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ABSTRACT
Over the past decade, the use of Unmanned Aerial Vehicles (UAVs) has grown significantly due to their
agility, maneuverability, and rapid deployability. An important application is the use of UAV-mounted 360-
degree cameras for real-time streaming of Omnidirectional Videos (ODVs), enabling immersive experiences
with up to six Degrees-of-freedom (6DoF) for applications like remote surveillance and gaming. However,
streaming high-resolution ODVs with low latency (below 1 second) over an air-to-ground (A2G) wireless
channel faces challenges due to its inherent non-stationarity, impacting the Quality-of-experience (QoE).
Limited onboard energy availability and energy consumption variability based on flight parameters add
to the complexity. This paper conducts a thorough survey of challenges and research efforts in UAV-
based immersive video streaming. First, we outline the end-to-end 360-degree video transmission pipeline,
covering coding, packaging, and streaming with a focus on standardization for device and service
interoperability. Next, we review the research on optimizing video streaming over UAV-to-ground wireless
channels, and present a real testbed demonstrating 360-degree video streaming from a UAV with remote
control over a 5G network. To assess performance, a high-resolution 360-degree video dataset captured
from UAVs under different conditions is introduced. Encoding schemes like AVC/H.264, HEVC/H.265,
VVC/H.266, VP9, and AV1 are evaluated for encoding latency and QoE. Results show that HEVC’s
hardware implementation achieves a good QoE-latency trade-off, while AV1’s software implementation
provides superior QoE. The paper concludes with discussions on open challenges and future directions for
efficient and low-latency immersive video streaming via UAVs.

INDEX TERMS 360◦ video, extended reality, low latency, real-time streaming, low latency, UAV.

I. INTRODUCTION

IMMERSIVE video technology enables users to experi-
ence a quasi-realistic virtual environment, fostering en-

gagement and a sense of presence in a digital space. Various
visual media modalities, such as volumetric, light field,
and Omnidirectional Video (ODV), have emerged as viable
options for delivering an immersive viewing experience [1].
Among these, ODV, commonly known as 360-degree video,
has gained widespread popularity due to the availability of
acquisition and display devices, and standardization efforts
ensuring interoperability. To enhance immersion, interaction
with the user is crucial. This interaction can involve head
movements (roll, yaw, and pitch), mouse/keyboard controls,

or in the case of viewing on a smartphone, the viewing angle
can be controlled by moving the device in space, providing a
visual experience of up to three Degrees-of-freedom (3DoF).
However, one of the main limitations of ODV is the absence
of motion parallax, which refers to the relative position of
objects changing based on the viewer’s position relative to
the object. This can lead to discomfort and motion sickness
for users.

To address this limitation, a potential solution is to employ
a 360◦ camera mounted on a Unmanned Aerial Vehicle
(UAV). This combination offers enhanced flexibility and
mobility, allowing users to explore the environment and
move around objects within the scene. By leveraging the
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mobility provided by the UAV, in addition to 360◦ video, a
viewing experience of up to six Degrees-of-freedom (6DoF)
can be achieved. This advancement holds promise for diverse
applications like remote video surveillance, scientific ex-
ploration, autonomous manufacturing assistance, agricultural
monitoring, and more. However, to fully realize the potential
of these applications, it is crucial to maintain a seamless
and responsive interaction between the user and the UAV
by ensuring a more natural viewing experience with accu-
rate control. This requires ODV to be delivered with high
Quality-of-experience (QoE), to ensure a truly immersive ex-
perience through real-time control of the UAV. Specifically,
the high-quality 4K resolution videos need to be transmitted
with ultra-low End-to-end (E2E) latency (preferably below 1
sec. [2]). However, achieving these metrics over contempo-
rary 5G networks is highly challenging due to the higher
data volume of ODVs, compared to conventional Two-
dimensional (2D) videos. For instance, an High-efficiency
Video Voding (HEVC)-encoded 8K (ultra-high-definition)
video typically requires target bitrates ranging from 20-
80 Mbps [3], significantly exceeding the typical throughput
of 20 Mbps for UAVs when operating in the presence of
ground users [4], [5]. Furthermore, achieving Glass-to-glass
(G2G) latency of under one second is inherently challenging.
This is because a 30 frames-per-second video encoded with
a Group-of-pictures (GOP) size larger than 16 inherently
incurs a G2G latency of at least one second. However,
reducing the size of the GOP negatively impacts compression
efficiency. Further, the intrinsic non-stationarity of the UAV-
to-ground wireless channel and limited computational and
energy resources of UAVs further amplify these challenges
for UAV-based real-time immersive video streaming.

Addressing the above challenges will require efforts to
enhance not only the communication for UAVs and develop
adaptive and low-complexity schemes for 360◦ video encod-
ing and streaming, but also to consider the interplay between
these two design issues. It is important to note that the
design approach of a system for real-time streaming from a
UAV mounted 360◦ camera needs to be completely different
compared to a ground-based immersive video streaming
system. This is because of the inherent dependence of the
air-to-ground (A2G) wireless channel on the UAV trajectory
and its location in the space, leading to non-stationarity and
a fundamentally different behavior compared to terrestrial
channels between a base station and a ground-based user.
On the other hand, the existing design of UAV-based 2D
streaming [6] cannot be directly adapted, due to the inter-
active nature of immersive streaming and higher data rate
requirements. In addition, the interplay between the UAV
trajectory, onboard energy availability, computation power,
encoding, and communications need to be analyzed carefully
to deliver a truly immersive experience.

In addition, we note that the existing 360◦ video datasets
captured from a ground-based camera do not capture essen-
tial characteristics of UAV-based 360◦ videos, e.g., vertical

motion. Because the encoding parameters critically depend
on the video content, the performance of standard video
encoders needs to be re-evaluated afresh on aerial 360◦

videos to understand their QoE and latency performance.
The rest of this paper is organized as follows. In the fol-

lowing section, we present a review of the existing literature
on this topic, and in Sec. III we describe the main com-
ponents of the ODV streaming chain, including acquisition,
encoding, packaging, rendering, and optimization. Then, the
key performance metrics and wireless optimization tech-
niques for UAV-based 360◦ video streaming are presented
in Sections IV and V, respectively. In Sec. VI, we present
a review of Third Generation Partnership Project (3GPP)
activities relevant to real-time streaming of ODVs from a
UAV platform. Further, in Sec. VII, the proposed aerial 360◦

video dataset is presented, and then benchmarking results
and analysis of software and hardware encoders of five video
standards are provided in Sec. VIII. Next, the challenges
of ODV streaming from a UAV platform are discussed in
Sec. IX. Finally, Sec. X concludes the paper.

II. RELATED WORK & CONTRIBUTIONS
In Table 1, we present a summary of recent efforts [6]–
[22] surveying state-of-the-art research on communication
for UAVs and immersive streaming. The literature in Table 1
can be broadly classified into two categories: covering the
communication aspects of UAVs and the streaming of 360◦

videos. The authors in [7]–[9] presented a comprehensive
survey of challenges and fundamental tradeoffs in design-
ing wireless networks involving the UAVs. In particular,
Mozaffari et al. [7] described analytical frameworks and
tools to address design challenges, and Hayat et al. [9]
surveyed the quality of service, connectivity, safety, and
other general networking requirements for unmanned air-
craft systems in civilian applications. Baltaci et al. [10]
reviewed the connectivity requirements for aerial vehicles,
especially for piloting applications, and advocated achiev-
ing these stringent connectivity requirements through multi-
technology heterogeneous networks. In [8], [11], the authors
evaluated various enabling 6G technologies, highlighting
the benefits, drawbacks, and challenges in their integration
into 6G wireless network with UAVs. The authors in [12]
surveyed the channel models for air-to-ground and air-to-air
UAV communication.

To address high data rate requirements for UAVs, Xiao et
al. [13] reviewed antenna structures and channel models for
millimeter wave (mmWave). Furthermore, the technologies
and solutions for UAV-connected mmWave cellular networks
and mmWave-UAV ad hoc networks were discussed. The
authors in [14] and [15] reviewed the methods for com-
munication and trajectory co-design. In addition, Zeng et
al. [14] surveyed techniques to deal with the issues on
air-to-ground interference in cellular communication with
UAVs. Fotouhi et al. [16] also surveyed the interference
issues in serving aerial users with the existing terrestrial
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TABLE 1. Overview of the State of the Art
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References Survey Focus Aerial ODV Streaming

[7] Three-dimensional (3D)-deployment, Performance and energy efficiency anal-
ysis, Channel modeling

No

[8], [11]
The potential of advanced technologies for UAV’s integration into 6G networks:
Intelligent reflecting surfaces, Short-packet communication, Integrated commu-
nication and sensing

No

[9] Connectivity requirements for aerial communications No

[10]

Characteristics & Requirements of UAV networks:
• Quality-of-service (QoS) & data rate requirements
• Network-relevant mission parameters
• Connectivity, safety, privacy, security, and scalability

No

[12] UAV communications channel model, link budget analysis No

[13] mmWave technologies for UAV communications No

[14] Trade-offs between QoS, size, weight, power constraints, and 3D mobility No

[15] 3D obstacle avoidance mechanisms No

[16] Interference issues, standardization activities, and cyber-security No

[17], [18] Standardization, Aerial experimentation and research platform No

[19] Joint design of communications, computation, and control for performance improvement No

36
0◦

vi
de

o
st

re
am

in
g [6] Video streaming (2D) from aerial platforms No

[20] Challenges in on-demand and live 360◦ streaming, standardization activities, and architectures No

[21] Compression and coding for 360◦ streaming, Network issues in Virtual Reality (VR) streaming No

[22] Data model for 360◦ video, challenges and approaches for creating and distribution of 360◦ videos No

Base Stations (BSs), along with potential solutions proposed
by standardization bodies. In addition, they reviewed the
ongoing prototyping, testbed activities, and regulatory efforts
to manage the commercial use of UAVs, along with cyber-
physical security of UAV-assisted cellular communication. In
[17], Marojevic et al. presented an architecture and research
platform for aerial experimentation with advanced wireless
communications, which facilitates experimental research in
controlled yet production-like environments. In [18], Abdalla
et al. surveyed the ongoing 3GPP standardization activi-
ties for enabling networked UAVs, requirements, envisaged
architecture, and services provided by UAVs. The authors
in [19] studied the UAV networks from the perspective of
cyber-physical systems and considered the joint design of
communication, computation, and control to improve the per-

formance of UAV networks. We note that most of the existing
research efforts do not explicitly cover the aforementioned
unique issues, described in the previous section, relevant to
immersive video streaming from a UAV platform.

On the other hand, the work in [6], [20], [21] surveyed the
adaptive streaming techniques for 360◦ videos. Yaqoob et al.
[20] reviewed the adaptive 360◦ video streaming approaches
that dynamically adjust the size and quality of the view-
port. In addition, they surveyed the standardization efforts
for 360◦ video streaming, highlighting the main research
challenges such as viewport prediction, QoE assessment,
and low latency streaming for both the on-demand and live
360◦ video streaming. Further, [21] surveyed the Field-of-
view (FoV) prediction methods, along with compression,
and coding schemes for reducing the bandwidth required
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for streaming immersive videos. In addition, they reviewed
caching strategies and datasets for immersive video stream-
ing. The work in [6] focused on 2D video streaming from an
aerial platform. In particular, they surveyed the works using
Artificial Intelligence (AI)-based techniques to enhance the
video streaming performance. While these works provide key
insights into various aspects of immersive video streaming
from a ground-based platform, they fail to capture the unique
characteristics and trade-offs of the aerial immersive video
streaming systems.

In this work, we present a thorough survey of key trade-
offs, challenges, and research efforts in UAV-based immer-
sive video streaming. In addition, we benchmark the existing
video encoding schemes for their encoding latency and QoE,
using a high-resolution 360-degree video dataset captured
from UAVs under different conditions. Our contributions are
the following:

• We present a comprehensive review of existing video
streaming efforts from a UAV, and provide key insights
into the design trade-offs.

• We present a new 360◦ video dataset, captured from a
UAV in diverse acquisition conditions.

• Assess the coding efficiency and complexity of software
and hardware encoders of five video standards and
formats for immersive 360◦ video streaming.

• We highlight the open challenges related to ODV
streaming from a UAV.

This is the first paper surveying the key trade-offs, research
efforts, and open design challenges for UAV-based real-time
immersive streaming. In addition, the presented dataset of
360◦ videos captured from UAV is the first in the field
and will aid research efforts in joint optimization of com-
munication and encoding schemes for real-time immersive
streaming of aerial 360◦ videos. In the following section,
we describe the main blocks of an ODV streaming pipeline.

III. OMNIDIRECTIONAL VIDEO STREAMING
An omnidirectional visual signal is presented in a spherical
space with angular coordinates: the azimuth angle ϕ ∈
[π,−π], and the elevation or polar angle θ ∈ [−π

2 ,
π
2 ],

assuming a unit sphere (radius r = 1) for acquisition and
rendering. The sphere’s origin represents the viewing refer-
ence that captures the light coming from all directions. Since
the human visual system has a limited field of view, at a time
a user cannot view the entire 360◦ content in its spherical
representation. Instead, only a portion of the sphere, known
as the “viewport”, is displayed, which is an image tangent
to the sphere. Initial streaming approaches, termed viewport-
independent streaming, involved transmitting the entire 360-
degree video content at high quality, allowing users to extract
the desired viewport based on their head position, with
low latency. However, it is a bandwidth-intensive solution,
requiring over 100 Mbps to transmit an 8K resolution video

Omnidirectional video streaming

Viewport-independent Viewport-dependent

Tile-based

Client-based tile binding

Author-based tile binding

Projection-based

FIGURE 1. ODV streaming strategies.

at high quality [23]. This is inefficient since the end user only
observes a small portion (approximately 15%) of the ODV.
To address this, more advanced techniques have been pro-
posed to transmit only a portion of the sphere, corresponding
to the current viewport. Due to their superior bandwidth
efficiency, viewport-dependent strategies have gained wide
adoption at the projection (projection-based) and encoding
(tile-based) stages. As shown in Figure 1, ODV streaming
strategies can be broadly categorized as either viewport-
dependent or viewport-independent, depending on whether
the FoV is considered in the optimization process or not.

In the following, we provide an overview of the archi-
tecture of the E2E ODV streaming pipeline, illustrated in
Figure 2. We briefly describe the technology used at each
stage to deliver ODV to the end user, highlighting the
features included to support viewport-dependent streaming.

A. ACQUISITION AND PREPROCESSING
In practice, an omnidirectional visual signal is captured using
a multi-view wide-angle acquisition system, often utilizing
fish-eye lenses. Since a single eye-fish camera can only cap-
ture a partial sphere, combining multiple acquisitions from
such cameras allows for complete sphere coverage through
the process of stitching the images [24]. However, the
stitching operation introduces two main challenges. The first
challenge involves blending and wrapping non-overlapping
captured images, while also addressing inconsistencies in
illumination and color that may arise after stitching. The
second challenge arises when dealing with video signals, as
the camera sensors need to be perfectly synchronized.

The omnidirectional visual signal in spherical represen-
tation is mapped over another surface during the pre-
processing stage to facilitate further processing after acqui-
sition. At a high level, the mapping schemes differ in terms
of the geometry of the surface to be mapped. The most com-
monly used mapping technique is Equirectangular Projection
(ERP), which is particularly well-suited for production and
contribution purposes, and uniformly maps the pixels on
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TABLE 2. List of Acronyms

Acronym Definition Acronym Definition

2D : Two Dimensional LTE: Long Term Evolution
3D : Three Dimensional M2P: Motion-to-photon
3GPP: Third Generation Partnership Project MCTS: Motion-constrained Tile Set
6DoF: Six Degrees-of-freedom MIMO: Multi-input Multi-output
A2G: Air-to-ground MLLM: Multimodal Large Language Model
AI: Artificial Intelligence MPEG: Motion-picture Expert Group
ANN: Artificial Neural Network MV: Motion Vector
AP: Access Point NLoS: Non Line-of-sight
AVC: Advanced Video Coding NS: Network Slicing
AV1: AOMedia Video 1 ODV: Omnidirectional Video
BD-rate: Bjøntegaard-Delta rate OMAF: Omnidirectional Media Format
BS: Base Station PSNR: Peak Signal-to-noise Ratio
CMP: Cube Map Projection QoE: Quality-of-experience
CNN: Convolution Neural Network QoS: Quality-of-service
DASH: Dynamic Adaptive Streaming over HTTP RSRP: Reference Signal Received Power
E2E: End-to-end RTP: Real-time Transport Protocol
EM: Eye Movement RWP: Region-wise Packing
ERP: Equirectangular Projection S-PSNR: Spherical PSNR
FoV: Field-of-View SRTP: Secure Real-time Transport Protocol
FPV: First Person View SSIM: Structural Similarity Index Measure
G2A: Glass-to-algorithm SVC: Scalable Video Coding
G2G: Glass-to-glass TSP: Truncated Square Pyramid
GOP: Group-of-pictures UAV: Unmanned Aerial Vehicle
GPU: Graphic Processing Unit UHD: Ultra-high Definition
HEVC: High-efficiency Video Coding VMAF: Video Multi-method Assessment Fusion
HM: Head Movement VR: Virtual Reality
HMD: Head-mounted Display VS: Viewport Specific
ISOBMFF: ISO Base Media File Format VVC: Versatile Video Coding
LoS: Line-of-sight WebRTC: Web Real-time Communication
LLM: Large Language Model WLAN: Wireless Local Area Network

the sphere over a rectangular plane. More advanced map-
ping techniques, such as Cube Map Projection (CMP) and
Truncated Square Pyramid (TSP), map the spherical signal
over the six faces of a cube and square-based pyramid with
four triangular faces [25], respectively. Notably, compared
to ERP, CMP and TSP offer enhanced coding efficiency,
achieving bitrate savings of 25% and 80%, respectively,
making them more suitable for distribution purposes [26].

On the other hand, dynamic projection methods, such as
pyramidal projection and its refined version, offset cubic
projection [27] facilitate viewport-dependent streaming by
modulating the pixel density depending on the viewing di-
rection. Offset cubic projection allocates higher pixel density
and better quality near the offset direction which corresponds
to the user’s viewing direction. Another solution proposed
in [28] is oriented projection for real-time 360-degree video
streaming, which allocates more pixels in the projected frame
to areas on the sphere that are close to a target pixel-
concentration orientation.

Acquisition &
stitching

Projection&
preprocessing

Encoding Packaging

Origin server & CDN

DepackagingDecodingViewport
extractionRendering

Network

Viewport

HTTP request

Viewport
prediction

Head position &
ODV content

Client
streaming

Predicted viewport

Head position

Transmitter

Receiver

FIGURE 2. ODV E2E streaming pipeline. Note that, the HTTP request by
WebRTC client is used for signaling.

B. ENCODING
After mapping the sphere in a 2D plane1, ODV
content is encoded in practice by conventional 2D

1For ease of exposition, we describe the ODV pipeline with the ERP.
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video standards such as Advanced Video Coding
(AVC)/H.264 [29], HEVC/H.265 [30], Versatile Video
Coding (VVC)/H.266 [31], as well as VP9 and AOMedia
video 1 (AV1) video formats. In particular, tailored coding
tools are integrated into the HEVC/H.265 and VVC/H.266
standards to enhance the ODV coding efficiency and enable
advanced streaming features, improving the user’s QoE.

1) HEVC/H.265 Tools for ODV
The HEVC/H.265 leverages the tile concept, where the
mapped pixels are subdivided into small non-overlapping
rectangular regions, to facilitate the viewport-dependent
streaming. The tile concept enables independent and parallel
encoding/decoding of rectangular regions within the picture.
By breaking the dependency of context prediction in arith-
metic encoding and intra-prediction, tiles allow for efficient
processing and coding of specific regions [32]. Additionally,
the tile boundaries also enable the possibility of disabling
in-loop filters, further enhancing the flexibility of the en-
coding process. Moreover, the introduction of the Motion-
constrained Tile Set (MCTS) technique in HEVC/H.265,
along with supplemental enhancement information messages,
extends the tile concept to the sequence of frames. This
technique restricts the Motion Vectors (MVs) to a selected
set of tiles in the reference picture, thereby enabling the
fetching and decoding of only the tiles within the displayed
viewport during ODV streaming. This approach significantly
improves the user’s QoE by delivering high-quality content
while efficiently utilizing bandwidth. However, the limitation
of restricting MVs within a set of tiles in the reference
picture can decrease coding efficiency. To overcome this,
the literature proposes non-normative solutions that enhance
inter-prediction by utilizing the base layer as a reference in
the scalable HEVC extension [33]. Alternatively, Bidgoli et
al. [34] propose an enhanced intra-prediction technique with
fine granularity random access capability, allowing end-users
to request specific parts of the stream while ensuring efficient
intra-coding. Furthermore, in the context of spherical bitrate
allocation, a new entropy equilibrium optimization strategy
is proposed in [35]. This strategy derives the Lagrangian
multiplier at the block level, which is used in rate-distortion
optimization. The proposed solution, evaluated with ERP and
CMP, demonstrates significant bitrate gains when compared
to the HEVC reference software encoder [35].

2) VVC/H.266 Tools for ODV
The VVC/H.266 standard introduces several advancements
for efficient encoding of ODV content, including the ability
to signal the used projection technique and the definition of
tailored coding tools [31]. In the case of 360-degree repre-
sentation and ERP mapping, objects can span across the left
and right picture boundaries continuously. Consequently, in
VVC/H.266, inter-prediction samples may wrap around from

the opposite left or right boundary when MVs point outside
the coded area. Additionally, virtual boundaries are defined
to skip in-loop filters across edges. For CMP, where cube
maps may exhibit content discontinuities, virtual boundaries
can be signaled to disable in-loop filtering and prevent
artifacts arising from non-homogeneous boundaries. Further-
more, VVC/H.266 introduces the concept of subpictures,
which allows for the extraction of independent rectangular
regions within the picture, specifically designed for viewport-
dependent VVC streaming applications. Subpictures offer
two critical improvements over the previous MCTS concept.
Firstly, subpictures enable MVs to refer to blocks outside
the subpicture, and padding at subpicture boundaries is per-
mitted, similar to picture boundaries. This facilitates higher
coding efficiency compared to the tight motion constraints
applied in MCTS. Secondly, a need to rewrite slice headers
when extracting a sequence of subpictures to build a new
VVC/H.266 compliant bitstream is eliminated, streamlining
the encoding process [31].

In addition to standard encoders, some non-normative
techniques are also proposed in the literature, e.g., encoding
the ODV content in spherical representation to prevent
projection distortions, leading to higher coding efficiency.

3) Learning-based coding for ODV
Machine learning techniques have been extensively investi-
gated in the literature to optimize and improve the coding
efficiency of ODV content. In [36], a Convolution Neural
Network (CNN) was trained to learn the rotation of the
sphere, resulting in an improvement in the coding efficiency.
This rotation is applied as a pre-processing step along the
spherical axis before projection, leading to different rotations
of the cube map. Experimental results demonstrate that
incorporating rotation prediction achieve a significant coding
gain of 8% to 10% with a prediction accuracy of 80%.

Similar to conventional video standards, learning-based
video codecs can encode ODV content after its projec-
tion onto a 2D plane. Initially, the 2D representation is
transformed into a compact latent space using an analysis
transform based on an Artificial Neural Network (ANN).
The resulting latent representation is then encoded with
a lossless entropy encoder to construct the bitstream. At
the decoder side, a synthesis transform, also based on an
ANN, reconstructs a version of the input 2D representation
from the received bitstream. Moreover, the hyperparameters
of the latent space entropy distribution, such as mean and
variance, are encoded using an auto-encoder and utilized by
the encoder and decoder to enhance the performance of the
entropy encoder [37].

C. STREAMING PROTOCOLS
Various packaging protocols can be employed for streaming
ODV content, depending on the specific application and
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end-user requirements concerning video quality, latency, and
advanced functionalities provided by the protocol [38]. In
the following, we outline the key features of two widely
utilized streaming protocols: Omnidirectional Media Format
(OMAF) and Web Real-time Communication (WebRTC).
For further details, readers are encouraged to refer to
overview papers on OMAF [39] and WebRTC [40].

1) OMAF
The ISO/IEC 23090-2 standard, also known as OMAF, is
a system standard developed by the Motion Picture Experts
Group (MPEG) to ensure device and service interoperability
for storing and streaming omnidirectional media content.
This includes various forms of media such as 360◦ images
and videos, spatial audio, and associated text. The initial
version of the standard, completed in October 2017, provides
fundamental tools for streaming 360◦ images and videos,
enabling a 3DoF viewing experience. In the subsequent
release of the standard in October 2020, the second version
introduced additional tools to support more advanced fea-
tures. These features include enhanced viewport-dependent
streaming, overlay capabilities, and the ability to stream mul-
tiple viewpoints, marking the initial steps towards achieving
a 6DoF viewing experience, desired for UAV-based real-time
immersive streaming.

The specifications of OMAF are organized into three main
modules: content authoring, delivery, and player. Further-
more, these specifications serve as extensions to the ISO
Base Media File Format (ISOBMFF) and Dynamic Adaptive
Streaming over HTTP (DASH), ensuring backward compat-
ibility with conventional 2D media formats. OMAF supports
three types of omnidirectional visual signal representations:
projected, mesh, and fish-eye. Each of these formats requires
specific pre-processing for encoding and post-processing for
rendering and display. Among the projected formats, OMAF
includes support for two widely used projection algorithms:
ERP and CMP. Additionally, OMAF incorporates a Region-
wise Packing (RWP) operation, which allows for optional
pre-processing operations before encoding. These operations
include resizing, repositioning, rotation by 90◦, 180◦, and
270◦, as well as vertical and horizontal mirroring of specific
rectangular regions. RWP serves various purposes, such as
signaling the exact coverage of a partial spherical represen-
tation, generating Viewport-specific (VS) video, enhancing
coding efficiency, or compensating for over-sampling in the
pole areas of ERP. The RWP metadata indicates the applied
operations to the player, which then performs inverse opera-
tions to map the regions of the decoded picture back into the
projected picture. This ensures proper rendering and display
of the content, aligning with the intended transformations
specified by the RWP.

The OMAF standard supports both viewport-
dependent\independent streaming profiles, as outlined
in [27]. The viewport-dependent ODV streaming profile

of OMAF enables the selection of segments covering
the user’s viewport at high quality and other segments at
lower quality and bitrate. This approach allows for more
efficient utilization of network bandwidth, resulting in
an improved user experience. Viewport-dependent ODV
streaming can be achieved through two methods: VS and
tile-based streaming. In the Viewport-specific approach,
multiple VSs are created and signaled, each encoding
different viewports at high quality. Users can select the
appropriate VS stream based on their viewing orientation.
The OMAF region-wise quality ranking metadata can be
used to signal the quality of different regions in the sphere.
On the other hand, in the tile-based configuration, the
ODV is divided into independent rectangular regions called
tiles. Following the projection stage, the ODV is encoded
into tiles representing different quality representations. The
end user can then request the tiles covering the viewport
at high quality, while the remaining area tiles can be
requested at a lower quality. Each tile only depends on
the co-located tile in the sequence and can be decoded
independently of other tiles. There are two alternatives for
encoding video in independent regions. The first method
utilizes the HEVC tile concept, where tiles are grouped
into motion-constrained slices known as Motion-constrained
Tile Sets. This profile employs HEVC encoding to achieve
low-quality coverage of the entire 360-degree video, while
high-quality sub-pictures are encoded to cover specific
regions of the video. The second method, applicable to
AVC which does not support tiles, partitions the video into
sub-picture sequences, each representing a spatial subset
of the original sequence. These sub-picture sequences are
then encoded with motion constraints and merged into tiles
in a single bit-stream. Each tile or sub-picture sequence
is stored in its respective track. Additionally, tiles can be
encoded in different bitrates and resolutions, allowing users
to select the optimal combination of tiles based on viewing
orientation, available bandwidth, and decoding capability.

In total, the OMAF standard specifies six video media
profiles that define the type of video representation and
the supported video standard with its associated levels. For
example, the “HEVC-based viewport-independent” profile
uses the ERP representation and is constrained to HEVC
Main 10 profile level 5.1. This level limits the spatial res-
olution to 4K (4096 × 2160). However, the “unconstrained
HEVC-based viewport-independent” profile, introduced in
the second edition, supports all HEVC Main 10 profile levels,
thus increasing the decoding capacity and display resolution.
Furthermore, there are already several open-source imple-
mentations available that support the first2 edition of the
OMAF standard. Further, some tools of the OMAF second
edition have been demonstrated in [41], [42].

2NOKIA: https://github.com/nokiatech/omaf, Fraunhofer HHI: https://
github.com/fraunhoferhhi/omaf.js, Intel Open Visual Cloud: https://github.
com/OpenVisualCloud/Immersive-Video-Sample.
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FIGURE 3. WebRTC block diagram.

2) WebRTC
The WebRTC framework is an open-source solution specif-
ically designed to facilitate real-time and low-latency video
transmission. As shown in Figure 3, within the WebRTC
transmitter, the “video collector” module performs video en-
coding and encapsulates the encoded video frames into Real-
time Transport Protocol (RTP) packets. These packets are
subsequently transmitted using the secure real-time transport
protocol. On the receiver side, relevant information regarding
the received RTP packets is collected, and this information is
relayed back to the “video collector” through the transport-
wide feedback message of the real-time transport control
protocol. The “bandwidth controller” module, located within
the “video collector,” utilizes these control messages to
compute essential network metrics such as inter-packet delay
variation, queuing delay, and packet loss. These metrics
play a crucial role in determining the target bitrate, which
is then employed by the rate control module of the video
encoder. The rate control module dynamically adjusts the
encoding parameters, such as the quantization parameter
and resolution, based on the target bitrate requirements.
Although, unlike OMAF, the standard WebRTC implemen-
tation does not offer explicit tools for transmitting immersive
video, it has gained significant popularity for real-time and
ultra-low latency ODV transmission by treating 360◦ video
representation as a conventional 2D video [28], [43]. Ad-
ditionally, viewport-dependent streaming can be effectively
supported by incorporating a combination of high-resolution
and low-resolution tiles. This approach optimizes bandwidth
utilization while ensuring high quality within the FoV and
maintaining a low Motion-to-photon (M2P) latency [44].

D. RENDERING AND DISPLAY
The limited FoV of the human visual system prevents the end
users from visualizing the entire 360° content in the spherical
representation. Therefore, only a portion of the sphere (i.e.,
an image tangent to the sphere called viewport) is displayed.
The viewport acts as a window through which the viewer can
observe a segment of the entire spherical video. The position-
ing and size of the viewport are dynamically adjusted based
on the viewer’s head and gaze orientation, which are tracked
in real-time by the Head-mounted Display (HMD)’s sensors.

By continuously tracking the user’s head movements and
adjusting the viewport accordingly, the mobility provided by
the UAV along with the 360◦ video facilitates a viewing
experience that supports up to 6DoF. Nonetheless, to achieve
seamless rendering and display of remotely captured UAV
sequences, with accurate viewport adaptation, the end-to-end
latency in the downlink control channel needs to be ultra-
low to adjust the UAV position depending on the head and
eye tracking data.

As described in the previous subsections, the spherical
video content is transmitted in an equirectangular format,
where the video frame represents a flattened sphere. A
critical step before rendering is to effectively project this
flat image back onto a sphere within the VR environment.
This transformation requires meticulous geometrical adjust-
ments to ensure that the spherical illusion is maintained
without visible artifacts or distortion. In terms of display
technology, modern VR headsets utilize dual organic light-
emitting diode-based display or liquid crystal display panels
that offer fast response times and high refresh rates, essential
for maintaining immersion and reducing motion sickness.
Each eye views its display, and the combined effect of this
binocular display creates a stereoscopic effect, enhancing
the content’s depth and fullness of presence. To optimize
the viewer’s experience, modern devices employ rendering
techniques that prioritize the resolution and update rate of
the area within the viewport. This method, often referred
to as foveated rendering [45], reduces the graphical fidelity
in the peripheral vision outside the immediate area of focus,
thus allowing for higher frame rates and improved resolution
where it is most crucial—typically in direct line of sight.
These features enable a more natural viewing experience and
better remote control, effective for user interaction.

In the following section, we present the key performance
metrics for a UAV-based immersive video streaming system
and benchmark the technologies discussed in this section.

IV. UAV-BASED REAL-TIME IMMERSIVE VIDEO
STREAMING: PERFORMANCE METRICS
This section describes the key performance metrics for
real-time UAV-based immersive video streaming systems.
The discussion encompasses three essential aspects: latency,
video quality, and UAV energy consumption. We highlight
key trade-offs involved in optimizing these metrics and their
impact on the design choices. In addition, we benchmark the
various technologies discussed in the previous section.

A. LATENCY
The latency in video transmission from a UAV significantly
impacts the user’s QoE in 360-degree video streaming. It is
captured using metrics such as E2E latency, M2P latency,
and motion-to-high resolution latency, defined below.

End-to-end latency: In a point-to-point real-time video
transmission, E2E latency plays a vital role in ensuring
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a seamless and immersive experience. It represents the
total delay from event capture by the sensor to actuator
response, including processing and transmission latency.
The E2E latency between the camera and user’s display is
often referred to as G2G latency. It measures the difference
between time instances when the photons of an event
first pass through the camera lens and when the event
is displayed to the viewer. Another metric, termed as
Glass-to-algorithm (G2A) latency, represents the time gap
between the photon corresponding to an event passing
through the camera lens and the availability of the first
image corresponding to that event for processing before
display. G2A latency is crucial in applications utilizing
computer vision algorithms for tasks such as control, object
detection, segmentation, and viewport prediction. Figure 2
provides an overview of G2G latency and its relationship
to G2A latency. At a high level, the total G2G latency
encompasses the delay between the input at the acquisition
and stitching block and the output of the rendering block.
It comprises network latency as well as latency originating
from video processing components at both the transmitter
and client sides. The overall G2G latency can be expressed
as the sum of delays incurred during camera acquisition,
encoding, network transmission, decoding, and display
processing. Notably, G2A latency can be derived from G2G
latency by subtracting the latency introduced during the
rendering and display processes.

Table 3 presents a breakdown of G2G latency for a
state-of-the-art WebRTC-based implementation of an ODV
streaming pipeline [46]. This pipeline transmits 8K reso-
lution 360◦ videos captured using an Insta 360 camera to
a Samsung S10 client. The latency breakdown in Table 3
highlights that the acquisition and stitching process, along
with the encoder, contributes to approximately 80% of the
total G2G latency. We note that the total G2G latency shown
in Table 3 also includes the transmission latency, incurred
over the network. It is important to note that the latency
introduced at the transmitter scales proportionally with the
video resolution and the frame rate.

Based on the preceding discussion, it can be deduced
that reducing latency entails reducing the number of
processed pixels across the ODV streaming pipeline, which
is primarily determined by the frame rate and resolution.
Additionally, higher frame rates and quality necessitate
increased transmission rates, resulting in higher overheads
in transmission delay and transmit power. On the other
hand, when the encoding bitrate does not dynamically
adapt to fluctuations in the wireless channel conditions,
the queuing delay increases due to the generation of more
data than the instantaneous wireless channel capacity,
leading to an increased E2E delay. As a result, efforts to
minimize latency have a direct impact on video quality.
Therefore, the design of wireless communications for
UAV-based ODV streaming predominantly revolves around
maximizing video quality while adhering to a latency

TABLE 3. Glass-to-Glass Latency Brake up [46]

Block Latency (ms)

Tr
an

sm
itt

er

Live Streaming 503

FFMpeg Decoder 568

360◦ stitching 28.5

HEVC encoder 406

Video packetizer 1.9

Total latency at transmitter 1508

C
lie

nt

RTP Packet 79

Decoder 34

Renderer 14

Total latency at client 127

Total G2G latency 1745-1856

constraint, typically imposed as a delay outage probability
constraint representing the probability of packet delay
exceeding a predefined delay budget. Note that, the delay
outage probability constraint only encompasses queuing and
transmission delays, focusing on a portion of the overall
G2G delay by ignoring the latency introduced during the
preprocessing, encoding, and packaging of the ODV data.

Motion-to-photon latency: For viewport-dependent
streaming, the user’s quality of service is better captured by
the latency metrics such as M2P latency and motion-to-high
resolution latency. M2P latency measures the delay required
to display the new viewport corresponding to the user’s
updated viewing direction after head movement. It measures
the time needed to request and render the viewport aligned
with the user’s viewing direction. The specific streaming
approach and the technology of the HMD can influence
the motion-to-photon latency. Additionally, recent work
presented in [47] demonstrates the potential of utilizing
head motion prediction algorithms at the end user’s side to
significantly reduce the M2P latency. These algorithms can
effectively anticipate the user’s Head Movements (HMs)
and optimize the rendering process accordingly.

B. ODV QUALITY
In addition to the latency metrics described above, an end
user’s Quality-of-experience (QoE) is primarily determined
by the perceived video quality. For 2D videos, widely used
full-reference objective quality metrics include Peak Signal-
to-noise Ratio (PSNR), Structural Similarity Index Mea-
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sure (SSIM), and Video Multi-method Assessment Fusion
(VMAF). These metrics provide a comprehensive assessment
of the perceived quality by comparing the original and
reconstructed videos. However, for 360-degree video content,
specialized quality metrics have been proposed to account
for the unique geometrical distortions introduced by the
spherical representation. Notable examples include Spherical
PSNR (S-PSNR) and weighted to spherically uniform PSNR,
which are full-reference objective quality metrics specifically
developed for 360-degree video content [48]. However, to
assess video quality in the presence of imminent frame
drops due to adverse wireless channel conditions, novel no-
reference objective quality metrics must be developed. This
is crucial as the majority of existing AI-based no-reference
quality metrics rely on data availability, which is not always
guaranteed in scenarios with frame drops.

As noted earlier, video quality is influenced by various
factors, including encoding bitrate, frame resolution, frame
rate, and the characteristics of the air-to-ground wireless
channel. Generally, higher quality and lower distortion can
be achieved by using a higher bitrate (or resolution) while
exploiting the favorable channel conditions. However, it is
important to note that bitrate selection not only affects video
quality but also impacts latency, via increased processing
and queuing delay. In addition, a higher bitrate necessitates a
more stringent throughput requirement, posing challenges for
efficient wireless resource allocation. Therefore, the system
design is characterized by a trade-off between reconstruction
quality/distortion and bitrate selection, which is impacted
by the requirement for optimal provisioning of wireless
resources to meet the selected video bitrate.

Note that, in contemporary systems, the enhancement in
video quality not only increases the latency, but also the en-
ergy consumption in the pre-processing and encoding stages
[49]. In particular, the energy consumption increases in direct
proportion to the increase in the number of pixels, frames,
and bitrate used for encoding. Considering the limited energy
available3 on a UAV, the QoE implicitly affects the UAV
flight time. In the following, we elaborate on this trade-off.

C. UAV ENERGY CONSUMPTION/ FLIGHT TIME
The energy consumed by a UAV during movement is re-
ferred to as “propulsion energy,” which is influenced by
the UAV’s velocity and acceleration. Additionally, when the
UAV hovers at a fixed position while streaming the video, it
consumes “hovering energy” [52], [53]. On the other hand,
as discussed below, the A2G channel between the UAV and
the ground user directly depends on the UAV’s position in
the 3D space which, in turn, also determines the energy
consumption. For instance, the small-scale fading component
of the UAV-ground wireless channel can be modeled as an
“angle-dependent Rician fading channel” with the Rician

3Majority of the UAVs are equipped with a single battery to power the
drone, LIDAR, and the CPU [50], [51] and the battery size is limited by
the weight consideration.

factor directly proportional to the UAV-ground elevation
angle [54]. This model captures the fact that as the elevation
angle increases, the UAV-ground link tends to experience
less scattering, resulting in a larger Line-of-sight (LoS)
component. In addition, the large-scale fading component,
which includes path-loss and shadowing, depends not only
on the 3D locations of the UAV and the ground user but also
on the geographic distribution of buildings. In urban areas,
the signal propagation of a UAV flying at a lower altitude
may be obstructed by buildings, leading to the shadowing
effect [55]. In contrast, when the UAV transmits at a higher
altitude, it only experiences path loss without any shadowing.
However, conducting a comprehensive path-loss measure-
ment for a wide geographic area is infeasible. Therefore,
a generic probabilistic A2G channel model that statistically
incorporates both LoS and Non Line-of-sight (NLoS) large-
scale fading is used [56]. In this model, the probability
of experiencing LoS path increases as the UAV raises its
altitude or moves closer to the ground user horizontally.

Note that the energy consumed in data transmission forms
an important component of the onboard energy consumption
of a UAV, which also includes the transmit power. Further,
the transmit power affects both the latency as well as the
quality of the received video, as it determines the probability
of the successful transmission of data packets. While the
power consumption for communications is notably lower
than that for hovering and propulsion, it is not insignificant
[57] and thus warrants optimization. Overall, due to the
limited on-board energy, the total power/energy consumption
– including the power consumption of the onboard Graphics
Processing Unit (GPU) used for encoding and pre-processing
– becomes a crucial factor in the design of UAV-based real-
time 360◦ video streaming systems, significantly impacting
the design choices.

Thus, the trajectory and position of a UAV affect not only
its energy consumption but also the quality of the transmitted
video. Hence, in the deployment and trajectory design of
UAVs for video streaming, the distinctive features of the air-
to-ground channel, as well as the propulsion and hovering
energy consumption needs to be accounted.

D. BENCHMARKING AND OPTIMIZATION
The metrics to be optimized for UAV-based real-time stream-
ing consist of perceived video quality, flight time, required
bandwidth, and various latency measures (e.g., E2E, M2P,
or motion-to-high-resolution/quality latency). Low M2P la-
tency is particularly important to minimize user discomfort
when changing the displayed viewport while achieving low
E2E latency is crucial to enable accurate remote control,
especially during high-speed flying.

As discussed in Figure 1, ODV streaming strategies can
be categorized as either viewport-dependent or viewport-
independent, depending on whether the FoV is considered
in the optimization process or not. Table 4 benchmarks
the performance of 360◦ video streaming strategies, de-
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TABLE 4. Performance of Streaming Approaches.

Bandwidth Latency Encoding complexity

Viewport-indep. ••• ••• •••
Projection-based ••• ••• •••
Tile-based ••• ••• •••
Performance metrics: High ≡ ••• , Average ≡ ••• , Low ≡ •••

scribed in Sec. III, with respect to required bandwidth,
M2P latency, and encoding complexity4. As can be observed
from Table 4, although the tile-based encoding incurs low-
bandwidth usages and moderate M2P latency, encoding ODV
tiles in multiple representations, each with different rate-
quality characteristics, leads to high encoder computational
complexity and E2E latency. To improve this, the VR In-
dustry Forum guidelines [60] introduced the HEVC-based
FoV Enhanced Video Profile. This profile employs HEVC
encoding to achieve low-quality coverage of the entire 360-
degree video, while high-quality sub-pictures are encoded to
cover specific regions of the video. Each bitstream is then
encapsulated within a track compliant with the HEVC-based
viewport-dependent OMAF profile. The player can subse-
quently request the bitstream covering the viewport in high
quality, along with the low-quality bitstream representing the
entire 360-degree coverage. Moreover, in live scenarios, the
low-quality stream can be transmitted via multicast, allowing
for more efficient bandwidth utilization, while maintaining
ultra-low motion-to-photon latency.

Furthermore, the prediction of end-user HMs can be
leveraged to enhance QoE by assigning higher fetching
priority to tiles within the predicted viewport. This “human-
centric” streaming approach focuses on optimizing the user
experience, in contrast to the “system-centric” approach that
prioritizes overall system performance without considering
user behavior. The design can be categorized as single-user
or cross-user, with the latter considering the behavior of
multiple users in predicting the viewport. These techniques
rely on accurate viewport prediction models, which are used
to optimize the streaming system. In [61], the potential of
predicting HMs for optimizing 360-degree video streaming
over cellular networks was demonstrated, resulting in up to
80% network bandwidth savings. This approach has been
adopted by several research papers and commercial products,
aiming to optimize network and computational resources and
provide a highly immersive experience [62].

4Quantifying the encoding complexity of a video involves measuring
various factors that contribute to the computational complexity and re-
sources required to encode the video. Several factors impact the encoding
complexity: including spatial complexity, temporal complexity, bitrate and
resolution, and quantization parameter. Further, the encoding complexity can
be quantified in terms of metrics such as encoding time and computational
load. We refer the reader to [58], [59] for a further discussion on this.

The following section provides a detailed exploration of
these design challenges and state-of-the-art, by providing a
comprehensive survey of the research efforts in the wireless
community to address the challenges in live immersive
streaming from a UAV.

V. QoE OPTIMIZATION & PERFORMANCE EVALUATION
In this section, we present a comprehensive survey of the
research on optimization and performance evaluation of
UAV-based real-time video streaming systems. First, we
review the work focusing on QoE maximization through op-
timal wireless resource allocation, and next, we describe the
research that also leverages trajectory optimization as an ad-
ditional ‘degree-of-freedom’ for optimizing the performance.
Further, we present an overview of work on evaluating the
performance of these systems in diverse settings.

A. OPTIMIZATION
1) Wireless Resource Allocation for QoE Maximization
The inherent randomness of wireless channels poses a signif-
icant challenge in achieving a high QoE, as varying channel
conditions result in unpredictable latency, which leads to
interrupted or choppy video streaming. Maximizing QoE is
generally approached as a problem of maximizing PSNR by
optimizing wireless resource allocation, including transmit
power, rate, or bandwidth, while adhering to the wireless
network and UAV-imposed constraints. In this section, we
survey state-of-the-art advancements in this area.

In [63], Xia et al. utilized the internal sensor data of
the UAV for adaptive bitrate selection. They leveraged
location, velocity, and acceleration information to predict
future throughput and proactively select the video bitrate
accordingly. The performance was evaluated using a DJI
Matrice 100 drone with an attached Android smartphone in
an outdoor environment, communicating with a laptop on the
ground using the IEEE 802.11n protocol. The simulations
demonstrated that the selected bitrates effectively adapted
to future throughput, maintaining relatively stable video
bitrates over time, resulting in a seamless video viewing
experience despite channel fluctuations. In another study,
Muzaffar et al. [64] studied a multicast video streaming
framework where a UAV delivers video to ground users. The
proposed approach incorporated feedback from the users to
dynamically adjust the transmission rate and video bitrate.
The performance evaluation was conducted using the As-
cTec Pelican drone equipped with a Logitech C920 camera
and employing the IEEE 802.11a protocol and AVC/H.264
video format, investigated throughput, packet loss, and delay.
The rate-adaptation approach demonstrated improvements in
throughput, latency, and packet loss compared to a constant
transmission rate and bitrate baseline, resulting in up to 30%
PSNR gain. These works represent significant advancements
in enhancing QoE through adaptive bitrate selection and rate
control mechanisms, showcasing the potential of optimizing
wireless communications for UAV-based video streaming.
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In [65], the authors considered a multi-UAV setup where
UAVs competed for transmission rates by incurring a cost to
obtain higher rates. Each UAV aimed to maximize its utility,
comprising PSNR and cost, by selecting a transmission rate
within the network capacity budget. The authors designed
a rate allocation algorithm using game theory to address
the rate competition among UAVs. Compared to the equal
rate allocation baseline, the proposed algorithm increased
network utility while considering video quality requirements.

Another line of work, e.g., [66], [67], attempts to maxi-
mize the PSNR by using a Scalable Video Coding (SVC)
based video transmission. In SVC, the video is encoded
into a base layer and N enhancement layers. If the nth
enhancement layer (or quality) is selected for the streamed
video, the base layer and all lower enhancement layers,
i.e., 1, · · · , n − 1, have to be delivered along with the nth
layer [66]. Note that, more enhancement layers lead to a
better quality of the received video, i.e., the higher PSNR,
but require more transmit power at the UAV. In [66], Zhang
et al. considered a system where a UAV transmits video to
a terrestrial BS with SVC. The objective was to maximize
the energy efficiency subject to the delay outage probability
constraint, i.e., the probability that packet delay exceeds a
predetermined delay budget. Energy efficiency is defined
as the ratio of the PSNR to the total power. The optimal
solution jointly determined the number of enhancement
layers and transmit power. In contrast with the baseline,
which randomly selects the number of layers and power,
the proposed approach improved the energy efficiency by
40% and decreased the delay outage probability from 0.3
to 0.05. The work [67] studied a system in which the
base and enhancement layers of the SVC video are sent
from a terrestrial BS and the UAV BSs, with storage and
computation capabilities, to the ground users. Each layer of
the video can be served by either the terrestrial BS or a
UAV BS, i.e., a user can obtain the layers of the video from
multiple BSs. The computation capabilities at the BSs can
be used for video processing, e.g., encoding the video’s base
layer and enhancement layers. In addition, the UAVs without
the storage and computation capabilities act as relays to help
the transmission from the terrestrial BS to the users. Since
the number of enhancement layers affects the video quality,
the users desire more enhancement layers. By optimizing
the transmit power and allocated bandwidth of the BS and
UAVs, the number of enhancement layers for the users,
the video layer assignment (i.e., from which BS), and the
2D deployment of the UAVs, the objective in [67] was to
maximize the sum of all users’ QoE metric, e.g., normalized
PSNR, subject to the constraint on the transmission and
computation delays. The proposed approach achieved 15%
better QoE, i.e., received video quality improvement, than a
baseline, where the video layers for the user originate from a
single BS delivering the highest throughput. In contrast with
the other baselines in which the video layers for all users
originate from the terrestrial BS, and the video transmission

is helped by the UAV relays, the proposed approach achieved
68% QoE enhancement. However, it is important to note that
due to its high computational complexity and lack of support
by broad-based consumer devices, the SVC based approach
is not preferable for real-time video transmission.

We note that all the above-discussed work focused only
on the transmission of 2D videos from UAVs. In contrast
to this, Hu et al. [68] conducted a numerical analysis of
a UAV-based ODV streaming system, where ground users
request specific video tiles within their FoV from the UAV.
The UAVs then transmit the requested tiles to the users
via associated Access Points (APs) which act as decode-
and-forward relays. These APs collaboratively broadcast the
video data to the corresponding users. The objective of
their approach was to maximize the PSNR by scheduling
time slots to the UAVs and associating them with the APs.
The proposed approach yielded an enhancement in PSNR
compared to baselines where APs worked either totally
independently or collaboratively.

2) UAV Deployment and Trajectory Design
Along with wireless resource allocation, such as transmit
power and bandwidth, the maneuverability of UAVs offers an
additional dimension for enhancingstreaming performance,
by improving both throughput and latency. By optimizing the
UAV’s location or trajectory in 3D space, both energy con-
sumption and wireless channel conditions can be improved.

Guo et al. [69] focused on the 3D trajectory design of a
UAV deployed to inspect multiple facilities and transmit real-
time video to a control center. The objective was to minimize
the total energy consumption associated with propulsion
and hovering. The trajectory between successive facilities
directly impacted propulsion energy, while hovering energy
depended on the inspection time at each facility, determined
by video bitrate and transmission latency. Therefore, a trajec-
tory planning algorithm was proposed in [69] to minimize
total energy consumption, assuming a fixed video bitrate.
Simulation results demonstrated that the proposed algorithm
significantly reduced the UAV’s energy consumption and
flight time. The work in [70], undertook joint optimization of
trajectory and resources, e.g., time slots, transmit power, and
transmission rate, for a UAV-based video delivery to multiple
ground users. The trajectory design took into account the
propulsion energy consumption. The authors formulated the
user’s utility as the normalized transmission rate relative to
a predetermined bitrate (considering fairness among users).
They aimed to maximize the lowest time-averaged utility
among all users by jointly designing trajectories and al-
locating wireless resources. The proposed approach out-
performed three baselines: trajectory optimization, wireless
resource optimization, and no optimization. It achieved up
to a 3-fold increase in transmission rate. Building upon
the work in [69], Bur et al. [71] considered a scenario
of collaborative inspection of a fire area by multiple UAV
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TABLE 5. Summary of the QoE Optimization Research

Performance Metrics Optimization Variables

Xia et al. [63] QoE (re-buffering time, jitter, and quality) Transmission rate, video bitrate

Muzaffar et al. [64] & He et al. [65] Video quality Transmission rate

Zhang et al. [66] & Liang et al. [67] Video quality normalized to energy con-
sumed

Transmit power, number of enhancement layers, and
bandwidth allocated

Hu et al. [68] Video quality Scheduling and association with AP

Guo et al. [69] Energy consumption 3-D trajectory design

Zhan et al. [70] Energy consumption and flight time Trajectory design, transmit power, and time slots

Burhanuddin et al. [71] Data transmission rate and latency Transmit power, trajectory, and bitrate

Chakareski et al. [72] Video quality Transmit power, trajectory, and coding

Khan et al. [73] Video quality Trajectory, UAV deployment, and bitrate allocation

users, with the inspection videos sent to a UAV-BS. The
optimization involved the transmit power of all UAVs, 3D
trajectories of UAV users, and dynamic bitrates of the
inspection videos transmitted by the users. The focus was
on QoE maximization, which accounted for transmission
delay violation and the normalized transmission rate based
on the selected video bitrate. Additionally, the transmission
rate was constrained to be greater than the selected video
bitrate, considering the trajectories and transmit power of the
UAVs. The proposed approach supported the transmission
of 720p and 1080p videos with an average delay of 0.05
ms, whereas a greedy approach relying on immediate QoE
decisions only supported 140p videos with an average delay
of 1.2 ms. Overall, these studies highlight the importance of
jointly optimizing UAV trajectories and resource allocation
to enhance video streaming performance, achieving energy
efficiency, reduced delay, and improved QoE. In [72], the
authors developed a dynamic placement strategy for multiple
UAVs to maximize the expected immersion fidelity for a
scene of interest. The objective was to minimize the overall
reconstruction error of all users by optimizing transmit power
and source-channel coding.

Furthermore, Khan et al. [73] investigated a UAV-to-
UAV communication network where UAVs collaboratively
streamed video to a ground server. Their approach involved
utilizing dual paths for transmitting SVC video with one
enhancement layer. The base layer is sent directly from a
UAV to the ground server via a radio frequency link, while
the enhancement layer is relayed to the server by neighboring
UAVs using free-space-optical links. The objective was to
minimize distortion in the received video by jointly opti-
mizing the bitrates of the base and enhancement layers, the
routing path, and UAVs deployment. The optimization was
subject to a constraint on propulsion energy consumption
and the channel capacity’s bitrate limitations. The proposed
approach achieved an average PSNR gain of 6 dB, compared
to a baseline approach that used dual paths with only radio

TABLE 6. Summary of Testbed & Measurement Activities

Work Measurement Objectives

Stornig et al. [74] Impact of UAV mobility on video quality & latency

Zhou et al. [75] To evaluate transmission delay, packet loss proba-
bility of control command and video data

Jin et al. [76] Study G2G delay and transmisison rates over 4G
and 5G networks

Taleb et al. [77] Measurement of PSNR and G2G delay over 4G
and 5G networks

Qazi et al. [78] &
Sinha et al. [79]

Throughput, delay, and packet loss evaluation in
various indoor and outdoor network configurations

Naveed et al. [80] To study the relationship between RSRP and
throughput, and its impact on video quality

Liu et al. [81] &
Nihei et al. [82]

Evaluate the effect of multipath streaming on E2E
delay

Yu et al. [83] Throughput and energy performance for 4K un-
compressed video transmission over mm-wave net-
works

frequency links, without optimizing the routing path and
UAV deployment. In summary, Khan et al. explored UAV-
to-UAV communication networks, demonstrating the benefits
of jointly optimizing routing paths, UAV deployment, and
bitrate allocation for enhanced video streaming performance.

B. TESTBED & MEASUREMENT ACTIVITIES
In the following, we survey the testbed setups and measure-
ment activities focused on evaluating the video quality and
the network performance, characterized by throughput and
latency, for video transmission from a UAV.

Stornig et al. [74] employed the ns-3 network simulator
to study E2E delays and video quality metrics (PSNR and
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SSIM) for video streaming over 4G networks. They modeled
the UAV’s 3D trajectory using a Gauss-Markov mobility
model, and the video traffic was simulated using the MPEG-
4 formats with the Evalvid application. The impact of UAV
mobility on latency performance was thoroughly examined.
Simulation results indicated that approximately two-thirds of
frames were received with good or excellent quality, while
27% of frames in regular mobility and 30% of frames in high
mobility exhibited inferior quality. Moreover, the average
PSNR and SSIM values for the received video were 33 dB
and 0.945, respectively, indicating good quality.

In the testbed presented in [75], a DJI Matrice 100 drone
equipped with the Quectel EC25 Long Term Evolution
(LTE) module and a Raspberry Pi camera were utilized. A
computer with a USRP B210 radio frequency unit served
as the BS, connected to the UAV remote controller via a
wireline connection. The experiments were conducted in-
doors using the AVC/H.264 encoded videos. Various metrics
were evaluated, including transmission delay, packet loss
probability of control commands, and video data throughput.
The results demonstrated that when the control command
was updated less than 40 times per second, the command
delivery experienced a 20 ms transmission delay without
any packet loss. Also, the average delay and throughput for
480p and 720p video resolutions ranged from 1.5 s to 5.5
s, and from 2 Mbps to 9 Mbps, respectively. In [76], the
authors evaluated the performance of a testbed equipped with
the Huawei MH5000 5G module, operating in an outdoor
environment. The transmission rates for streaming 1080p
video in HEVC/H.265 format over 4G and 5G networks were
measured at 16 Mbps and 97 Mbps, respectively. The G2G
delays were evaluated as 3 s and 1.2 s for the respective
networks. Additionally, the E2E delay of control command
delivery was measured to be 30 ms in the 5G network.

In UAV teleportation, an operator at a remote location
guides the UAV to accomplish tasks, over a live video feed.
This requires simultaneous uplink streaming of real-time
video and downlink delivery of control commands. Targeting
these applications, the work in [77] implemented an immer-
sive UAV control testbed using the Oculus Quest 2 HMD
to control UAV movement and FoV over 4G, 5G, and WiFi
networks. The Insta360 One X camera captured 360◦ video,
and streaming rates of 2 Mbps to 8 Mbps were considered.
Various delay metrics were evaluated: G2G delay, glass-to-
reaction-to-execution delay, and sensor reaction delay. The
G2G delay ranged from 0.595 sec. to 0.985 sec., the glass-
to-reaction-to-execution delay ranged from 0.89 sec. to 1.38
sec., and the sensor reaction delay ranged from 0.67 sec.
to 1.12 sec., as the streaming rate varied from 2 Mbps
to 8 Mbps. The control command transmission delay was
measured at 138 ms, 103 ms, and 88 ms for 4G, 5G, and
WiFi networks, respectively. Additionally, the PSNR of the
received video for 720p and 4K resolutions ranged from 30
to 47 dB.

In [78], [80], the network simulator ns-3 and Evalvid
application were used to investigate the performance of MP4
format video transmission from the UAV to the BS in 4G
networks. The study in [78] primarily focused on throughput
investigation in both outdoor and indoor environments. In
the outdoor scenario, the average throughput achieved by
a static macrocell UAV was found to be 60 kbps, which
decreased to 20 kbps as the UAV moved at speeds ranging
from 1 to 5 m/s. In the indoor environment, the improvement
in throughput was more significant for multi-story buildings
with an increased number of deployed femtocell BSs. In a
related work, Sinha et al. [79] leveraged network simulator
ns-2.29 to evaluate the throughput, packet loss, packet re-
transmission, and E2E delay performance of video streaming
between UAVs and from a UAV to the ground control station,
in different network configurations, including wireless local
area network (WLAN), WLAN router, WiFi hotspot, and
WiFi Direct. Results indicated that WiFi Direct achieved
the best performance for all metrics, followed by the WiFi
hotspot, while the WLAN network exhibited the poorest
performance in all considered metrics.

Naveed et al. [80] explored the relationship between the
Reference Signal Received Power (RSRP) and through-
put. Their findings revealed that as the RSRP varied from
-110 dBm to -75 dBm, the UAV achieved video streaming
throughput ranging between 2 Kbps and 80 Kbps. Addi-
tionally, the authors evaluated the received video quality
using PSNR and SSIM scores under various wireless channel
conditions. The PSNR scores were observed to be 49.41
dB, 35.42 dB, and 24.31 dB in the best, good, and poor
channel conditions, respectively. Similarly, the SSIM scores
were found to be 0.99, 0.63, and 0.35 in the respective chan-
nel conditions. Furthermore, the effects of various channel
conditions on video quality were visually highlighted.

The performance evaluation of multi-path video streaming
in 4G networks was conducted by Liu & Jiang [81], and
Nihei et al. [82]. In the testbed presented in [81], video
data was transmitted from dual devices inside the UAV to
a smartphone. The dual-stream approach employed in this
study demonstrated the capability to reduce the E2E delay
to approximately 50 ms. In an independent study, Nihei
et al. [82] tested the multi-path video streaming method
in 4G networks, for forest fire surveillance, by distributing
the video data over two 4G mobile network operators in
Indonesia. The objective of data splitting was to minimize
the average E2E delay. The experimental setup involved the
use of a DJI Spreading Wings S800 drone equipped with
a Raspberry Pi. Outdoor experiments were conducted using
the AVC/H.264 format encoded videos. Visual illustrations
provided in the study showcased the quality improvement
achieved with the multi-path method. The performance of
60 GHz mmWave for video transmission was evaluated by
Yu et al. [83]. In their experiment, conducted in an outdoor
environment, a 4K uncompressed video was transmitted from
the UAV to a nearby server to offload further computations.
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The testbed achieved a throughput of 1.65 Gbps, and the
results indicated that offloading computations to the server
enabled the UAV to save 271.8 watts in computations at the
expense of 4.1 watts for mmWave communication.

Based on the aforementioned results, it can be concluded
that the design of wireless systems for UAV-based video
streaming can vary depending on the specific wireless
network architectures employed. Each network architecture
comes with its restrictions, advantages, overheads, and hard-
ware requirements, leading to diverse performance outcomes.
These evaluation outcomes can also serve as guidance for
selecting an appropriate network architecture, depending on
the application requirements of UAV-based video streaming.
It is worth noting that while most of the studies discussed
in this section focused on non-real-time video streaming,
they offer valuable insights into the design of UAV-based
real-time ODV streaming. For example, the work by Yu et
al. [83] emphasizes the importance of joint communications,
computation, and control design for UAV-based real-time
video streaming. Similarly, the results presented in [81],
[82] demonstrate the effectiveness of multi-path streaming
in significantly reducing E2E delays.

VI. OVERVIEW OF 3GPP STANDARDIZATION ACTIVITIES
In this section, we survey the relevant standardization ac-
tivities conducted by 3GPP. The standardization activities
related to UAV-based immersive video streaming within the
3GPP can be divided into two main categories. The first
category focuses on the integration of UAVs with cellular
networks, while the second category includes efforts on 5G
support for media streaming applications, such as augmented
reality, VR, and real-time communication. In the rest of the
section, we provide an overview of the recent advancements
and state-of-the-art in these two areas.

A. COMMUNICATION for UAVs
To evaluate the potential of LTE networks in supporting
UAVs through cellular connectivity, the 3GPP initiated the
Release 15 study in March 2017 [84]. The findings of this
study are documented in TR 36.777 [85]. The study revealed
that the LoS signal propagation in UAV communications
increases the likelihood of severe interference in both uplink
and downlink scenarios. Consequently, various interference
detection and mitigation solutions were proposed as study
and work items. Additionally, solutions related to mobil-
ity information management and aerial user identification
were put forth. In Release 16, the focus shifted towards
investigating the feasibility of remotely identifying UAVs
[86]. In Release 17, 3GPP further addressed the operational
5G support for UAVs by providing functionalities for UAV
authentication, authorization, and tracking [87]. Moreover, it
allows for command and control authorization.

TABLE 7. Summary of 3GPP Release 18 Activities for Supporting Media

Streaming over 5G Networks

3GPP Document Focus

TS 26.501 [89]
5G Media Streaming (5GMS);

General description and architecture

TS 26.506 [90]
5G real-time media communication

architecture

TS 26.522 [91]
5G real-time media transport

protocol configuration

TS 26.803 [92]
Study on 5G media streaming
extensions for edge processing

TR 26.927 [93]
Artificial intelligence and machine

learning in 5G media services

B. SUPPORT FOR MEDIA STREAMING OVER 5G
The support for VR over wireless networks was investigated
in 3GPP Release 15, and conclusions are documented in
TR 26.918 [88]. This report aimed to identify the potential
gaps and use cases for facilitating VR services over wireless
networks. Further, Release 17 TS 26.118 introduced oper-
ation points, such as resolution and color mappings, and
defined media profiles for the distribution of VR content. To
address the challenges associated with real-time immersive
media streaming, Release 18 of 3GPP is currently investi-
gating several relevant issues. For a comprehensive overview
of the activities under Release 18, refer to Table 7.

Based on the above discussion, we note that the develop-
ment of UAV-based real-time immersive streaming system
is still in its infancy. For instance, the choice of the most
suitable video encoder is still not clear from the available
set of standard encoders. A key reason for this is the lack
of a standard evaluation approach to provide a common
benchmark for the developed algorithms. Towards this, in
the following section, we present a dataset consisting of 360◦

videos captured from a UAV under various flying conditions.

VII. AERIAL ODV DATASET
As discussed earlier, the utilization of visual attention and
saliency information can provide valuable insights into hu-
man visual scene analysis patterns. Visual attention and
saliency information can be derived by analyzing viewers’
HM and Eye Movement (EM) during video playback. This
knowledge can be harnessed to develop effective encoding
and streaming methods. However, it is important to note that
for real-time video transmission, the HM and EM data can
only be collected causally. Therefore, it needs to be collected
in real-time and leveraged in an online manner to enhance
the performance of real-time ODV streaming from UAV. On
the other hand, there is no existing dataset containing aerial
ODVs captured from a UAV. In this section, we present a
survey of ODV datasets containing EM and HM information.
In addition, we introduce a new dataset that we have curated
for this study, containing ODVs captured from a UAV.
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TABLE 8. Summary of Existing Datasets

Dataset Resolution Frame rate Dimension Description

EyeTrackUAV2 [94] 1280× 720 and 720× 420 30 fps 2D Eye tracking data

AVS1K [95] 1280× 720 30 fps 2D Eye tracking data

WinesLab [96] 1080× 1920 30 fps 360◦ Videos recorded using both handheld and UAV mounted camera

360 Track [97] 3840× 2160 30 fps 360◦ Includes the ground truth for tracking

Proposed 3840× 2160 30− 50 fps 360◦ Table 9

In the literature, several ODV datasets contain EM and
HM information of viewers [98]. For better understanding
the user behavior while watching ODVs, these datasets
categorize the ODVs, based on the number of moving objects
and camera motion, and include users’ feedback about their
viewing experience [99]. In contrast, [100] classified the
videos based on their genre, such as documentaries, movies,
etc. The majority of these datasets consist of videos with
3DoF which makes them less suitable for learning the user
viewing pattern for a UAV-based ODV streaming. Indeed,
inferences obtained using ODV with 3DoF may not be
applicable for video transmission platforms with 6DoF, such
as UAV-based ODV transmission. This raises the need to
develop novel datasets of ODVs captured using UAVs. In
the following, we briefly survey the existing datasets based
on the videos captured from UAVs.

While many datasets in the literature include images and
2D videos captured by UAVs for applications such as remote
sensing and navigation, only a limited number of publicly
available datasets capture EM and HM information for UAV-
recorded videos, with only one dataset currently accessible
[96]. Similarly, there is only one dataset available for UAV-
based 360◦ videos. We summarize these datasets in Table 8.
The EyeTrackUAV2 dataset [94] collects binocular gaze
information from 30 viewers watching 43 2D videos under
both free viewing and task conditions. The AVS1K dataset
comprises ground truth salient object regions for 1000 videos
observed by 24 viewers in free viewing conditions. The
WinesLab dataset contains eleven 360◦ videos, seven of
which were recorded by a pedestrian using a handheld
camera, and the remaining four were captured using a drone-
mounted camera in various surroundings and lighting condi-
tions. The 360Track dataset consists of nine 360◦ videos with
manually marked ground truth positions of salient objects. In
the following, we describe our dataset of aerial 360◦ videos,
presented in Table 9.

The dataset presented in Table 9 comprises a total of
ten 360-degree videos. The resolution of all videos, ex-
cept for “FreeStyleParaGliding,” is 3840 × 1920, while
“FreeStyleParaGliding” has resolution 5120× 2560. Each
video sequence in the dataset has a length of 40 seconds.
All the videos, except “DubaiVertical” and “AbuDhabiCity,”
have a frame rate of 30 frames per second (fps), whereas
“DubaiVertical” and “AbuDhabiCity” consist of 50 fps. The

dataset consists of five outdoor videos, one sports video, and
one video recorded in nighttime conditions. The “NorthPo-
leTrip” video captures motion in the azimuth plane, while
the “DubaiVertical” video captures motion in the elevation.

In the following section, we use the above dataset to study
the suitability of standard video encoders for real-time 360◦

streaming from a UAV. Also, we present our testbed for 360◦

streaming from a UAV.

VIII. BENCHMARK AND ANALYSIS
In this section, we first perform a comprehensive perfor-
mance benchmarking of five video coding standards and
formats (i.e., AVC/H.264, HEVC/H.265, VVC/H.266, VP9,
and AV1) through their software implementations: libx264,
libx265, Fraunhofer versatile video encoder (VVenC),
libvpx-vp9, and libsvtav1, respectively. We also considered
two NVIDIA hardware encoders, namely hevc nvenc, and
avc nvenc, for the AVC/H.264 and HEVC/H.265, respec-
tively. Next, we present a real-time drone ODV streaming
testbed, employing a hardware AVC/H.264 encoder and
WebRTC streaming protocol, for remote UAV control and
navigation with a 6DoF viewing experience.

A. CODING AND COMPLEXITY PERFORMANCE
In this section, we evaluate the coding and latency per-
formance of the above-mentioned software and hardware
encoders on the video sequences contained in the dataset.
Table 11 lists the used hardware and software encoder
libraries for the five standards and formats. All the encoders
are configured in their fastest preset, targeting live 360◦

video streaming applications. The encoding was conducted
on a DELL precision 7820 tower workstation, equipped with
an Intel Xeon CPU with 8 cores, running at a maximum
frequency of 3.9 GHz, and a NVIDIA RTX A5000 GPU.
The quality of decoded 360◦ videos is assessed using three
objective quality metrics: Spherical PSNR (S-PSNR), SSIM,
and VMAF. The videos are encoded at four practical UAV
target bitrates of 1.5 Mbps, 3 Mbps, 4.5 Mbps, and 5.8
Mbps [101], enabling the computation of the Bjøntegaard-
Delta rate (BD-rate) performance. The BD-rate gives the
average bitrate saving or loss compared to the anchor encoder
over the four considered bitrates.

Figures 4(a), 4(b), and 4(c) provide the average quality
performance of the encoders on the proposed dataset, using
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TABLE 9. Summary of Our Dataset

Sequence Name Spatial Resolution #Frames Frame rate (fps) Scene Feature

PetraJordan 3840 × 1920 1200 30 Outdoor

CapeTownCityPenorama 3840 × 1920 1200 30 Outdoor

CapeTownCityBeach 3840 × 1920 1200 30 Outdoor

CapeTownCityGarden 3840 × 1920 1200 30 Outdoor

CapeTownCitySquare 3840 × 1920 1200 30 Outdoor

FreeStyleParaGliding 5120 × 1920 1200 30 Sports

StPetersBergMuseum 3840 × 1920 1200 30 Night

NorthPoleTrip 3840 × 1920 1200 30 Motion

DubaiVertical 3840 × 1920 2000 50 Vertical Motion

AbuDhabiCity 3840 × 1920 2000 50 City Panorama

TABLE 10. Specifications of Workstation Used for Simulations

CPU Intel Xeon Silver

#cores 8

Max Freq (GHz) 3.9

RAM 32 GB

SSD 256 GB

GPU NVIDIA Ampere RTX A5000

Operating System Ubuntu 20.04

three distinct quality metrics: S-PSNR, SSIM, and VMAF.
From the results, it is evident that the AV1 software encoder
achieves the highest quality in terms of S-PSNR and VMAF
across all four bitrates. The performance of VVenC software
encoder is quite close to AV1, particularly at high bitrates,
for the SSIM metric. On the other hand, the libx264 soft-
ware encoder achieves the lowest quality among the tested
encoders. It is worth noting that the hardware design for the
AVC/H.264 standard significantly outperforms the libx264
software encoder across all quality metrics and bitrates. In-
terestingly, the software implementation of the HEVC/H.265
standard exhibits slightly higher quality than its hardware
implementation. This can be attributed to increased focus
on speed and complexity introduced by the new tools in
the HEVC/H.265 standard, making the configurability of a
hardware encoder for HEVC more challenging compared to
the AVC/H.264 hardware encoders.

The associated BD-rate results concerning the AVC/H.264
software encoder for S-PSNR, SSIM, and VMAF are de-
picted in Figures 5(a), 5(b), and 5(c), respectively. These
metrics are plotted against the encoding time. The re-
sults reveal that the hardware encoders (h264 nvenc and
h265 nvenc) and the AV1 software encoder offer the best

TABLE 11. Video Encoder SW/HW Libraries

Standard Software (version) Hardware

AVC/H.264 libx264 [102] (v0.164.3106) h264 nvenc [103]

HEVC/H.265 libx265 [104] (v3.5+1) hevc nvenc [105]

VVC/H.266 VVenC [106] (v1.7.0) -

AV1 libsvtav1 [107] (v1.4.1) -

VP9 libvpx-vp9 [108] (v1.11.0) -

tradeoff between coding efficiency and encoding time. No-
tably, only the hardware encoders can achieve real-time
encoding at 30 frames per second. To achieve real-time
encoding, the AV1, AVC, and VP9 software encoders would
require a powerful processor with multiple cores operating
at a higher frequency. In contrast, the VVC/H.266 soft-
ware encoder (VVenC) exhibits significantly longer encoding
times, taking more than one hour to encode a 10-second
video. The new coding tools introduced in the VVC/H.266
standard have expanded the search space for rate-distortion
optimizations, leading to increased encoding complexity. To
enable real-time capability, advanced algorithmic optimiza-
tions, along with more efficient low-level optimizations,
are necessary. Furthermore, the development of efficient
hardware designs for the VVC/H.266 standard becomes
crucial for low-energy embedded devices to achieve real-
time encoding and benefit from its high coding efficiency
and advanced features for ODV contents.

B. TESTBED for UAV 360◦ VIDEO STREAMING
The proposed testbed consists of a UAV equipped with a
360-degree camera and a 5G modem, and an edge server.
The 360-degree camera captures a comprehensive view of
the surroundings, providing an immersive 6DoF viewing
experience. The 5G modem enables real-time transmission
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FIGURE 4. The average quality in S-PSNR (dB), SSIM, and VMAF at different bit rates for the seven considered encoders.
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FIGURE 5. The BD-rate performance in S-PSNR (dB), SSIM, and VMAF versus encoding time for the seven considered encoders on 10-second video
sequences.

of high-resolution footage from the UAV to the edge server.
The user connects to the edge server through an HMD to
view live 4K 360-degree video footage.

Figure 6(a) depicts the setup for the field tests conducted
with a First Person View (FPV) UAV operator controlling the
UAV in a desert environment. The operator sent commands
to the UAV through a central server, located 100 km away
from both the UAV and the operator. Both the UAV and the
operator were connected to a consumer 5G network. The
details of other settings are outlined in Table 12. During the
experiment, the operator flew the drone at a fixed position,
while varying the altitude. Simultaneously, the onboard com-
puter of the UAV recorded the information received from the
5G modem, including the Cell ID, throughput, and network
latency from the UAV to the central server.

Figures 7(a) and 7(b) provide insights into the handovers
and the instantaneous throughput as a function of altitude in
the scenario of vertical movement of the drone. In Figure
7(a), it can be observed that the drone experienced a total of
ten handovers, across four available BSs that cover the flying
area. Figure 7(b) shows that most handovers resulted in
improved instantaneous throughput. However, the throughput
exhibited significant fluctuations due to fluctuating wireless
connectivity and interference. At higher altitudes, the drone
encountered interference from BSs, primarily designed for
ground-based users. Consequently, the latency and quality

TABLE 12. Testbed Configuration for 360◦ Video Streaming over UAV.

Parameter Value

5G Max(upload/download) 50 Mbps/100 Mbps
Server CPU 8 cores @ 2.5 GHz
Server memory 16 Gb
Distance UAV to Server 500 m
Distance VR HMD/UAV to Server 100 Km
UAV flight speed during tests 25Km/h
UAV’s onboard computer Jetson nano
UAV’s weight 2.5 Kg
360-degree camera Ricoh Theta Z1

of the video and control signals degraded and thereby posed
challenges for effective drone navigation by the operator.
Our field tests showcased the control of UAV through 5G
using a VR headset and 360-degree video feedback, at
altitudes of up to 600 meters. These tests shed light on
the potential challenges imposed by interfering BSs and
suboptimal handover conditions in VR-based UAV control.

IX. OPEN CHALLENGES
From Figure 7(b), it is evident that UAV communication, par-
ticularly at high altitudes and during mobility, is susceptible
to significant throughput variation. This inherent issue raises
concerns about attaining a high video quality and low G2G
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latency. To address these challenges, several open research
directions need to be pursued. In the following, we describe
a few prominent open directions.

A. ADAPTIVE LOW-LATENCY 360◦ VIDEO STREAMING
Ensuring rapid and accurate adaptation of the video bitrate
to channel throughput fluctuations is crucial to prevent
buffering at both the transmitter and receiver, and thereby
minimizing G2G latency. In this regard, utilizing information
from the physical layer, as well as UAV status, position, and
environmental conditions, can significantly enhance through-
put prediction, and facilitate proactive adaptation of encoder
parameters such as spatial resolution, temporal frame rate,
quantization parameter, and projection format. Furthermore,
sophisticated rate control mechanisms can further minimize
G2G latency and maximize perceived quality. Advanced
machine learning techniques, including deep reinforcement
learning, have shown promise in bitrate adaptation while
optimizing perceived video quality [109], [110]. However,
leveraging these machine learning techniques for real-time
bitrate adaptation remains an open challenge. Addition-
ally, exploring advanced optimization techniques, like FoV
prediction, can prioritize higher quality for the viewport
of aerial ODVs, thereby improving bandwidth utilization
and enhancing the user experience. Addressing these open
research challenges will be pivotal in facilitating improved
QoE, reduced latency, and superior video quality.

Further, as observed in Table 3, encoding complexity con-
stitutes a major component of the G2G latency. Leveraging
the latest video coding standards and efficient hardware
encoders, such as hevc nvenc, can substantially enhance
perceived video quality. The hevc nvenc encoder enables
real-time encoding with low energy consumption [111],
harnessing the coding efficiency promised by the advanced
video coding standard, HEVC/H.265. This, in turn, extends
the UAV’s battery life. At the cloud level, more efficient
software encoders like SVT-AV1 can be utilized for video
transcoding. However, these standard codecs need to be
benchmarked systematically by analyzing their encoding and
decoding latency, quality, and error resilience [112] for a
diverse range of receive Signal-to-noise-ratio (SNR) values
and GOP sizes. In addition, neural-based codec designs can
be explored to develop robust encoders to counter channel-
induced errors [113] and enhance the quality.

B. COOPERATIVE AERIAL VIDEO STREAMING
Cooperative immersive video streaming, exemplified by In-
tel’s Trueview [114], has the potential to enable a truly
immersive viewing experience [115]. This approach allows
users to independently select their preferred viewing angle
by streaming from multiple cameras or sources, leveraging
spatial diversity in terms of viewing angle, content, or geo-
graphic location. In multi-UAV applications, the individual
UAVs collaboratively and cohesively capture videos, which
are then synthesized into a panoramic video. Moreover, em-

(a) Field test (b) UAV

FIGURE 6. Illustration of the field test setting and the UAV configuration.

ploying multiple UAVs enhances the immersive experience
with 6DoF capabilities [116], [117]. However, developing a
multi-UAV cooperative immersive video streaming system
entails addressing a unique set of challenges in joint com-
munication, computation, and control design. Cooperative
aerial video streaming requires effective synchronization
and coordination among the UAVs to ensure comprehensive
scene coverage, without compromising QoE while minimiz-
ing network bandwidth usage. Additionally, capturing more
dynamic events, such as sports or moving ground targets
[115], [117], necessitates accurate motion prediction, such
as player or target movement, which, in turn, relies on
coordinated trajectory planning and 3D placement of UAVs,
considering their battery levels in addition to the QoE.

Note that, streaming videos from all UAVs simultane-
ously poses a significant resource burden. To address this
challenge, bandwidth-saving streaming techniques can be
employed by leveraging users’ attention information [118].
Specifically, UAVs whose videos are deemed unnoticed by
users can remain idle during transmission. However, we
argue that instead of staying idle, these UAVs can contribute
to real-time video streaming, thus enhancing communica-
tion efficiency and throughput further. For instance, the
UAV swarm can collectively form a virtual Multiple-input
and Multiple-output (MIMO) system [119]. This type of
MIMO system exhibits distinct wireless channel charac-
teristics. Considering the unique channel model and the
requirements for throughput and latency, designing a coop-
erative aerial video streaming for real-time and interactive
panoramic videos poses considerable challenges. Addressing
these challenges requires innovative solutions that account
for coordination, resource optimization, wireless channel
characteristics, throughput, and latency requirements.

C. QoE-AWARE CONTROL AND COMMUNICATION
In this section, we discuss mechanisms to support the high
data rates and low latency required for real-time transmission
of aerial ODVs [120]. UAV-based real-time ODV streaming
represents a distinct class of services, encompassing both
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(a) Handover vs. altitude. (b) Throughput vs. handover.

FIGURE 7. Handovers and instantaneous throughput performance versus
the drone altitude in vertical landing flying conditions. The average
throughput values of the cells in green, orange, black, and red are 14.55
Mbps, 17.19 Mbps, 11.21 Mbps, and 10.79 Mbps, respectively.

enhanced mobile broadband and ultra-reliable low-latency
traffic, necessitating novel communication designs. Addi-
tional challenges arise due to their dynamic topology and
limited energy resources [121], [122], requiring judicious
resource allocation strategies [123]. The channel quality and
network throughput of aerial users are also influenced by
their flight trajectory, necessitating the orchestration of joint
QoE-aware resource allocation and drone route selection
mechanisms [124], [125].

One potential approach is to develop QoE-aware Network
Slicing (NS) mechanisms. Unlike traditional QoS-based NS
[126], a dynamic NS framework is needed that considers
UAV mobility and position, optimizes energy levels, and
ensures minimal resource overhead. The NS scheme must
also guarantee strong isolation to minimize the impact on
ground-based users. In multi-UAV streaming systems for
360◦ videos [65], additional challenges arise in resource allo-
cation among UAVs. Each UAV can independently adjust its
encoding bitrate and position [127], competing for resources
with other UAVs in the swarm.

In addition, the design of schemes leveraging video
saliency to predict users’ FoV and employing multicast
transmission techniques based on users’ locations and FoV
correlations can be studied, as grouping and multicasting
can improve network throughput and QoE [128], [129].
Additionally, the design of policies adapting the encoding
bitrate of tiles based on channel quality, available resources,
and content quality, can further enhance QoE [120]. Further-
more, in applications involving the teleoperation of UAVs,
such as fire disaster monitoring [82] and suspicious vehicle
tracking [130], the QoS relies on the interplay between
control command delivery and video data transmission. The
latency experienced in one link can impact the latency budget
of the other link. Moreover, unreliable control command
communication can influence the UAV’s reaction and view
angle, resulting in undesired information for the remote
operator. Therefore, the entanglement and mutual influence
between control command delivery and real-time aerial video
transmission require dedicated consideration in the design.

FIGURE 8. Use case scenario for LLMs control commands for UAV with
360◦ camera.

D. DESIGN OF COMMUNICATION PROTOCOLS
TAILORED FOR UAV-BASED VIDEO STREAMING
Transmission Control Protocol (TCP), due to its inherent
limitations such as connection delays and head-of-line block-
ing, poses challenges in delivering satisfactory QoE for real-
time 360◦ video streaming. Moreover, its implementation
within the operating system kernel hinders the development
and deployment of variants that can be optimized using
application-layer data (e.g., FoV) and other parameters like
UAV position [131]. To address these limitations, protocols
like QUIC [132] have been proposed. Notably, Park et al.
[131] introduced a cross-layer scheduling mechanism for
QUIC, leveraging both application-layer data (e.g., object
sizes and priorities) and network-layer information. Such tai-
lored designs, incorporating specific characteristics of video
streaming and the unique attributes of A2G channels, hold
significant potential for enhancing performance.

Conversely, adopting a semantic communication approach
[133], where the emphasis is on effectively conveying the
intended meaning of information rather than merely trans-
mitting raw data, holds promise for enabling various appli-
cations reliant on real-time streaming from UAV platforms.
However, to leverage the benefits of joint optimization using
both video content and physical layer data, the development
of customizable communication protocols is crucial. For
example, similar to [134], utilizing bandwidth estimation
provided by the WebRTC protocol can enable optimization
of encoding parameters at the application layer, thereby
impacting frame drops and latency.

Furthermore, reported testbed studies frequently rely on
existing protocols without tailored optimization for video
streaming, leading to an inaccurate assessment of real-world
performance. A comprehensive evaluation utilizing wireless
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protocols specifically optimized for UAV-based real-time
360◦ video streaming is crucial to reveal the true state-of-
the-art performance achievable in practical scenarios.

E. LLM FOR IMMERSIVE VIDEO STREAMING
The rapid advancement in natural language processing has
paved the way for the development of Large Language
Model (LLM) like BERT [135], GPT-3/GPT-4, and FAL-
CON. These versatile models push the state-of-the-art on
many downstream tasks, finding applications in various
domains, including conversation, medicine, telecommunica-
tions [136], and robotics [137]. In the context of streaming
360-degree video from one or multiple UAVs, illustrated in
Fig. 8, leveraging these LLMs can greatly enhance perfor-
mance. In the following, we describe some examples to il-
lustrate the potential of LLMs in enhancing the performance
of real-time streaming of aerial 360◦ videos.

In control scenarios, end-users can provide task prompts
to the LLM along with descriptions of the environment cap-
tured by the 360-degree camera. The LLM can then generate
commands for the UAVs to successfully execute tasks while
minimizing energy consumption and avoiding obstacles. No-
tably, the description of the surrounding environment can be
provided either by the end-user or automatically generated by
leveraging vision-language models, such as SimVLM [138],
Flamingo [139], or BLIP-2 [140].

Other use cases integrate LLM and Multimodal Large
Language Model (MLLM) into the video streaming frame-
work for enhanced compression efficiency. The first use case
involves the application of LLM for the lossless compres-
sion of images or videos, serving as an entropy encoder.
Recent research, from DeepMind [141], underscores the
potent versatility of LLMs as general-purpose compressors,
owing to their in-context learning capabilities. Experiments
utilizing Chinchila 70B, solely trained in natural language,
revealed impressive compression ratios, achieving 43.4% on
ImageNet patches. Notably, this rate outperforms domain-
specific image compressors such as Portable Network Graph-
ics (PNG) (58.5%). The second use case harnesses MLLM
shared at both the transmitter and receiver for a lossy coding
setting. The transmitter first generates an accurate description
of the image or video content through the image captioning
capability of the MLLM. Instead of transmitting the image or
video, the text description (semantic information) is then sent
to the receiver, requiring a significantly lower data rate. At
the receiver, the generative capability of the MLLM is used
to reconstruct the image or video based on the received text
description. In addition to the text prompt, the generation can
also be guided by side information like edge map, color map
to generate a more compelling representation. In the third
use case, the MLLM is employed solely at the transmitter
to leverage its code-generation capability, representing the
image or video for transmission. Subsequently, the code,
requiring a lower data rate, is shared with the receiver,

enabling direct utilization to render the image or video
through the code description [142].

The above examples illustrate the tantalizing potential of
LLMs in not only improving the compression performance
but also in configuring the physical layer parameters [143].
Nonetheless, the LLMs still suffer from long inference time
and high memory requirement which needs to be addressed
to leverage LLMs for enhancing the performance of real-
time streaming of aerial ODVs. In addition, there is a need
for development of customized LLMs.

X. CONCLUSION
In this paper, we conducted a thorough survey of chal-
lenges and research efforts in UAV-based immersive video
streaming. By enabling immersive viewing with up to 6DoF,
this technology enhances the QoE for various applications
such as surveillance, autonomous driving, healthcare, and
education. However, real-time streaming of aerial 360-degree
videos poses unique challenges in terms of communications,
computation, and control, owing to the unique characteristics
of the UAV-to-ground wireless channel and limited onboard
energy availability. We highlighted these challenges by first
reviewing the key components of 360-degree video stream-
ing over A2G wireless channels and reviewed the technology
used to achieve low end-to-end latency. Additionally, we
introduced a new dataset consisting of ten 360-degree videos
captured by UAV in diverse flying conditions, enabling us
to evaluate the coding efficiency and complexity of various
software and hardware video encoders. Through our exper-
iments, we found that only hardware implementations of
AVC/H.264 and HEVC/H.265 encoders achieved real-time
encoding, making them suitable for UAV platforms, with
limited computing and energy resources. Furthermore, the
AV1 encoder demonstrated the best coding performance,
albeit with high complexity, and therefore can be utilized
for efficient video transcoding on more powerful devices in
the cloud. Moreover, we presented a testbed for 360-degree
video streaming over a drone with 5G communication,
illustrating the impact of mobility on interference, handovers,
and video quality. Finally, we discussed open challenges and
future research directions to enhance the key performance
metrics of live immersive video streaming over UAVs.

This paper delves into real-time streaming of omnidirec-
tional videos captured via UAVs, offering valuable insights to
enhance the QoE in this domain. The findings in the paper
pave the way for further advancements in live immersive
UAV video streaming, ultimately benefiting a broad spectrum
of applications and industries.
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