
Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version 11 January, 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.011100

Cost-sensitive Hypergraph Learning
with Structure Quality Preservation
For IoT Software Defect Prediction

Nan Wang1, Jiqiang Liu1, Bing Du2, Qinxin Zhao3, Yuanlin Sun1, Tao Zhang1, Dunqiu
Fan4, Wenjin Li5, Binyong Li6

1School of Cyberspace Science and Technology, Beijing Jiaotong University, Beijing 100044, China
2Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China

3The State Key Laboratory for Novel Software Technology, Department of Computer Science and Technology, Nanjing University, Nanjing
210023, China

4The Research Department, NSFOCUS Technologies Group Co., Beijing 100085, China
5The Security Capability Center, NSFOCUS Inc., Beijing 100085, China

6Advanced Cryptography and System Security Key Laboratory of Sichuan Province, Chengdu 610000, China

CORRESPONDING AUTHOR: Tao Zhang (e-mail: taozh@bjtu.edu.cn).
This work was supported in part by the Supported by the Fundamental Research Funds for the Central Universities under Grant

2024JBMC031; in part by the NSFC Program under Grant 62202042, Grant U20A6003, Grant 62076146, Grant 62021002, Grant
U19A2062, Grant 62127803, Grant U1911401 and Grant 6212780016; in part by the Aeronautical Science Foundation of China under Grant

ASFC-2024Z0710M5002; in part by the Fundamental Research Funds for the CentralUniversities, JLU; in part by the Fundamental
Research Funds for the CentralUniversities, JLU; in part by the by the OpenFund of Advanced Cryptography and System Security Key

Laboratory of Sichuan Province(Grant No. SKLACSS-202312); in part by Industrial Technology Infrastructure Public Service Platform Project
”Public Service Platform for Urban Rail Transit Equipment Signal System Testing and Safety Evaluation” (No. 2022-233-225), Ministry of

Industry and Information Technology of China.

ABSTRACT Generative AI is revolutionizing Software Engineering (SE), as both engineers and academics
embrace this technology in their work. To better leverage this technology for software generation, it is
essential to propose effective IoT software defect prediction methods. However, this task is challenging
due to the unclear high-order correlation underlying the data. Moreover, in real-world IoT software defect
prediction applications, different types of misclassifications generally lead to distinct losses and associated
costs. However, accurately determining these specific costs is often not feasible. Under such circumstances,
we propose a cost-sensitive hypergraph learning method with structure quality preservation (csHLQ) to
optimize the cost information and preserve the graph quality in a principled way. Due to the representational
ability on high-order relationship exploring, we employ hypergraph structure instead of graph structure to
model the complex correlations among the datasets. We note that if a cost-sensitive hypergraph has a high
quality, its classification results may exhibit a large margin separation. Thus, csHLQ exploits the large
margin cost-sensitive hypergraph while avoiding using of a cost-sensitive hypergraph with a small margin.
To measure the performance of our proposed method, we performed experiments on three distinct groups
of datasets, i.e., the NASA Metrics Data Program (NASA) dataset, CK metric dataset and UCI Machine
Learning Repository (UCI) dataset. Experimental results and comparisons with state-of-the-art methods
demonstrate the superiority of our method.

INDEX TERMS Cost-sensitive hypergraph learning, Hypergraph structure optimization, IoT software defect
prediction.

I. INTRODUCTION

D ISCUSSIONS on the use of generative AI range from
claims of it marking the “end of programming” [1],

[2] to perspectives on its potential to enhance software engi-
neering [3], [4]. With the application of GAI in the field of
software generation [5]–[7] and the rising frequency of soft-
ware attacks [8], [9], the development of IoT software defect
prediction techniques has gained increasing attention from

researchers. Targeting the identification of software modules
as defect-prone or not, IoT software defect prediction [10]–
[12] has become one important research topic in the IoT
software engineering field. Effective IoT software defect
prediction methods can reduce the cost during the software
development phase and help maintain the quality of software
systems. Before releasing a reliable software system, it is
essential to identify as many defects as possible. It is worth

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Nan Wang et al.: Preparation of Papers for IEEE OPEN JOURNALS

noting that the conventional IoT software defect prediction
process requires much human effort and is challenging to
cover all possible conditions, as software defects may appear
in varied ways. Therefore, how to predict software defects
has attracted significant research attention [13]–[15] in recent
decades.

In data-driven IoT software defect prediction, a software
module is the smallest unit of functionality [16], which
is represented by a group of software metric values. IoT
Software defect prediction task can be viewed as a binary
classification task, where a testing software module is cate-
gorized as either defect-prone or defect-free.

In recent years, many machine learning methods have
been applied to this task [11], [17], [18]. Despite extensive
research on IoT software defect prediction, this task con-
tinues to pose significant challenges. Firstly, the relation-
ships between software metrics and their associated labels
remain ambiguous [19]. Many methods designed to capture
the complex relationships within datasets, such as graph-
based approaches, fail to leverage the high-order correlations
present in the data [20]. For example, in a traditional graph
structure, each edge can only connect two vertices at a
time, which limits the model’s ability to capture high-order
relationships within data [21]. To build a robust classifier,
it is crucial to utilize a more effective data formulation that
captures the intricate relationships within the data. Second,
the misclassification of a defective module incurs a far
greater cost than that of a non-defective sample, potentially
causing the software to crash. Therefore, in the field of
prediction, minimizing the total cost is more significant.
However, increasing IoT software defect prediction works
mainly focus on minimizing the number of errors rather than
the total cost.

Therefore, to solve the above challenges, we propose
a cost-sensitive hypergraph learning method with structure
quality preservation for IoT software defect prediction. This
method simultaneously optimizes cost information and pre-
serves the quality of the hypergraph structure. The frame-
work of our method is illustrated in Figure 1. By leveraging
the hypergraph structure, we incorporate misclassification
costs and perform cost-sensitive hypergraph learning to
minimize the overall total cost. Unlike conventional software
defect prediction methods that rely on simple graphs, where
each edge represents a pairwise connection between two
vertices, a hypergraph structure allows for the representa-
tion of high-order correlations among vertices. This enables
the exploration of complex relationships between software
modules, as hyperedges provide a flexible, degree-free con-
nection among data points. Moreover, considering that the
quality of hypergraph structure may affect the robustness
of the hypergraph-based classifier, we employ large-margin
criterion to evaluate the quality of the hypergraph structure
[22]. More specifically, since the predictive results of a high-
quality graph have a large margin separation (small hinge
loss) [23] and the large margin separation has the ability

to evaluate the quality of the graph structure, we set the
predictive labels of multiple cost-sensitive hypergraphs as
new features and construct a large margin classifier based
on these features to preserve the quality of cost-sensitive
hypergraph structure. Experimental results and comparisons
with state-of-the-art methods show the superiority of the
proposed csHLQ method.

The remainder of this paper is organized as follows.
Section II briefly reviews related work. Section III presents
the cost-sensitive hypergraph learning method with structure
quality preservation. Experimental results and comparisons
with state-of-the-art methods are provided in Section IV. We
conclude this paper in Section V.

II. Related Works
We’re at a stage where generative AI in IoT software
development is expected to accelerate progress by enabling
large-scale changes with less effort [24]–[26]. However,
as the initial enthusiasm has faded, there’s an increasing
recognition of the various risks and challenges involved, such
as security concerns, unexpected failures, and trust issues.
Thus, many researchers are focusing on the field of IoT
software defect prediction.

A. GAI for Software Generation
Generative AI (GAI) has made significant strides in a variety
of domains, including natural language processing [27],
image generation [28], and software engineering [29]. In the
context of software generation, GAI techniques are gaining
attention for their potential to automate and accelerate the de-
velopment process [30], [31]. For instance, Sauvola et al. [5]
proposed four scenarios, outlined model trajectories to rep-
resent transitions between them, and examined them in the
context of relevant software development activities. Russo
et al. [6] developed a theoretical model for AI adoption in
software engineering, termed the Human-AI Collaboration
and Adaptation Framework. This model was subsequently
validated through Partial Least Squares–Structural Equation
Modeling, using data collected from 183 software engineers.
Ebert et al. [7] provided guidance for both creating GAI
software and developing software with the help of GAI.
Practical insights are provided based on experiences in in-
dustrial environments. By employing scenario-based design
and question-driven XAI design methodologies, Jiao et al.
[32] examined users’ explainability requirements for GenAI
across three software engineering use cases: natural language
to code, code translation, and code auto-completion. Despite
the existence of several approaches that focus on using GAI
for software generation, many challenges remain in this area.
One of the key research hotspots is how to effectively predict
software errors in GAI-generated software to improve its
robustness [33]. In this paper, we investigate software defect
prediction for GAI-generated software.

2 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 1. The framework of our proposed method.

B. Software Defect Prediction
The task of data-driven IoT software defect prediction can
be formulated as a binary classification problem, and thus
many machine learning methods have been investigated, such
as parametric and non-parametric approaches. To establish
the connection between software metric values and the oc-
currence of faults, neural network [34], contrastive learning
[17], and ensemble learning [13], [35] have been integrated
into this field.

To develop more effective methods, many researchers
have adapted traditional machine learning techniques to
address the unique challenges in IoT software defect pre-
diction. Liapis et al. [13] focused on the application of
active learning methods in code defect prediction and em-
phasizing the efficacy of combining active learning with
ensemble methods, leveraging the dynamic selection and
labeling of training instances to increase model performance.
Chen et al. [36] proposed a deep hierarchical convolutional
neural network (DH-CNN) based on multiple source code
representations. Tong et al. [10] proposed a multi-source
transfer weighted ensemble learning (MASTER) method
for software defect prediction, which measured the weight
of each source dataset based on feature importance and
distribution difference and then extracted the transferable
knowledge based on the proposed feature-weighted transfer
learning algorithm. Yang et al. [37] proposed a learning-
to-rank algorithm for software defect prediction by directly
optimizing ranking performance. Although these methods
advance the field of software defect prediction, the complex
relationships among software modules and the markedly
different misclassification costs for defect-free and defect-
prone classes necessitate the development of more robust
classifier learning algorithms.

Recognizing that the misclassification consequences for
defect-free and defect-prone classes differ, many software
defect prediction methods focus on cost-sensitive learning
[38]–[41], which incorporates misclassification costs for dif-
ferent categories into the learning process. For instance, Ali
et al. [39] introduced a cost-sensitive logistic regression and
decision tree ensemble model aimed at accurately predicting
defects in software components. Siers et al. [40] developed
a framework that generates cost-sensitive predictions while
addressing class imbalance, utilizing a decision forest classi-
fier from which knowledge can be extracted through manual
inspection of the individual decision trees. Liu et al. [42]
suggested a two-phase cost-sensitive classification approach
that integrated cost data during both feature selection and
classification process. Wang et al. [43] proposed a multiple
kernel ensemble learning (MKEL) method utilizing a sample
weight vector updating strategy. During the training process,
the weights of defect-prone samples can be increased and the
weights of defect-free samples can be reduced based on the
classification results. Accordingly, in this paper, we examine
the high-order interactions among software modules and
integrate misclassification costs into the detection process,
resulting in the development of an efficient software error
prediction approach.

C. Graph-based Semi-supervised Learning Method
In order to exploit the information from abundant unlabeled
samples, many graph-based semi-supervised methods have
been proposed [11], [44]. Zhang et al. [45] proposed a
graph-based method, which employed the label propagation
algorithm to iteratively label the testing samples. Zhang
et al. [46] addressed the computational challenge of tradi-
tional semi-supervised methods through graph sparsification.

VOLUME , 3

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Nan Wang et al.: Preparation of Papers for IEEE OPEN JOURNALS

Jiang et al. [47] extended the Bayesian method, which
constructed a graph-based sparseness-generating prior to
exploiting the data manifold. In order to further improve
the effectiveness of graph-based methods, many research
works have been proposed to improve the performance of
graph-based methods both in the graph construction process
and the label propagation process [48], [49]. Considering
that the construction of graphs has a critical impact on the
performance of the graph-based classifier, Jebara et al. [50]
employed a maximum weight b-matching method for graph
construction to ensure the graph is exactly regular. Xu et
al. [20] introduced a defect prediction method based on
an Augmented-Code Property Graph(CPG), which utilizes
a unique graph encoding format.

To evaluate the effectiveness of graph structure, li et
al. [23] utilized margin separation to assess graph quality,
enhancing the impact of graphs with large margins while
seldom employing those with small margins. Since each
connection of graph structure can only link two vertices
at once, the pairwise connections may limit the models to
investigate the high-order relationships within the datasets.
A more robust framework is required to establish the re-
lationships within the dataset. Due to its strong capacity
to represent high-order relationships, hypergraph structures
have become widely utilized in the field of semi-supervised
learning [51], [52]. For example, Zhou et al. [53] employed
a hypergraph structure to represent the complex relation-
ship among datasets and extended the spectral hypergraph
clustering method to hypergraph embedding and transductive
classification. Zhao et al. [54] proposed a multi-hypergraph
joint learning method to find the relevance among mul-
tiple features. Luo et al. [55] proposed a feature learn-
ing method named spatial-spectral hypergraph discriminant
analysis (SSHGDA) to extract the spatial-spectral features
of hyperspectral images. While the hypergraph structure is
capable of investigating high-order relationships among data
by representing complex interdependencies between multiple
entities simultaneously, the quality of the hypergraph itself
plays a crucial role in determining the effectiveness of
hypergraph-based methods. Thus, in this paper, we focus on
the characteristics of software defect prediction and perform
a detailed evaluation of hypergraph detection structures.
Based on this analysis, we propose an effective software
defect prediction model.

III. Cost-sensitive Hypergraph Learning with Quality
Preservation
A. Introduction of Hypergraph Learning
In this section, we briefly outline the key definitions of
hypergraphs, the learning methods related to them, and their
applications. Given a hypergraph structure G = (V, E ,W),
it generally has three components, i.e., the vertices set V ,
the hyperedges set E and the weights of hyperedges W.
We regard each sample as a vertex in a hypergraph, and
the relationship among different samples is represented by

hyperedges. A hypergraph structure can be defined as a
|V| × |E| incidence matrix H based on the vertices set and
hyperedges set, and the entry of H is defined as

h(v, e) =

{
1 if v ∈ e

0 if v /∈ e
, (1)

which indicates whether vertex v is connected by hyperedge
e or not.

The degrees of different vertices and hyperedges are
calculated by

d (v) =
∑

e∈E
W (e)h (v, e) (2)

and
δ(e) =

∑
v∈V

h(v, e). (3)

According to the degrees of vertices and hyperedges, two
diagonal matrices Dv and De are employed to represent the
degrees of vertices and hyperedges, respectively.

Hypergraphs have been widely employed in learning
methods, e.g., classification, embedding, and ranking. Semi-
supervised hypergraph learning method [53] is based on
the assumption that the two stronger connected vertices on
hypergraph structure are more likely to have similar labels.
Thus, the objective formulation is defined as

argmin
L

{Ω(L) + λRemp(L)} . (4)

In this function, Ω(L) is the structure regularization term
that controls the connections among vertices. Remp(L) is the
empirical loss and λ is the trade-off parameter to balance
the influences of Ω(L) and Remp(L). More specifically, in
order to smooth the relationships among samples on the
hypergraph, the regularizer Ω(L) can be defined as

Ω(L)= 1
2

∑
e∈E

∑
u,v∈V

C∑
k=1

w(e)H(u,e)H(v,e)
δ(e)

(
L(u,k)√

d(u)
−L(v,k)√

d(v)

)2

= tr(LT∆L).
(5)

Moreover, ∆ is defined as ∆ = I − Θ = I −
Dv

− 1
2HWDe

−1HTDv
− 1

2 , which is the hypergraph Lapla-
cian. Matrix L denotes the to-be-estimated labels for total
samples. C is the number of classes in the classification
tasks. In this definition, the more hyperedges connect be-
tween two vertices, the more similar their labels are.

The empirical loss Remp(L) is usually defined as

Remp(L) = ∥L−Y∥2F, (6)

where Y represents the label matrix derived from the labeled
samples.

Thus, the objective function can be expressed as

argmin
L

{
tr
(
LT∆L

)
+ λ∥L−Y∥2F

}
, (7)

which can be addressed directly using L =
(
I+ 1

λ∆
)−1

Y.

4 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Due to its strengths in modeling intricate relationships,
hypergraphs are frequently applied across a range of fields,
such as multi-object tracking [56], image retrieval [57],
anomaly detection [58], [59], and so on.

B. Cost-Sensitive Hypergraph Learning
In this section, we include cost information into hypergraph
learning to minimize the total cost for IoT software defect
prediction. Given a set of training samples {Ai, yi}li=1 and
testing samples {Aj}nj=l+1, We create connections between
these samples using a hypergraph structure and integrate cost
information into the learning process to capture the features
of the test samples {Aj}nj=l+1 to labels {ŷj}nj=l+1. In this
section, in order to describe the proposed method more
clearly, we employ boldface upper-case letters to represent
matrices, boldface lower-case letters to represent vectors and
normal italic letters to represent scalar.

In a hypergraph G = (V, E ,W), each vertex from V de-
notes one sample from {A1, . . . ,Al,Al+1 . . . ,An}. Thus,
we have n vertices in total. The entries of the diagonal matrix
W denote the weights of hyperedges. The set of hyperedges
E connects vertices according to the distances among sam-
ples, which are generated by the common-used distance-
based hyperedges generation method. Distance-based hy-
pergraph generation methods leverage the relationships be-
tween vertices by utilizing the distance in the feature space,
such as Euclidean distance. More specifically, we select
one vertex from {A1, . . . ,Al,Al+1 . . . ,An} as centroid
vertex, and calculate the distance between the centroid vertex
with the other vertices. According to the distances, the K
nearest neighbors are selected to construct the hyperedge
for this centroid vertex. Then a hyperedge can associate
with itself and its nearest neighbors in the feature space.
This process is repeated n times until all the vertices from
{A1, . . . ,Al,Al+1 . . . ,An} have been chosen as centroid
vertices. Ultimately, this results in a total of n hyperedges.

In this method, in order to take the distances between each
pair of samples into consideration, we utilize a probabilistic
incidence matrix H to represent the relationship between
hyperedges and vertices. More specifically, the (p, q)-th entry
of the matrix H represents the connection between vertex vp
and hyperedge eq and is defined as follows

H (vp, eq) =

{
exp

(
−d(vp,vcentroid)

2

αd̄2

)
if vp ∈ eq

0 if vp /∈ eq
. (8)

Here, vcentroid denotes the centroid vertex of hyperedge
eq, while d̄ represents the average distance between all pairs
of vertices in the hypergraph. Moreover, d(vp, vcentroid) is
the distance between vp and vcentroid.

The definitions of degrees for vertices and hyper-
edges are similar to the traditional hypergraph, i.e.,
d (vp) =

∑
e∈E W (e)h (vp, e) for vertex vp and δ(eq) =∑

v∈V h(v, eq) for hyperedge eq. Then, we can get two
diagonal matrices Dv and De for the vertices degrees and
hyperedges degrees, respectively.

In order to minimize the total cost instead of accuracy
in the learning process, misclassification costs have been
introduced into the hypergraph learning process. The reg-
ularization formulation of cost-sensitive hypergraph learn-
ing includes three components, i.e., the hypergraph Lapla-
cian regularization term Ω(ω), the empirical loss function
Remp(ω), and the optimal regularization for hypergraph
structure Q(W). Here, ω is the mapping vector that needs
to be learned, which embeds the features of samples to the
labels.

The hypergraph Laplacian regularization term Ω(ω) is
similar to the traditional hypergraph structure, which is
defined as follows

Ω (ω) = 1
2

∑
e∈E

∑
vi,vj∈V

W(e)H(vi,e)H(vj ,e)
δ(e)

(
ωAi√
d(vi)

− ωAj√
d(vj)

)2

=
∑

vi∈V
(ωxi)

2−
∑
e∈E

∑
vi,vj∈V

(ωxi)H(vi,e)W(e)H(vj ,e)(ωxj)√
d(vi)d(vj)δ(e)

= (Xω)
⊤
(
I−D

−1/2
v HWD−1

e H⊤D
−1/2
v

)
(Xω)

= (Aω)
⊤
∆(Aω).

(9)
As for the empirical loss Remp(ω), it incorporates the cost

information and is defined as

Remp(ω) = ∥Υ(Aω − y)∥22 =
∑n

i=1 (Υi,i(Aiω − yi))
2
.

(10)
Here, the diagonal matrix Υ represents the misclassifica-

tion cost and Υi,i denotes the cost associated with the i-th
sample. Aω is the classification result.

Although hypergraph has been employed to exploit high-
order relationship among datasets, some hyperedges may
not effectively model these correlations and the weights of
different hyperedges need to be optimized in the learning
process. To address this, the optimal hypergraph structure
regularization Q(W) is employed to re-weight the influences
of hyperedges and improve the effectiveness of hypergraphs,
which is defined as Q(W) = ∥W∥2F.

Then the objective framework of cost-sensitive hypergraph
learning is summarized as follows.

arg min
ω,W

{
(Aω)

⊤
∆(Aω) + µ∥C(Aω)− y∥22 + λ∥W∥2F

}
s.t.

n∑
i=1

Wi,i = 1, ∀ Wi,i ≥ 0.

(11)
Here, λ and µ are trade-off parameters to adjust the

influences of the above three components.
The optimization task in Eq.(11) is convex. Then we

can optimize Eq.(11) by an alternating optimization scheme.
First, we fix W and compute the value of ω. The partial
derivative of the objective function with respect to ω is
expressed as follows:

∂

∂ω

{
∥C(Aω)− y∥22 + µ(Aω)

⊤
∆(Aω)

}
= 0, (12)

VOLUME , 5

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Nan Wang et al.: Preparation of Papers for IEEE OPEN JOURNALS

and the solution of ω is as follows

ω =
(
A⊤C2A+ µA⊤∆A

)−1 (
A⊤Cy

)
. (13)

Then we fixed ω and calculate W. The partial derivative
of the objective function with respect to W is as follows

∂

∂W

{
µ(Aω)

⊤
∆(Aω) + λ∥W∥2F + η(

Ne∑
i=1

Wi,i − 1)

}
= 0.

(14)
and the solution of W is as follows

W =
µΦ⊤Φ(De)

−1 − αI

2λ
(15)

and

α =
µΦ(De)

−1Φ⊤ − 2λ

Ne
. (16)

Here, Φ = (Aω)
⊤
(Dv)

− 1
2H and I is an identity matrix.

According to the mapping vector ω, we can calculate the
predictive labels with the feature of testing samples as L =
Aω.

C. Quality Evaluation on Hypergraph Structure
In order to optimize the hypergraph structure, we evaluate the
quality of the hypergraph structure in the learning process.
Inspired by the effectiveness of the large margin criterion in
graph-based quality evaluation [22], [23], we use the large
margin criterion to maintain the integrity of the cost-sensitive
hypergraph structure. More specifically, the predictive results
with a small margin may cause a higher risk of the cost-
sensitive hypergraph classifier. Thus, in the learning process,
we emphasize cost-sensitive hypergraph with a large margin
and avoid utilizing cost-sensitive hypergraph with a small
margin. Here, we denote the category with a higher mis-
classification cost Cpos as positive class, and the category
with a lower misclassification cost Cneg as negative class.
We fix Cneg as 1, and we only consider the cost of the
more important class. In the above section, cost-sensitive
hypergraph learning method assumes that the precise cost
value, i.e., Cpos is known in advance. However, it is crucial
to recognize that establishing a fixed, exact cost value is
not feasible, which renders the direct use of cost-sensitive
hypergraphs ineffective. In this section, we optimize the
cost value Cpos and hyperparameters λ and µ according
to the relationships among testing samples in the learning
process automatically. With the candidate cost information
and trade-off parameters, we construct a set of cost-sensitive
hypergraphs and obtain a set of predictive labels for the
testing samples. Then we treat the predictive results as new
features for the testing samples and further judge the quality
of the set of cost-sensitive hypergraphs.

More specifically, after constructing cost-sensitive hy-
pergraphs with different cost information and trade-off
parameters, we obtain a set of cost-sensitive hypergraph
classifiers {HGt}Tt=1. Then let L(t) = {l(t)1 , l

(t)
2 , . . . , l

(t)
n }

represents the predictive results of n testing samples
from t-th cost-sensitive hypergraph classifier and we get
the predictive results of all hypergraph classifiers L =
{L(1),L(2), . . . ,L(T)}. Although we obtain the experimental
results of these cost-sensitive hypergraphs, it is still chal-
lenging to identify the quality of these solutions. Thus, we
employ the large margin principle to evaluate the qual-
ity of these cost-sensitive hypergraphs. According to the
predictive labels, we generate a new feature dataset for
training and testing samples, denoted as {Xi, yi}ni=1 and
the new feature vector of i-th sample is denoted as Xi =

{l(1)i , l
(2)
i , . . . , l

(T)
i }, where each entry represents the result

of corresponding hypergraph. With the new feature dataset,
we employ the large margin principle to evaluate the quality
of the corresponding cost-sensitive hypergraph.

According to [23], we construct a large margin linear
classifier to distinguish the predictive results with a small
margin. The basic principle for labeling is to increase the
utilization of cost-sensitive hypergraphs with a large margin
and decrease the utilization of those with a small margin.
Then unstable and ineffective performance can be reduced.
In order to find the classifier with a large margin, we need
to find a linear classifier f(X) = a′X + b and get a
label assignment of unlabeled data ŷ = { ˆyl+1, ˆyl+2, . . . , ŷn},
which can be achieved by minimizing the following function

min
a,ŷ

1

2
∥a∥22 + ϕ1

l∑
i=1

l(yif(Xi)) + ϕ2

n∑
j=l+1

l(ŷjf(Xj))

s.t. ŷj ∈ {−1,+1}, j = l + 1, . . . , n;

|
∑n

j=l+1 ŷj

n− l
−

∑l
i=1 yi
l

| ≤ β.

(17)
Here, l(z) = max(0, 1− z) means the hinge loss in large

margin separation. ϕ1 and ϕ2 are trade-off parameters that
are used to balance the losses on the training and testing
dataset. Considering that the objective function is similar
to the traditional semi-supervised SVM (S3VM) [60], we
employ the solution of S3VM to optimize the objective
function. However, the solution of classical S3VM may not
be able to meet the demand for cost-sensitive hypergraph
structure optimization. For instance, classical S3VM usually
utilizes the non-linear kernel while we need the linear kernel
to achieve the optimization. Under these circumstances, we
utilize alternating optimization [23] to address this problem.

First, we fix ŷ and optimize a. when ŷ is fixed, Eq.17 is
similar to the traditional linear SVM which can be solved
by a linear SVM package. Then we fix a and optimize ŷ.
When a is fixed, we note that the rank of ŷ depends on
the prediction a′X + b or the testing dataset [61]. Thus,
according to [23], the predictive results on the testing dataset
can be calculated as

6 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

ŷj =

+1 if rj ≤

(
2
∑l

i=1 yi

l − β
)
(n− l)

−1 if rj ≥
(

2
∑l

i=1 yi

l + β
)
(n− l)

sign(a′Xj + b) otherwise

.

(18)
Here, {r1, r2, . . . , rn−l} represents the ranks of predictive

results on the testing dataset. In order to further optimize
the performance, we generally increase the importance of
unlabeled samples in the learning process [60]. Finally, if the
margins of some testing samples are still risky, we label them
with a supervised learning method to ensure the robustness
of the classifier. The procedure of the proposed method is
shown in Algorithm 1.

Algorithm 1 The workflow of the proposed cost-sensitive
hypergraph learning method focuses on preserving structural
quality.
Input: The training samples {Ai, yi}li=1 and the testing
samples {Aj}nj=l+1.
Parameter: The parameters of hypergraph {λ1, . . . , λm}
and {µ1, . . . , µm}, regularization parameters {ϕ1, ϕ2}, a
set of cost values for positive category
{Cpos1 , Cpos2 , . . . , Cposq}
Output: The inferred label information for the test samples
ŷ = { ˆyl+1, ˆyl+2, . . . , ŷn}.

1: For each trade-off parameters {λ} and {µ} and cost
values {Cpos}, construct a cost-sensitive hypergraph.
Then we have a set of hypergraph classifiers
{HGt}Tt=1.

2: Obtain a set of mapping vectors {ωt}Tt=1 by
minimizing the total cost.

3: Calculate the labels by Aω and record the results of
HGt as L(t) = {l(t)1 , l

(t)
2 , . . . , l

(t)
n }.

4: Construct the new feature space as {Xi, yi}ni=1.
5: while ϕ̂2 ≥ ϕ2 do
6: while the result of Eq.17 does not decrease do
7: Fix ŷ and optimize w utilize a public linear SVM

package.
8: Fix w and optimize ŷ by using Eq.18.
9: ϕ̂2 = 2ϕ2

10: end while
11: end while
12: if the margin of testing samples are still risky to use

then
13: Employ the supervised learning method to label

uncertain samples.
14: end if
15: return ŷ = { ˆyl+1, ˆyl+2, . . . , ŷn}

IV. Experiments
In this section, we briefly introduce the testing datasets,
the commonly used evaluation criteria, compared methods,
experimental results and discussion.

A. The Testing Dataset
To evaluate the effectiveness of our method, we conduct
experiments using widely recognized IoT software defect
prediction datasets, i.e., specifically the CM1, KC3, MC2,
MW1, PC1, PC3, PC4, and PC5 datasets from NASA [62],
as well as the ant, ivy, jedit, lucene, synapse, velocity, and
xalan datasets from the CK metrics dataset [62]. Moreover,
we also conduct experiment on UCI dataset from other defect
detection fields, i.e., haberman, heartstatlog, LiverDisorders,
sonar, SPECT, SPECTF, wpbc, australian data [63].

B. Evaluation Criteria
To assess the performance of the proposed method, we utilize
the following widely accepted criteria.

1) Accuracy refers to the percentage of samples that
are correctly classified relative to the total num-
ber of samples, which is calculated as Accuracy=

TP+TN
TP+FP+TN+FN .

2) AUC: AUC quantifies the area under the ROC curve,
which graphs the false positive rate (FPR) on the x-
axis and the true positive rate (TPR) on the y-axis.

3) Precision: Precision is the proportion of defective
samples that are correctly identified as defective out
of the total samples classified as defective, which is
calculated as Precision= TP

TP+FP .
4) F1-measure: F1-measure considers both PD and Preci-

sion, and it is defined as the harmonic mean of these
two metrics, and calculated by F1 = 2×PD×Precision

PD+Precision .

Accuracy, AUC, Precision, F1-measure range in [0, 1], and
a higher value represents a better performance.

C. Compared Methods
To measure the efficacy of our method, we benchmark it
against various state-of-the-art techniques. The parameters
for these comparison methods are configured to the appro-
priate values outlined in their publications. The details of
compared methods are described as follows:

1) Cost-sensitive feature selection (CSFS) [64]. In CSFS,
the authors optimized the cost information with F-
measure information and employed cost information
to solve the imbalance data classification issue.

2) Non-negative Sparse Graph Based Label Propagation
(NGSLP) [45]. In NGSLP, the authors utilized the
Laplacian score sampling strategy to construct a class-
balance dataspace. The relationships between samples
are evaluated through a non-negative sparse algorithm
and represented as a graph structure. Then, label prop-
agation is utilized based on this non-negative sparse
graph.

VOLUME , 7

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Nan Wang et al.: Preparation of Papers for IEEE OPEN JOURNALS

3) Large margin graph quality judgment (LEAD) [23]. In
LEAD, the authors presented a method for optimiz-
ing structure that is based on the conventional graph
framework.

Additionally, we compare our method with traditional hy-
pergraph learning techniques (HL) [53] and cost-sensitive
hypergraph learning method (csHL) without structure opti-
mization.

D. Experimental Settings
In the experiments, we randomly divided the dataset into
training and testing sets, using 10%, 20%, and 30% for
training, while the rest were designated for testing. This pro-
cess is repeated 10 times, and the average results along with
the standard deviation are reported. Moreover, in hypergraph
construction process, we set the value of λ as [0.1, 1, 10], the
value of µ as [0.1, 1, 10] and the value of cost for positive
category as [5, 10, 15]. Then we construct 27 candidate cost-
sensitive hypergraphs in total. In the hypergraph structure
optimization process, the parameters ϕ1, ϕ2, and β are set
as 1, 0.01, and 0.02, respectively.

Experiment results of all compared state-of-the-art meth-
ods on the UCI machine learning dataset, NASA dataset
and CK metrics dataset are shown in Figure 2 and Figure
3. In these result figures, the bars indicate the average
outcomes of various methods, while the lines denote the
standard deviations for each corresponding method. Based
on the experimental results, we observe that our method
outperforms all the compared approaches. More specifically,
we have the following observations.

E. On Comparison with State-of-the-Art Methods
Experimental results on these three datasets are shown in the
Figure2. These results indicate that our method achieves su-
perior performance compared to state-of-the-art approaches.
The detailed comparison results are shown as follows:

1) Compared with the cost-sensitive classification
method, i.e., CSFS, our proposed method demonstrates
superior performance across all evaluation criteria.
For instance, our method achieves improvements of
21.0%, 23.4%, and 15.6% in accuracy and 22.4%,
27.1%, and 31.9% in F1- measure with 10%, 20%,
and 30% training data on the overall CK dataset.
On NASA dataset, our method achieves gains of
16.7%, 30.8%, and 28.3% in AUC and 20.9%,
25.3%, and 29.1% in precision with 10%, 20%, and
30% training data. On the UCI dataset, our method
shows improvements of 14.1%, 18.9%, and 20.9%
in F1-measure, and 8.6%, 12.1%, and 10.2% in
precision with 10%, 20%, and 30% of the training
data, respectively.

2) Compared with graph-based structure optimization
method, i.e., LEAD, the proposed method achieves
gains of 29.6%, 24.1%, and 33.3% in AUC and 13.9%,

18.4%, and 12.9% in precision with 10%, 20%, and
30% training data. on the UCI dataset. On the CK
dataset, the proposed method shows enhancements
of 13.7%, 15.4%, and 9.4% in accuracy, along with
improvements of 20.2%, 25.3%, and 34.2% in F1-
measure with 10%, 20%, and 30% of the training
data. These results demonstrate the superiority of the
hypergraph structure. Additionally, we observe that
LEAD outperforms the graph-based method without
structure optimization, i.e., NGSLP. For instance, on
the NASA dataset, LEAD achieves improvements of
1.3%, 2.0%, and 5.6% in terms of accuracy and 14.8%,
7.5%, and 2.7% in AUC with 10%, 20%, and 30%
training data, respectively. The superior performance
of LEAD demonstrates that the preservation of graph
quality is necessary in the learning process.

3) Compared with graph-based method, i.e., NGSLP, the
proposed method achieves gains of 40.6%, 31.7%, and
25.9% in terms of accuracy and 20.4%, 21.1%, and
15.1% in precision on UCI dataset. Similar compared
results can be found with other evaluation criteria on
other datasets. Furthermore, we find that the traditional
hypergraph learning method, i.e., HL, also outper-
forms the graph-based method, i.e., NGSLP. More
specifically, HL achieves gains of 12.6%, 10.3%, and
12.5% in terms of accuracy and 11.9%, 10.9%, and
11.0% in terms of F1-measure on UCI dataset. These
results demonstrate that the use of hypergraphs offers
advantages in effectively leveraging data representation
compared to traditional graph-based methods, and that
preserving the quality of graph structure is essential
for graph-based approaches.

Compared with state-of-the-art methods, i.e., CSFS,
NGSLP, LEAD, the superior performance of csHLQ can
be attributed to two main advantages. First, the proposed
method utilizes a hypergraph structure to leverage high-order
relationships within the dataset, contributing to the enhanced
performance of all hypergraph-based approaches. The hyper-
graph structure can establish complex relationships through
flexible hyperedges, allowing for the connection of vertices
without any constraints. As shown in the experimental re-
sults, when compared with traditional graph structure i.e.,
NGSLP, LEAD, which models the correlations among mul-
tiple samples by pairwise connection, the superiority of the
hypergraph-based method is obvious. The second advantage
lies in our optimization of cost information during the cost-
sensitive hypergraph learning process while simultaneously
preserving the quality of the hypergraph structure. Con-
sidering that the cost-sensitive hypergraph structure which
constructed with uncertain cost values seriously affects the
performance of cost-sensitive hypergraph learning method,
preservation of the hypergraph structure quality is desirable.

8 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

(a) On UCI dataset.

(b) On NASA dataset.

(c) On CK dataset.

FIGURE 2. Experimental results compared with state-of-the-art methods.

(a) On UCI dataset.

(b) On NASA dataset.

(c) On CK dataset.

FIGURE 3. Experimental results compared with other hypergraph-based methods.

VOLUME , 9

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Nan Wang et al.: Preparation of Papers for IEEE OPEN JOURNALS

F. Comparison with the Hypergraph Structure
Optimization without Cost-Sensitive Learning
To further evaluate the performance of our method, we
compare it with other hypergraph-based approaches, i.e.,
traditional hypergraph (HL), hypergraph learning with qual-
ity preservation (HLQ), cost-sensitive hypergraph learning
(csHL), and cost-sensitive hypergraph learning with quality
preservation(csHLQ). As shown in Figure 3, we demon-
strate the comparison results of all the compared methods.
Based on the experimental results, our method demonstrates
superior performance compared to other hypergraph-based
approaches. For instance, compared with HL, our method
achieves accuracy gains of 15.8%, 11.8%, and 18.9%, and
AUC improvements of 20.2%, 25.3%, and 34.2%, when
using 10%, 20%, and 30% of the training data from the
CK dataset. On the UCI dataset, the proposed method
attains improvements of 19.2%, 17.5%, and 20.2% in F1-
measure, as well as increases of 13.9%, 18.4%, and 12.9%
in precision, utilizing 10%, 20%, and 30% of the training
data. These observations can demonstrate the effectiveness
of cost-sensitive learning process and hypergraph structure
quality preservation process on the cost-sensitive hypergraph
learning. We then investigate the performance of these two
processes separately, specifically focusing on cost-sensitive
learning and the maintenance of hypergraph structure quality.
To assess the impact of cost-sensitive learning on hyper-
graph structure, we compare our method with conventional
hypergraph learning that includes quality preservation, i.e.,
HLQ, the proposed method demonstrates improvements of
37.8%, 31.6%, and 32.2% in F1-measure, along with gains
of 20.4%, 21.1%, and 15.1% in precision on the UCI dataset
using 10%, 20%, and 30% of the training data. On the
NASA dataset, it achieves increases of 17.3%, 17.9%, and
19.7% in accuracy, as well as 47.3%, 32.8%, and 32.1%
in AUC with the same proportions of training data. Addi-
tionally, we observe that csHL also performs better than
the traditional hypergraph learning method, i.e., HL. For
instance, csHL achieves gains of 3.1%, 3.9%, and 2.8% in
terms of accuracy and 8.0%, 10.2%, and 12.4% in terms
of AUC on UCI dataset with 10%, 20%, and 30% training
data. These results demonstrate the effectiveness of cost-
sensitive learning process on the hypergraph structure. To
further show the necessity of the hypergraph structure quality
preservation process, we compare our method with cost-
sensitive hypergraph learning without quality preservation,
i.e., csHL. On the CK dataset, our method achieves gains
of 27.6%, 15.5%, and 23.5% in terms of AUC and 29.5%,
31.5%, and 36.7% in terms of precision with 10%, 20%, and
30% training data. Moreover, we further observe HLQ per-
forms better than HL. For example, on the UCI dataset, HLQ

achieves gains of 40.5%, 31.7%, and 25.9% in accuracy and
14.1%, 18.9%, and 20.9% in F1-measure using 10%, 20%,
and 30% of training data. These experimental results indicate
that the quality of the hypergraph can impact classification

performance, highlighting the importance of preserving the
quality of the hypergraph structure.

V. Conclusion
IoT software defect prediction focuses on identifying defect-
prone software modules, which is crucial for maintaining
high-quality software systems. In this paper, we present
a cost-sensitive hypergraph learning method that pre-
serves structural quality for IoT software defect prediction.
Hypergraph-based methods have been widely applied in
various real-world applications due to their effectiveness in
modeling high-order relationships. However, the quality of
the hypergraph structure can significantly impact the effec-
tiveness of the proposed method. Moreover, in various real-
world scenarios, the dataset inherently involves cost sensitiv-
ity, as misclassification costs often vary significantly across
categories. But for most cost-sensitive learning methods, it
is impractical to ascertain the exact unique cost information.
These limitations make hypergraph-based methods and cost-
sensitive learning methods do not always have stable per-
formance in many applications. Thus, the proposed method
aims to tackle these challenging issues simultaneously. More
specifically, the proposed method combines the cost infor-
mation into hypergraph learning to solve the cost-sensitive
issue in the dataset. In order to determine the precise cost
value and preserve the quality of hypergraph structure, the
proposed method constructs a set of cost-sensitive hyper-
graphs with uncertain cost information and hyperparameters.
Utilizing the classification results of these hypergraphs, the
proposed method also applies the large margin assump-
tion to assess the quality of the hypergraphs and maintain
the performance of the cost-sensitive hypergraph classifier.
We conducted experiments using well-known IoT software
defect prediction datasets, i.e.NASA and CK datasets and
anomaly detection dataset UCI, and the results demonstrate
the superiority of our proposed method.

Although the proposed method shows its advantage in
defect prediction, there are still several limitations. One
important limitation is the computational challenge, hyper-
graph learning methods require matrix operation which may
limit the performance of the classifier when processing
substantial datasets. To address this limitation, we will utilize
an inductive learning approach instead of a transductive one
to enhance the speed of our method.

REFERENCES
[1] M. Welsh, “The end of programming,” Commun. ACM, vol. 66, no. 1,

pp. 34–35, 2023.
[2] D. M. Yellin, “The premature obituary of programming,” Commun.

ACM, vol. 66, no. 2, pp. 41–44, 2023.
[3] M. Daun and J. Brings, “How chatgpt will change software engineering

education,” in Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education, M. Laakso, M. Monga,
Simon, and J. Sheard, Eds. ACM, 2023, pp. 110–116.

[4] W. Ma, S. Liu, W. Wang, Q. Hu, Y. Liu, C. Zhang, L. Nie, and
Y. Liu, “The scope of chatgpt in software engineering: A thorough
investigation,” CoRR, vol. abs/2305.12138, 2023.

10 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

[5] J. J. Sauvola, S. Tarkoma, M. Klemettinen, J. Riekki, and D. S.
Doermann, “Future of software development with generative AI,”
Autom. Softw. Eng., vol. 31, no. 1, p. 26, 2024.

[6] R. Choudhuri, D. Liu, I. Steinmacher, M. A. Gerosa, and A. Sarma,
“How far are we? the triumphs and trials of generative AI in learning
software engineering,” in Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering, ICSE 2024, Lisbon,
Portugal, April 14-20, 2024. ACM, 2024, pp. 184:1–184:13.

[7] C. Ebert, J. P. Arockiasamy, L. Hettich, and M. Weyrich, “Hints for
generative AI software development,” IEEE Softw., vol. 41, no. 5, pp.
24–33, 2024.

[8] Y. Zhan, Y. Fu, L. Huang, J. Guo, H. Shi, H. Song, and C. Hu, “Cube-
evo: A query-efficient black-box attack on video classification system,”
IEEE Trans. Reliab., vol. 73, no. 2, pp. 1160–1171, 2024.

[9] C. Hu, R. Yu, B. Zeng, Y. Zhan, Y. Fu, Q. Zhang, R. Liu, and H. Shi,
“Hyperattack: Multi-gradient-guided white-box adversarial structure
attack of hypergraph neural networks,” CoRR, vol. abs/2302.12407,
2023.

[10] H. Tong, D. Zhang, J. Liu, W. Xing, L. Lu, W. Lu, and Y. Wu,
“MASTER: multi-source transfer weighted ensemble learning for
multiple sources cross-project defect prediction,” IEEE Trans. Software
Eng., vol. 50, no. 5, pp. 1281–1305, 2024.

[11] A. Abdu, Z. Zhai, H. A. Abdo, and R. Algabri, “Software defect
prediction based on deep representation learning of source code from
contextual syntax and semantic graph,” IEEE Trans. Reliab., vol. 73,
no. 2, pp. 820–834, 2024.

[12] Z. Li, Q. Du, H. Zhang, X. Jing, and F. Wu, “An empirical study of
data sampling techniques for just-in-time software defect prediction,”
Autom. Softw. Eng., vol. 31, no. 2, p. 56, 2024.

[13] C. M. Liapis, A. Karanikola, and S. Kotsiantis, “Data-efficient software
defect prediction: A comparative analysis of active learning-enhanced
models and voting ensembles,” Inf. Sci., vol. 676, p. 120786, 2024.

[14] J. Chen, K. Hu, Y. Yu, Z. Chen, Q. Xuan, Y. Liu, and V. Filkov,
“Software visualization and deep transfer learning for effective soft-
ware defect prediction,” in ICSE ’20: 42nd International Conference
on Software Engineering. ACM, 2020, pp. 578–589.

[15] P. R. Bal and S. Kumar, “A data transfer and relevant metrics matching
based approach for heterogeneous defect prediction,” IEEE Trans.
Software Eng., vol. 49, no. 3, pp. 1232–1245, 2023.

[16] C. Catal, “A comparison of semi-supervised classification approaches
for software defect prediction,” Journal of Intelligent Systems, vol. 23,
no. 1, pp. 75–82, 2014.

[17] J. Han, C. Huang, and J. Liu, “bjcnet: A contrastive learning-based
framework for software defect prediction,” Comput. Secur., vol. 145,
p. 104024, 2024.

[18] A. Mishra and A. Sharma, “Deep learning based continuous integration
and continuous delivery software defect prediction with effective
optimization strategy,” Knowl. Based Syst., vol. 296, p. 111835, 2024.

[19] Z.-W. Zhang, X.-Y. Jing, and T.-J. Wang, “Label propagation based
semi-supervised learning for software defect prediction,” Automated
Software Engineering, pp. 1–23, 2016.

[20] J. Xu, J. Ai, J. Liu, and T. Shi, “ACGDP: an augmented code graph-
based system for software defect prediction,” IEEE Trans. Reliab.,
vol. 71, no. 2, pp. 850–864, 2022.

[21] F. Li, Z. Liu, J. Duan, X. Mao, H. Shi, and S. Zhang, “Exploiting
conversation-branch-tweet hypergraph structure to detect misinforma-
tion on social media,” ACM Trans. Knowl. Discov. Data, vol. 18, no. 2,
pp. 33:1–33:20, 2024.

[22] V. Vapnik, “Statistical learning theory,” Wiley, vol. 16, 1998.
[23] Y. Li, S. Wang, and Z. Zhou, “Graph quality judgement: A large mar-

gin expedition,” in Proceedings of the International Joint Conference
on Artificial Intelligence, 2016, pp. 1725–1731.

[24] H. Xu, Y. Li, O. Balogun, S. Wu, Y. Wang, and Z. Cai, “Security
risks concerns of generative AI in the iot,” IEEE Internet Things Mag.,
vol. 7, no. 3, pp. 62–67, 2024.

[25] F. Alwahedi, A. Aldhaheri, M. A. Ferrag, A. Battah, and N. Tihanyi,
“Machine learning techniques for iot security: Current research and
future vision with generative ai and large language models,” Internet
of Things and Cyber-Physical Systems, 2024.

[26] J. Wen, J. Nie, J. Kang, D. Niyato, H. Du, Y. Zhang, and M. Guizani,
“From generative ai to generative internet of things: Fundamentals,
framework, and outlooks,” IEEE Internet of Things Magazine, vol. 7,
no. 3, pp. 30–37, 2024.

[27] A. Iorliam and J. A. Ingio, “A comparative analysis of generative
artificial intelligence tools for natural language processing,” Journal
of Computing Theories and Applications ISSN, vol. 3024, p. 9104,
2024.

[28] S. Ali, P. Ravi, R. Williams, D. DiPaola, and C. Breazeal, “Con-
structing dreams using generative ai,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, no. 21, 2024, pp. 23 268–
23 275.

[29] C. Ebert and P. Louridas, “Generative ai for software practitioners,”
IEEE Software, vol. 40, no. 4, pp. 30–38, 2023.

[30] A. D. Carleton, D. Falessi, H. Zhang, and X. Xia, “Generative AI:
redefining the future of software engineering,” IEEE Softw., vol. 41,
no. 6, pp. 34–37, 2024.

[31] J. Cámara, J. Troya, J. Montes-Torres, and F. J. Jaime, “Generative
AI in the software modeling classroom: An experience report with
chatgpt and unified modeling language,” IEEE Softw., vol. 41, no. 6,
pp. 73–81, 2024.

[32] J. Sun, Q. V. Liao, M. Muller, M. Agarwal, S. Houde, K. Tala-
madupula, and J. D. Weisz, “Investigating explainability of generative
ai for code through scenario-based design,” in Proceedings of the
27th International Conference on Intelligent User Interfaces, 2022,
pp. 212–228.

[33] A. Ding, G. Li, X. Yi, X. Lin, J. Li, and C. Zhang, “Generative
AI for software security analysis: Fundamentals, applications, and
challenges,” IEEE Softw., vol. 41, no. 6, pp. 46–54, 2024.

[34] S. Kassaymeh, M. M. Al-Laham, M. A. Al-Betar, M. Alweshah,
S. Abdullah, and S. N. Makhadmeh, “Backpropagation neural network
optimization and software defect estimation modelling using a hybrid
salp swarm optimizer-based simulated annealing algorithm,” Knowl.
Based Syst., vol. 244, p. 108511, 2022.

[35] X. Wan, Z. Zheng, and Y. Liu, “Spe: Self-paced ensemble of ensembles
for software defect prediction,” IEEE Trans. Reliab., vol. 71, no. 2,
pp. 865–879, 2022.

[36] J. Chen, J. Xu, S. Cai, X. Wang, H. Chen, and Z. Li, “Software defect
prediction approach based on a diversity ensemble combined with
neural network,” IEEE Trans. Reliab., vol. 73, no. 3, pp. 1487–1501,
2024.

[37] X. Yang, K. Tang, and X. Yao, “A learning-to-rank approach to
software defect prediction,” IEEE Transactions on Reliability, vol. 64,
no. 1, pp. 234–246, 2015.

[38] Y. Fan, X. Xia, D. A. da Costa, D. Lo, A. E. Hassan, and S. Li,
“The impact of mislabeled changes by SZZ on just-in-time defect
prediction,” IEEE Trans. Software Eng., vol. 47, no. 8, pp. 1559–1586,
2021.

[39] A. Ali, N. Khan, M. I. Abu-Tair, J. Noppen, S. I. McClean, and I. R.
McChesney, “Discriminating features-based cost-sensitive approach
for software defect prediction,” Autom. Softw. Eng., vol. 28, no. 2,
p. 11, 2021.

[40] M. J. Siers and M. Z. Islam, “Novel algorithms for cost-sensitive
classification and knowledge discovery in class imbalanced datasets
with an application to NASA software defects,” Inf. Sci., vol. 459, pp.
53–70, 2018.

[41] S. Herbold, “On the costs and profit of software defect prediction,”
IEEE Trans. Software Eng., vol. 47, no. 11, pp. 2617–2631, 2021.

[42] M. Liu, L. Miao, and D. Zhang, “Two-stage cost-sensitive learning for
software defect prediction,” IEEE Transactions on Reliability, vol. 63,
no. 2, pp. 676–686, 2014.

[43] T. Wang, Z. Zhang, X. Jing, and L. Zhang, “Multiple kernel ensemble
learning for software defect prediction,” Automated Software Engi-
neering, pp. 1–22, 2015.

[44] J. Ma, Y. Sun, P. He, and Z. Zeng, “Gsage2defect: An improved
approach to software defect prediction based on inductive graph
neural network,” in The 35th International Conference on Software
Engineering and Knowledge Engineering, S. Chang, Ed., 2023, pp.
45–50.

[45] Z.-W. Zhang, X.-Y. Jing, and T.-J. Wang, “Label propagation based
semi-supervised learning for software defect prediction,” Automated
Software Engineering, vol. 24, no. 1, pp. 47–69, 2017.

[46] Y. Zhang, X. Zhang, X. Yuan, and C. Liu, “Large-scale graph-based
semi-supervised learning via tree laplacian solver,” in Proceedings of
the AAAI Conference on Artificial Intelligence, 2016, pp. 2344–2350.

[47] B. Jiang, H. Chen, B. Yuan, and X. Yao, “Scalable graph-based
semi-supervised learning through sparse bayesian model,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 12, pp. 2758–2771, 2017.

VOLUME , 11

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Nan Wang et al.: Preparation of Papers for IEEE OPEN JOURNALS

[48] E. Cavalleri and M. Mesiti, “Construction and enhancement of an
rna-based knowledge graph for discovering new RNA drugs,” in 40th
IEEE International Conference on Data Engineering. IEEE, 2024,
pp. 5639–5643.

[49] S. Zhang and W. Che, “Observer-based self-triggered resilient control
for multiagent systems: A k-connected graph construction approach,”
IEEE Trans. Cybern., vol. 54, no. 2, pp. 706–716, 2024.

[50] T. Jebara, J. Wang, and S. F. Chang, “Graph construction and b -
matching for semi-supervised learning,” in International Conference
on Machine Learning, 2009.

[51] J. Yan, C. Li, Y. Li, and G. Cao, “Adaptive discrete hypergraph
matching,” IEEE Trans. Cybernetics, vol. 48, no. 2, pp. 765–779, 2018.

[52] D. Du, H. Qi, L. Wen, Q. Tian, Q. Huang, and S. Lyu, “Geometric
hypergraph learning for visual tracking,” IEEE Trans. Cybernetics,
vol. 47, no. 12, pp. 4182–4195, 2017.

[53] D. Zhou, J. Huang, and B. Schölkopf, “Learning with hypergraphs:
Clustering, classification, and embedding,” in International Conference
on Neural Information Processing Systems, 2006.

[54] X. Zhao, N. Wang, Y. Zhang, S. Du, Y. Gao, and J. Sun, “Beyond
pairwise matching: Person reidentification via high-order relevance
learning,” IEEE Trans. Neural Networks Learn. Syst., vol. 29, no. 8,
pp. 3701–3714, 2018.

[55] F. Luo, B. Du, L. Zhang, L. Zhang, and D. Tao, “Feature learning using
spatial-spectral hypergraph discriminant analysis for hyperspectral
image,” IEEE Trans. Cybernetics, vol. 49, no. 7, pp. 2406–2419, 2019.

[56] L. Wen, D. Du, S. Li, X. Bian, and S. Lyu, “Learning non-uniform
hypergraph for multi-object tracking,” in The Thirty-Third AAAI Con-
ference on Artificial Intelligence. AAAI Press, 2019, pp. 8981–8988.

[57] Y. Zeng, Q. Jin, T. Bao, and W. Li, “Multi-modal knowledge hyper-
graph for diverse image retrieval,” in Thirty-Seventh AAAI Conference
on Artificial Intelligence, B. Williams, Y. Chen, and J. Neville, Eds.
AAAI Press, 2023, pp. 3376–3383.

[58] N. Wang, Y. Zhang, X. Zhao, Y. Zheng, H. Fan, B. Zhou, and
Y. Gao, “Search-based cost-sensitive hypergraph learning for anomaly
detection,” Inf. Sci., vol. 617, pp. 451–463, 2022.

[59] H. Shi, B. Zeng, R. Yu, Y. Yang, Z. Zouxia, C. Hu,
and R. Shi, “H3NI: non-target-specific node injection attacks
on hypergraph neural networks via genetic algorithm,”
Neurocomputing, vol. 613, p. 128746, 2025. [Online]. Available:
https://doi.org/10.1016/j.neucom.2024.128746

[60] T. Joachims, “Transductive inference for text classification using
support vector machines,” in International Conference on Machine
Learning, 1999.

[61] K. Zhang, I. W. Tsang, and J. T. Kwok, “Maximum margin clustering
made practical,” in International Conference on Machine Learning,
2007.

[62] T. Menzies, R. Krishna, and D. Pryor, “The promise repository
of empirical software engineering data,” 2015. [Online]. Available:
http://openscience.us/repo.

[63] D. Dheeru and E. Karra Taniskidou, “UCI machine learning
repository,” 2017. [Online]. Available: http://archive.ics.uci.edu/ml

[64] M. Liu, C. Xu, Y. Luo, X. Chao, Y. Wen, and D. Tao, “Cost-
sensitive feature selection by optimizing f-measures,” IEEE Trans.
Image Processing, vol. PP, no. 99, 2018.

12 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3514774

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

