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ABSTRACT Human Activity Recognition (HAR) has seen remarkable advances in recent years, driven
by the widespread use of wearable devices and the increasing demand for personalized healthcare and
activity tracking. Federated Learning (FL) is a promising paradigm for HAR that enables the collaborative
training of machine learning models on decentralized devices while preserving data privacy. It improves
not only data privacy but also training efficiency as it utilizes the computing power and data of potentially
millions of smart devices for parallel training. In addition, it helps end-user devices avoid sending users’
private data to the cloud, eliminates the need for a network connection, and saves the latency of back-and-
forth communication. FL also offers significant advantages for communication by reducing the amount of
data transmitted over the network, alleviating network congestion and reducing communication costs. By
distributing the training process across devices, FL minimizes the need for centralized data storage and
processing, leading to more scalable and resilient systems. This paper provides a comprehensive survey
of the integration of FL into HAR applications. Unlike existing reviews, this paper uniquely focuses on
the intersection of FL and HAR, providing an in-depth analysis of recent advances and their practical
implications. We explore key advances in FL-based HAR methodologies, including model architectures,
optimization techniques, and different applications. Furthermore, we highlight the major challenges and
future research questions in this domain, such as model personalization and robustness, privacy concerns,
concept drift, and the limited capacity of edge devices.

INDEX TERMS Federated Learning, Machine Learning, Human Activity Recognition, Data Privacy

I. INTRODUCTION
The spread of wearable technology and Internet of Medicine
(IoMT) sensors is constantly creating a massive amount of
health-related data [1]. These data have the potential to com-
pletely change personalized health monitoring and interven-
tion. However, there are many challenges to overcome before
these data can be managed and used in a centralized way,
especially when it comes to privacy, latency, and scalability.
Therefore, Human Activity Recognition (HAR) coupled with
Federated Learning (FL) is a significant advance and holds
great promise for our daily lives [2, 3]. It is essential to
model user behavior in many different applications, includ-
ing fitness tracking, fall detection, and ubiquitous health
monitoring. HAR is a key component of smart healthcare

applications and involves classifying and predicting human
activities from sensor data. This finds applicability in the
monitoring, rehabilitation, and early detection of abnormali-
ties in patients [4]. Sensitive personal data processing is often
needed for these applications, which poses serious privacy
issues. FL has been used to address this problem by enabling
several devices/clients to learn a shared model cooperatively
without sharing private data [5]. Instead of transferring raw,
sensitive data to a central location, FL operates by training
machine learning (ML)/Deep Learning (DL) models on each
device, and then sharing and aggregating the model updates.
As shown in Figure 1, FL-based approaches significantly
reduce the risk of sensitive data exposure and mitigate the
need for extensive data transmission, addressing privacy
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and latency issues. The figure also shows that centralized
learning involves collecting all data in a single location for
training, which, while enabling fast convergence and cen-
tralized control, poses significant privacy risks and requires
extensive communication resources. In contrast, FL allows
for on-device training, requiring only the transfer of learning
updates. This approach improves privacy by keeping data
local, reduces communication needs, and is better suited to
the decentralized nature of B5G and 6G networks, despite
slower convergence and challenges related to system het-
erogeneity. Technologies such as 5G, 6G, and visible light
communication schemes are integral to efficient training and
data transfer in both centralized and FL approaches. The
trained HAR models serve end users or systems and can be
securely stored in a blockchain for future use.

This introduction of FL to HAR applications opens
new avenues for providing more personalized and effective
healthcare solutions [6]. Its decentralized structure makes
it a great fit for future smart healthcare systems, since it
facilitates a more effective, scalable, and private method of
learning from health-related data. Furthermore, the combi-
nation of FL and HAR helps to offer intelligent solutions
anywhere and on any scale. This is reflected in the in-
creasing number of research papers dedicated to exploring
FL’s potential in this domain [7]. Because of these qualities,
FL can provide several advantages for HAR applications,
as shown in Figure 2, FL can significantly improve HAR
systems by facilitating real-time processing, enhancing pri-
vacy preservation, and leveraging the computational power
of edge devices. These advantages make FL a compelling
solution for advancing HAR technologies, leading to more
accurate and efficient activity recognition systems that are
well-suited for deployment in real-world scenarios.

A. Existing Surveys and Tutorials
The article in [8] explores the concept of FL in detail, focus-
ing on critical system components such as data distribution,
the ML model, privacy mechanisms, and communication ar-
chitecture. This comprehensive survey offers a foundational
understanding of FL and its various facets. Similarly, the
work presented in [9] takes an architectural perspective on
the FL concept, analyzing its basic applications in business
contexts. This survey highlights how FL can be integrated
into business models and the potential benefits it can bring.
Further studies such as [10] [11] examine the structure of FL,
its software, platforms, and protocols, shedding light on the
potential challenges that may arise during FL deployments.
These papers are crucial as they provide insights into the
technical infrastructure required for effective FL deployment
and identify gaps that need to be addressed. Although it
provides a comprehensive view of FL software engineering
practices, it does not delve into the specific challenges and
solutions related to HAR using FL. In addition, the use of
FL within mobile edge networks was examined in [12], with
an emphasis placed on addressing challenges in the FL ap-

plication and understanding FL’s contributions to optimizing
edge networks. This study is significant in highlighting how
FL can be used to improve network performance. Although
it touches on the importance of FL in edge computing, it
lacks a detailed discussion on its application in HAR.

Meanwhile, the work in [7] [13] presents a survey on FL
within the Internet of Things (IoT) and describes the techni-
cal issues in FL designs, as well as the main application of
FL in the IoT. These surveys underscore the importance of
FL in managing the vast amounts of data generated by IoT
devices while maintaining privacy and efficiency. Although
HAR is mentioned as a potential application, the discussion
is brief and lacks specific examples or detailed analysis. The
study conducted in [14] delves into how FL can offer a
solution for the future of digital healthcare and, at the same
time, highlights the main challenges in this domain. [15]
offers a review of the main structures of FL models and
only briefly introduces the application of FL in the field
of health informatics. In the same direction, the authors
in [1] and [16] provide an extensive survey on FL in the
context of IoMT. These surveys provide a detailed overview
of how FL can be applied to medical devices and sys-
tems, enhancing data sharing and analysis while protecting
patient privacy. Another study in [14] considers technical
issues and prerequisites for the employment of FL in the
future landscape of digital health. Moreover, the potential
of FL to leverage electronic health records (EHR) data for
healthcare applications was proposed in [17]. This study is
critical because it explores how FL can be used to improve
healthcare outcomes by allowing collaborative analysis of
health records without compromising patient privacy. On the
other hand, this survey [18] focused on transfer learning
methods in the application domains of HAR, where FL-based
solutions are partially covered. We summarize the related
work and compare it with our paper in Table 1.

Although there has been considerable research effort, to
the best of our knowledge, there is a noticeable gap in
comprehensive surveys focusing on the use of FL in the HAR
domain. Furthermore, the existing literature lacks a holistic
taxonomy and a more practical demonstration of the use of
FL in evolving HAR systems. These gaps motivate us to
conduct a comprehensive investigation of FL integration in
the HAR realm. Thus, this paper presents a comprehensive
survey on the integration of FL into HAR applications.
Unlike existing reviews, this paper uniquely focuses on the
intersection of FL and HAR, providing an in-depth analysis
of the recent advancements and their practical implications.
First, we highlight the key motivations and requirements for
the use of FL in HAR. Then we present the design aspects,
the architecture, and the FL frameworks. We also furnish
an up-to-date survey of the burgeoning applications of FL
in HAR. Moreover, we summarize the lessons learned from
the survey to provide the reader with deeper insights into the
practical application of FL in HAR.
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FIGURE 1: Overview of the role of machine learning in human activity recognition.

FIGURE 2: The key benefits of FL-based HAR applications.

Finally, we highlight the research challenges and define
future directions in FL-HAR. In summary, the main contri-
butions of this paper can be summarized below.

• FL for HAR, Key Principles and Categories: We
provide readers with essential insights into the key
principles and categories of FL as applied HAR.

• Motivations and Requirements of using FL for
HAR: We begin by identifying the key motivations and
highlighting the fundamental requirements that make
FL an alternative approach for HAR.

• Design Aspects, Architecture, and FL Frameworks:
We delve into the design aspects, architectural consider-

ations, and the various FL frameworks that are relevant
to HAR applications.

• Survey of Emerging Applications: We provide an up-
to-date survey of emerging applications of FL within
the field of HAR, shedding light on how FL is shaping
the landscape of activity recognition.

• Research Challenges and Future Directions: We con-
clude by highlighting the existing research challenges
and charting potential future directions in the dynamic
field of FL-HAR.

VOLUME , 3

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3484228

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Aouedi et al.: Preparation of Papers for IEEE OPEN JOURNALS

TABLE 1: Summary on FL-related topics and our new contributions

References Contributions Limitations
[8] A survey on the components within FL systems, including

aspects such as data distribution, privacy mechanisms, and
communication architecture.

The applications of FL for HAR
have not been presented.

[9] A survey on the concepts of FL, including a basic intro-
duction to its architectures and applications.

The applications of FL for HAR
have not been presented.

[10] A survey on the FL hardware, software, platforms, and
protocols with a brief introduction to FL-based healthcare
use case.

The discussion on FL for HAR is
limited

[11] This survey investigates FL from a software engineering
perspective, covering software architecture, development
methodologies, and tools.

The applications of FL for HAR
have not been presented.

[12] A survey on the functions and challenges of implementing
FL within edge networks, with emphasis on low-latency
communication and resource efficiency.

The applications of FL for HAR
have not been presented.

[7] [13] A survey on the FL concept, architecture, and FL-IoT
applications, mentioning HAR as a potential application.

The HAR application was partially
covered.

[14] An overview of challenges and prerequisites for implement-
ing FL in the realm of digital health.

The application of FL with HAR
has not been explored and dis-
cussed.

[15] A survey on the fundamental architecture of FL models,
accompanied by a concise overview of FL’s application
within the domain of health informatics.

The paper discusses the roles of FL
in health informatics in general.

[1] [16] A survey for FL enabled IoMT The application within HAR is par-
tially covered.

[17] A systematic review on FL in the context of EHR data for
healthcare applications.

The applications of FL for HAR
have not been presented.

[18] A survey on transfer learning methods in the application
domains of HAR.

The FL-based solutions on HAR
are partially covered.

This paper An extensive review of integrating FL within the HAR
realm. In particular, first, we highlight the principal mo-
tivations and requirements for employing FL in HAR.
Subsequently, we present the design aspects, architecture,
and FL Frameworks. We also provide an up-to-date survey
highlighting emerging applications of FL in HAR, followed
by a synthesis of the lessons learned from this survey to
offer readers deeper insights into the application of FL
in HAR. Lastly, we describe the research challenges and
potential future directions in FL-HAR.

-

B. Structure of the Survey
Figure 3 illustrates the organizational structure of this work,
where the remainder of this paper is organized as follows.
In Section II, we establish the foundational principles and
categories of FL as they pertain to HAR, providing the reader
with a solid understanding of the core concepts. Following
this, in Section III we dive into the motivations behind
adopting FL in HAR and outline the essential benefits and
requirements that make FL an attractive solution for HAR.
Section IV takes a deeper dive into the technical aspects,
including architectural considerations and the FL frameworks
applicable to HAR. Section V provides an up-to-date survey

of FL applications within HAR that includes health-related
activity and daily activity. In Section VI, we discuss the
current research challenges and potential future directions for
the evolving field of FL-HAR. Finally, Section VII concludes
our paper.

II. FL for HAR: Key Principles and Categories
In this section, we start by presenting the basic principles of
FL, as well as the different FL types that finds application
in HAR, and then we describe several FL aggregation
algorithms.

4 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3484228

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



1. Introduction 2. FL for HAR: Key
Principles and Categories

1.1 Existing Surveys
and Tutorials

1.2 Structure of the
Survey

2.1 Key Principles

2.2 Type of FL for HAR

2.3 FL Aggregation
Algorithms

3. Motivations Behind FL for
HAR and Its Requirements

3.1 Motivations

3.2 Requirements

4. FL Design Aspects,
Architectures, and Frameworks

4.1 Design Aspects for FL

4.2 FL Architectures

4.3 Existing FL Platforms

5. Survey of Emerging
Applications

5.1 FL for Health-related
Activities

5.2 FL for Daily-related
Activities

6. Research challenges

6.1 Personalized FL for
HAR

6.2 Robust and Fast
Converging FL for HAR

6.3 Privacy-Aware,
Quantized FL for HAR

6.4 Concept Drift-Aware FL
for HAR

6.5 Edge Implementation of
FL-Enabled HAR

7. Conclusion

FIGURE 3: The structure of the paper.

A. Key Principles
FL represents a distinctive learning paradigm that enables
devices to learn in a collaborative way while preserving data
privacy by avoiding data sharing with a central server. It
facilitates the training of ML or DL models across multiple
devices and servers, thus addressing concerns such as privacy
and cost reduction inherent in centralized ML methods [19].
In particular, the FL process consists of two primary steps:
local learning and model transmission [20]. Initially, the
FL server randomly selects some clients for participation,
sending the global model to them. Each client performs local
training using its data and then transmits its updated model
back to the FL server for global aggregation. This iterative
process continues until the performance of the model meets
the predefined criteria [7]. This demonstrates how devices
may use other devices’ data to their advantage through FL
without having to send their own private information.

In fact, several aggregation methods have been devised
for FL, each with its strengths (Subsection C). Among
these, Federated Averaging (FedAvg) stands out due to its
simplicity, effectiveness, and robustness [5]. The FedAvg
algorithm averages the weights of models trained on local
datasets to create a global model. There are also other
algorithms and approaches as well such as FedProx [21], and
Qffedavg [22]. The choice of which one to use may depend
on the specific requirements of the FL scenario, such as
the need for more advanced privacy measures, dealing with
unbalanced or non-independent and identically distributed
(non-IID) data, or constraints on communication efficiency.

B. Type of FL for HAR
There are three types of FL: Federated Transfer Learning
(TFL), Vertical Federated Learning (VFL), and Horizontal
Federated Learning (HFL). Each of these FL types has its
own set of advantages and is suitable for different scenarios
depending on the distribution and privacy requirements of
the data.

• Horizontal Federated Learning (HFL): In HFL, several
clients hold different samples of data, but the feature
space of the data is the same. In order to ensure that no
raw data needs to leave the individual clients, the clients

work together to train a global model. For example,
several hospitals may have patient records with the
same feature space (attributes), but the specific patients
(samples) differ from hospital to hospital [16].

• Vertical Federated Learning (VFL): Unlike HFL, VFL
is known as feature-based FL, clients may have differ-
ent sets of features for the same or overlapping data
samples. For example, one hospital might have patient
demographics and another has their lab results, but both
sets pertain to the same group of patients. VFL allows
for model training using all available features without
sharing the raw data between clients.

• Federated Transfer Learning (TFL): FTL extends FL’s
capabilities to scenarios where data between clients
may vary both in feature space and sample space.
The concept involves transferring knowledge from one
domain to another, allowing for learning across diverse
datasets. Even when the characteristics or samples are
different, customers with less data can still benefit from
learning from those with more data, which can be
advantageous in certain instances.

According to Google [23] research, FL can be divided into
two categories: cross-silo FL and cross-device FL, depending
on the number of client nodes and data availability.

• Cross-silo FL: Cross-silo FL usually involves a limited
number of clients, 2-100 devices, which are gener-
ally easily identifiable and are readily available for
training. These silos may represent various entities
or departments within a singular organization, each
holding extensive datasets. Training data in this context
can be categorized into horizontal or vertical learning.
However, in this context, computation and communi-
cation problems frequently occur. To protect the confi-
dentiality of each client’s data, encryption techniques
are frequently used, as seen in vertical and transfer
learning implementations. An example of this is the
work in [24], which utilizes the FATE framework to
exhibit cross-silo FL with homomorphic encryption,
proposing a batch encryption algorithm based on gradi-
ent quantization [25] based batch encryption algorithm
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to minimize computation and communication overhead
in the FL environment.

• Cross-device FL: Cross-device FL refers to the FL
approach that involves a large pool of clients in the
same domain who share a common interest in the global
model. Clients, typically individual users and their
personal devices, are usually connected via unstable
networks, and their participation in training rounds
is generally random. Compared to the cross-silo FL,
cross-device FL involves more frequent communication
rounds but is more lightweight, and participants, less
trusted, demand more robust privacy-preserving tech-
niques. Resource allocation strategies, such as client
selection/importance [26] and device scheduling [27]
are used to choose updates from more beneficial clients,
much like data partitioning in HFL. To encourage
consumers to participate in FL, incentive systems such
as game theory [28] are developed. Cross-device FL is
especially well suited for use cases with a large number
of clients, such as mobile apps or the cloud Edge IoT
continuum (CEI) [29].

C. FL Aggregation Algorithms
Aggregation algorithms are crucial in FL because they
determine how the model updates from the local models
on the client devices. Depending on the specific objectives,
which may include safeguarding user privacy, enhancing
convergence speed, and mitigating the impact of fraudulent
participants, a diverse array of aggregation algorithms is
employed. Each of these strategies comes with its own set
of advantages and drawbacks, making some more suitable
for particular contexts within the FL realm. In the follow-
ing, we start describing the most well-known aggregation
approaches; then we overview the proposed FL solutions and
how they use/combine them.

1) Different Approaches for FL Aggregation
• Average Aggregation: This is the original and widely

used approach. In this approach, the server computes
the average value of the updates received to handle
the incoming messages (model updates, parameters, or
gradients). Let the number of participating clients be
N , and their individual updates at time t be wi,t, the
aggregate update wt+1 is determined as follows [5]:

wt+1 =
1

N

N∑
i=1

wt,i. (1)

• Stochastic Gradient Aggregation: Similar to the Aver-
age Aggregation, but it takes an average of the gradients
instead of model updates [30]. Clients compute the
gradients based on their local data and send them to the
server, which updates the global model using a learning

rate, as in:

wt+1 = wt −
η

N

N∑
i=1

∇fi(wt), (2)

where η is the learning rate and ∇fi(wt) is the gradient
computed by client i.

• Clipped Average Aggregation: Like in the previous
technique, the messages are averaged, but before calcu-
lating the average, the model changes are restricted to
a predefined range. This method helps mitigate the in-
fluence of outliers and potentially malicious clients that
could transmit substantial and malevolent updates [31].
The parameter update evolves as follows:

wt+1 =
1

N
×

N∑
i=0

clip(wi,t, c), (3)

where clip(x, c) is a function that clips the values of
x in a range of [−c, c], and c is the designed clipping
threshold.

• Secure Aggregation: Techniques such as secure en-
claves, secure multiparty computation (SMPC), and
homomorphic encryption can be used to increase the
security of FL. These methods serve to maintain client
data confidentiality throughout the aggregation process,
a crucial consideration in environments where data pri-
vacy is highly prioritized [32]. The secure aggregation
approach consists of the integration of an aggregation
algorithm with security techniques, where the server
can only calculate the aggregate update and cannot
access the individual model updates given by the de-
vices. Among these secure aggregation algorithms, one
of the most prominent is the Differential Privacy (DP)
aggregation algorithm, which introduces a distinctive
approach to the integration of client results and is
introduced hereafter.

• Differential Privacy Average Aggregation: To protect
the privacy of client data, an additional layer of DP is
added during the aggregation step. Specifically, before
transmitting its model update to the server, each client
adds random noise to it. The server then combines
these updates with random noise to generate the fi-
nal model [33]. The level of noise incorporated into
each update is adjusted to strike a balance between
preserving privacy and ensuring model accuracy. If we
designate ni to represent a random noise vector drawn
from a Laplace distribution with a scaling parameter b,
and this parameter b corresponds to the privacy budget,
the aggregated update wt+1 results as follows:

wt+1 =
1

N
×

N∑
i=1

(wi,t + b · ni), (4)

• Weighted Aggregation: The server evaluates each
client’s input in the global model update, taking into
account factors like client performance, device type,
network connectivity quality, and data similarity to the
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global distribution. This approach aims to assign greater
importance to clients who demonstrate greater relia-
bility or representativeness, thus enhancing the overall
accuracy of the model [34]. The aggregate update is
computed as:

wt+1 =

∑N
i=1 ai × wi,t∑N

i=0 ai
, (5)

where ai is the corresponding weight of the client i and
wi its individual updates.

• Momentum Aggregation: This approach addresses the
issue of slow convergence in FL. Each client maintains
a “momentum” term that characterizes the historical tra-
jectory of the model adjustments. Prior to transmitting
a fresh update to the server, this momentum term is
incorporated into the update. The server accumulates
these augmented updates, complete with the momentum
term, to construct the ultimate model. This procedure
accelerates the convergence of the model [35].

• Bayesian Aggregation: The server combines model up-
dates from multiple clients using Bayesian inference,
a well-known method that accommodates uncertainty
in model parameters. This approach aids in diminish-
ing overfitting and enhancing the model’s capacity to
generalize to a broader range of data.

• Adversarial Aggregation: The server uses various meth-
ods to identify and counteract the influence of clients
who submit fraudulent changes to the model. These
methods encompass techniques such as outlier rejec-
tion, model-based anomaly detection, and the use of
secure enclaves [36].

• Quantization Aggregation: Before transmission to the
server for aggregation, the model updates are quantized
into a lower-bit format. This process aims to reduce
the volume of data to be transferred and improve
communication efficiency [37].

• Hierarchical Aggregation: The aggregation process is
executed across multiple levels of a hierarchical struc-
ture. This strategy minimizes communication overhead
by performing localized aggregations at lower hier-
archy levels before forwarding the results to higher
levels [38].

• Personalized Aggregation: Throughout the aggregation
process, this method takes into account the distinct
attributes of each client’s data. This approach ensures
that the global model is updated in a manner that is
best suited to each client’s data while protecting data
privacy [39].

• Ensemble-Based Aggregation: The model is trained on
various groups of clients known as ensembles, and
the resultant models are harmonized to generate the
final model. Each ensemble might involve different
subsets of the data, and these ensemble models are
subsequently combined to form the final model. This

approach can effectively reduce the influence of non-
IID data and improve model accuracy.

These algorithms address various challenges in feder-
ated learning, such as data heterogeneity, communication
efficiency, privacy preservation, and robustness to system
variability. The aggregation algorithm choice depends on
the federated learning scenario’s specific requirements and
constraints. We summarize the main pros and cons of
these approaches in Table 2, highlighting the use cases
recommended for each one. As detailed in the following
subsection, many solutions have been proposed on top of
these algorithms.

2) Solutions and Implementations for FL Aggregation
As numerous implementations of FL aggregation algorithms
are available in the literature, we list some of the most well-
known solutions in FL in Table 3.

Federated Averaging (FedAvg) is among the aggregation
methods in FL that are used most frequently [5, 12]. First
proposed by Google, this approach involves training local
models on client devices using their respective data. Sub-
sequently, the model updates (gradients) from each client
are sent to a central server, which aggregates these updates
by averaging them to update the global model. From 2020,
we can see a boost in FL solutions, for example, Federated
Proximal Gradient Descent (FedProx) is an extension of
FedAvg that includes a regularization term to encourage sim-
ilarity between the global and local models by introducing a
proximal term that penalizes divergence of these terms [44].
This solution can handle heterogeneous data and system
environments and helps mitigate issues like model poisoning
and non-IID data. Similarly, the authors of [45] created
the FedMA algorithm, which matches and averages hidden
components with comparable feature extraction signatures to
build the global model layer by layer. FedMA can surpass
classical FL algorithms in handling real-world datasets and
simultaneously reduces the total communication overhead.
Furthermore, in [42], the authors introduced various FL
models that incorporate different adaptive optimization tech-
niques, such as YOGI, ADAGRAD, and ADAM. They
conducted an analysis of the convergence of these models
under the influence of heterogeneous data within general
non-convex scenarios. The results of their research confirmed
the viability of these models in accelerating convergence in
the context of FL.

In the same context, [46] explored the Analog Gradient
Aggregation (AGA) method as a solution to address the lim-
itations of communication resources in FL applications. The
solution introduces novel communication and learning strate-
gies that aim to improve the quality of gradient aggregation
and accelerate the convergence rate. Furthermore, in [47],
the authors presented a low complexity method designed
to protect user privacy while demanding considerably fewer
computational and communication resources.
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TABLE 2: Comparative analysis of different FL aggregation algorithms.

FL Algorithm Advantages Disadvantages HAR Use Case
Average
Aggregation

Simple to implement and
widely used;
Efficient communication and
effective for similar data dis-
tributions

Sensitive to outliers;
Performance degrades with
highly heterogeneous data

General-purpose;
Works well when HAR data dis-
tributions are relatively similar

Stochastic Gradient
Aggregation

Precise gradient updates;
Efficient for small learning
rates

Slower convergence for large
models

When more granular control over
the learning process is required;
More suited for asynchronous FL

Clipped Average
Aggregation

Mitigates influence of out-
liers;
Enhances robustness to mali-
cious updates

May require careful tuning of
clipping range;
Potential loss of information

Scenarios with potential outliers,
malicious clients, or HAR data
distributions are highly heteroge-
neous;
Enhances security and robust-
ness

Secure Aggregation Ensures privacy of individual
updates;
Protects data confidentiality

Computational overhead due
to encryption/decryption;
Complex implementation

Privacy-preserving scenarios;
Sensitive data environments

Differential
Privacy Average
Aggregation

Enhances privacy by adding
noise;
Protects client data

Potential trade-off between
privacy and model accuracy;
Added noise may reduce ac-
curacy

Scenarios requiring strong pri-
vacy guarantees;
Very sensitive data environments

Weighted Aggrega-
tion

Handles data and system het-
erogeneity;
Mitigates the impact of strag-
glers

Additional complexity due to
proximal term;
Requires careful tuning of
proximal term

Scenarios with heterogeneous
data and client computational ca-
pabilities

Momentum Aggre-
gation

Accelerates model conver-
gence;
Maintains historical trajec-
tory of updates

Added complexity in main-
taining momentum terms;
Potential for overshooting

Scenarios requiring faster con-
vergence;
Large-scale federated learning
with slow convergence

Bayesian Aggrega-
tion

Reduces overfitting;
Handles uncertainty in model
parameters

Computationally intensive;
Complex implementation

Scenarios needing better gener-
alization;
Environments with high uncer-
tainty in data

Adversarial Aggre-
gation

Detects and mitigates influ-
ence of malicious clients;
Enhances security

Requires robust detection
methods;
Potential false positives/
negatives

Security-sensitive scenarios;
Environments prone to adversar-
ial attacks

Quantization
Aggregation

Reduces data transfer vol-
ume;
improves communication ef-
ficiency

Potential loss of information
due to quantization;
may affect model accuracy

Scenarios with limited communi-
cation bandwidth;
large-scale federated learning

Hierarchical Aggre-
gation

Minimizes communication
overhead;
Efficient aggregation at
multiple levels

Added complexity in hierar-
chical structure;
Potential latency in multi-
level aggregation

Large-scale federated learning;
Scenarios with hierarchical client
organization;
Challenged or high-latency net-
works

Personalized Aggre-
gation

Tailors global model to
client-specific data;
Enhances individual client
performance

Complex to implement;
Requires handling of diverse
data characteristics

Scenarios with highly diverse
data across clients;
Personalized model performance

Ensemble-Based
Aggregation

Reduces influence of non-IID
data;
Improves model accuracy

Computationally intensive;
Requires managing multiple
ensembles

Scenarios with non-IID data;
Improves accuracy and robust-
ness of final model
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TABLE 3: State of the art of FL algorithms and their used aggregation approach.

Reference Year Solution Name (If present) Aggregation Approach
[5] 2017 FedAvg Averaging Aggregation
[40] 2017 – Secure Aggregation
[41] 2020 SCAFFOLD Secure Aggregation
[42] 2020 FedOPT Weighted Aggregation
[42] 2020 FedADAGRAD Differential Privacy Average Aggregation
[42] 2020 FedYOGI Personalized Aggregation
[43] 2020 FedBoost Ensemble-Based Aggregation
[44] 2020 FedProx Weighted Aggregation
[45] 2020 FedMA Personalized Aggregation
[46] 2020 – Stochastic Gradient & Personalized Aggregation
[47] 2020 – Secure Aggregation
[48] 2020 – Personalized Aggregation
[49] 2020 LAQ Quantization Aggregation
[50] 2020 SAFA Secure Aggregation
[51] 2021 FedDist Weighted Aggregation
[37] 2021 FedHQ Quantization Aggregation
[52] 2021 FAIR Personalized Aggregation
[53] 2021 FedPSO Ensemble-Based Aggregation
[54] 2021 MHAT Personalized Aggregation
[55] 2021 – Secure Aggregation
[56] 2021 – Weighted Aggregation
[57] 2021 SEAR Secure Aggregation
[58] 2021 Turbo-Aggregate Secure & Personalized Aggregation
[59] 2022 EPPDA Secure Aggregation
[60] 2022 FedBuff Ensemble-Based Aggregation
[61] 2022 HeteroSAg Secure & Quantized Aggregation
[62] 2022 RFA Averaging Aggregation (geometric median)
[63] 2022 LightSecAgg Secure Aggregation
[38] 2023 P4FL Hierarchical & Quantized Aggregation
[64] 2023 – Weighted Aggregation
[65] 2023 FairFed Weighted Aggregation

The work in [49] devised adaptive communication of
quantized gradients, where clients quantize gradients and
select transmission of more informative quantized gradients
while reusing previous gradient information. This approach
results in a “lazy” worker-server communication for the
Lazily Aggregated Quantized (LAQ) gradient approach. This
model exhibits a substantial reduction in communication
overhead. In [50], the authors introduced a semi-synchronous
FL protocol named SAFA, with the goal of enhancing
the convergence rate in heterogeneous FL scenarios. The
distribution of models, client selection, and global aggre-
gation have been designed to mitigate the adverse impacts
of stragglers, crashes, and outdated model versions. SAFA
effectively shortens the duration of interconnection rounds,
minimizes the wastage of local resources, and enhances the
accuracy of the global model while maintaining communi-
cation costs acceptable.

FedDist is a new FL aggregation technique that detects
client dissimilarities to alter its architecture [51]. By using
this approach, the model’s generalization skills are preserved,
but its specificity and personalization are improved. As an
alternative, FedHQ [37] speeds up convergence by dynami-
cally determining the right weight for continuing aggregation
by computing and adding the quantization error during the
local model update. Likewise, FAIR [52] comprises three key
components: learning quality estimation, which leverages
historical data to estimate the quality of user learning;
quality-aware incentive mechanism, which restructures the
auction problem to incentivize user engagement with high
learning quality; model aggregation, in which only the best
models are incorporated to enhance the global model. Fed-
erated Particle Swarm Optimization (FedPSO) [53] exhibits
increased robustness under unstable network conditions by
altering the data clients transmit to servers. Instead of
sending extensive weights of local models, FedPSO transmits
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score values. This can reduce network overhead and traffic
volume.

To withstand attacks in FL, the authors of [57] propose
the Secure and Efficient Aggregation Framework (SEAR),
a Byzantine-robust model. To defend locally learned client
models from Byzantine attacks, this approach makes use of
Intel Software Guard Extensions (SGX). The authors suggest
using two data storage modes to effectively execute the
aggregation methods given the memory limitations inside the
concurrent trustworthy Intel SGX memory.

Efficient privacy-preserving data aggregation
(EPPDA) [59] relies on secret sharing and incorporates
an effective fault tolerance strategy to handle user
disconnections. The authors conducted tests on their model
to demonstrate its resilience against both reverse attacks
and disruptions in user connections. In [60], the authors
introduced a new FL model named Federated Buffered
Asynchronous Aggregation (FedBuff). FedBuff operates
independently of the optimizer choice and combines the
benefits of synchronous and asynchronous FL, being more
efficient than synchronous FL and more efficient than
asynchronous FL. In fact, clients engage in asynchronous
training and communication with the server. However, unlike
typical asynchronous approaches, the server aggregates client
updates within a secure buffer before executing the server
update, utilizing technologies such as Trusted Execution
Environments (TEEs). In order to provide safe aggregation
with heterogeneous quantization, HeteroSAg [61] splits
updates from the client model into segments and groups
the network into segments. Instead of aggregating at the
local model level, aggregation is applied to these particular
segments with coordinated collaboration among users.
By adapting to their available communication resources,
edge users can achieve a more balanced trade-off between
communication time and training accuracy using this
strategy. Furthermore, experiments showed that HeteroSAg
is resistant to Byzantine attacks. LightSecAgg [63] is a
method based on reconstructing the aggregate mask of active
users using “mask coding/decoding” instead of random-seed
reconstruction of the dropped users. LightSecAgg reduces
overhead for resilience against lost users and offers a
modular system design with optimized parallelization on
devices, leading to a scalable implementation that enhances
the speed of concurrent data exchange.

P4FL [38] has recently proposed a hierarchical FL tech-
nique that programs P4 switches to calculate intermediate
aggregations of client parameters using the network pro-
grammability paradigm. This approach can greatly minimize
the cost of communication between clients and the server
when used in combination with model quantization. The
authors in [64] provide an asynchronous FL architecture with
periodic aggregation, also to address the straggler effect, with
a similar goal of minimising channel impacts. The study
examines the importance of reducing the bias and variance
of the aggregated model updates in considering the limited

wireless communication resources with HAR applications.
Then it suggests a scheduling policy that takes into account
both channel quality and the user device representation of
the training data. Specifically, learning performance in an
asynchronous FL environment can be greatly improved by
the suggested “age-aware” aggregate weighting. FairFed [65]
attempts to address the fairness problem in FL in different
demographic groups, for example, in healthcare and recruit-
ment. FairFed is centralized and agnostic to the applied local
debiasing, enabling flexible use of different local debiasing
methods across clients. Clients work together with the server
to adapt the model aggregation weights. These weights de-
pend on the disparity between the global fairness evaluation
(computed over the complete dataset) and the local fairness
evaluation at each client. They tend to favor clients whose
local measures align with the global measures.

III. Motivations Behind FL for HAR and Its Requirements
This section explains the main motivations and provides
detailed requirements for systems that employ FL in HAR.

A. Motivations
We first address the primary drawbacks of the available HAR
solutions and then address the benefits that FL may provide
for HAR to effectively support its use.

1) Limitations of Current HAR
• Privacy Concerns: The use of open data sharing with

the cloud or data centers in the deployment of central-
ized ML-based techniques enables HAR to expose data
to privacy threats. In fact, external entities such as cloud
service providers could obtain control over data and
change patterns without the need for explicit consent
from the user [66], or criminal actors could obtain
unauthorized access to the central entity to extract data.
These inefficiencies may result in serious problems
with data leaks that compromise user confidentiality.
Although cloud servers have strong computational ca-
pabilities that enable effective data training and analy-
sis, there are significant privacy hazards associated with
such a centralized ML-based solution for HAR [67].

• Data availability: The main challenge to successful
implementation of HAR systems is the scarcity of ex-
tensive and reliable data sets. Large volumes of diverse,
high-quality data are needed to train models that can
accurately recognize and categorize a wide range of hu-
man activities [1]. The process of data collection can be
both time-consuming and expensive, as it often involves
monitoring and recording individuals as they perform
a variety of activities [68]. These datasets also need to
account for the considerable variation in how several
people do the same task. It can also be challenging to
get information about unusual or rare activities. Finally,
privacy concerns can further complicate the process of
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collecting HAR data sets [69]. The quantity and kind
of data that can be gathered for HAR purposes may be
severely limited due to concerns about how these data
might be used, which leads to significant limitations on
the amount and type of data that can be collected for
HAR purposes.

• Limited HAR performance: Large-scale, diversified
dataset availability is critical to the functioning of HAR
systems. The predictive performance of these systems
frequently suffers from the lack of large datasets that
cover a wide range of human activities [16]. HAR
systems that have been trained on sparse or homo-
geneous datasets, in particular, may not be able to
generalize to a variety of situations in life and may even
have their robustness compromised. This could lead
to reduced accuracy when encountering unrepresented
or underrepresented activities in the collected data.
Predictions may become skewed if certain demographic
groups are not well represented in the dataset. For
instance, if the majority of the data in the dataset comes
from young adults, the HAR system might not be able
to distinguish between tasks carried out by people who
are older or younger, or who have different physical
capacities. Moreover, a HAR system can overfit the
training data [70] [71] if it is trained on a small
dataset. Because the system has effectively memorized
the training data rather than learning to generalize from
it, it will perform well on the training data but badly
on fresh, unknown data.

• High cost of data storage and training: For centralized
ML, data must be processed and kept in one single
location, which is typically a cloud-based system or
a high-capacity server. Numerous expenses and dif-
ficulties are associated with this centralized strategy,
including training and storage costs [72]. In particular,
HAR systems often make use of substantial amounts
of data gathered from several sensors. Large amounts
of storage space are required for the central storage of
this enormous quantity of data, which can be costly.
Furthermore, large computational resources are needed
for ML, particularly DL model training for HAR [73].
The effectiveness and speed of the training process are
directly impacted by the power of these resources. The
requirement for high-performance technology, such as
strong CPUs or GPUs, can significantly raise expenses
in a centralized paradigm.

• Communication Cost: For HAR systems, a centralized
training method can result in significant communication
costs due to data transfer, bandwidth needs, and energy
use [74]. Specifically, for centralized models, all gath-
ered data must be moved to a single place to be used
for training. Significant data transfer volumes, increased
network utilization, and related expenses can result
from this, depending on the volume and complexity
of the data, as well as the number of devices [75].

Additionally, a large amount of bandwidth is needed to
transfer training data to the central server regularly and
receive updates and results in return. This may lead to
more network congestion and increased communication
expenses, particularly in places where bandwidth is
scarce or the cost per data unit is high. Last but not
least, transmitting data over a network also consumes
energy [20]. This includes not only the energy used by
devices to send and receive data, but also the energy
used by the network infrastructure.

2) Potential Impact of FL on Future HAR Applications
By leveraging the presented concepts, FL presents several
advantages that can significantly enhance HAR systems, as
detailed below.

• Data privacy improvement: FL improves the protection
of user data by keeping the original data on the local
device and only sharing changes to the model param-
eters. This is crucial for HAR applications because
user activity data may contain sensitive and private
information. Because FL protects user privacy, more
users can decide to share their data, which will increase
the variety and general quality of the data used for
learning.

• Latency: Since the data must be sent to a central server
for processing, there is generally a delay (latency) as-
sociated with centralized learning [76]. Time-sensitive
applications, such as medical emergency detection in
HAR systems, may have problems due to this latency.
FL drastically lowers latency by processing data locally
on each device. Decisions may be made more quickly
and effectively, improving the HAR system’s real-time
responsiveness, as each device can train the model and
make predictions based on its data without waiting for
the server model.

• Scalability: Because of the volume of data that must be
sent and processed, a centralized ML model may find
it difficult to scale efficiently as the number of devices
increases. On the other hand, FL makes scaling to a
large number of devices much easier by distributing the
learning process among the devices themselves. Due
to this, FL is a desirable choice for extensive HAR
applications, such as those seen in large healthcare
systems or smart cities.

• Less Dependence on Centralized Infrastructure: By per-
forming learning on the devices themselves or the edge
servers, FL reduces the reliance on powerful centralized
servers for computation. This can be a significant ben-
efit for HAR systems, particularly in situations where
there may be irregular or restricted access to such
central resources. This benefit contributes to enhancing
the performance and adaptability of HAR applications
in diverse operational scenarios.
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B. Requirements
To fully leverage the capabilities of FL for HAR within smart
healthcare environments, certain key considerations must be
addressed, as outlined below.

• Data Representation: Interpreting data from different
sensors, such as gyroscopes, accelerometers, and even
vision-based sensors, is part of HAR. To make the data
from these sensors usable for model training, they must
be represented and preprocessed. Data cleaning, nor-
malization, segmentation, feature extraction, and data
labeling may all be necessary for this. It is critical to
extract complete characteristics from the data in the
setting of HAR. The research by [66] suggests using
a Perceptive Extraction Network (PEN) as a solution
to this problem. For each user, the PEN acts as a
feature extractor, efficiently processing and analyzing
the sensor data to extract relevant information. Never-
theless, an issue presents itself when local device data
is frequently unlabeled. Accessing devices to label their
data can be a challenging and impractical process due
to the nature of FL, where devices are often outside
human reach [77]. Solutions to this challenge are being
explored in the research domain, with studies like [78]
focusing on developing practical methods to handle
these kinds of circumstance in FL. Dealing with non-
IID data is a considerable problem when preparing FL
datasets in HAR. This issue could lead to divergent
behavior during FL training. Several strategies are es-
sential to handle non-IID issues and ensure effective
training in FL-based smart healthcare. To alleviate the
negative effects of non-IID data, one way to provide
more representative and balanced data for each client’s
local model training is to establish extra subsets of
datasets that may be distributed evenly among clients.
By developing a more comprehensive and resilient
global model, this method can improve FL’s efficacy in
smart healthcare applications. In conclusion, effective
data processing and representation, as well as managing
unlabeled and non-IID data, are essential components
of using FL for HAR. In several real-world applications,
more study and development in these fields can greatly
enhance the overall performance and reliability of HAR
systems.

• Trusted Server: In FL processes, a central server is es-
sential because it aggregates the gradients from clients
to construct the global model during each communica-
tion round. Despite FL’s ability to preserve user privacy
by allowing them to retain their data locally during
training, research has shown that model updates may
still contain HAR-related information (e.g., resolution
details or particular feature patterns), which could be
reconstructed by a curious global server [79]. As a
result, confidentiality can be compromised throughout
the training process, which may expose FL and dis-
courage health-related organizations from participating

in cooperative training. Therefore, an essential need to
guarantee reliable FL operations in smart healthcare, es-
pecially HAR systems, is to set up a trustworthy server
to manage data training and model aggregation. This
server must provide computation services that ensure
a transparent and reliable model aggregation, aligning
with agreements made between the service provider
and healthcare organizations, e.g., local hospitals. Trust
is especially important in thisspace because, to deliver
trustworthy FL-based healthcare services, computations
carried out outside of the data sources must be trusted.
This is because data about human behavior are ex-
tremely sensitive. To bolster trust in the server, recent
research efforts have explored new solutions. These in-
clude the development of trustworthy and decentralized
servers with blockchain technology [80], which can
offer an additional degree of security, or the use of safe
aggregation techniques. The objective of these efforts is
to increase the reliability of FL operations, specifically
in the domain of HAR, by guaranteeing the security and
dependability of the server that manages confidential
information.

• Local Computational Capabilities in IoMT devices:
One key consideration in the implementation of FL-
based solutions, which is based on the participation
of mobile medical devices during training, is the
computational capacity of these devices. In fact, to
maximize federated health care to its fullest, devices
need participate in multiple communication rounds to
achieve optimal training performance. However, some
medical devices, such as small smartwatches, may find
it difficult to maintain constant participation in training
due to their limited processing power and short battery
life [81]. This is a problem since the final FL model is
less effective due to the lack of several devices used
throughout the training phase. Collective computing
power from several devices is a key factor in improving
the effectiveness of health data training. Consequently,
the need to design specialized computing hardware for
health devices arises. Hardware of this type would
ideally increase computing speed while consuming less
energy, opening the door to an effective and robust FL-
driven HAR system. The difficulty becomes consider-
ably greater when HAR is taken into account. For HAR
to process sensor input and train models, a significant
amount of computer power is needed. Thus, within
the FL framework, HAR in smart health devices is
made possible by developments in resource allocation
methods and energy-efficient models such as spiking
neural networks (SNN) [82].

IV. FL Design Aspects, Architectures, and Frameworks
Here, we explore the key design considerations, architectural
components, and the different FL frameworks that form
the backbone of FL-HAR implementations. Through this
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exploration, we aim to provide a thorough understanding of
the fundamental structural components necessary for FL to
be successfully integrated into HAR systems.

A. Design Aspects for FL
This subsection expounds on some recent architectural
paradigms for FL-HAR, with the aim of guiding researchers
during the design of a new system. Namely, we present
advances into privacy-enhanced FL, delineate the contours
of secure FL protocols, explore challenges of constrained
resources, examine the dimensions of model personalization,
and navigate through the complexities of incentive-aware FL.

• Privacy-enhanced FL: The model parameters are trans-
mitted to the server for central aggregation after local
training. However, one essential component of FL for
HAR is secure aggregation, which ensures that model
updates are secretly and securely aggregated on the
server. Secure multiparty computation (SMPC) is one
way to provide secure aggregation [83]. SMPC is a
subfield of cryptography that facilitates collaborative
computation of a function across multiple parties’ in-
puts while maintaining the privacy of such data. SMPC
may be used in the FL context to ensure that the server
can only calculate the aggregate update and cannot ac-
cess the individual model updates given by the devices.
Protecting the model updates, which may otherwise
reveal details about the local data on each device,
gives FL an extra degree of privacy. Another method
of secure aggregation in FL is Differential Privacy
(DP) [33]. Differential privacy involves introducing
precisely calibrated noise into the data or computation
to give a mathematical assurance of privacy. To intro-
duce differential privacy in FL, one approach involves
injecting noise into model updates before transmitting
them to the server. This guarantees that even while the
update serves to enhance the global model, the server
cannot deduce particular details about the local data on
a device from the model update.

• Secure FL: Strong security measures are necessary for
effective implementation of FL for HAR to prevent a
variety of possible threats, including inference, back-
door attacks, poisoning, malicious servers, and commu-
nication bottlenecks [84] [85]. Different sources, such
as aggregation methods, data manipulation, and com-
munication protocols, could lead to these attacks [19].
Several security solutions have been developed in recent
years for scenarios that involve smart healthcare. Using
a reputation-based strategy [86] is one of these strate-
gies to discourage wrong updates from devices that are
not trusted. Carefully selecting trusted devices plays
a crucial role in reducing security risks. For instance,
a malicious device might introduce false information
into its local model, compromising the accuracy of
the FL process. Ensuring reliability in device selection
becomes particularly critical when training local FL

models with low-quality or noise-free data. Another
viable approach to protecting federated healthcare is
decentralized FL, which addresses distrust concerns
related to centralized parameter servers [87] [88].
Furthermore, to maintain the reputation of FL users,
blockchain technology has been integrated [86]. Specif-
ically, integrating blockchain into FL settings removes
the requirement of a single central server in model
aggregation [89] by decentralizing the learning process.

• Resource-aware FL: Since the devices used in FL for
HAR, such as smartphones or wearable sensors, usu-
ally have limited computational resources and battery
life [16], effective resource management is crucial. Ef-
fective resource management can be achieved by using
methods such as quantization, model compression, and
asynchronous updates. One typical approach to reduce
FL’s high communication requirements is to employ
asynchronous updates. Devices may deliver updates
to the central server without relying on other devices
due to this technique [90]. In addition to reducing
waiting times and processing power required for si-
multaneous updates, this asynchronous communication
takes into account the various computational capacities
and network configurations of various devices. Tech-
niques for model compression can further lower FL’s
transmission and processing expenses. Reducing the
size of the model without substantially compromising
its accuracy can be achieved by techniques such as
quantization, pruning, and knowledge distillation [91].
Pruning removes extra layers or parameters from the
model, whereas knowledge distillation trains a smaller
model to mimic the behavior of a larger model. One
type of model compression that reduces the accuracy
of model parameters is called quantization [92]. For
instance, a parameter may have been represented in
the original model as a 32-bit floating-point number,
but it might have been represented as an 8-bit integer
in the quantized model. Quantization saves battery life
by reducing the model’s memory footprint and com-
putational demands. It also minimizes the volume of
data that must be sent during FL. In summary, balanc-
ing computational efficiency, communication efficiency,
and model accuracy is necessary while building FL for
HAR to minimize resource utilization. Each of these
methods offers a component that completes the picture
in order to reach this equilibrium.

• Model Personalization: Customizing the global model
to the unique needs of each device can greatly enhance
the HAR performance. It describes how a globally
trained model is modified to better fit the particular
data distribution of a single device or user. In particular,
aggregated data from several devices are the input data
for models in an FL system. However, since multiple
devices have inherent data heterogeneity, it could not
run at its best on a single device. Diverse sensor
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qualities or environmental circumstances might result
in different data patterns for every device. Personaliza-
tion through model fine-tuning is a popular approach.
Through transfer learning, each device can further train
or ”fine-tune” the model on its local data once the
global model has been developed and distributed to
devices [93]. As a result, the model’s performance and
accuracy on that device are enhanced, since it can more
effectively adjust to the unique data distribution of the
device. Meta-learning, also referred to as “learning-to-
learn,” provides an alternative method of personaliza-
tion [94] [75]. The model in this framework is taught
to quickly adapt to novel challenges with little more
instruction.

• Incentive-aware FL: In traditional FL methods, the
device communicates local model updates to an aggre-
gate server. However, this is not always feasible, as
IoT devices frequently have restrictions on processing
power, bandwidth, privacy difficulties about personal
data, and server trust issues. This unwillingness to
share models may impede FL’s involvement and gen-
eral effectiveness in HAR systems. To overcome these
obstacles and encourage more FL users to participate,
incentive mechanisms must be implemented. According
to a recent survey [95], these mechanisms may be
distinguished according to a number of factors, such as
device reputation, contribution to data, and distribution
of resources. The quality and quantity of the data are
both taken into consideration by the incentive model.
The volume of updates and training samples of the
model provided by the device is commonly referred
to as quantity [96]. On the other hand, metrics like
the Shapely value, which measures each member’s
contribution in a group environment, are used to eval-
uate quality. However, the reputation of a device has
a big impact on how FL incentive algorithms are
designed. Reputation usually indicates a device’s ability
to provide consistent local updates and high-quality
data for training models. Additionally, the resource
allocation stage of an incentive program is critical since
it deals with allocating computing and communication
resources among participating FL users in an ideal
manner to improve FL’s overall performance.

B. FL Architectures
In this subsection, we examine the various FL architectures
that serve as the structural blueprint for HAR systems’
FL environment, managing the training process among dis-
tributed devices and servers.

1) Centralized FL (CFL)
Among the most commonly used FL architectures is CFL.
The CFL architecture serves as a robust foundation for HAR,
including a central server and a diverse array of clients,
many of which are smart devices, such as smartphones or
wearables with sensors. During each training cycle, these

client devices interpret their localized data, including ac-
celerometer or gyroscope readings, to independently up-
date the shared model. Every client transmits its model
parameters to the central server for aggregation when the
local training is finished. Usually, the server combines these
updates into a single global model using a particular FL
aggregation technique (Subsection C). After a few rounds
of local training, this global model is sent again to all
participating clients, allowing iterative improvement of the
global and personalized (local) models. The CFL architecture
plays a critical role in coordinating this distributed learning
process, ensuring not only efficient training, but also the
security and privacy of sensitive user data. For example, in
HAR applications where user-specific motion data is highly
sensitive, CFL can provide an extra layer of privacy. [6], for
example, uses a CFL approach to train deep learning-based
activity predictors. This approach, which works well when
the data are IID, is also the most common setting in such
environments [97, 98].

2) Hierarchical FL
Given that sensitive data are not disclosed, FL theoretically
provides some privacy; yet, there are significant drawbacks,
such as data that is not distributed identically or indepen-
dently (non-IID). Specifically, the non-IID data may result
in divergence of the final FL model, which means that
the performance of FL-based models in the HAR system
is not always guaranteed [82]. Furthermore, FL expects
that, for model aggregation, the FL server is located in the
cloud. There are several difficulties with using the cloud
server as an FL server, including communication costs and
time delays [82]. For more granular and effective model
aggregation, Hierarchical FL for HAR presents a multi-
layered architecture including edge and cloud servers [99].
The middle layer’s edge servers act as intermediary aggre-
gation points for the local models that have been trained by
wearable smartphones and other client devices. ’Sub-global’
model aggregations are performed by these edge servers
and forwarded to cloud servers at the top tier for global
model aggregation. Similarly to CFL, hierarchical FL-HAR
allows client devices to participate in the training of a shared
global model without requiring the transmission of raw,
sensitive data. Large-scale deployment for HAR [100, 101]
is especially well suited for hierarchical FL-HAR due to its
hierarchical structure, which offers various benefits such as
scalability, enhanced data privacy, and optimized network
resource utilization. The authors in [102] used HFL in this
situation to optimize the heterogeneous electroencephalog-
raphy (EEG) signals collected from several devices. This
paradigm eliminates the problems commonly seen in previ-
ous heterogeneous domain adaptation strategies by having
each participant have the roles of both a source and a
target domain. The results reveal that the proposed approach
delivers a significant performance improvement compared to
models trained locally without the benefit of hierarchical FL.
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3) Decentralized FL (DFL)
Unlike CFL and hierarchical FL, DFL for HAR eliminates
the need for a central server to manage the training process.
In DFL, client devices, such as smartphones or wearables,
are part of a peer-to-peer (P2P) network, where each device
trains local models on their human activity data. During each
round of communication, clients exchange and aggregate
model updates directly with their neighbors in the P2P net-
work. Without the requirement for central orchestration, an
agreement on the global model update may be reached using
this straightforward, decentralized method. When a central-
ized server is undesirable or unfeasible, or when a highly
scalable network topology is required, DFL is very helpful.
It has already shown promise in HAR, such as in [87], which
proposes a fully decentralized FL framework by leveraging
two state-of-the-art non-convex decentralized optimizations,
i.e., decentralized stochastic gradient descent (DSGD) and
decentralized stochastic gradient tracking (DSGT). This ap-
proach based on DSGT has the advantage of dealing with
non-IID datasets.

A safe and open system for model update exchanges
may also be established by integrating DFL with decen-
tralized technologies such as blockchain [103]. Blockchain
technology can enhance FL’s resilience against poisoning
attacks to the model. This integration leads to a secure
and decentralized process within the IoT framework. Sim-
ilarly, in [104], distributed agents utilize a combination
of blockchain and homomorphic encryption techniques to
aggregate data obtained from physical IoT systems before
integrating them into the federation model. Clients might
communicate with one another via a blockchain ledger in
the DFL-HAR environment, providing a reliable platform to
safely collect and update models. [105] is an example of an
effective approach to tackle the heterogeneity challenge in
FL and generate customized high-quality models for each
endpoint. Blockchain-based FL enables smarter simulations,
reduces latency, and consumes less power while preserving
privacy. This solution offers another immediate advantage:
in addition to receiving shared model upgrades, the updated
model on the phones is automatically utilized, providing
personalized insights based on individual phone usage.

C. Existing FL Platforms
In this subsection, we analyze several popular FL platforms,
including their design principles, use cases for HAR de-
velopment, and their limitations and advantages. Table 4
summarizes their description along with their strengths /
weaknesses.

• TensorFlow Federated: TensorFlow Federated (TFF),
an open source and user-friendly framework spear-
headed by Google, serves as a specialized platform
for both machine learning and decentralized data op-
erations [106]. Given its integrated secure aggregation
algorithms and differential privacy safeguards, TFF is
well suited for protecting sensitive user information.

This is especially crucial in the IoT environment, where
a myriad of interconnected devices demand robust
security measures.
Although TFF offers a research-friendly ecosystem for
FL scholars to simulate and test HAR algorithms, it is
worth noting that the framework currently faces limita-
tions in real-world deployment scenarios. Furthermore,
it lacks native support for PyTorch, which restricts its
flexibility for HAR researchers who may prefer to use
PyTorch-based programs.

• PySyft: PySyft, spearheaded by OpenMined, stands as
a pioneering framework designed for FL with strong
privacy-preserving features, as noted in [107]. In par-
ticular, PySyft uses cutting-edge command chains and
tensor representations to provide a singular combi-
nation of safe data manipulation and data ownership
management. The framework provides a dual approach
to security within the scope of HAR by smoothly
integrating both Multi-Party Computation (MPC) and
Differential Privacy (DP) approaches inside the same
architectural construct. This makes PySyft an especially
appealing option for HAR researchers and developers
who need a high level of data privacy and security when
conducting FL investigations. The work in [66] used the
encryption method provided by the PySyft framework
to securely capture sufficient features from HAR data
with FL.
Although PySyft offers a strong framework for secure
and privacy-preserving FL, it is not without limita-
tions. For example, implementing PySyft on resource-
constrained devices such as IoT sensors, which are
commonly used in HAR applications, might be chal-
lenging due to its computational requirements.

• LEAF: LEAF, led by Carnegie Mellon University
(CMU), serves as a specialized benchmarking frame-
work for FL and has made significant contributions
to the field [108]. It provides a comprehensive suite
of open-source federated datasets, rigorous evaluation
mechanisms, and reference implementations to address
real-world challenges. Additionally, LEAF offers ready-
made implementations of many FL aggregation tech-
niques, including minibatch SGD, FedAvg, Federated
SGD, and SGD.
However, it is worth noting that LEAF has certain limi-
tations, particularly when considered for HAR applica-
tions. Currently, LEAF’s support is mostly restricted to
the FedAvg algorithm, limiting its utility for researchers
interested in exploring alternative FL strategies. In
addition, it lacks the built-in capabilities for real-world
deployment or intricate simulation environments, which
are crucial for HAR, a domain requiring real-time
analysis and response.

• PaddleFL: Paddle FL is an FL framework proposed by
Baidu, built on top of its native DL engine, PaddlePad-
dle [109]. With a focus on transfer and multitask learn-
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TABLE 4: A summary of analysis on the applicability of FL platforms for HAR.
Platform Creator HAR support Weaknesses
TFF [106] Google - It has a rich set of tutorials and documentation.

- It supports basic privacy-related mechanisms
for simulation experiments.

- It is not well-compatible for quick de-
ployment on various embedded devices.

Pysyft [107] OpenMined - It supports various encryption mechanisms for
HAR applications, such as HE and MPC.
- It builds on top of popular machine learning
frameworks like PyTorch.

- It might not be as compatible with other
ML frameworks.

LEAF [108] Carnegie Mellon
University

- It provides a standardized set of benchmarks
and datasets.
- It offers reference implementations of popular
federated algorithms.

- Focuses only on cross-device FL

PaddleFL [109] Baidu - It offers FL implementations to support dif-
ferent verticals like IoT and computer vision
libraries.
- It allows job scheduling and large-scale dis-
tributed learning, powered by Kubernetes.

- Its community is not very active.

IBM FL [110] IBM - It is tailored for enterprise applications, making
it more suitable for large-scale and real-world
implementations.
- It offers a variety of connection protocols like
Flask web framework, gRPC, and WebSockets.

- It does not yet offer advanced security-
related algorithms.

FATE [111] Webank - It enables cross-silo data applications.
- It demonstrates success in deploying smart
healthcare applications.

- Its community is not very active.

FedML [112] FedML - It can provide support for many network topolo-
gies.
- Its API is designed to facilitate the development
of new FL algorithms

- It lacks good tutorial support.

FedLab [113] University of Elec-
tronic Science and
Technology of China

- It improves communication efficiency, which is
often a bottleneck in FL systems.
- It facilitates both simulations and real-world
deployments.

- Its community is not very active.

OpenFed [114] FederalLab - It also features a rich library and a flexible
topology design.
- It supports automatic topology selection, en-
abling the decomposition of complex FL scenar-
ios into manageable atomic units.

- It lacks robust measures specifically de-
signed to tackle the unique privacy and
security issues inherent to HAR applica-
tions.

Flamby [115] Owkin - It provides seven datasets that cover different
tasks in several application domains and with
different data modalities and scales.
- It helps to compare FL strategies in a fair and
reproducible manner.

- Focuses only on cross-silo FL.

Flower [116] The University of
Cambridge

- It supports a large number of devices.
- It offers higher-level abstractions and utilities
to enable researchers to easily experiment and
implement new solutions.

- Does not handle the data distribution or
any mechanisms for model encryption.

ing, it provides FL implementations to serve various
industries such as computer vision libraries, natural lan-
guage processing, and the Internet of Things. Paddle en-
ables full-stack development choices, task scheduling,
and Kubernetes-driven large-scale distributed learning.
When considering its application for HAR, a few chal-
lenges emerge. First, the framework’s inherent com-
plexity can be a barrier to quick and easy deployment,
which is often critical in HAR scenarios that may
involve real-time data analysis on mobile or embedded
systems. Moreover, the lack of comprehensive docu-
mentation and a relatively small developer community
further contribute to its steep learning curve. Lastly,
Paddle FL has a primarily domestic focus, being most
popular among developers in China, which could limit
its applicability and support for global HAR projects.

• IBM FL: IBM’s enterprise grade FL framework pro-
vides engineers with a streamlined setup for rapid

deployment of federated devices and experimenta-
tion [110]. IBM FL provides robust features suitable
for distributed machine learning across devices and data
centers.
Although the framework excels at providing rapid de-
ployment capabilities, it currently falls short in specific
areas of security and privacy that are critical for HAR
applications. In particular, it does not yet offer advanced
security features like DP tailored for DL models, which
could be a significant limitation for HAR applications
requiring stringent privacy and security measures.

• FATE: The Federated AI Technology Enabler (FATE)
stands as an open-source FL platform, proposed by
Webank’s AI Department, which emphasizes secure and
collaborative machine learning [111]. FATE aims to
revolutionize the AI ecosystem by enabling cross-silo
data applications that are both distributed and coopera-
tive, while maintaining rigorous compliance and secu-
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rity measures. To this end, FATE incorporates advanced
secure computation protocols such as homomorphic
encryption (HE) and MPC techniques, which can help
enhance the privacy of health state data. In particular,
a series of independent studies have proposed FATE-
compatible deep neural networks [117].
However, when adapting FATE for HAR, there are
some inherent challenges. Given that FATE is an indus-
trial grade platform, installing and configuring multiple
devices can be a complex task. This might pose issues
for HAR applications that often require quick and
easy deployment on a variety of mobile and embedded
systems. Furthermore, while FATE offers impressive
scalability in general terms, it may still have some
limitations when applied to real-time, large-scale HAR
scenarios, where immediate data analysis and feedback
are crucial.

• FedML: FedML serves as both a benchmark and
a research-oriented FL library, offering an all-
encompassing toolkit to develop new FL algorithms as
well as to compare existing ones [112]. Customized
algorithms in FedML can be easily implemented using
the user-oriented programming interface. The primary
advantage of FedML is a TopologyManager that can
provide support for many network topologies to imple-
ment various FL-based solutions.
Although FedML offers a robust set of features, it is
particularly advantageous for HAR applications that
require high levels of privacy and security. However,
potential users should be aware that FedML’s main
focus is research, which may limit its out-of-the-box
applicability for some commercial HAR applications.

• FedLab: FedLab, developed by the University of Elec-
tronic Science and Technology of China (UESTC),
is a lightweight open-source framework focused on
optimizing FL [113]. It aims to improve both the
communication efficiency during model training and
the performance of standard federated algorithms. The
framework features a user-friendly API and a reliable
benchmarking tool designed to support simulations
and real-world deployments in federated systems with
varying computational and communication constraints.
This makes this platform a good candidate for HAR
applications, where resource limitations are often a
concern.
However, community support might be limited, making
the resolution of specific issues more challenging.

• OpenFed: OpenFed, a comprehensive and novel FL
framework based on PyTorch, serves as an exceptional
toolkit. It also features a rich library and a flexible
topology design, making it different from other FL
frameworks [114]. OpenFed uniquely supports auto-
matic topology selection, enabling the decomposition
of complex FL scenarios into manageable atomic units.
This is particularly advantageous for HAR, where vary-

ing sensor data and user behaviors can introduce com-
plexities. The framework is capable of implementing
standard FL algorithms such as SGD and FedAvg. It
offers a variety of configuration options that are highly
relevant for HAR scenarios. These include partial acti-
vation of local client nodes, dataset partitioning, sam-
pling, and the handling of non-IID data distributions.
These features facilitate the development of more robust
and efficient HAR models.
Although the framework includes standard FL algo-
rithms, it may lack robust measures specifically de-
signed to address the unique privacy and security con-
cerns in HAR applications.

• Flamby: FL AMple Benchmark of Your cross-silo
strategies (Flamby) is an open-source FL dataset suite
desgined for cross-silo partitions and focused on health-
care. Flamby serves as a bridge between theory and
practice of cross-silo FL [115]. It comprises seven
healthcare datasets with natural partitions covering mul-
tiple tasks, modalities, and data volumes, where each
dataset is also accompanied by baseline training code.
In addition, it offers standard FL benchmark algo-
rithms for all data sets. Because of the adaptability and
modularity of the framework, researchers can simply
download datasets, replicate findings, and use various
components for their study within HAR.
However, the Flamby framework focuses on cross-silo
FL, which corresponds to the case of a few reliable
clients, each holding a medium to large dataset. This
may not be representative of other FL scenarios, such
as cross-device FL, where there are many unreliable
clients, each holding with small datasets. Therefore, the
framework may not be suitable for testing FL strategies
in different settings.

• Flower: Flower is a FL framework designed to facil-
itate scalable and heterogeneous FL research, offering
a distinct advantage in simulating real-world scenarios
typical of cloud environments [116]. Based just on
a pair of top-tier GPUs, Flower is able to conduct
FL experiments with client sizes up to 15 million.
Due to this, Flower is an appropriate choice for HAR
applications that need realistic, scalable, and secure
FL algorithm evaluations. Moreover, it offers higher-
level abstractions and utilities to enable researchers
and practitioners to experiment with and implement
new solutions. For example, the authors in [118] used
Flower to predict the length of stay in the hospital.
However, despite these features, Flower’s limitations lie
in its lack of a comprehensive ecosystem and restricted
support for a broader array of FL algorithms, which
could be crucial for specialized HAR applications.

It is crucial to take into account several variables when
selecting an FL framework to make sure it fits your unique
demands and specifications. The following are some essential
considerations:
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• Supported ML Frameworks: Check if the framework
supports the ML libraries and tools that you are familiar
with or prefer to use, such as TensorFlow, PyTorch, or
scikit-learn.

• Aggregation Algorithms: Investigate the aggregation
algorithms provided by the framework. While FedAvg
is widely used, different frameworks may offer varia-
tions or extensions of this algorithm. Understanding the
available aggregation methods is crucial to achieving
your learning objectives.

• Privacy Methods and Security: Assess the framework’s
support for privacy-enhancing techniques like encryp-
tion, differential privacy, and secure multi-party com-
putation (SMPC). Privacy is a critical issue in FL and
the ability to implement robust privacy measures is
essential.

• Supported Devices and Operating Systems: Ensure that
the framework is compatible with the devices and
operating systems that you intend to use. FL can involve
a wide range of devices, from mobile phones to IoT
devices, so compatibility is crucial.

• Scalability: Evaluate the ease of integrating your ML
models or aggregation algorithms into the framework. A
flexible and extensible framework allows you to adapt
to changing requirements and experiment with novel
approaches.

V. Survey of Emerging Applications
In this section, we present a comprehensive overview of
recent surveys on FL-HAR. We categorize the current efforts
into two main groups: activities related to health and
activities related to daily life.

A. FL for Health-related Activities
In the realm of healthcare, FL for HAR presents a ground-
breaking approach to monitoring and analyzing patient
physical activities, offering vital insights into their health
conditions. As a result, recent solutions have proposed the
integration of FL into health-related activities to offer real-
time medical services, generating some positive results,
summarized in Table 5.

For example, FL for HAR can aid in early detection of
conditions such as Parkinson’s disease or assessing risk of
falls in elderly patients [129]. This application leverages data
from various devices, including smartphones and wearable
technology, to train ML models while preserving the privacy
of individual users. By aggregating diverse and decentralized
data, healthcare providers can gain access to more accurate
and personalized information on patient health behaviors and
patterns. We illustrate in Figure 4 a sample FL architecture
for monitoring health-related activities. The data collected
by each wearable device do not necessarily have to be sent
to a centralized cloud server; instead, they undergo training
via FL across multiple edge servers. What sets FL apart is
that each device uses its own data to train a local model.

Wearable
Devices

Edge Computing
Layer

Cloud ServerGlobal
Aggregation

Sensor
Layer

Model
Update

Model
Update

Model
Update

FIGURE 4: A typical architecture for health-related activity
predictions using a centralized FL setting.

Consequently, only the model parameters obtained from the
local model are transmitted to the cloud server to update the
shared global model.

Furthermore, the concept of combining cloud and edge
computing with FL-HAR is stated in [119]. The authors
proposed a cloud-edge-based FL framework for home health
monitoring, called FedHome. It trains individual local mod-
els at each home at the network edge, while assigning to the
cloud the responsibility of global model aggregation. This
training process depends primarily on distributed datasets
that can vary from one home to another. FedHome uses
generative convolutional autoencoders at cloud and edge
sites, outperforming several benchmarks in terms of accu-
racy and communication overhead. In the same direction,
a generic FL architecture has been proposed for processing
sensor data in HAR by [97]. The proposed solution is based
on a federated aggregator trained using private data on
edge nodes, demonstrating the versatility and functionality
of the FL architecture. In [126], the authors proposed a
prototype-guided FL framework, ProtoHAR, for handling
non-IID data intended for sensor-based HAR. ProtoHAR
separates the roles of representation and classifiers, corrects
local representations using a global activity prototype, and
optimizes user-specific classifiers for individualized HAR.
This minimizes local model drift and guarantees privacy
throughout tailored training. The study demonstrated that
ProtoHAR outperformed other FL approaches in terms
of accuracy and convergence speed. Furthermore, a semi-
supervised FL for HAR was explored in [70], focusing
on jointly learning deep feature representations of sensor
data using autoencoder models. Subsequently, these acquired
feature representations are employed for activity recognition
within a fully supervised framework using a labeled dataset.

Moreover, another study focused on the utilization of
wearable devices to identify and observe patients’ activities
and movements [121]. FL-based person movement identi-
fication, called FL-PMI uses DRL to automatically label
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TABLE 5: Overview of recent studies on FL for Health-related Activity.
Ref. FL Type FL clients FL aggregator Datasets Contribution Limitations
[119] Hierarchical FL In-home

sensing
devices

Cloud server MobiAct A cloud-edge-based FL framework
for in-home health monitoring

There is no report about the con-
vergence of the proposed FedHome
algorithm.

[97] CFL Edge node FL server HARUS dataset A generic FL architecture that pro-
cesses sensor data for HAR.

The non-IID scenario has not been
considered.

[120] Hierarchical FL Mobile
devices

Cloud server MHEALTH A heterogeneous stacked FL archi-
tecture to support different archi-
tectural local models at patients’
devices.

Training latency has not been ana-
lyzed.

[121] Hierarchical FL Wearable de-
vices

Cloud server UniMiB SHAR DRL and Bi-LSTM are used to au-
tomatically label the unlabeled data
and classify the data, respectively,
in a federated way.

Total reliance on the cloud server
for global model aggregation.

[122] CFL Wearable de-
vices

Cloud server - A fog-based IoT platform using
FL and blockchain technology to
preserve patient data privacy and
security within the network.

The computation cost of the pro-
posed platform has not been ex-
plored.

[70] CFL Edge devices FL server OPP, DG,
PAMAP2

A collaborative learning of a deep
feature representation of sensor
data through autoencoder models
and these learned feature represen-
tation is then used to recognize
activities on a labeled dataset in a
fully supervised setting.

The model requires labeled data
during the training.

[87] DFL Hospitals - - Enables communication between
nodes and improves communica-
tion efficiency for DFL.

A private dataset has been used for
performance evaluation.

[123] CFL Wearable de-
vices

FL server MHEALTH Use GCN-based FL to overcome
the issues of privacy preservation
and label scarcity in HAR tasks.

The training time has not been dis-
cussed.

[124] CFL Wearable de-
vices

FL server UCI, Real-World
Dataset

A neuromorphic FL-based model,
by integrating the strengths of both
LSTM and SNN in a federated
setting.

The scalability of the proposed has
not been explored.

[125] CFL Smart devices FL server HARS, HARB It exploits the advantage of knowl-
edge distillation for distributed
training of heterogeneous models.

A public dataset was taken from
the training set.

[126] CFL Wearable de-
vices

FL server PAMAP2,
USC-HAD,
UNIMIB-SHAR,
HARBOX

The ProtoHAR separated the roles
of representation and classifiers,
corrected local representations us-
ing a global activity prototype, and
optimized user-specific classifiers
for individualized HAR.

The proposed model is not able
to continuously learn new activity
data.

[127] CFL Smart devices FL server HAR70+,
HARTH, MNIST

A novel FUL-based solution for
HAR in order to address the chal-
lenge of data removal requests un-
der privacy regulations like GDPR.

The scalability of the proposed
FUL has not been explored.

[128] CFL Smart devices FL server UP Fall A novel solution to address the
challenge of data heterogeneity in
multimodal fall detection systems
by proposing a novel multimodal
data fusion method within a FL for
HAR.

The complexity of the proposed
solution has not been explored.

the unlabeled data and bidirectional long short-term memory
(BiLSTM) to extract features and then classify the data.
In FL-PMI, the unlabeled data are automatically labeled
using the DRL framework. The data were then trained using
FL, where the edge server allowed the parameters to be
sent separately over the cloud rather than transmitting a
substantial quantity of sensor data. Eventually, the data are
categorized for different HAR-related procedures via FL-
PMI’s BiLSTM. The work in [128] addressed the challenge
of data heterogeneity in multimodal fall detection systems
by proposing a novel multimodal data fusion method within
a FL for HAR. Specifically, the method involves the combi-
nation of time series data from wearable sensors and visual
data from cameras at the input level. The data is transformed
into images using the Gramian Angular Field (GAF) method
before fusion. In the FL system, each user is treated as a

private client, and the fall detection model is trained without
sharing user data. On the other hand, to address security
issues in wearable IoT devices, [122] proposed a fog-based
IoT platform using FL and blockchain technology to preserve
patient data privacy and enhance data security within the
network.

Since DFL promises to secure FL-HAR and addresses
the problem of untrusted parameter servers in CFL, a DFL
scheme is proposed in [87], which is a peer-to-peer inter-
action between health clients made possible by the DFL
algorithm. It allows local clients to carry out local updates
over multiple iterations. This reduces the time it takes for
clients to communicate and exchange parameters, since the
models do not need to be sent to a central server that is
far away. Federated Graph Neural Networks (GNNs) have
also been explored in HAR from sensor measurements. For
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instance, [123] used a Graph Convolution Network (GCN)-
based FL architecture to overcome privacy preservation and
label scarcity issues in HAR tasks, building similarity graphs
for each user to classify activities in a semi-supervised way.

Although FL offers a degree of privacy for HAR, there are
some limitations, particularly when training on low-power
and low-computational resource devices such as wearable
sensors. The authors in [124] proposed a neuromorphic FL-
based model, called S-LSTM, by integrating the strengths of
both LSTM and SNN in a federated setting. SNN is an event-
driven learning process that significantly reduces energy
consumption. The outcomes of the proposed S-LSTM show
how much better it can recognize the time patterns within
health-related activities while using less energy. Similarly,
the authors in [125] explored knowledge distillation for
distributed training of heterogeneous models in FL, reduc-
ing communication overhead, achieving faster convergence,
and lowering the energy cost of FL models. Furthermore,
[120] proposed a novel heterogeneous stacked FL archi-
tecture supporting heterogeneous architectural client models
to overcome the limitation of heterogeneous architectural
ensembling in the traditional FL approach.

Despite substantial progress in user privacy protection
with FL, challenges persist. GDPR empower users to request
data removal. Federated unlearning (FUL) can address this
challenge by enabling the selective removal of a client’s data
from the trained model without retraining from scratch, thus
maintaining privacy and efficiency [130]. In this context, the
authors in [127] introduced a lightweight FUL method. They
used a third-party dataset and Kullback-Leibler divergence
(KL divergence) as a loss function to fine-tune the FL
model, ensuring the predicted probability distribution on
the data to be forgotten aligns with that of the third-party
dataset. Additionally, a membership inference evaluation is
used to assess the unlearning effectiveness. Experimental
results show that this approach achieves unlearning accuracy
comparable to traditional retraining methods, with significant
computational speedups, thus providing an efficient solution
for handling data removal in FL scenarios.

B. FL for Daily-related Activities
In the context of daily life, HAR can be used to understand
and optimize individual behaviors and routines. This could
include tracking fitness routines, detecting driving habits, or
even understanding household activities [129]. By harnessing
the power of FL, data from various users can be aggregated
to create more robust models without compromising individ-
ual privacy [13]. Consequently, recent studies have proposed
the integration of FL into daily activities to improve quality
of life and have achieved some good results, summarized in
Table 6, as follows.

For example, the work in [66] presented an FL system for
wearable sensor-based HAR, which is known as HARFLS.
With the help of HARFLS, each user can safely and coop-
eratively complete their activity recognition job. Addressing

the challenges posed by non-IID data in FL-based HAR,
[67] conducted a comprehensive investigation, shedding light
on factors such as diverse subsets of activity and data cor-
ruption. To harness valuable features from HAR data while
combating statistical heterogeneity, a perceptive extraction
network (PEN) was designed, as demonstrated by its superior
performance compared to existing methods. Another work
focused on federated feature extraction called FedMAR is
presented in [132]. It treats the HAR problem associated with
each user as a separate learning task. FedMAR framework
leverages multimodal wearable data and exhibits rapid adapt-
ability to new individuals. This framework uses an attention
module for each client, enabling the learning of both client-
specific features and globally correlated features. The work
in [141] conducted an evaluation of various FL optimizers,
with findings that emphasize the effectiveness of federated
averaging for superior global performance. Moreover, the au-
thors in [140] introduced FedCoad, an innovative approach
designed to address skewness between different clients in
real-world settings. FedCoad utilizes model contrastive
learning to align global and local model representations and
applies control variates to regularize local model updates.
This method aims to build a generalized global model that
can be adapted by participating clients without collecting
their sensor data. Experimental results show that FedCoad
significantly outperforms other methods in skewed dataset
settings (non-IID) on benchmark datasets, highlighting its
ability to effectively manage data heterogeneity.

Considering the practical aspects and considerations sur-
rounding FL-based HAR, [72] provided a system-level per-
spective, offering insights into the impact of factors such as
sensor location, FL optimizer, and model complexity.

To adapt FL models for heterogeneous devices, [131]
dynamically adapt the model layers and model sizes for
heterogeneous devices to participate in FL. In particular, the
authors proposed FL via Dynamic Layer Sharing, FedDL,
a dynamic layer-sharing scheme that learns the similarity
among users’ model weights to establish the sharing structure
and merges models accordingly in a bottom-up layer-wise
manner. The objective is to facilitate accurate daily activity
recognition by training personalized deep models for users
with limited or unbalanced data. The paper also presents
a new dataset collected using LiDAR and four real public
datasets to evaluate the performance of FedDL. The authors
claim that this scheme can improve the accuracy of the
FL model, the convergence rate, and the communication
overhead of the HAR compared to several state-of-the-
art FL-based solutions. In the same direction, the authors
in [133] addressed challenges such as concept drift and
convergence instability in personalized FL with FedHAR,
employing hierarchical attention architecture and unsuper-
vised gradient aggregation. They devised an unsupervised
gradient aggregation technique to address challenges re-
lated to drift and convergence variability, employing online
learning to enhance the process. In particular, FedHAR
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TABLE 6: Overview of recent studies on FL for Daily-related Activity.
Ref. FL Type FL clients FL aggregator Datasets Contribution Limitations
[67] Hierarchical FL Smart devices FL server HHAR Investigation of the applicability of

FL for HAR with non-IID data and
the presence of corrupted data.

The scalability of the FL has not
been explored.

[66] Hierarchical FL Mobile
devices

FL server WISDM,
UCI-HAR,
Opportunity,
PAMAP2

A feature extractor to extract the
local features and global relation-
ships from heterogeneous data to
address statistical heterogeneity.

The scalability of the proposed so-
lution has not been explored.

[72] Hierarchical FL Smart devices FL server PAMAP2, JSI-
FOS

A study of FL-based HAR under
different real-world scenarios,
including communication
cost/bandwidth efficiency, model
complexity, and inaccurate data.

No optimization solution was pro-
posed.

[131] CFL Smartphone Cloud server UWB, Depth Im-
ages, HARBOX-
IMU, IMU, Li-
DAR

A dynamic layer-sharing scheme
that learns the similarity among
users’ model weights to form the
sharing structure and merges mod-
els accordingly in an iterative,
bottom-up layer-wise way.

The same model architecture is
used with all devices.

[132] CFL Wearable de-
vices

FL server HHAR,
PAMAP2,
ExtraSensory,
SmartJLU

Using an attention module for each
client to learn both client-specific
features and globally correlated
features while preserving data pri-
vacy.

The computation capacity of the
devices was not considered during
the training process.

[133] CFL Wearable de-
vices

FL server RealWorld,
HAR-UCI

A personalized federated HAR
framework based on semi-
supervised online learning.

The complexity of the model was
not discussed.

[134] Hierarchical FL Wearable de-
vices

Cloud server MobiAct,
WISDM

With FedCLAR, the local models
received by the server are clustered
and merged considering the simi-
larity of their weights.

The labeled data needs to be avail-
able on each client.

[135] CFL Wearable de-
vices

Cloud server MobiAct,
WISDM

A recent hybrid method for HAR
combining semi-supervised learn-
ing (i.e., active learning) and FL
to leverage the strengths of both
approaches.

The non-IID data problem has not
been considered.

[136] Hierarchical FL Wearable de-
vices

Cloud server MobiAct,
WISDM

A combination of FedCLAR
and FedAR by proposing Semi-
Supervised-FedCLAR Based HAR
in order to mitigate both the non-
IID and data scarcity problems.

The complexity of the model has
not been discussed.

[137] Hierarchical FL FL server Wearable de-
vices

IMU, UWB,
FMCW, Depth,
WISDM,
MobiAct,
HARBox

A novel integration of personalized
FL with hierarchical clustering.

The latency has not been evaluated.

[138] CFL Smartphone Cloud server - Combining VFL+HFL to support
heterogeneous data sharing with
privacy protection.

The complexity of the model was
not analyzed.

[2] Hierarchical FL Smart devices FL server HHAR,
MobiAct,
HARBox

A Hybrid-model federated learn-
ing mechanism, which allows de-
vices to train model parts suited
to their capabilities. It clusters
devices based on model simi-
larity to mitigate data hetero-
geneity impacts and introduces a
pairing scheme for effective co-
training between high- and low-
performance devices.

The complexity of the model has
not been discussed.

[139] CFL Smart devices FL server WISDM A novel framework that extend the
Multi-level FL architecture with
three specialized methods tailored
to tackle specific heterogeneities:
statistical, device, and model.

The proposed framework inte-
grates multiple specialized meth-
ods, which require significant com-
putational.

[140] CFL Smartphones FL server WISDM,
Motionsense,
HHAR

A federated model contrastive
learning to address skewness be-
tween different clients in real-
world settings.

The unlabeled data have been ig-
nored during the training process.
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uses a hierarchical attention architecture to align different
level features, employing three main components: a semi-
supervised learning loss function to aggregate gradients from
all labeled and unlabeled clients; a novel algorithm for com-
puting unsupervised gradients under the consistency training
proposition; and an unsupervised gradient aggregation strat-
egy to address the issues of concept drift and convergence
instability in online learning. Furthermore, the authors in [2]
introduced a hybrid model federated learning mechanism,
called Hydra. Hydra employs BranchyNet to create a large-
small global hybrid model, enabling devices to train model
parts suited to their capabilities. It clusters devices based
on model similarity to mitigate data heterogeneity impacts
and introduces a pairing scheme for effective co-training
between high- and low-performance devices. Additionally,
Hydra employs a sample selection approach to enhance co-
training efficacy and proposes a Large-to-Small knowledge
distillation algorithm to optimize knowledge transfer from
large to small models, significantly improving model accu-
racy. Extensive experiments on three HAR datasets validate
Hydra’s superior performance compared to state-of-the-art
schemes. The work in [139] proposed a personalized Multi-
level Federated Learning, PerMl-Fed has been proposed
as an innovative framework. This approach extends the
Multi-level FL architecture with three specialized methods
tailored to tackle specific heterogeneities: statistical, device,
and model. The Transfer Multi-level FL model mitigates
statistical heterogeneity across multiple FL layers, while the
Asynchronous Multi-level FL approach allows asynchronous
updates to address device heterogeneity. Additionally, the
Deep Mutual Multi-level FL method employs deep mutual
learning to overcome model heterogeneity. Evaluations in the
WISDM dataset show that PerMl-Fed significantly improves
the average precision by 7%, achieving an accuracy range
of 84% to 92% in various hierarchical group structures,
demonstrating its effectiveness in improving federated learn-
ing performance.

Along the statistical (non-IID data) and model hetero-
geneity, label heterogeneity presents a substantial challenge,
especially when each FL device has its own definition of data
labels, independently from the definitions in other devices or
the central server. This particular type of heterogeneity arises
when diverse devices have disparate understandings or clas-
sifications of data labels, potentially leading to inconsistent
training data across the federated network. Consequently,
several works have been proposed to address the problem of
heterogeneity in labels between users using model distillation
techniques and to demonstrate the validity of the approach
with an average increase of 9.153%–11.01% using daily
activity recognition datasets [142] and [78]. This underscores
the potential for model distillation techniques to not only
navigate but also leverage label heterogeneity, providing a
robust pathway for improved FL even in the face of varied
data definitions across devices.

On the other hand, to build accurate FL-based HAR mod-
els, it is essential to find a balance between generalization
and personalization. To address this issue, a solution called
FedCLAR has been proposed in [134] to generate specialized
global models (server-side) for groups of similar users. With
FedCLAR, the local models received from the server are
clustered taking into account the similarity of their weights.
While FedCLAR significantly improves personalization, it
relies on the availability of labeled data on each client.
However, collecting a large annotated dataset for each client
is often impractical due to its time-consuming, costly, and
intrusive nature. Furthermore, the work in [135] proposed
FedAR, which is a novel hybrid approach for HAR that
combines semi-supervised and FL to capitalize on the ben-
efits of both methodologies. Specifically, FedAR integrates
active learning and label propagation to semi-automatically
annotate the local streams of unlabeled sensor data, while
FL is used to build a global activity model in a scalable
and privacy-aware manner. The results indicate that the
combination of active learning and label propagation yields
recognition rates comparable to fully supervised methods. In
the same vein, [136] has combined FedCLAR and FedAR
to propose Semi-Supervised-FedCLAR Based HAR, called
SS-FedCLAR. The objective is to address non-IID and data
scarcity problems, and the results show that SS-FedCLAR
outperforms FedAR and reaches results close to those of
FedCLAR with a limited amount of labeled data.

However, the mentioned studies do not consider possible
attacks in the FL setting, which could perturb the train-
ing process, e.g., via data poisoning and model poisoning
attacks. The work in [137] presents a novel integration
of personalized FL with hierarchical clustering, known as
FedCHAR. The proposed FedCHAR not only enhances the
fairness and accuracy of the model by using similar relation-
ships between users in the benign scenario, but it also im-
proves the robustness of the system by identifying malicious
nodes through clustering. The work in [138] proposed a 2D
FL framework taking advantage of the VFL and HFL phases
to address concerns about unsafe data sharing and inadequate
training data in cyberphysical systems. In particular, the
solution uses the VFL phase to improve performance by
integrating patient features from different devices, and then
the server uses the HFL phase to average the global model
from different patients.

VI. Research challenges
A. Personalized FL for HAR
How can personalized FL for HAR be enabled that can
perform well for various applications? HAR applications
generate data that is specific for various applications, groups
of users, and geographic areas. Therefore, training a general-
ized FL model might not work well for HAR. For instance,
considering gesture recognition, one can see that ML models
trained for a certain geographic location (i.e., supermarket)
will not work well for gesture recognition of another geo-
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graphic location (i.e., hospital or special children’s school)
because of their different nature. In hospitals, the data will
mostly have gestures of sadness. On the other hand, in super-
markets, the gestures of people will have a mostly different
nature than sadness. Therefore, there is a need to train FL
models for HAR that can perform well in various scenarios.
To do so, a personalized FL is needed. One possible way
is to use federated meta-learning, which involves sharing a
meta-learner instead of a global model [143]. Specifically,
the goal of meta-learning is to enable the training of models
to learn how to learn. This type of learning will enable
faster convergence to the specific HAR scenarios. Another
possible solution could be to use the pre-trained models
for specific scenarios. Pre-training a model on a large and
diverse dataset allows it to capture general patterns of human
activity. These pretrained models can then be fine-tuned on
specific datasets to adapt to the particularities of various
HAR environments [144]. Furthermore, several personalized
FL algorithms can be utilized to enhance the performance
of HAR models in various applications. These algorithms
can be designed to incorporate local adaptations while main-
taining the benefits of collaborative learning. For example,
MOCHA is an algorithm designed to handle the heterogene-
ity of data between clients by solving multiple tasks jointly
but allowing task-specific adaptations [145]. This approach
can be particularly useful for HAR applications where the
data of each client could differ significantly from the others.

B. Robust and Fast Converging FL for HAR
How does FL for HAR robust along with fast convergence?
FL is based on a single centralized aggregator that will
suffer from malfunction if the aggregator stops working.
This can happen due to many reasons, such as physical
damage or security attacks. To remedy this, one can use the
concept of distributed aggregations. However, FL based on
distributed aggregation can avoid a single point of failure, but
at the cost of high cost in terms of communication resources
and implementation. Therefore, a trade-off must be made
between robustness and complexity. On the other hand, the
convergence of FL is generally slow. Hierarchical aggrega-
tions, where multiple levels of aggregators are used, can also
speed up convergence by reducing communication latency
and distributing the computational load [146]. Additionally,
heterogeneity-aware clustering groups clients based on data
or computational similarities, optimizing the training process
by treating each cluster as a separate federated learning task.
This method addresses data heterogeneity and ensures that
the model is more robust and better tailored to specific client
groups. For example, FedProx [44], a robust FL algorithm
that adds a proximal term to local objective functions to
handle heterogeneity and improve convergence. Similarly,
hierarchical FL frameworks proposed in [147] for edge
computing environments reduce communication overhead
and accelerate convergence through multilevel aggregations.
By employing these advanced techniques and addressing the

associated challenges, FL for HAR can achieve robust, fast-
converging models that operate efficiently in real-world envi-
ronments, ensuring effective and adaptive security measures.

C. Privacy-Aware, Quantized FL for HAR
How do we enable FL for privacy-aware HAR along with
less communication overhead? As the number of devices
is expected to grow exponentially in the foreseeable future,
enabling FL for HAR applications will necessitate substan-
tial communication resources. Given that communication
resources are limited, it is essential to redesign or improve
our systems to accommodate more devices within the FL
framework for HAR. One approach is to enhance resource
management by optimizing the communication protocols and
reducing the size of model updates through quantization
schemes. Quantization reduces the communication overhead
by compressing the model updates, which significantly low-
ers the amount of data transmitted during each communica-
tion round. However, while FL inherently offers a degree of
privacy by keeping data localized on edge devices, it does
not fully protect against privacy breaches. Malicious nodes
or aggregation servers can still infer sensitive information
from model updates shared during the training process.
To mitigate this risk, privacy-preserving techniques such
as differential privacy and homomorphic encryption can be
employed. Differential privacy adds noise to model updates,
making it difficult for adversaries to extract meaningful
information about individual data points. Homomorphic en-
cryption, on the other hand, allows computations to be
performed on encrypted data, ensuring that the raw data
remains confidential even during the training process. For
example, the work in [148] demonstrated the application
of differential privacy in machine learning by incorporating
noise into the training process to protect individual data
points while maintaining the accuracy of the model. Sim-
ilarly, an homomorphic encryption, which enables secure
computations on encrypted data without revealing the un-
derlying information is proposed in [149]. These techniques
can be integrated into FL systems to enhance privacy while
minimizing the communication overhead. In addition to
these privacy-preserving methods, advanced resource man-
agement strategies such as adaptive bandwidth allocation
and dynamic compression techniques can further optimize
the communication efficiency. By dynamically adjusting the
communication parameters based on the network conditions
and device capabilities, the FL system can effectively balance
the trade-offs between communication overhead and model
performance.

D. Concept Drift-Aware FL for HAR
How do we enable FL to update the model in response
to concept drift in HAR? Concept drift refers to changes
in user behavior (i.e., output). In HAR, the concept drift
can be due to many factors, such as changes in lifestyle,
seasons, or even cultural changes. Therefore, there is a need

VOLUME , 23

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3484228

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Aouedi et al.: Preparation of Papers for IEEE OPEN JOURNALS

to continuously keep the HAR system updated as per concept
drift. Since most of the HAR modules will be based on FL in
the future, therefore, one must propose concept drift-aware
FL algorithms. To address concept drift, FL models must be
continuously updated to reflect new data and evolving pat-
terns. This continuous updating can improve the performance
of HAR systems, but may also increase communication
overhead. Federated Unlearning (FUL) offers a solution to
this challenge by balancing performance improvements with
communication costs [150]. FUL allows for the selective
forgetting of outdated or irrelevant data, ensuring that the
model remains relevant without excessive communication
overhead. Implementing drift-aware FL concept involves
several strategies. An approach is to incorporate adaptive
learning rates that adjust based on the detected drift, ensuring
that the model quickly adapts to new patterns while minimiz-
ing unnecessary updates. Another strategy is to use ensemble
methods, where multiple models are trained on different data
subsets and combined to provide robust predictions that ac-
count for drift. For example, the work in [151] proposed FUL
to address the need for model updates in response to concept
drift. By selectively removing outdated data and incorporat-
ing new information, FUL maintains the relevance of the
model while managing communication costs. Furthermore,
strategies such as incremental learning [152] can be used to
continuously adapt FL models to new data without starting
from scratch, thus reducing the communication burden.

E. Edge Implementation of FL-Enabled HAR
How does one efficiently implement FL algorithms for HAR
on the network edge? Efficiently implementing FL for HAR
on the network edge requires overcoming several challenges
related to computational resources and power consumption.
The edge, characterized by limited computing and backup
power, requires low-complexity schemes to handle complex
HAR tasks [153, 154]. Model compression techniques such
as quantization, pruning, knowledge distillation, and spiking
neural network (SNN) are essential to reduce the complexity
and size of FL models, making them suitable for deployment
on resource-constrained edge devices. Quantization reduces
the precision of the model parameters, which decreases the
size of the model and the computational resources required
without significantly affecting performance [155]. Pruning
involves removing less significant weights from the model,
further reducing the computational burden [156]. Knowl-
edge distillation transfers knowledge from a large, com-
plex model (teacher) to a smaller, simpler model (student),
thereby retaining performance while reducing the size of the
model [157]. SNN is a new generation of neural networks. It
is an event-driven learning process and, in turn, significantly
reduces energy consumption [158]. These techniques ensure
that FL models can be effectively deployed on resource-
constrained edge devices, enabling robust and real-time HAR
applications.

VII. Conclusion
In this paper, we present the role of FL in enabling privacy-
preserving HAR applications. Our findings show that FL not
only enhances privacy by keeping data on local devices but
also improves the accuracy of the model by leveraging data
from diverse sources without sharing raw information. These
contributions are crucial to addressing key challenges in
HAR, such as data heterogeneity, privacy concerns, and the
demand for real-time processing. The practical implications
of this work suggest that FL can be a cornerstone in develop-
ing scalable, secure, and adaptive HAR systems, especially
in environments where data privacy is paramount. Moreover,
as FL continues to evolve, it opens up possibilities for
deploying HAR applications in healthcare, smart cities, and
wearable technologies. However, several challenges remain
to be tackled, such as optimizing FL communication pro-
tocols, handling non-IID data distributions more effectively,
and ensuring model robustness against adversarial attacks.
Future research should focus on refining these areas while
exploring new strategies, like integrating FL with emerging
technologies like edge computing, to create more efficient
and reliable HAR systems. These next steps will help solidify
FL’s role in the future of HAR and other privacy-critical
applications.
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J. Konečnỳ, S. Kumar, and H. B. McMahan,
“Adaptive federated optimization,” arXiv preprint
arXiv:2003.00295, 2020.

[43] J. Hamer, M. Mohri, and A. T. Suresh, “FedBoost:
A Communication-Efficient Algorithm for Federated
Learning,” in Proceedings of the 37th International
Conference on Machine Learning (ICML). PMLR,
2020, pp. 3973–3983.

[44] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Tal-
walkar, and V. Smith, “Federated optimization in
heterogeneous networks,” in Proceedings of Machine
Learning and Systems 2 (MLSys 2020), vol. 2, 2020,
pp. 429–450.

[45] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos,
and Y. Khazaeni, “Federated learning with matched
averaging,” arXiv preprint arXiv:2002.06440, 2020.

[46] H. Guo, A. Liu, and V. K. Lau, “Analog gradient
aggregation for federated learning over wireless net-
works: Customized design and convergence analysis,”
IEEE Internet of Things Journal, vol. 8, no. 1, pp.
197–210, 2020.

[47] B. Choi, J.-y. Sohn, D.-J. Han, and J. Moon,
“Communication-computation efficient secure ag-
gregation for federated learning,” arXiv preprint
arXiv:2012.05433, 2020.

[48] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning
in vehicular edge computing: A selective model ag-
gregation approach,” IEEE Access, vol. 8, pp. 23 920–
23 935, 2020.

[49] J. Sun, T. Chen, G. B. Giannakis, Q. Yang, and
Z. Yang, “Lazily aggregated quantized gradient in-
novation for communication-efficient federated learn-
ing,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 4, pp. 2031–2044,
2020.

[50] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and
S. Jarvis, “SAFA: A Semi-Asynchronous Protocol for
Fast Federated Learning With Low Overhead,” IEEE
Transactions on Computers, vol. 70, no. 5, pp. 655–
668, 2020.

[51] E. Sannara, F. Portet, P. Lalanda, and V. German, “A
federated learning aggregation algorithm for pervasive
computing: Evaluation and comparison,” in IEEE In-
ternational Conference on Pervasive Computing and
Communications (PerCom). IEEE, 2021, pp. 1–10.

[52] Y. Deng, F. Lyu, J. Ren, Y.-C. Chen, P. Yang,
Y. Zhou, and Y. Zhang, “FAIR: Quality-Aware Feder-
ated Learning with Precise User Incentive and Model
Aggregation,” in IEEE INFOCOM 2021-IEEE Con-
ference on Computer Communications. IEEE, 2021,
pp. 1–10.

[53] S. Park, Y. Suh, and J. Lee, “FedPSO: Federated
learning using particle swarm optimization to reduce
communication costs,” Sensors, vol. 21, no. 2, p. 600,

26 VOLUME ,

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3484228

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2021.
[54] L. Hu, H. Yan, L. Li, Z. Pan, X. Liu, and Z. Zhang,

“MHAT: An efficient model-heterogenous aggregation
training scheme for federated learning,” Information
Sciences, vol. 560, pp. 493–503, 2021.

[55] B. Jeon, S. Ferdous, M. R. Rahman, and A. Walid,
“Privacy-preserving decentralized aggregation for fed-
erated learning,” in IEEE INFOCOM 2021-IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2021, pp. 1–6.

[56] Y. Wang and B. Kantarci, “Reputation-enabled feder-
ated learning model aggregation in mobile platforms,”
in ICC 2021-IEEE International Conference on Com-
munications. IEEE, 2021, pp. 1–6.

[57] L. Zhao, J. Jiang, B. Feng, Q. Wang, C. Shen,
and Q. Li, “SEAR: Secure and Efficient Aggrega-
tion for Byzantine-Robust Federated Learning,” IEEE
Transactions on Dependable and Secure Computing,
vol. 19, no. 5, pp. 3329–3342, 2021.

[58] J. So, B. Güler, and A. S. Avestimehr, “Turbo-
Aggregate: Breaking the Quadratic Aggregation Bar-
rier in Secure Federated Learning,” IEEE Journal on
Selected Areas in Information Theory, vol. 2, no. 1,
pp. 479–489, 2021.

[59] J. Song, W. Wang, T. R. Gadekallu, J. Cao, and
Y. Liu, “EPPDA: An Efficient Privacy-Preserving
Data Aggregation Federated Learning Scheme,” IEEE
Transactions on Network Science and Engineering,
vol. 10, no. 5, pp. 3047–3057, 2022.

[60] J. Nguyen, K. Malik, H. Zhan, A. Yousefpour,
M. Rabbat, M. Malek, and D. Huba, “Federated
Learning with Buffered Asynchronous Aggregation,”
in International Conference on Artificial Intelligence
and Statistics. PMLR, 2022, pp. 3581–3607.

[61] A. R. Elkordy and A. S. Avestimehr, “HeteroSAg:
Secure Aggregation With Heterogeneous Quantization
in Federated Learning,” IEEE Transactions on Com-
munications, vol. 70, no. 4, pp. 2372–2386, 2022.

[62] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust
aggregation for federated learning,” IEEE Transac-
tions on Signal Processing, vol. 70, pp. 1142–1154,
2022.

[63] J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E Ali,
B. Guler, and S. Avestimehr, “LightSecAgg: a
Lightweight and Versatile Design for Secure Ag-
gregation in Federated Learning,” in Proceedings of
Machine Learning and Systems (MLSys ’22), vol. 4,
2022, pp. 694–720.

[64] C.-H. Hu, Z. Chen, and E. G. Larsson, “Scheduling
and Aggregation Design for Asynchronous Federated
Learning Over Wireless Networks,” IEEE Journal on
Selected Areas in Communications, vol. 41, no. 4, pp.
874–886, 2023.

[65] Y. H. Ezzeldin, S. Yan, C. He, E. Ferrara, and A. S.
Avestimehr, “FairFed: Enabling Group Fairness in

Federated Learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, no. 6,
2023, pp. 7494–7502.

[66] Z. Xiao, X. Xu, H. Xing, F. Song, X. Wang, and
B. Zhao, “A federated learning system with enhanced
feature extraction for human activity recognition,”
Knowledge-Based Systems, vol. 229, p. 107338, 2021.

[67] K. Sozinov, V. Vlassov, and S. Girdzijauskas,
“Human activity recognition using federated learn-
ing,” in 2018 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Ubiq-
uitous Computing & Communications, Big Data
& Cloud Computing, Social Computing & Net-
working, Sustainable Computing & Communica-
tions (ISPA/IUCC/BDCloud/SocialCom/SustainCom).
IEEE, 2018, pp. 1103–1111.

[68] Q.-V. Pham, D. C. Nguyen, T. Huynh-The, W.-J.
Hwang, and P. N. Pathirana, “Artificial intelligence
(ai) and big data for coronavirus (covid-19) pandemic:
a survey on the state-of-the-arts,” IEEE access, vol. 8,
pp. 130 820–130 839, 2020.

[69] O. D. Lara and M. A. Labrador, “A survey on human
activity recognition using wearable sensors,” IEEE
communications surveys & tutorials, vol. 15, no. 3,
pp. 1192–1209, 2012.

[70] Y. Zhao, H. Liu, H. Li, P. Barnaghi, and H. Had-
dadi, “Semi-supervised federated learning for activity
recognition,” arXiv preprint arXiv:2011.00851, 2020.

[71] E. Diao, J. Ding, and V. Tarokh, “Semifl: Communica-
tion efficient semi-supervised federated learning with
unlabeled clients,” arXiv preprint arXiv:2106.01432,
2021.

[72] S. Kalabakov, B. Jovanovski, D. Denkovski,
V. Rakovic, B. Pfitzner, O. Konak, B. Arnrich,
and H. Gjoreski, “Federated learning for activity
recognition: A system level perspective,” IEEE
Access, 2023.

[73] C. Fang, Y. Guo, N. Wang, and A. Ju, “Highly efficient
federated learning with strong privacy preservation in
cloud computing,” Computers & Security, vol. 96, p.
101889, 2020.

[74] M. Uddin, A. Salem, I. Nam, and T. Nadeem, “Wear-
able sensing framework for human activity moni-
toring,” in Proceedings of the 2015 workshop on
Wearable Systems and Applications, 2015, pp. 21–26.

[75] O. Aouedi and K. Piamrat, “F-bids: Federated-
blending based intrusion detection system,” Pervasive
and Mobile Computing, vol. 89, p. 101750, 2023.

[76] B. Brik, A. Ksentini, and M. Bouaziz, “Federated
learning for uavs-enabled wireless networks: Use
cases, challenges, and open problems,” IEEE Access,
vol. 8, pp. 53 841–53 849, 2020.

[77] O. Aouedi, K. Piamrat, G. Muller, and K. Singh, “Fed-
erated semisupervised learning for attack detection in
industrial internet of things,” IEEE Transactions on

VOLUME , 27

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2024.3484228

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Aouedi et al.: Preparation of Papers for IEEE OPEN JOURNALS

Industrial Informatics, vol. 19, no. 1, pp. 286–295,
2022.

[78] G. K. Gudur and S. K. Perepu, “Resource-constrained
federated learning with heterogeneous labels and mod-
els for human activity recognition,” in International
Workshop on Deep Learning for Human Activity
Recognition. Springer, 2021, pp. 57–69.

[79] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang,
“Blockchain and federated learning for privacy-
preserved data sharing in industrial iot,” IEEE Trans-
actions on Industrial Informatics, vol. 16, no. 6, pp.
4177–4186, 2019.

[80] E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and
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