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ABSTRACT Geofencing technologies have become pivotal in creating virtual boundaries for both real
and virtual environments, offering a secure means to control and monitor designated areas. They are
now considered essential tools for defining and controlling boundaries across various applications, from
aviation safety in drone management to access control within mixed reality platforms like the metaverse.
Effective geofencing relies heavily on precise tracking capabilities, a critical component for maintaining the
integrity and functionality of these systems. Leveraging the advantages of 5G technology, including its large
bandwidth and extensive accessibility, presents a promising solution to enhance geofencing performance.
In this paper, we introduce MetaFence: Meta-Reinforcement Learning for Geofencing Enhancement, a
novel approach for precise geofencing utilizing indoor 5G small cells, termed “5G Points”, which are
optimally deployed using a meta-reinforcement learning (meta-RL) framework. Our proposed meta-RL
method addresses the NP-hard problem of determining an optimal placement of 5G Points to minimize
spatial geometry-induced errors. Moreover, the meta-training approach enables the learned policy to quickly
adapt to diverse new environments. We devised a comprehensive test campaign to evaluate the performance
of MetaFence. Our results demonstrate that this strategic placement significantly improves tracking accuracy
compared to traditional methods. Furthermore, we show that the meta-training strategy enables the learned
policy to generalize effectively and perform efficiently when faced with new environments.

INDEX TERMS geofencing, tracking, meta-RL, sensor placement, 5G networks

I. Introduction
The advent of mobile user technologies, such as unmanned
aerial vehicles (UAVs), commonly referred to as drones,
alongside the burgeoning mixed reality metaverse platforms,
introduces significant new security vulnerabilities [1]–[3].
These innovations possess the potential to infiltrate and
compromise restricted zones, thereby escalating the risk
of security breaches and the exposure of confidential in-
formation [4]–[6]. For example, drones are increasingly
deployed for unauthorized surveillance of protected areas,
including military facilities, presenting substantial security
challenges [7]–[9]. Similarly, users within mixed reality en-
vironments, such as the metaverse, may manipulate security
flaws to illicitly enter private virtual spaces, where they
might misappropriate sensitive information or inflict digital
disruption [10]–[12].

In response to these emerging security challenges, the
implementation of geofencing systems presents a viable
solution to enforce virtual boundaries and manage access
to sensitive areas [13]. Through real-time monitoring and
access controls, geofencing ensures robust regulation of
entry points, thereby thwarting unauthorized access. This
technology provides a distinct advantage over traditional
vision-based surveillance systems like cameras, as it relies
on the transmission and reception of radio frequency (RF)
signals. Unlike camera systems, geofencing operates inde-
pendently of lighting conditions, ensuring consistent func-
tionality across diverse environments. Moreover, geofencing
systems are typically less costly to implement and maintain
than camera-based monitoring, offering a more economical
yet effective security solution [14], [15].

Choosing 5G technology, renowned for its high-frequency
RF signals, represents an appropriate strategy for enhancing

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3531318

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Famili et al.: Harnessing Meta-Reinforcement Learning for Enhanced Tracking in Geofencing Systems

Secure Zone
5G Points

Boundary:
Tracking

Boundary:
Tracking

Figure 1: Graphical depiction of the 5G Points deployment
within a secure facility, aimed at safeguarding against and
tracking unauthorized users.

geofencing capabilities. A significant advantage of 5G is
its widespread accessibility, which enables a majority of
users to utilize this technology for communication without
necessitating additional infrastructure [16]. Essentially, the
geofencing system integrates seamlessly with existing 5G
base stations (BSs), with all users already equipped to inter-
face with this technology. Furthermore, the ultra-low latency
communication combined with expansive bandwidth, which
exceeds 400 MHz, facilitates a high-resolution geofencing
system and ensures high tracking accuracy. In contrast to
the foundational IEEE 802.11 standard, commonly known
as Wireless Fidelity (Wi-Fi), 5G technology offers superior
scalability, including outdoor environments. In comparison,
Wi-Fi is primarily designed to support indoor wireless
networks, limiting its applicability for extensive geofencing
implementations.

Selecting the right wireless technology is crucial, as it
directly impacts tracking accuracy through precise ranging
measurements such as time of arrival (TOA) and angle of
arrival (AOA). These measurements benefit from expansive
bandwidth and robust orthogonal frequency-division mul-
tiplexing (OFDM) modulation offered in 5G technology,
which helps to reduce noise and multipath distortions. Ad-
ditionally, the spatial arrangement of the BSs significantly
influences the accuracy of geofencing systems. The accuracy
is determined not only by ranging errors but also by errors
caused by the spatial geometric configurations of the BSs.

For outdoor environments with fixed BSs, control over
placement to minimize geometric-induced errors is limited.
However, in confined venues, geofencing systems offer more
flexibility in positioning RF sensors strategically. The com-
pact antenna design due to the high-frequency capabilities of
5G technology facilitates the use of small cells specifically
designed for indoor environments. These cells, significantly
smaller than their outdoor counterparts, provide comparable
cellular coverage using the same core network.

In this paper, our objective is to minimize geometry-
induced errors in tracking. To that end, we propose
MetaFence: Meta-Reinforcement Learning for Geofencing
Enhancement, a novel framework designed to enhance ge-
ofencing capabilities. MetaFence utilizes the small indoor
cells, which we refer to as “5G Points” as the geofencing
anchors. By leveraging an innovative meta-reinforcement
learning (meta-RL) methodology, MetaFence significantly
improves tracking accuracy. This is achieved through the
strategic configuration of 5G Points, optimizing their deploy-
ment to enhance the effectiveness of geofencing operations.

Our work focuses on exploring the impact of spatial
geometry between users and 5G Points. We aim to develop
optimal configurations to enhance tracking precision. To
rigorously quantify the effect of relative geometry between
the user and the 5G Points, we compute the Cramér-Rao
lower bound (CRLB) for our tracking estimator. This calcu-
lation demonstrates that the error in three-dimensional (3D)
tracking using round-trip time (RTT) trilateration arises not
only from ranging inaccuracies but also from the spatial
positioning of the user relative to the tracking nodes.

The variance in the final 3D tracking error is influenced by
the compounded effects of ranging errors and a geometry-
induced factor. For example, if the distance ranging error
is reduced to 10 cm, a feat achievable with 5G mm-Wave
technology, and the geometric-induced error is high—say
a factor of 100 due to traditional placements—the total
tracking error can escalate to approximately 10 m, calculated
as 10 cm × 100 = 1000 cm. This increase in error,
from 10 cm in the distance ranging to 10 m in 3D tracking,
is unsuitable for geofencing applications that require high
precision.

We first introduce an optimization formulation to tackle
the NP-hard problem of determining optimal 5G Point
configurations. Following this, we implement a novel meta-
RL strategy to identify the most effective deployments for
the 5G Points. Previous studies (e.g., [13], [17], [18]), have
primarily focused on determining the required number of
anchors for a precise geofencing system. However, they fall
short in addressing how to optimally configure these anchors
once their number is established. Our work fills this gap by
focusing on the crucial yet previously overlooked element of
optimal anchor configuration.

Traditional Reinforcement Learning (RL) approaches [19]
generally tackle each task independently from scratch, result-
ing in considerable training time overhead when applied to
any new tasks. Given the practical need for deploying 5G
Points in diverse environments, a more efficient approach is
required—one that can quickly adapt to new environments
without the need for an extensive and time-consuming train-
ing process. To this end, we adopt the meta-RL method [20],
[21] as a practical solution for the deployment of 5G Points
across various environments. Instead of optimizing each task
in isolation, meta-RL trains on a diverse set of tasks to
learn a meta-model. This meta-model serves as a robust
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initialization policy that can be rapidly adapted to new,
unseen tasks, specifically finding optimal positions for 5G
Point deployment in new environments as discussed in this
paper.

While deriving the CRLB for MetaFence tracking esti-
mator, we found that the spatial arrangement of 5G Points
influences both horizontal and vertical tracking accuracies.
Our analyses using coverage heatmaps reveal that vertical
accuracy (i.e., height estimation) is more susceptible to the
spatial arrangement of the anchors compared to horizontal
tracking accuracy (i.e., X − Y plane estimation). Our key
contribution is the development of a novel meta-RL-based
approach that determines the deployment of 5G Points to
reduce spatial geometry-induced errors, simultaneously for
vertical and horizontal tracking, enhancing overall geofenc-
ing effectiveness. This solution is crucial for applications
requiring precise height estimation, such as drone detection,
or for mixed reality experiences focused on the X − Y
plane tracking. Figure 1 provides a visual representation of
MetaFence system, and a detailed summary of our contribu-
tions is outlined below:

• We present MetaFence, an advanced geofencing system
that leverages 5G Points for precise user tracking within
designated confined venues.

• We calculate the CRLB for the tracking framework of
MetaFence, attributing the overall 3D tracking error to
errors based on range and spatial geometry.

• We formulate the NP-hard problem of optimally de-
ploying 5G Points for enhanced tracking. Our analysis
reveals that horizontal tracking is less affected by the
spatial geometry of the anchors compared to vertical
tracking accuracy.

• We introduce a new strategy utilizing a meta-RL ap-
proach to effectively and efficiently tackle the NP-
hard challenge of placing 5G Points in diverse indoor
environments.

• We conducted an extensive testing campaign to assess
the performance of MetaFence, comparing our meta-
RL-based approach with traditional manual placement
strategies. Our results indicate that MetaFence signifi-
cantly reduces spatial geometry-induced errors, thereby
markedly enhancing tracking accuracy within the sys-
tem.

II. Related Works & Background
Our work intersects with three primary research streams: (i)
geofencing methodologies, (ii) optimal placement of anchor
nodes, and (iii) learning-based problem-solving techniques.
Below, we provide a succinct overview of each area.

Geofencing and Tracking: Geofencing is a location-
based technology that uses RF signals (e.g., Wi-Fi) to
create virtual boundaries around predefined areas, triggering
automated actions as devices enter or exit these zones. This
technology enhances drone security by setting safe flight
paths and supports context-sensitive interactions in mixed-

reality metaverse scenarios through virtual perimeters. The
system performance relies on precise localization to ensure
timely actions within geofence boundaries.

Alternatively, vision-based security enforcement utilizes
methods like visual odometry (VO), simultaneous localiza-
tion and mapping (SLAM), and optical flow, often aug-
mented with deep neural networks [22] or LiDAR [23]
to enhance performance. However, vision-based techniques
involve higher computational and hardware costs and suffer
from reduced accuracy in visually impaired environments.

Optimal Placement: Optimizing anchor deployment for
indoor tracking with ranging-based measurements is a crit-
ical aspect of wireless network localization [24]–[27]. This
research focuses on achieving ubiquitous coverage within
designated indoor spaces to minimize errors stemming from
spatial geometry relative to users and anchors. The choice of
sensor significantly influences this challenge; for example,
ultrasonic sensors, due to their narrow-beam propagation,
impact coverage patterns differently than RF signals, which
provide omnidirectional propagation and extended range,
thus requiring fewer anchors.

Addressing the challenge of achieving full coverage with a
minimal number of anchors—an NP-hard problem analogous
to the Art Gallery or K-Nearest problems—has been exten-
sively explored in two-dimensional contexts [25]. However,
three-dimensional coverage, essential for applications like
drone geofencing systems, has received less attention. Al-
though some studies, such as the EGO-6 system by Famili et
al. [13], have investigated the minimum number of tracking
anchors required for three-dimensional geofencing coverage,
they have often neglected how strategic beacon placement
affects tracking accuracy.

Unlike much of the existing literature, MetaFence specifi-
cally focuses on the impact of anchor placement on the final
3D tracking accuracy. We consider it crucial to not only
know the required number of anchors for a specific location
but also to determine the most advantageous placement
to minimize the 3D tracking errors caused by the spatial
geometry between the user and the anchors. To that end,
given a known number of required anchors for full coverage,
MetaFence proposes a meta-RL-based approach to determine
the optimal placement of 5G Points. In previous work [28],
Famili et al. tackled this challenge by introducing a deep
Q-learning approach, termed “DEFENCE”, which proved
effective in solving the optimal placement problem. How-
ever, DEFENCE necessitates solving each placement task
individually, which is inefficient for practical applications
involving diverse environments. In contrast, our proposed
method, MetaFence, learns a general policy that can be effi-
ciently adapted to new tasks without the need for complete
retraining. To the best of our knowledge, MetaFence is the
first algorithm to address the spatial geometric aspects of
anchor placement for geofencing systems and proposes a
meta-RL-based approach to tackle this complex issue.
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Learning-based Techniques: RL is a learning paradigm
in which an agent learns to make optimal decisions by
interacting with its environment and taking actions through
trial and error. RL has proven highly effective in deriving
optimal strategies across various domains, including the nav-
igation of autonomous vehicles and achieving superhuman
performance in game playing [19]. To solve the optimization
problem, each learning task is modeled as a Markov Decision
Process (MDP) M, defined by the tuple (S,A, P, r), where
S, A P , r represent states, actions, the transition function
and rewards, respectively. In a typical RL problem, an agent
interacts with its environment by taking an action a based
on the current state s. In response, the environment provides
a new state s′ and a reward r. The transition function
P (s′ | s, a) specifies the probability of transitioning from
state s to state s′ given action a. The objective in RL is to
discover a policy π that maximizes long-term reward.

Meta-RL [20], [21], [29] enhances traditional RL by
training on a distribution of MDPs across various tasks,
enabling the meta-model to quickly adapt to unseen tasks.
The meta-training process starts with initializing the meta-
model parameters θ and involves two optimization loops: an
inner loop and an outer loop. In the inner loop, the agent
performs task-specific updates to the model parameters to
maximize rewards within each environment. Once the inner
loop updates are completed for all tasks in each learning
iteration, the outer loop refines the model further. During
the outer loop, the meta-model parameters are updated by
minimizing the cumulative task-specific losses, thereby im-
proving the meta-model’s adaptability across different tasks.

III. RAN Slicing for Enhanced Accuracy
In 5G deployments, network slicing [30], [31] is a fundamen-
tal feature, allowing the creation of multiple virtual networks
on a single physical infrastructure. Each slice is tailored to
meet the specific needs of various applications, ensuring op-
timal performance and resource utilization. When applied to
the radio access network (RAN), the network slicing concept
can be leveraged to enhance localization accuracy, catering
to different use cases with varying precision requirements.
By creating dedicated RAN slices optimized for localization,
service providers can offer solutions that cater to the unique
demands of diverse applications, ranging from consumer
navigation to industrial automation.

Different use cases demand different levels of localization
accuracy. For instance, augmented reality (AR) applications
in retail may require localization accuracy within a few
meters to enhance user experience and provide relevant in-
formation based on the user’s location. Conversely, industrial
applications such as automated vehicles in a smart factory
necessitate centimeter-level accuracy to ensure precise nav-
igation and operation. Similarly, public safety applications,
such as emergency response systems, demand highly reliable
and precise localization to quickly and accurately locate
individuals in need. Leveraging the concept of RAN slicing,

RAN Network Slice 1
High PRS 
Allocation

High accuracy tracking
Lower throughput

RAN Network Slice 2
Medium PRS 
Allocation

Medium accuracy tracking
Medium throughput

RAN Network Slice 3
Lower PRS 
Allocation

Low accuracy tracking
Higher throughput

Low
er tracking accuracy

H
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RRC_Config2

RRC_Config3
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Figure 2: Tentative representation of RAN slicing to accom-
modate different localization requirements with varying radio
resource allocation for the PRS.

network operators can ensure that each use case receives
the appropriate level of localization accuracy and reliability
while finding a balance between QoS and positioning accu-
racy.

Implementing RAN slicing for localization accuracy in-
volves several technical considerations. First, the allocation
of radio resources needs to be managed dynamically to
ensure that each slice can meet its specific localization re-
quirements without interfering with others. This may involve
the use of advanced radio resource management (RRM) tech-
niques to predict and allocate resources based on real-time
demand and network conditions. Second, the integration of
advanced localization technologies, such as enhanced GPS,
triangulation, and time-of-flight measurements, is crucial to
achieving the desired accuracy. Each slice can be configured
with the most appropriate localization technology to optimize
performance for its specific use case.

Exploiting RAN slicing allows for the customization of
network performance to meet the specific needs of di-
verse applications, leading to improved user experiences and
operational efficiencies. Moreover, it enables the efficient
use of network resources by ensuring that each slice only
consumes the necessary amount of resources required for
its intended use case. However, there are challenges to be
addressed, including the complexity of managing multiple
slices with varying requirements and the need for robust
security mechanisms to protect the integrity and privacy of
the localization data. Additionally, ensuring seamless inter-
operability between different slices and legacy systems can
be challenging but is essential for the widespread adoption
of this technology.

IV. MetaFence Tracking Framework
In this section, we begin by outlining the essential prereq-
uisites for localization and tracking in geofencing systems
in Section A. Following this, in Section B, we describe how
MetaFence enables real-time tracking of users through round
trip time (RTT)-based trilateration. Finally, in Section C, we
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provide a derivation of the CRLB, also referred to as the
positioning error bound (PEB) for MetaFence, highlighting
how the spatial geometry between the user and the 5G Points
influences the overall localization error.

A. Principle Prerequisites for Tracking
For precision tracking, MetaFence primarily focuses on
ranging-based localization techniques. These methods in-
volve the transmission and reception of signals between a
user and one or more anchor points, which are essential for
accurately framing the localization problem.

The transmission mediums utilized in these localization
strategies can be either acoustic [32] or RF [33], depen-
dent on the nature of the transceivers deployed. Acoustic
ultrasound transmissions, characterized by their lower prop-
agation velocities, provide highly precise positional deter-
minations [24]. Although they are adept at closely-spaced,
high-fidelity gesture recognition scenarios [34], their utility
declines across larger distances owing to their restricted
reach, making them suboptimal for broad-scope geofencing
initiatives.

Apart from the type of signal, the effectiveness of a
localization system is dependent on measurement method-
ologies like received signal strength (RSS), and channel state
information (CSI), among others. RSS and CSI, frequently
utilized alongside environmental fingerprinting, provide an
economical and simple solution. Nonetheless, tracking ap-
proaches that depend on RSS fingerprinting are significantly
vulnerable to real-time changes in the environment [35],
which can undermine their dependability.

AOA estimation, which utilizes angulation techniques for
tracking, requires the deployment of specialized antenna
arrays [36]. This technique demands substantial computa-
tional resources and necessitates the allocation of increased
processing capabilities. The intricacy of this approach stems
from the implementation of complex algorithms, like Mul-
tiple Signal Classification (MUSIC), which are crucial for
precise angle determination.

Contrary to the complexities associated with RSS and
AOA methodologies, TOA serves as a more streamlined met-
ric for measurement [37], obviating the need for extensive
computational capabilities or elaborate antenna configura-
tions. TOA calculations are achieved by translating temporal
measurements into spatial distances through the equation
d = c × t, where d is the spatial separation between the
transmitter and receiver, c signifies the velocity of signal
propagation (equivalent to the speed of light for RF signals),
and t represents the time interval that RF waves require to
travel from the transmitter to the receiver. By harnessing
distance measurements from multiple anchor points around
the user, trilateration techniques are employed for precise
tracking.

B. RTT-based Spatial Mapping
In the realm of TOA-based localization and tracking, a fun-
damental challenge presents itself in the synchronization dis-
crepancies between the user’s clock and those of the anchor
points. This misalignment results in distance measurements
that are inherently biased due to synchronization errors. To
address this challenge, two predominant methodologies are
employed: time difference of arrival (TDOA) and time of
flight (TOF). Both strategies reduce the rigorous demands
for synchronization between the user and geofencing anchor
points. However, the research outlined in [16] by Famili et
al. indicates that TOF, particularly RTT-based measurements,
provides enhanced accuracy in ranging, as corroborated by
CRLB analyses. MetaFence capitalizes on TOA metrics de-
rived from RTT to obtain distance measurements between 5G
Points and users. For accurate tracking, trilateration requires
a minimum of three anchor points in two-dimensional (2D)
settings and at least four in 3D scenarios.

In the configuration of our system, the variable di rep-
resents the computed distance between the user, positioned
at coordinates [x y z]T , and each corresponding i-th 5G
Point located at [xi yi zi]

T . This relationship manifests as the
equation (xi−x)2+(yi−y)2+(zi−z)2 = d2i where i ranges
from 1 to N , with N signifying the total number of 5G
Points. To reformulate this in a more structured mathematical
framework, we express the equation as Hp = ν. Here, H is
defined as

[
2(xn − xi) 2(yn − yi) 2(zn − zi)

]
, and ν is

represented by
[
d2i − d2n − x2

i − y2i − z2i + x2
n + y2n + z2n

]
,

where i ranges from 1 to n−1. In essence, the position vector
of the user, symbolized by p = [x y z]T , is ascertained by
resolving the equation p = (HTH)−1HTν.

C. Positioning Error Bound
A critical benchmark in evaluating the performance of track-
ing technologies with a quantifiable metric is CRLB, which
represents a fundamental statistical limit that defines the
minimum variance achievable by an unbiased estimator.

Based on the assumption of independent range measure-
ments that incorporate zero-mean additive Gaussian noise
with a consistent variance σ2

r , Wang et al. illustrate in [25]
that within a 2D trilateration system employing an unbiased
estimator, the CRLB for the variance of positional error
σ2(r) = σ2

x(r) + σ2
y(r) at position r, is determined as

follows:

σ(r) = σr ×
√

N∑N−1
i=1

∑N
j=i+1 Aij

; (1)

where N is the number of localization anchors, θi is the
angle between Ai and r, Ai is the i-th anchor, and Aij =
| sin(θi − θj)|.

Based on their proposed CRLB for a 2D localiza-
tion system, as delineated in Equation 1, it is evident
that the overall 2D localization accuracy is influenced
by the accuracy of range estimation and the function√

N(
∑N−1

i=1

∑N
j=i+1 Aij)−1. The former term (σr) encap-
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sulates the precision in distance measurement, which may be
impacted by the system’s timing mechanism, the resolution
of time measurements, channel noise, multipath effects,
interference, and other factors. In contrast, the latter term
is exclusively influenced by the relative geometry between
the positioning beacons and the user.

Our aim in this work is to prioritize the examination of the
latter term. While the majority of current research [36], [38]–
[41] concentrates on enhancing the former (ranging errors),
the significance of the latter term (errors induced by spatial
geometry) and strategies for its mitigation are frequently
overlooked in existing literature. To address this gap, we
initially derive the CRLB for the RTT-based trilateration
system utilized in the MetaFence tracking system. Our ob-
jective is to formulate a closed-loop expression for the PEB
of the MetaFence tracking system, subsequently employing
this formulation to address and mitigate geometry-induced
errors in subsequent sections.

To begin, let’s recall the tracking model configuration
of the MetaFence system. We have a user located at p =
[x y z]T , and we have N total number of 5G Points,
where the i-th one is situated at pi = [xi yi zi]

T . The
true distance between the user and the i-th 5G Point is
calculated as di =

√
(x− xi)2 + (y − yi)2 + (z − zi)2.

However, the exact value of di is not available due to ranging
measurement errors (σr). Therefore, we can express the
ranging measurements as ri = di + ni, resulting in:

ri =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 + ni; (2)

where ni is the Gaussian noise affecting the i-th mea-
surement. Without loss of generality, we can assume that
the noises for different i-th ranging measurements are in-
dependent, have zero mean, and share the same variance.
Therefore, we have: ni ∼ N (0, σ2

r), where i ∈ {1, · · · , N},
N is the number of 5G Points, and N (0, σ2

r) represents
Gaussian noise with zero mean and σ2

r variance.
The CRLB states that for any unbiased estimator θ̂, the

variance of θ̂ is at least as large as the inverse of the Fisher
Information Matrix (FIM):

Var(θ̂) ≥ I(θ)−1; (3)

where θ is the parameter being estimated, and I is the
FIM for θ. The FIM, denoted as I(θ) is computed by
taking the expected value of the negative second derivative
(Hessian matrix) of the log-likelihood function with respect
to the parameter θ. The FIM for the tracking estimator in
our proposed MetaFence system provides a measure of the
amount of information that the noisy ranging measurements
carry about the unknown parameters of the user coordinates.
In this case, for a vector of parameters p = [x y z]T , the
FIM is given by:

I(p) = E
[
−∂2 logL(p)

∂p∂pT

]
. (4)

Alternatively, if L(p) is the likelihood function, and L =
logL(p) is the log-likelihood, then the FIM can also be

expressed as:

I(p) = E

[(
∂L(p)
∂p

)(
∂L(p)
∂p

)T
]
. (5)

The log-likelihood function for the measurements is propor-
tional to:

L(p) = −
N∑
i=1

(ri −
√

(x− xi)2 + (y − yi)2 + (z − zi)2)
2

2σ2
r

.

For the tracking system of MetaFence with a vector of p =
[x y z]T and an unbiased estimator of p̂, the inequality in
Equation 3 involving the CRLB and the FIM for an unbiased
estimator of a scalar parameter θ̂, can be alternatively written
as:

Cov(p̂) ≥ I(p)−1 =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

−1

. (6)

Taking the derivatives, we compute the entries of I(p) for
the tracking estimator in MetaFence as follows:

Ixx =

N∑
i=1

1

σ2
r

(
∂r̂i
∂x

)2

,

Iyy =

N∑
i=1

1

σ2
r

(
∂r̂i
∂y

)2

,

Izz =

N∑
i=1

1

σ2
r

(
∂r̂i
∂z

)2

,

Ixy = Iyx =

N∑
i=1

1

σ2
r

(
∂r̂i
∂x

)(
∂r̂i
∂y

)
,

Ixz = Izx =

N∑
i=1

1

σ2
r

(
∂r̂i
∂x

)(
∂r̂i
∂z

)
,

Iyz = Izy =

N∑
i=1

1

σ2
r

(
∂r̂i
∂y

)(
∂r̂i
∂z

)
; (7)

where r̂i = di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 rep-
resents the estimated distance in the absence of noise, and
the partial derivatives are as follows:

∂r̂i
∂x

=
x− xi

r̂i
,

∂r̂i
∂y

=
y − yi
r̂i

,
∂r̂i
∂z

=
z − zi
r̂i

. (8)

We can then write FIM as follows:

I(p) = 1

σ2
r

ATA; (9)

where the matrix A constructed using the partial derivatives
as given below:

A =


∂r̂1
∂x

∂r̂1
∂y

∂r̂1
∂z

∂r̂2
∂x

∂r̂2
∂y

∂r̂2
∂z

...
...

...
∂r̂N
∂x

∂r̂N
∂y

∂r̂N
∂z

 =


x−x1

r̂1

y−y1

r̂1
z−z1
r̂1

x−x2

r̂2

y−y2

r̂2
z−z2
r̂2

...
...

...
x−xN

r̂N

y−yN

r̂N
z−zN
r̂N

 . (10)
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The CRLB states that the covariance matrix C for our
unbiased tracking estimator p̂ of the parameter p = [x y z]T

is lower bounded by the inverse of the FIM:

C =

 σ2
x σxy σxz

σyx σ2
y σyz

σzx σzy σ2
z

 = I−1(p); (11)

where the diagonal entries of C provide the lower bounds
on the variances of the estimators of x, y, and z. Combining
this with Equation 9, we have:

C = I−1(p) = (
1

σ2
r

ATA)−1. (12)

The positioning error bound (PEB) is an application-
specific form of the CRLB used in tracking and localization
to determine the best achievable accuracy in estimating the
position of a user. PEB is a scalar value that represents the
lower bound on the Root Mean Squared Error (RMSE) of the
position estimate. It is computed from the diagonal elements
of the covariance matrix C as follows:

PEB =
√

trace(C). (13)

Incorporating Equation 11 and Equation 12 into the analysis,
we derive the following results:

PEB =
√

σ2
x + σ2

y + σ2
z =

√
trace

(
(
1

σ2
r

ATA)−1

)
. (14)

Consequently, the PEB is determined by the product of
two distinct factors: the standard deviation of the ranging
error, σr, and the summation of the diagonal elements of the
square root of the inverse of the matrix (ATA), denoted as√

trace((ATA)−1). The former, σr, is subject to variability
introduced by several parameters that affect distance mea-
surement accuracy. These parameters range from the design
characteristics of the signal used for measurements—such
as frequency and bandwidth—to the techniques employed
for timing resolution, and the properties of the transmission
channel, including noise, interference, and multipath effects
that complicate signal reception. To quantify the impact
of these factors on σr, we can derive the CRLB for a
specific scenario. For instance, consider the application of
a 5G new radio (NR) positioning reference signal (PRS)
with OFDM modulation, a bandwidth of 100 MHz, 4096
subcarriers, and a subcarrier spacing of 15 kHz, propagating
through a Rician fading channel with numerous non-line-
of-sight (NLOS) paths. Although a detailed evaluation of
each factor’s contribution to σr is beyond the scope of this
study, it is important to note that the overall positioning
accuracy depends not only on σr. In other words, in this
work, we aim to show that given a σr that is affected by all
the aforementioned factors, the overall positioning accuracy
is not merely dependent on that.

The latter factor in the PEB formulation,
√

(ATA)−1,
is independent of the factors influencing σr. As highlighted
in Equation 10, the matrix A is solely dependent on the
user’s position at a specific (x, y, z) coordinate and the

Point A Point B

B Error Zone
A Error Zone

(a) 5G Points arrangement with low
tracking error

Point A Point B

B Error Zone
A Error Zone

(b) 5G Points arrangement with high
tracking error

Figure 3: Illustration of the impact of g2D(x, y, z) on track-
ing error resulting from varying 5G Points deployments.

spatial arrangement of the 5G Points. This term represents
the contribution of spatial geometry to the PEB. The function
gx(x, y, z) quantifies the impact of geometric errors at the
point (x, y, z) on the variance of the x-coordinate location
estimation, σ2

x, which corresponds to the first diagonal ele-
ment of

√
(ATA)−1. Similarly, gy(x, y, z) and gz(x, y, z)

describe the influence on the y-coordinate and z-coordinate
estimations, respectively, represented by the subsequent di-
agonal elements. In a 2D scenario, this geometric effect is
denoted as g2D(x, y, z), whereas in a full 3D context, it is
expressed as g3D(x, y, z).

During the preliminary analysis phase, we observed that
the values of gx(x, y, z) and gy(x, y, z) are typically similar
and generally low. This observation implies that g2D(x, y, z)
is minimal, suggesting that spatial geometry has a lim-
ited impact on localization accuracy in 2D scenarios. It
appears that the majority of the existing work focuses on
2D tracking; hence, they may have neglected the influence
of spatial geometry, focusing instead on enhancing ranging-
based accuracy and reducing σr. However, for applications
such as drone geofencing and metaverse user tracking, where
3D data is crucial, this oversight becomes significant. Our
analysis indicates that while the influence of the 5G Points
configuration on g2D(x, y, z) is negligible, gz(x, y, z) is
substantially affected by these configurations and typically
exhibits much higher values than gx(x, y, z) and gy(x, y, z).
Consequently, despite the utilization of advanced technolo-
gies for high-accuracy ranging and innovative system designs
to mitigate noise and multipath effects, achieving extremely
accurate distance measurements and a low σr may lead to
excellent results in 2D tracking only. However, the accuracy
of 3D tracking may still suffer significantly due to the
pronounced impact of g3D(x, y, z) on overall 3D tracking
accuracy.

Figure 3 illustrates the visual representation of
g2D(x, y, z) for two distinct scenarios. In the first case,
depicted in Figure 3a, the beacons are positioned more
optimally compared to the configuration shown in Figure 3b.
Consequently, this disparity in placement leads to varying
location estimation errors, as indicated by the respective
shaded regions.
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Table 1: Evaluation of g3D(x, y, z) Values
g3D(x,y, z) Values Evaluation of 5G Points Deployment

1 Ideal

1− 2 Very Good

2− 5 Good

5− 10 Medium

10− 20 Sufficient

> 20 Bad

State s
(5G Point 
positions)

DQN (θ𝑖
′)

Action 
a

Moving 
5G Points

Observe state s

Distribution of 
environments

Env

Inner Loop

Outer Loop

Sample

Meta-model: θ

Figure 4: An overview of the meta-RL approach in
MetaFence.

The primary goal of MetaFence is to devise optimal con-
figurations for 5G Points such that the value of g3D(x, y, z)
remains minimal across all points within the designated
geofencing area, thereby minimizing the adverse effects of
spatial geometry on 3D tracking accuracy and ensuring an
exceptional geofencing system. To achieve this, MetaFence
initially formulates an optimization problem aimed at iden-
tifying the most favorable arrangement of 5G Points that
consistently maintains low g3D(x, y, z) values. Subsequently,
MetaFence introduces a novel meta-RL strategy to address
this optimization challenge, ultimately providing an effective
deployment configuration for the 5G Points.

In this work, we presuppose the attainment of high-
accuracy ranging capabilities, achieving a precision of 1 cm,
facilitated by the expansive bandwidth provided by the PRS
for 5G positioning, where σr = 1 cm cm. Furthermore,
we stipulate that the proposed geofencing systems must
maintain an overall tracking accuracy of 20 cm or better.
This specification sets the upper limit for g3D(x, y, z) at
20. Accordingly, we have developed a chart delineating the
range of g3D(x, y, z) values, from 1—representing the ideal
scenario where the spatial configuration of the 5G Points
exerts no impact on the overall 3D tracking accuracy at a
specific point—to 20, a threshold that must not be exceeded.
This analysis is detailed in Table 1.

V. Deployment Strategy
We formulate the placement of 5G Points as an optimization
problem, in which the 5G Points are initially positioned
at starting locations, as explained in Section C, and then
gradually moved to achieve the lowest g3D(x, y, z), where
g3D(x, y, z), also referred to as g3D, is the average of

g3D(x, y, z) values over all the feasible user locations in the
designated area. However, the varying room dimensions pose
considerable challenges, as a policy learned in one environ-
ment may not be effective in another if the environments
differ substantially. To address this issue, we employ meta-
RL [20], [21], which involves training a general model across
a diverse set of tasks, enabling quick adaptation to unseen
tasks. In our scenario, the placement of 5G Points in rooms
with varying dimensions is regarded as distinct tasks.

We present the fundamentals of MDP and the formulation
of the optimal placement problem in Section A. The details
of meta-training are presented in Section B, followed by the
experimental setup and specific parameters in Section C.
Figure 4 provides an overview of our meta-RL design for
MetaFence.

A. Problem Formulation in a Markov Decision Process
For the i-th task, the corresponding MDP is denoted asMi,
defined by the tuple (Si,Ai, Pi, ri), where Si, Ai, Pi, ri
represent states, actions, the transition function and rewards,
respectively. The practical placement problem is formulated
as follows, with the key components detailed below.

• State Space (S): For the j-th 5G Point, the position
is given by pj = [xj , yj , zj ]. Hence, the state repre-
sents the positions of the four 5G Points, denoted as
[p1,p2,p3,p4]. As illustrated in Figure 1, we consider
environments cluttered with various objects, including
both static objects (e.g., tables, shelves) and dynamic
objects (e.g., forklifts, drones, or people). To address
the challenges posed by these obstacles and the dy-
namic nature of the environment, we constrain the
deployment of 5G Points to positions on or near the
ceiling. This approach ensures a clearer path between
the anchors and the users being tracked, as the upper
regions of the environment generally have less clutter
and fewer obstructions.

• Action Space (A): Each action moves a 5G Point one
step in one of six possible directions (up, down, left,
right, forward, and backward). Therefore, the action can
be represented as a vector of length 4×6, corresponding
to the four 5G Points. In this action vector, only one
component is set to 1, while the remaining components
are set to 0. For each action, the 5G Point corresponding
to the active component moves in the specified direction
by a predefined step size.

• Reward Function (r): Our objective is to minimize
the g3D value by strategically placing the four 5G
Points. Thus, the reward function is defined as r(s, a) =
−g3D(s′), where s is current state and s′ is the subse-
quent state. This negative value of the g3D ensures that
actions leading to lower g3D values, which correspond
to better placement of the 5G Points, yield a higher
reward.

• Transition Function (P ): It updates the position of the
specified 5G Point based on the chosen action.
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Algorithm 1 Meta-Training for MetaFence

Outer Loop

1: Initialize the Q network with weights θ
2: Initialize replay memory Di for each task Ti
3: Initialize the best state s∗i for each task Ti
4: for each learning iteration do
5: for each task Ti do
6: Initialize the adapted model with θ′i ← θ
7: Run the Inner Loop to update θ′i and obtain

sampled trajectories τi
8: end for
9: Update θ ← θ−β∇θ

∑
i LTi

(θ′i) using task-specific
loss LTi

and trajectories τi
10: end for

Inner Loop

1: for each episode do
2: Set s∗i as the initial state
3: for each time step t do
4: With probability ϵ, select a random action at
5: Otherwise select at = argmaxa Q(st, a; θ)
6: Move 5G Points according to at
7: Store transition (st, at, rt, st+1) in Di

8: Sample a random mini-batch from Di

9: Perform gradient descent to update θ′i according
to Equations 16 and 17

10: end for
11: Update s∗i that achieves the lowest g3D
12: end for

Algorithm 2 Meta-Testing for MetaFence

Input: A new task Ttest with different room dimensions;
the meta-model weights θ.
Output: The optimal 5G Points’ positions with the lowest
g3D value.

1: Load the model weights θtest ← θ
2: Initialize the starting state
3: Update θtest by running the inner loop in meta-training.
4: Return the best state that stores the optimal positions

B. Meta-training
We employ the Model-Agnostic Meta-Learning (MAML)
algorithm within the meta-RL framework to develop a meta-
model that learns to solve the optimal placement problem
in various environments. For clarity, we refer to the task-
specific models in the inner loop as adapted models, and the
model updated in the outer loop across tasks as the meta-
model. Specifically, for each task Ti, the meta-model param-
eters θ are adapted to the corresponding environment within
the inner loop, resulting in task-specific parameters, denoted
as θ′i. In the outer loop, multiple trajectories—sequences

of states, actions, and rewards—are collected based on the
adapted model parameters θ′i from each task. The meta-
model parameters θ are then updated by minimizing the
cumulative task-specific losses across all tasks. The meta-
training and meta-testing processes are outlined in Algo-
rithms 1 and 2, respectively. The detailed training processes
in the inner loop and outer loop are described below.

Inner loop. We utilize a deep Q-learning approach in the
inner loop. This typical Q-learning algorithm evaluates the
state-action pair using the Q-value Q(s, a), which represents
the expected value of taking an action a at a specific state s.
A fundamental aspect of Q-learning is the update rule for the
Q-function. This rule updates the current Q-value Q(s, a) by
incorporating the immediate reward r(s, a) and the estimated
maximum Q-value for the next state, maxa′ Q(s′, a′). The
update formula is expressed as follows:

Qnew(s, a) =

Q(s, a) + α ·
[
r(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
;

(15)

where α represents the learning rate for updating the Q-
value, ranging from 0 to 1 to balance between prior knowl-
edge and new information, and γ denotes the discount
factor that weights immediate rewards against future rewards.
Given a policy, the Q-learning method employs an ϵ-greedy
algorithm with an exploration rate ϵ to select an action.
With a probability of ϵ, a random action is chosen from
the action space; with a probability of 1− ϵ, the action that
maximizes the Q-value is selected. This approach aims to
balance exploration and exploitation, encouraging the agent
to explore the environment more thoroughly, especially at
the beginning of the training process.

Deep Q-learning employs a neural network, known as the
Deep Q-Network (DQN), to approximate the Q-function.
DQN takes the state as input and produces the Q-values for
each possible action as output. For a task Ti, the loss function
used to update the Q-network is formulated as follows:

LTi
(θ) =

E(s,a,r,s′)∼Ti

[(
r + γmax

a′
Q(s′, a′; θ)−Q(s, a; θ)

)2
]
.

(16)

In the training process, the observed experiences (i.e., state,
action, reward, and next state) are stored in a replay memory.
The DQN is subsequently updated using randomly sampled
data from this replay memory over multiple episodes.

Progressive Best-State Initialization Strategy. For the op-
timal placement problem, during each episode, the state that
yields the highest reward (i.e., the state with the lowest
g3D value) is recorded as the current best state within the
environment. When the environment is reset, this best state
is used as the initial state for the subsequent episode. This
approach is designed to tailor the RL training process to
our placement problem, where the objective is not to find
an optimal path from a starting point to a destination but
rather to determine the destination (i.e., optimal positions).
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Figure 5: Convergence performance in minimizing g3D
across various tasks during meta-training.

By continually using the best state as the starting point, we
aim to progressively improve the precision of the 5G Point
placements through successive iterations of training.

In the context of meta-training, the process of adapting the
meta-model parameters θ for each task Ti within the inner
loop is represented as follows:

θ′i = θ − η∇θLTi
(θ); (17)

where η is the learning rate of the inner loop. Upon the
completion of each inner loop, a trajectory τi is collected
based on the adapted model θ′i for the outer loop update.
This trajectory is generated from the initial state by taking a
series of actions, observing the corresponding rewards, and
transitioning to subsequent states. The trajectory is denoted
as τi = {(s0, a0, r0), (s1, a1, r1), ..., (sH , aH , rH)}, where
st, at and rt represent the state, action taken, and the reward
received at time step t.

Outer loop. In each learning iteration, the meta-model
from the previous iteration is adapted to each task. At the
end of each learning iteration, the meta-model is updated by
incorporating all the adapted models and minimizing their
cumulative loss based on the sampled trajectories. The outer
loop update is represented as:

θ ← θ − β∇θ

∑
i

LTi(θ
′
i); (18)

where β is the learning rate of the outer loop.
Interaction Between Inner Loop and Outer Loop. The

interaction between the inner and outer loops is demonstrated
in Algorithm 1, specifically in Lines 6 and 9. At the
start of each learning iteration, the meta-model initializes
task-specific models, thereby reducing the computational
complexity of inner-loop updates. Subsequently, at the end
of each iteration, the outer loop refines the meta-model’s
parameters using the trajectories obtained from the inner
loop’s task-specific updates. This iterative process facilitates
the generalization of the meta-model across multiple tasks.

C. Implementation of Training and Testing
In this study, we examine three approaches: the standard
deep Q-learning without meta-training, the proposed meta-
RL method, and an enhanced meta-RL method incorporating
optimal state adaptation. The standard deep Q-learning ap-
proach, hereafter referred to as DQN, serves as the baseline
in this study. Further implementation details of these three
approaches are provided below.

DQN: Each task requires training the model from scratch
to determine the optimal positions of 5G Points. In the ab-
sence of meta-training, the optimal placement must be solved
independently for each new environment with different room
dimensions. The following parameters are employed in this
approach. The discount factor for updating the Q-value is
set to 0.95. The Q-network is composed of three hidden
layers, featuring fully connected layers with 256, 128, and
128 nodes, respectively. Each hidden layer is followed by
a ReLU activation function. During training, the network
weights are randomly initialized and then updated using
the Adam optimizer with a learning rate of 1 × 10−4. The
maximum number of steps per episode is set to 10. The initial
exploration rate is set to 1.0, with an exploration decay rate
of 0.999. For the initial positioning in each environment,
rather than randomly selecting their locations, the ceiling is
divided into four equal grids. Each of the four 5G Points is
then placed at the center of its respective grid. This approach
ensures a consistent starting configuration for various tasks,
thereby facilitating a more stable training process. In each
step, one 5G Point is moved in the direction specified by the
selected action, with a step size equivalent to 5% of the room
length. Finally, the optimal state with the lowest g3D value
determines the positions where the 5G Points are deployed.

Meta-RL: We utilize a set of rooms with varying di-
mensions as the training environments, specifically with
dimensions of 5 m × 5 m × 4 m, 10 m × 10 m × 4 m,
15 m×15 m×4 m, 20 m×20 m×4 m, 25 m×25 m×4 m,
30 m× 30 m× 4 m, and 35 m× 35 m× 4 m. In the inner
loop of training for each environment, the parameters are
consistent with those used in DQN. In the outer loop, the
agent collects a trajectory of 10 steps from each environment
to update the meta-model. The learning rate for the outer
loop is set to 1× 10−4. During each learning iteration, each
task is updated for one episode. We utilize the positioning
strategy employed in DQN to initially position 5G Points for
each task. During the testing phase, the trained meta-model
is used as the initial model for each testing task and is further
refined to achieve optimal rewards. By leveraging a diverse
set of training tasks, the meta-model effectively learns and
integrates information across various scenarios. As a result,
during real-time deployment, the model demonstrates the
ability to rapidly converge, even when handling unseen large-
scale spatial configurations, thereby ensuring high efficiency.

Meta-RL with Optimal State Adaptation (meta-
RL+OSA): This approach follows the training process of
meta-RL, as previously described, but incorporates improve-
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Figure 6: Comparison of the convergence performance of various RL approaches during testing.

Table 2: 5G Point configurations based on an ad-hoc place-
ment strategy for various spaces

Space Size Point #1 Point #2 Point #3 Point #4

8 m × 8 m × 4 m (3,6,4) (1.3,0.5,4) (2.7,6.5,4) (3,7.8,3.9)
16 m × 16 m × 4 m (6.7,5.4,4) (14.8,14.4,4) (13.6,4.1,4) (4.6,12.5,3.9)
24 m × 24 m × 4 m (20.6,21.7,4) (7,17.4,4) (8.1,6.5,4) (4,16,3.9)
32 m × 32 m × 4 m (1.6,20,4) (0.9,4.3,4) (22.2,16.5,4) (17.3,25.9,3.9)

Table 3: 5G Point configurations with the lattice-base mid-
point placement strategy for various spaces

Space Size Point #1 Point #2 Point #3 Point #4

8 m × 8 m × 4 m (0,4,4) (4,0,4) (8,4,4) (4,8,3.9)
16 m × 16 m × 4 m (0,8,4) (8,0,4) (16,8,4) (8,16,3.9)
24 m × 24 m × 4 m (0,12,4) (12,0,4) (24,12,4) (12,24,3.9)
32 m × 32 m × 4 m (0,16,4) (16,0,4) (32,16,4) (16,32,3.9)

ments to enable faster adaptation and more precise posi-
tioning during the testing phase. When presented with a
new task, a similar environment from the training tasks
is identified. The optimal state (i.e., the positions scaled
between 0 and 1) from this environment is then selected as
the initial state for the testing task. Additionally, a finer-grid
step size of 0.5% of the room length is utilized to further
refine the model weights.

VI. Performance Evaluation
This section begins by describing our experimental frame-
work for training the meta-RL approach and evaluating its
convergence, as outlined in Sec. A. Following this, Sec. B
presents an in-depth analysis of g2D(x, y, z), gz(x, y, z),
and g3D(x, y, z) across different venues. Here, we compare
the 5G Points configurations derived from the MetaFence’s
meta-RL approach to those established through traditional
beacon placement, underscoring the enhancements in track-
ing accuracy achieved by the MetaFence system.

A. Meta-RL Experimental Setup & Analysis
Experimental Setup. Our experiments are conducted on a
virtual machine hosted on a server with an AMD EPYC 7763
processor featuring a 64-core CPU. The virtual machine,
running Ubuntu 22.04.3 LTS, is allocated access to one
NVIDIA A100 GPU. The detailed training parameters and

(a) Ad-Hoc Configuration

(b) Midpoint Configuration

(c) Evolutionary Algorithm Configuration

(d) MetaFence Configuration

Figure 7: Heatmap representation of g2D(x, y, z), gz(x, y, z),
and g3D(x, y, z) values, arranged from left to right in each
row, depicting various placement techniques for a small-
sized space (e.g., personal private rooms) with dimensions of
8 m×8 m×4 m. Each panel compares traditional techniques
with the MetaFence solution: (a) Ad-Hoc placement, as
detailed in Table 2; (b) Lattice-based placement at midpoints
of vertices, as illustrated in Table 3; (c) Heuristic approach
using an advanced evolutionary algorithm, shown in Table 4;
(d) Optimal solution proposed by MetaFence.
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Table 4: 5G Point configurations based on the heuristic
evolutionary algorithm placement strategy presented in [16]
for various spaces

Space Size Point #1 Point #2 Point #3 Point #4

8 m × 8 m × 4 m (1.7,5.2,3.5) (3.3,5.3,4) (6.8,3,3.8) (7,7.5,3.8)
16 m × 16 m × 4 m (9,6.3,3.7) (8.2,10.5,4) (2.3,10.1,3.9) (15.6,9.1,4)
24 m × 24 m × 4 m (22,23.7,3.8) (6.5,2.4,3.8) (14.1,18.3,3.5) (15.9,12.4,3.6)
32 m × 32 m × 4 m (12,18.6,3.6) (1.8,31.4,3.6) (2.9,8.2,3.9) (29.2,22.4,3.9)

testing strategies for the three approaches—DQN, Meta-RL,
and Meta-RL+OSA—are outlined in Section C. We evaluate
the three approaches on four new tasks that are not included
in the training set. The dimensions of the rooms for these
tasks are as follows: 8 m× 8 m× 4 m, 16 m× 16 m× 4 m,
24 m × 24 m × 4 m, and 32 m × 32 m × 4 m. A detailed
explanation of the selection of these room dimensions will
be provided in the following subsection.

Convergence in meta-training. Figure 5 illustrates the
convergence performance across different environments dur-
ing the meta-training process. To maintain clarity, only a
subset of training tasks is displayed. Although these tasks
are trained concurrently, their convergence performance is
shown separately for better visualization. In this context, a
learning iteration refers to an iteration within the outer loop,
during which the task-specific models for each environment
are updated via the inner loops. The g3D value represents the
value corresponding to the current best state in each learning
iteration. As shown in Figure 5, tasks within different envi-
ronments exhibit varying convergence rates. Instead of using
rewards, this figure employs the metric g3D, as our objective
is to minimize the g3D value through the placement of 5G
Points. Typically, solving the optimal placement problem in
larger rooms requires more learning iterations to achieve
convergence.

Fast learning in testing. As outlined in Section C, we
evaluate three approaches during the testing phase: DQN,
meta-RL, and meta-RL+OSA. DQN serves as the baseline,
solving different tasks independently. Figure 6 illustrates the
performance of these approaches on four new tasks with
room dimensions that are not included in the training set. The
results indicate that meta-RL outperforms DQN by achieving
superior states in each epoch and reaching the optimal
state more rapidly. This improvement is attributed to the
meta-training process, which generates a well-generalized
Q-network that serves as an effective initialization model
for new tasks. Although the meta-RL approach can achieve
lower g3D values with fewer epochs, it still requires a
gradual transition from the initial state to the optimal state.
Meta-RL+OSA further accelerates the convergence speed by
initializing with the best state from a similar task in the
training set. This approach enables the RL agent to start
from a near-optimal state and, by using a more fine-grained
step size, achieve a more precise placement with a lower g3D
value compared to both meta-RL and DQN. For example, in

(a) Ad-Hoc Configuration

(b) Midpoint Configuration

(c) Evolutionary Algorithm Configuration

(d) MetaFence Configuration

Figure 8: Heatmap representation of g2D(x, y, z), gz(x, y, z),
and g3D(x, y, z) values, sequentially arranged from left to
right in each row, showcasing various placement techniques
for a medium-sized space (e.g., conference room) with
dimensions of 16 m × 16 m × 4 m. Each panel contrasts
traditional techniques with the MetaFence solution: (a) Ad-
Hoc placement, as specified in Table 2; (b) Lattice-based
placement at the midpoints of vertices, as depicted in Ta-
ble 3; (c) Heuristic approach using an advanced evolutionary
algorithm, as presented in Table 4; (d) Optimal solution
implemented by MetaFence.

the environment with a dimension of 16 m × 16 m × 4 m,
the DQN approach achieves a g3D value of 6.55. In contrast,
the meta-RL and meta-RL+OSA approaches further improve
performance by reducing the g3D value to 6.32 and 5.70,
respectively.

Analysis of Convergence Performance. The meta-
RL+OSA method serves as the primary result of our pro-
posed approach, representing the final and optimal solution.
Its effectiveness is attributed to two key factors: (1) model
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(a) Ad-Hoc Configuration

(b) Midpoint Configuration

(c) Evolutionary Algorithm Configuration

(d) MetaFence Configuration

Figure 9: Heatmap representation of g2D(x, y, z), gz(x, y, z),
and g3D(x, y, z) values, arranged from left to right in each
row, illustrating various placement strategies for a large
space (e.g., virtual reality game room) with dimensions
of 24 m × 24 m × 4 m. Each panel compares traditional
placement techniques with the MetaFence solution: (a) Ad-
Hoc placement, as detailed in Table 2; (b) Lattice-based
placement at the midpoints of vertices, as shown in Table 3;
(c) Heuristic approach using an advanced evolutionary algo-
rithm, as outlined in Table 4; (d) Optimal solution crafted
by MetaFence.

weight inheritance and (2) initial state inheritance. The
model weight inheritance allows the meta-RL approach to
achieve lower g3D values compared to the DQN approach.
The relatively small error difference is due to the use
of a constant number of steps in each episode, which
limits the agent’s movement. Despite this constraint, the
meta-RL approach demonstrates superior adaptability by
enabling the Q-network to obtain better model weights. The
initial state inheritance addresses this limitation by using

(a) Ad-Hoc Configuration

(b) Mipoint Configuration

(c) Evolutionary Algorithm Configuration

(d) MetaFence Configuration

Figure 10: Heatmap representation of g2D(x, y, z),
gz(x, y, z), and g3D(x, y, z) values, sequentially arranged
from left to right in each row, highlighting various placement
strategies for an extremely large space (e.g., warehouse)
with dimensions of 32 m × 32 m × 4 m. Each panel
contrasts traditional placement methods with the MetaFence
solution: (a) Ad-Hoc placement, as detailed in Table 2;
(b) Lattice-based placement at the midpoints of vertices,
as illustrated in Table 3; (c) Heuristic approach using an
advanced evolutionary algorithm, as specified in Table 4;
(d) Optimal solution implemented by MetaFence.

the meta-RL+OSA method, which initializes the Q-network
with model weights trained in a prior environment. This
approach positions the agent closer to the optimal state,
allowing it to reach the optimal solution more efficiently,
thereby enhancing overall performance. In addition, previous
research [42] has employed deep reinforcement learning
(DRL) approaches, such as Proximal Policy Optimization
(PPO), which combine various training tasks into a single op-
timization problem. While effective, these methods typically
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require substantial computational resources and thousands
of training steps. Furthermore, their real-time adaptability
to dynamic changes in indoor environmental conditions is
often limited. In contrast, our proposed algorithm is designed
for greater efficiency. By initializing each episode with the
optimal state from the preceding episode, the agent rapidly
converges to a suboptimal region and then gradually refines
its position to an optimal state, significantly reducing com-
putational overhead while maintaining robust performance.

B. MetaFence Overall Evaluation
To assess the overall effectiveness of MetaFence, we config-
ured a comprehensive test setup utilizing MATLAB 2024a
on an Apple MacBook Pro with an M3 Max CPU and
64 GB of RAM. The primary objective is to show that,
upon completing its training phase, MetaFence is capable
of identifying the optimal configuration of 5G Points for
any given area of interest that requires the implementation
of a geofencing system. As this task depends heavily on the
specific dimensions of the venue, especially the provided
floor plan, we demonstrate the algorithm’s capability across
different room sizes to ensure its adaptability to various
environments.

We tested four setups with dimensions ranging from
8 m × 8 m × 4 m to 32 m × 32 m × 4 m, covering a
spectrum from small to extremely large venues, to evaluate
the algorithm’s performance across different scales. While
smaller spaces typically facilitate good performance, even
in traditional heuristic algorithms due to simpler problem
constraints, our results indicate that MetaFence not only
performs well in these conditions but also thrives in much
larger environments. Here, traditional algorithms—such as
evolutionary algorithms, genetic algorithms, and simulated
annealing algorithms—often struggle as the complexity and
size of the NP-hard problem significantly increase computa-
tional demands, demonstrating MetaFence’s superior adapt-
ability and efficiency. Moreover, given the geofencing sys-
tem’s use case, designed to safeguard drones and metaverse
users, it is essential to cater to a variety of venue sizes.
This includes compact spaces typical of personal rooms,
measuring 8 m×8 m×4 m, to medium-sized settings such as
offices and conference venues at 16 m× 16 m× 4 m, larger
areas like expansive virtual game rooms with dimensions of
24 m × 24 m × 4 m, up to extremely large spaces such as
warehouses, which measure 32 m×32 m×4 m. It is impor-
tant to note that since the dimensions of 5 m× 5 m× 4 m,
15 m×15 m×4 m, 25 m×25 m×4 m, and 35 m×35 m×4 m
were used during the training phase of our algorithm, we
excluded these sizes from our testing phase. Instead, we con-
ducted tests on the new venues to ensure a robust evaluation
of the system’s performance across a range of scenarios.
Furthermore, in scenarios where venue dimensions exceed
35 m × 35 m × 4 m where the 5G Points’ coverage does
not fully span the floor plan, the solution is simply to install
additional 5G Points. This adjustment guarantees adequate

Table 5: 5G Point configurations with MetaFence solution
for various spaces

Space Size Point #1 Point #2 Point #3 Point #4

8 m × 8 m × 4 m (2.6,2.6,4) (5.1,5.1,4) (0,8,3.6) (8,0,3.5)
16 m × 16 m × 4 m (6.6,6.4,4) (11.5,11.2,3.9) (0,16,3.6) (16,0,3.5)
24 m × 24 m × 4 m (8.6,8.63.9) (15.5,15.6,4) (0,24,3.6) (24,0,3.6)
32 m × 32 m × 4 m (0,0,3.5) (15.4,3,3.6) (15.5,14.6,4) (32,5.3,3.5)

coverage, allowing MetaFence to effectively identify the
optimal placements for these new 5G Points.

To assess MetaFence’s performance, we utilize heatmaps
to illustrate the g(x, y, z) values across all the points in
any given venue. These heatmaps detail the g2D(x, y, z),
gz(x, y, z), and g3D(x, y, z) metrics within 3D spaces. Given
the necessity of a fourth dimension to represent these values,
traditional heatmaps struggle with clarity as data points
overlap. To overcome this, we average the g(x, y, z) values
for each (x, y) coordinate across all z levels and display
these averages in our heatmaps. This method enhances the
spatial representation and enables visualization on all z
planes, offering a more thorough analysis.

To benchmark our results, we conducted comparisons
with three state-of-the-art placement techniques described
in the literature [25], [27], [38], [41], [43]–[48]. Initially,
we evaluated against traditional ad-hoc placement. This
placement is particularly advantageous because it does not
require high computational power and can be deployed in
any dimension. However, a significant downside is that it
does not account for errors induced by spatial geometry,
as shown in the following figures. As a result, while this
technique may be suitable for 2D localization and tracking
problems where geometry has less impact, it performs poorly
in 3D scenarios, significantly affecting the system’s final
performance. Secondly, we considered traditional lattice-
based placement [38], [41], where sensors are strategically
positioned at midpoints along the sides between vertices.
Lastly, we compared our results with advanced heuristic
algorithms, specifically utilizing the enhanced evolutionary
algorithm as used in [16], [24], [32] and adapting it to
our scenarios. Here, the mechanism of this evolutionary
algorithm is briefly described as follows: it begins with
random placements, and through various iterations, it selects
better placements based on the fitness function, eliminates
the less effective ones, and generates new placements using
the current favorable placements as parents. The advantage
of this approach as we will demonstrate in future figures,
is its ability to achieve good results relatively quickly in
smaller dimensions, making it superior to ad-hoc or midpoint
lattice-based techniques. However, as the problem dimension
increases, these algorithms significantly slow down, even
with high computational resources, and as we will illustrate
in subsequent figures, even with long time and high computa-
tional power, their overall performance diminishes compared
to the smaller dimensions. To ensure a fair comparison,
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we replicated the placements under the same conditions
and environments used for our MetaFence system. The
placements for each technique in various spaces are detailed
in Table 2, Table 3, and Table 4, respectively.

We illustrate the g2D(x, y, z), gz(x, y, z), and g3D(x, y, z)
values across four different spaces where: Figure 7 → 8×8,
Figure 8 → 16 × 16, Figure 9 → 24 × 24, and Figure 10
→ 32 × 32 designate the respective room dimensions used
to compare our proposed MetaFence system with existing
strategies. Throughout Figures 7 - 10, the rows (a) - (d)
correspond to the ad-hoc placement, midpoint placement,
placements using the enhanced evolutionary algorithm, and
finally MetaFence, respectively

Each row’s first column displays the g2D values, indicating
horizontal accuracy on the X−Y plane. The middle column
shows the gz values for vertical accuracy along the Z-axis,
and the third column presents the g3D values, reflecting
overall 3D accuracy for each floor plan. These figures
demonstrate that while traditional placement strategies often
provide satisfactory results in 2D scenarios, they tend to
perform poorly in estimating vertical dimensions. This is
evident in the figures, which show that vertical measurements
substantially affect the overall 3D accuracy. Originally, the
focus in localization literature has been on 2D accuracy,
which may explain the lack of attention to the detrimental
impacts of spatial geometry on 3D accuracy. However, with
the growing importance of vertical accuracy for applications
like drones and metaverse environments, the negative effects
of spatial geometry on overall accuracy have become more
apparent and critical to address. This shift underscores the
need for our investigation into these effects and our proposal
of solutions to mitigate their impact.

The row (d) throughout Figures 7 - 10 shows the perfor-
mance of the MetaFence system as detailed in Table 5. This
visualization reveals that MetaFence consistently provides
optimal configurations that enhance both 2D and 3D spatial
estimations across all room sizes. The heatmaps utilize red to
signify poor geometric configurations that negatively impact
tracking, and blue to indicate low g(x, y, z) values, suggest-
ing minimal adverse effects on tracking accuracy. Notably,
MetaFence’s solutions primarily display non-red hues, show-
casing their superior performance in various dimensions, in
contrast to traditional methods that often struggle, especially
with vertical and overall 3D accuracy.

To provide a quantitative analysis of the g(x, y, z) values
and facilitate a precise comparison with traditional bench-
marks, we have generated cumulative distribution function
(CDF) plots, presented in Figure 11. The first row (Fig-
ure 11a - Figure 11d) illustrates the ad-hoc benchmark, based
on placements from Table 2. The second row (Figure 11e -
Figure 11h) displays the lattice-based midpoint benchmark
from Table 3. The third row (Figure 11i - Figure 11l) features
results from a heuristic algorithm using the evolutionary
approach proposed in [16], with placements provided in
Table 4. The final row (Figure 11m - Figure 11p) showcases

results from our MetaFence system, with configurations de-
tailed in Table 5. Each row progresses from results for small
(8 m×8 m×4 m) to expansively large (32 m×32 m×4 m)
room dimensions, left to right.

The primary objective of MetaFence was to assess the
impact of spatial geometry of 5G Points on 3D tracking
accuracy and to develop a method for optimizing their
placement to mitigate this effect. As demonstrated in Fig-
ure 11m - Figure 11p, MetaFence consistently configures
5G Points to ensure that the majority of points in spaces
requiring geofencing maintain g3D(x, y, z) values below 20,
aligning with the system’s design goals. Notably, as shown
in Figure 11m, MetaFence achieves even better results in
small rooms (8 m × 8 m × 4 m dimensions), keeping the
majority of g3D(x, y, z) values below 10. In larger rooms
(16 m×16 m×4 m dimensions), as depicted in Figure 11n,
most g3D(x, y, z) values are kept under 15, and this trend
continues with values under 20 in even larger spaces, ac-
cording to Figure 11o and Figure 11p. Overall, MetaFence
effectively meets its foundational goal of maintaining the
majority of tracking values under the threshold of 20, illus-
trating its robust capability across various dimensions.

The comparative analysis of state-of-the-art geofencing
techniques as depicted in Figures 11a through 11h reveals
that ad-hoc and traditional lattice-based strategies, specif-
ically those maintaining 5G Points at midpoints between
vertices as discussed in [38], [41], fall short in effectiveness.
These methods see g3D(x, y, z) values escalating to the
thousands, more than 50 times higher than those achieved
by the MetaFence solution, severely compromising tracking
accuracy. Consequently, such methods prove unsuitable for
reliable geofencing systems. Conversely, the evolutionary
algorithm presented in [16] marks a significant improve-
ment over these conventional techniques, as evidenced from
Figures 11i to 11l. This algorithm manages to maintain
g3D(x, y, z) values below 60 across all room dimensions,
even in larger settings, an important advancement given the
complexity increase with spatial dimensions, which typically
exacerbates the challenge of solving NP-hard problems. This
contrast is stark against the poor outcomes from traditional
methods shown in Figures 11a and 11h. Yet, when comparing
the evolutionary algorithm with MetaFence, the latter consis-
tently outperforms, maintaining g3D(x, y, z) values that are,
on average, more than 3 times lower regardless of spatial
dimensions. Such a substantial reduction underscores the
superior capability of MetaFence to minimize the adverse
effects of spatial geometry on overall 3D tracking accuracy,
solidifying its standing as a highly effective geofencing
solution.

To elucidate, consider a geofencing system utilizing high-
precision ranging technology, with a σr = 1 cm, achieved
by allocating significant resources and bandwidth specifically
for tracking purposes. Figures 11a through 11d demonstrate
that traditional ad-hoc deployment strategies may only yield
a 3D tracking accuracy of approximately 10 m, calcu-
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Figure 11: CDF plots of g2D(x, y, z), gz(x, y, z), and g3D(x, y, z) values across different spatial configurations and room
dimensions. The first row (referenced in Table 2) illustrates results from the ad-hoc placement. The second row (referenced
in Table 3) depicts the lattice-based midpoint approach. The third row showcases the heuristic approach, specifically based
on the evolutionary algorithm (EA) solution proposed in [16] and detailed in Table 4. The final row presents results from
the MetaFence optimal solution as listed in Table 5. Each row progresses through room dimensions from 8 m× 8 m× 4 m
to 32 m× 32 m× 4 m, displayed from left to right across the columns.

lated from the equation σT (x, y, z) =
√

σ2
x + σ2

y + σ2
z =

g3D(x, y, z) · σr, thereby rendering substantial precision
investments ineffective and surpassing acceptable accuracy
levels. This pattern holds true for traditional lattice-based
placements at midpoints between vertices, which similarly
exhibit large g3D(x, y, z) values (1 cm × 1000 = 10 m),
as illustrated from Figures 11e to 11h. Conversely, Fig-
ures 11i to 11l show that employing an advanced evolu-
tionary algorithm, as proposed in [16], can enhance overall

3D tracking accuracy to under a meter (1 cm×60 = 60 cm),
marking a significant improvement. Yet, the MetaFence
framework for 5G Point deployment, as shown in Fig-
ures 11m to 11p, achieves even more precise tracking, with
accuracies below 20 cm. This represents an improvement
nearly fifty times greater than traditional strategies and three
times better than the advanced heuristic placements. This sig-
nificant difference underscores the critical impact of spatial
geometry on tracking precision and the vital importance of
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employing an algorithm like MetaFence to minimize these
errors and ensure a robust geofencing system.

VII. Conclusion and Future Work
Conclusion: In this work, we introduce MetaFence, an
advanced geofencing system that achieves improved tracking
precision by utilizing indoor 5G small cells. By optimizing
the placement of these 5G Points through an enhanced meta-
RL approach, MetaFence addresses the NP-hard challenge of
deployment optimization and significantly boosts geofencing
accuracy. Our extensive testing demonstrates that MetaFence
surpasses traditional methods and heuristic approaches in
tracking accuracy, providing robust protection against unau-
thorized access and security breaches in both physical and
digital spaces.

Future Work: In conjunction with this research, we have
developed a small-scale 5G testbed for over-the-air perfor-
mance evaluations [31]. We plan to integrate MetaFence into
this testbed to create a proof-of-concept geofencing system
in the future. Furthermore, enhancing the interpretability
of RL models is particularly important for complex tasks
such as localization [49]. As part of future work, we aim
to investigate the integration of explainable RL techniques
into our proposed approach. As a final note, MetaFence was
initially designed to deploy meta-reinforcement learning for
the optimal configuration of 5G Points in indoor setups,
specifically to mitigate spatial geometry-induced errors af-
fecting localization and tracking within geofencing systems.
However, the core technique is versatile and can be extended
to other applications. For example, it could enhance local-
ization accuracy in smart buildings within smart cities by
strategically placing 5G Points, or other types of localization
anchors, based on positions calculated by our algorithm.
Additionally, this approach can support autonomous driving
applications, particularly in underground parking areas where
GPS signals are unavailable, by optimizing the placement of
5G Points or alternative anchors like Wi-Fi routers. Although
MetaFence was specifically developed for geofencing, its
underlying principles offer broad applicability for improving
localization and positioning across diverse scenarios.
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