fig 6. It is observed that the distributed system

without thresholds exhibits a high standard deviation,

sometimes even exceeding that of the random offloading

method as in Fig. 6a. This occurs because it fails to achieve

load balancing among the MBS and SBSs, occasionally

excessively utilizing resources from the MBS, as

exemplified in Fig. 7. Moreover, individual local servers

may consume high resources from the MBS compared to

others, leading to the total computation load of the MBS

exceeding the desired ratio of 1. In other words, the

distributed system with no thresholding doesn’t take into

consideration the limited resources of the main server.

However, distributed systems with threshold values, such as

fixed or adaptive thresholds, can effectively limit and

regulate the load on the MBS to an acceptable level

compared to the absence of thresholding methods, as

demonstrated by the computation load bars in Fig. 7. The

distributed method with a fixed threshold value yielded

lower STD performance because each local server is

allocated a predetermined and uniform amount of

computation resources to utilize.

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

(a)

(b)

Fig.8. MBS overload with (a) , (b) , with
 and task size of 100kbits.

 MBS overload rate is depicted in Fig. 8 for various

methods, it measures how often the load on MBS exceeds

ratio of 1. The centralized system performs best at an MBS

bandwidth slicing ratio of , whereas the Dist-fixed

and Dist-adptv techniques perform similarly to the

centralized system in the second scenario (). The

adaptive strategy has a little greater overload rate than the

Dist-fixed method at , but this comes with an

increase in MBS utilization, as we will see in the next

discussion. The distributed system without thresholds has

high overload rate at various settings; however, the

distributed system with thresholding value (fixed or

adaptive) was able to lower this overload rate significantly.

MBS utilization rate is illustrated in Fig. 9, quantifying how

the MBS resources are utilized for different methods. It is

calculated based on the MBS load ratio and averaged over

the 30 periods. It is noted that, in contrast to the random

decision-making system, the distributed system without

thresholds displays a high MBS usage at various settings,

however, as seen earlier in Fig. 8, it is highly overloads the

MBS. At , the adaptive strategy outperforms the

centralized and fixed approach by 2% and 7%, respectively.

The centralized system is then outperforms the Dist-adptv

and Dist-fixed systems at lower . However the adaptive

approach still performs better than the Dist-fixed scheme

when the bandwidth slicing ratio is reduced to = 0.6 with

6% improvement in MBS utilization.

(a)

(b)

Fig.9. MBS utilization with (a) , (b) , with
 and task size of 100kbits.

 Fig. 10 depicts the maximum task offloading delay per

time slot, taking into account the time it takes to transmit

task data from vehicles to either the MBS server or the SBS

server. The general pattern of the latency plots are

proportional to the number of vehicle plots shown in Fig. 3.

We can observe that the random offloading decision

(a)

(b) (c)

Fig.9. Maximum task offloading latency versus time plot with (a) 𝜸𝟎 𝟎 𝟗, (b) 𝜸𝟎 𝟎 𝟔, (c) 𝜸𝟎 𝟎 𝟒, with 𝜷 𝟎 𝟗𝟗𝟗𝟗 and task size of

100,000 bits.

Fig.11. Overall performance metrics at 𝜸𝟎 𝟎 𝟗 with different task size

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

approach has the maximum latency. At a bandwidth slicing

ratio of , the centralized system has higher

offloading latency than distributed systems. Reducing the

slicing ratio to 0.6 improves the offloading latency of the

centralized system. As decreases to 0.4, the fixed and

adaptive techniques perform similarly to the centralized

system, but the distributed system without thresholding has

higher latency.

 In Fig. 11, we investigated the average performance of

different metrics such as cost1, cost2, total cost, STD,

latency, and MBS utilization at different task sizes with

 . Increasing the task size causes the cost1, total

cost, STD, latency and MBS utilization to increase

accordingly. The results confirm that distributed systems

have lower computation and offloading switching costs

than centralized system. The centralized system performs

better than the distributed systems in term of STD at task

size of 50kbits and 150kbits, indicating that the centralized

system can achieve a more balanced load distribution

compared to other methods; nevertheless, it should be

mentioned that at large task sizes, such as 150 kbits, the

computation cost of the centralized system exceeds the ratio

of one. Moreover, this results in increasing the offloading

delay of the centralized scheme. Distributed systems have

lower latency performance than centralized systems at task

size of 50kbits and 150 kbits. The MBS utilization of the

distributed schemes is better than centralized system at task

size of 50 kbits, and it is nearly fully exploited by all

methods at 150 kbits task size (96%, 98%, 96%, and 97%

by centralized, Dist-NoThrs, Dist-fixed, and Dist-adptv

respectively). The Dist-adptv scheme shows slight MBS

utilization than Dist-fixed scheme at task size of 100 kbits

and 150 kbits.

D. LARGE TIME-SCALE ANALYSIS

 In this section, we discuss large time-scale analysis. We

evaluated the centralized and distributed schemes by

solving P2, with the initial slicing ratio of MBS’s radio

resource () set to 0.9 and for the SBS is set to 0.1

(MHz and MHz).

 Fig. 12 (a) illustrates the radio slicing ratio (right y-

axis) and total cost (including load computation and

offloading switching) (left y-axis) over 30 minutes after

applying the large time-scale algorithm for the four

approaches. The figure demonstrates the adaptation of the

centralized, Dist-fixed and Dist-adptv schemes to the

network load variations due to vehicles mobility change

over time. Most methods start adapting to the load

variations after 3 minutes. We observe that the slicing ratio

 is adjusted every minute, and it is proportional to

computation load. The maximum and minimum values

obtained by the four schemes are [0.8, 0.54], [0.67, 0.5],

[0.77, 0.52] and [0.76, 0.47] for centralized, Dist-NoThrs,

Dist-fixed and Dist-adptv, respectively. The centralized,

Fig.12. Adaptation of the radio resource slicing ratio 𝜸𝟎 with total cost

Fig.13. Performance metrics with MBS radio slicing ratio, 𝜸𝟎, for small time-scale (with fixed 𝜸𝟎) and large time-scale (variable ratio 𝜸𝟎) at

task size of 100kbits

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

Dist-fixed and Dist-adptv shows good correlation with

computation load compared to Dist-NoThrs scheme.

 In Fig. 13, we investigated the impact of decreasing the

MBS bandwidth slicing ratio, , from 0.9 to 0.6 and 0.4

(fixed slicing ratio all time), and using variable slicing

ratios (var.) (dynamic ratio changes over large time-scale,

i.e., one minute in our case) obtained after applying the

large time-scale algorithm. As the fixed slicing ratio

decreases, we observe a significant increase in throughput,

and a notable decrease in latency, MBS overload rate, and

MBS utilization. Reducing the slicing ratio from 0.9 to 0.4

markedly boosts throughput by 49 Mbps, 53 Mbps, 49

Mbps, and 49 Mbps, while substantially reducing

offloading delay by 50 ms, 28 ms, 45 ms and 40 ms for

centralized, Dist-NoThrs, Dist-fixed and Dist-adptv,

respectively. At , centralized, Dist-fixed and Dist-

adptv schemes achieved almost equivalent latency. For

variable slicing ratios case, throughput increases compared

to fixed slicing ratio , but is slightly less than when

 and 0.4, specifically, increasing by 35 Mbps, 49

Mbps, 26 Mbps and 31 Mbps in throughput and decreasing

by 38 ms, 33 ms, 41 ms and 35 ms in latency, for

centralized, Dist-NoThrs, Dist-fixed and Dist-adptv,

respectively. The slight improvement in variable slicing

ratios case compared to the fixed ratio occurs because, in

the variable ratios scenario, the slicing ratios fluctuate

between 0.8 and 0.5 based on network demands. It is also

observed that the MBS overload rate for the distributed

system without a threshold is significantly higher compared

to other counterparts at . The centralized system

and Dist-fixed exhibit low MBS overload, with a lower

MBS usage percentage for the Dist-fixed scheme at

 . However, the MBS overload rates of centralized,

Dist-fixed and Dist-adptv drop dramatically to 0% by

reducing the slicing ratio to 0.6 and 0.4. On the other hand,

the Dist-NoThrs shows overload rate of 6% and 5% at

slicing ratios of 0.6 and 0.4, respectively. For variable

ratios, the Dist-NoThrs overload reduces to 1.5%, while the

centralized and Dist-adptv schemes reduce to 0.26% and

1.2%, respectively, while the Dist-fixed reduces to 0%.

Finally, the MBS utilization for all schemes exceeds 70% at

 , however, this percentage decreases by reducing

the MBS radio resource from 18MHz to 12MHz and

8MHz. The centralized system maintains similar MBS

utilization at and with variable ratios, but, the

Dist-fixed and Dist-adptv schemes demonstrate better MBS

utilization in variable ratio scenario compare to

and 0.4 cases. The Dist-adptv scheme achieves 3% better

utilization than the centralized and Dist-fixed schemes. Our

investigation reveals that using variable MBS slicing ratios

strategy enhances throughput and reduces latency

effectively. The Dist-adptv method achieves the best MBS

utilization and the Dist-fixed method demonstrating the

lowest overload rates, highlighting their effectiveness in

optimizing task offloading in dynamic vehicular networks.

VI. CONCLUSION

 In this work, we studied jointly two time-scale task

offloading and RAN slicing in vehicular networks using both

centralized and distributed approaches. We proposed two

distributed schemes for the allocation of cloud server

resources: Dist-fixed and Dist-adptv. In the small time-scale,

task offloading was optimized using the Q-learning method,

considering constraints such as server capacity and

offloading latency. The objective was to achieve load

balancing with minimal offloading variations among edge

and cloud servers. The analysis of the small time-scale

technique showed that distributed systems demonstrated

lower balanced computation load costs, offloading switching

cost and task completion latency compared to the centralized

system at different task sizes. The centralized system showed

better standard deviation (STD) at task sizes of 50 kbits and

150 kbits, while Dist-fixed achieved better STD at a task size

of 100 kbits. Distributed systems exhibited good MBS

utilization compared with the centralized system at lower

task sizes and nearly equivalent MBS utilization at higher

task sizes. A large time-scale RAN slicing strategy was

further investigated to dynamically adjust the radio resource

slicing ratios proportionally to the network’s load to

maximize the overall radio resource utilization. The analysis

of the large times-scale technique showed that the RAN

slicing ratios for all schemes, except Dist-NoThrs, effectively

adapted to dynamic network loads caused by vehicle

mobility. A significant observation was the substantial

performance improvement observed with distributed systems

such as Dist-fixed and Dist-adptv. For instance, the

throughput of Dist-adptv scheme increased by 31 Mbps, and

latency decreased by 35 ms compared to the fixed slicing

ratio of . Additionally, Dist-adptv achieved up to

3% better MBS utilization than both Dist-fixed and

centralized systems, while the Dist-fixed scheme reduced

overload rates to 0% with task size of 100 kbits,

demonstrating the effectiveness of the distributed schemes in

optimizing task offloading in dynamic vehicular network

environments. In future work, we aim to explore the

proposed scheme in more secure approach such as federated

reinforcement learning, and compare its performance with

other RL techniques to further validate its effectiveness.

APPENDIX

TABLE 3 Main symbols with their definitions

Symbol Definition

 The k th base station (BS) under consideration

Task offloading decision in zone z of base station, , at

time slot, t

 Number of vehicles in zone z of at time slot, t

 The available bandwidth for k th BS

Uplink channel gain from vehicles within zone z to at slot

t

 Uplink SNR/SINR for vehicles in zone z of at slot t

 Uplink transmission rate

 Uplink transmission power for vehicles under

 Small-scale Rayleigh fading component under at slot t

 Average background noise power

 Computation load associated with at slot t

 Computation intensity

 Computing task size

 Computation capacity on the server connected to

 The duration of a task scheduling slot

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME XX, XXXX 9

 Task offloading latency requirement

 Total cost of computation load balancing at slot t

 Stationary task offloading in zone z of

Average uplink transmission rate from the vehicles in zone z

to

 Ratio of sliced radio resources on

Average fraction of radio resources reserved for vehicles in

zone z of

 Uplink spectrum averaged over L time slots

 Average number of vehicles in zone z of

REFERENCES

[1] Talebkhah, M., Sali, A., Khodamoradi, V., Khodadadi, T., & Gordan,

M. "Task offloading for edge-IoV networks in the industry 4.0 era and

beyond: A high-level view." Engineering Science and Technology, an

International Journal, 54, 2024, pp

101699.https://doi.org/10.1016/j.jestch.2024.101699.

[2] X. Shen et al., "AI-Assisted Network-Slicing Based Next-Generation

Wireless Networks," in IEEE Open Journal of Vehicular Technology,

vol. 1, pp. 45-66, 2020, doi: 10.1109/OJVT.2020.2965100.

[3] Zhongyu Wang, Tiejun Lv, Zheng Chang,“Computation offloading and

resource allocation based on distributed deep learning and software

defined mobile edge computing”, Computer Networks, Vol. 205, 2022,

doi.org/10.1016/j.comnet.2021.108732.

[4] Yang, Kun, et al. "A novel hierarchical distributed vehicular edge

computing framework for supporting intelligent driving." Ad Hoc

Networks, 153 (2024): 103343.

https://doi.org/10.1016/j.adhoc.2023.103343

[5] S. Li, S. Lin, L. Cai, W. Li and G. Zhu, "Joint Resource Allocation and

Computation Offloading With Time-Varying Fading Channel in

Vehicular Edge Computing," in IEEE Transactions on Vehicular

Technology, vol. 69, no. 3, pp. 3384-3398, March 2020, doi:

10.1109/TVT.2020.2967882.

[6] L. Geng, H. Zhao, J. Wang, A. Kaushik, S. Yuan and W. Feng, "Deep-

Reinforcement-Learning-Based Distributed Computation Offloading in

Vehicular Edge Computing Networks," in IEEE Internet of Things

Journal, vol. 10, no. 14, pp. 12416-12433, 15 July 15, 2023, doi:

10.1109/JIOT.2023.3247013.

[7] Q. Ye, W. Shi, K. Qu, H. He, W. Zhuang and X. Shen, "Joint RAN

Slicing and Computation Offloading for Autonomous Vehicular

Networks: A Learning-Assisted Hierarchical Approach," in IEEE Open

Journal of Vehicular Technology, vol. 2, pp. 272-288, 2021, doi:

10.1109/OJVT.2021.3089083.

[8] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, Y. Yang, Efficient

dependent task offloading for multiple applications in MEC-cloud

system, IEEE Trans. Mob. Comput. (2021) 1,

http://dx.doi.org/10.1109/TMC.2021.3119200.

[9] M. Tang, V.W. Wong, Deep reinforcement learning for task offloading

in mobile edge computing systems, IEEE Trans. Mob. Comput. 21 (6)

(2022) 1985–1997, http://dx.doi.org/10.1109/TMC.2020.3036871.

[10] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, Y. Zhang, Deep

learning empowered task offloading for mobile edge computing in

urban informatics, IEEE Internet Things J. 6 (5) (2019) 7635–7647,

http://dx.doi.org/10.1109/ JIOT.2019.2903191.

[11] X. Wang, Z. Ning, S. Guo, Multi-agent imitation learning for pervasive

edge computing: a decentralized computation offloading algorithm,

IEEE Trans. Parallel Distrib. Syst. 32 (2) (2021) 411–425,

http://dx.doi.org/10.1109/TPDS.2020. 3023936.

[12] K. Jiang, H. Zhou, D. Li, X. Liu and S. Xu, "A Q-learning based

Method for Energy-Efficient Computation Offloading in Mobile Edge

Computing," 2020 29th International Conference on Computer

Communications and Networks (ICCCN), Honolulu, HI, USA, 2020,

pp. 1-7, doi: 10.1109/ICCCN49398.2020.9209738.

[13] B. Dab, N. Aitsaadi and R. Langar, "Q-Learning Algorithm for Joint

Computation Offloading and Resource Allocation in Edge Cloud,"

2019 IFIP/IEEE Symposium on Integrated Network and Service

Management (IM), Arlington, VA, USA, 2019, pp. 45-52.

[14] Z. Gao, W. Hao, Z. Han and S. Yang, "Q-Learning-Based Task

Offloading and Resources Optimization for a Collaborative Computing

System," in IEEE Access, vol. 8, pp. 149011-149024, 2020, doi:

10.1109/ACCESS.2020.3015993.

[15] [F. Jiang, W. Liu, J. Wang and X. Liu, "Q-Learning Based Task

Offloading and Resource Allocation Scheme for Internet of Vehicles,"

2020 IEEE/CIC International Conference on Communications in China

(ICCC), Chongqing, China, 2020, pp. 460-465, doi:

10.1109/ICCC49849.2020.9238925.

[16] Stuart Russel and Peter Norvig, “Artificial Intelligence: A Modern

Approach”, 4th US Edition, Pearson, 2021.

[17] A. S. Kumar, L. Zhao and X. Fernando, "Task Offloading and

Resource Allocation in Vehicular Networks: A Lyapunov-Based Deep

Reinforcement Learning Approach," in IEEE Transactions on

Vehicular Technology, vol. 72, no. 10, pp. 13360-13373, Oct. 2023,

doi: 10.1109/TVT.2023.3271613.

[18] N. Sharma, A. Ghosh, R. Misra and S. K. Das, "Deep Meta Q-Learning

Based Multi-Task Offloading in Edge-Cloud Systems," in IEEE

Transactions on Mobile Computing, vol. 23, no. 4, pp. 2583-2598,

April 2024, doi: 10.1109/TMC.2023.3264901.

[19] J. Huang, J. Wan, B. Lv, Q. Ye and Y. Chen, "Joint Computation

Offloading and Resource Allocation for Edge-Cloud Collaboration in

Internet of Vehicles via Deep Reinforcement Learning," in IEEE

Systems Journal, vol. 17, no. 2, pp. 2500-2511, June 2023, doi:

10.1109/JSYST.2023.3249217.

[20] L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks

based on multi-agent reinforcement learning,” IEEE J. Sel. Areas

Commun., vol. 37, no. 10, pp. 2282–2292, Oct. 2019

[21] Q. Ye, W. Zhuang, S. Zhang, A. Jin, X. Shen, and X. Li, “Dynamic

radio resource slicing for a two-tier heterogeneous wireless network,”

IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9896–9910, Oct. 2018.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no.

3/4, pp. 279–292, 1992.

[23] M. Gramaglia, O. Trullols-Cruces, D. Naboulsi, M. Fiore and M.

Calderon, “Mobility and connectivity in highway vehicular networks:

A case study in Madrid”, Computer Communications, vol. 78, pp. 28-

44, 2016, doi.org/10.1016/j.comcom.2015.10.014.

[24] H. -H. Chang, H. Chen, J. Zhang and L. Liu, "Decentralized Deep

Reinforcement Learning Meets Mobility Load Balancing," in

IEEE/ACM Transactions on Networking, vol. 31, no. 2, pp. 473-484,

April 2023, doi: 10.1109/TNET.2022.3176528.

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3533093

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

