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ABSTRACT Quantum computing is commonly considered one highly efficient computing method with
the potential to revolutionize computation technology and solve problems that are currently unsolvable.
However, due to the limitation of hardware equipment and an immature experimental base, quantum
technology is still in its early stages and is far from achieving the expected performance, especially in
solving large-scale complex problems. To break through these barriers, we propose a parallelized quantum
annealing algorithm based on Lagrangian relaxation. The proposed algorithm divides the large-scale
problem into several small problems and then employs multiple quantum computers to solve them. Our
proposed approach overcomes the limited number of qubits and allows quantum computing to solve large-
scale optimization problems. Additionally, we incorporate a local search method to ensure this Lagrangian
relaxation-quantum algorithm achieves an optimal solution. We use the proposed parallelized quantum
annealing algorithm to solve optimal scheduling problems in network function virtualization networks.
The problem is expressed in a nonlinear optimization model that is NP-hard. Our proposed algorithm
presents excellent time performance in solving this virtualized network functions scheduling problem,
compared with the Lagrangian relaxation-based classical algorithm.

INDEX TERMS Lagrangian relaxation, quantum algorithm, network function virtualization, quantum
computing, virtualized network functions scheduling problem, optimization problem, tabu search algorithm

I. INTRODUCTION

IN recent decades, quantum computing entered people’s
vision and has made significant strides in its develop-

ment. In the 1980s, the idea of quantum computing was
initially suggested by physicist Richard Feynman [1]. He
conceived of building hardware based on quantum theories
to simulate quantum dynamic systems. Now researchers
are realizing this vision and extending the application of
quantum computing to the fields of medical development [2],
encryption decoding, communication networks [3], financial

planning [4], [5], and also artificial intelligence [6], [7].
Quantum computing follows the laws of quantum mechanics
to handle problems so that unique quantum characteristics
make quantum computing deliver enhanced computational
efficiency. In studying quantum computing technology in
depth, researchers find that quantum annealing shows promi-
nent potential superiority in solving optimization problems
because the optimal problems have subtle similarities to
the fundamental theory of quantum annealing from the
mathematical aspect. Based on these advantages, quantum
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annealing is placed in great hopes to break the bottleneck of
classical computing and solve complex problems.

Quantum annealing is predominantly grounded in the Ising
model, a mathematical representation of a physical system
consisting of interacting spins. During the quantum anneal-
ing process, the system evolves according to the laws of
quantum mechanics, exploring different spin configurations
in parallel. The system eventually reaches its ground state,
which represents the optimal solution to the problem at hand.
In previous works [8]–[11], quantum annealing has been
proven to be effective in solving certain NP-hard problems.
Based on these research results and also theoretical analysis,
quantum annealing is considered to have the potential to
outperform classical algorithms. However, the applications
of quantum annealing are restricted due to the limitation
of the hardware. To fully utilize the advantage of quantum
annealing, some quantum algorithms are designed to assist
quantum annealing to tackle optimization problems. Alanis
et al. [11] proposed a multi-objective dynamic programming
framework to solve the Pareto-optimal routing problem in
communication networks. The Evolutionary Quantum Pareto
Optimization (EQPO) algorithm, which takes advantage of
quantum parallelism, was developed based on this dynamic
framework. It has been proved that EQPO can find Pareto-
optimal routes in polynomial time. Feng et al. [12] tried
to solve unit commitment problems by a hybrid algorithm
based on a quantum approximate optimization algorithm and
surrogate Lagrangian Relaxation. This algorithm does not
need the optimal dual value to assist the convergence and
so it expands the application scope of the algorithm. The
Benders’ decomposition method was first combined with
quantum computing in [13]. Zhao et al. leveraged quantum
annealers to solve the master problem in Benders’ decom-
position. In [14], they developed a hybrid quantum-classical
multi-cuts Benders’ decomposition (HQCMBD) algorithm
based on the previous paper and applied it to solving the
mixed integer linear programming (MILP) model of the data
center energy management problem. The simulation results
show that the HQCMBD algorithm has better performance
in aspects of success rate, robustness, and so on. Spirited by
these works, and also to mitigate the issue of limited qubits,
we proposed a parallelized quantum annealing algorithm that
integrates quantum annealing with the Lagrangian relaxation
technique to reduce the need for qubits so that quantum
annealing can be employed to solve complex optimization
problems. Additionally, this algorithm incorporates a tabu
search method to assist the search for the global optimum. In
this paper, to validate the practicality and effectiveness of our
proposed algorithm, we use the proposed algorithm to solve
optimization problems in network function virtualization
(NFV) networks.

In recent years, NFV technology, as a transformative
technology of network management, has been attached to
more importance and also more widely used in real-world
scenarios [15], [16]. NFV offers a virtualized environment

that allows network functions to operate on software plat-
forms, thereby enhancing the efficiency of network resource
utilization [17]. In NFV network, virtualized network func-
tions (VNFs), virtualizing network services, are typically
deployed on one or more virtual machines (VMs) that run on
standard servers or in clouds [18], [19]. A crucial challenge
in the networks is to efficiently schedule VNFs in response to
users’ requests, which is generalized as the VNFs scheduling
problem. The VNFs scheduling problem is intricate and
computationally demanding due to the numerous variables
and constraints. In previous work [3], we built an integer
linear programming (ILP) model to address a simplified
VNFs scheduling problem and leveraged quantum annealers
to solve it. Subject to the limited qubits and other hardware
constraints, quantum annealers cannot solve this problem
in large-scale cases and the simulation results presented
instability as the number of variables increased. To address
this issue, we develop a parallelized quantum annealing
algorithm in this paper. We present a more complex system
model of the NFV network and build an optimization model
of the VNFs scheduling problem based on it. This ILP model
has the objective function that minimizes the total delay
of all service chains, which includes processing delay on
VMs and transmission delay between them. The simulation
experiments demonstrate that our algorithm can efficiently
solve the VNFs scheduling problem on a large scale. The
contributions of this paper are summarized as follows:

1) We propose a novel parallelized quantum annealing
algorithm, which employs Lagrangian relaxation to
decompose problem models and leverages quantum
annealing to solve the sub-problem models. It also
includes the tabu search method that is used to assist
in converging to the optimal solution of the original
model.

2) An ILP model of the VNFs scheduling problem is
constructed. This optimization model only with bi-
nary variables has the object of minimizing the total
processing delay and transmission delay in the NFV
network.

3) We conduct simulation experiments to investigate the
performance of the proposed parallelized quantum
annealing algorithm and obtain excellent results that
indicate its superiority in solving efficiency and ro-
bustness compared to the Lagrangian relaxation-based
classical algorithm.

The rest of this paper is organized as follows. Section II
describes our proposed algorithm and elucidates its crucial
parts in detail. Section III introduces the system model and
ILP formulations of the VNFs scheduling problem. This
section also presents steps for decomposing this optimal
problem into two sub-problems using Lagrangian relaxation,
followed by the corresponding transformed QUBO models.
Section IV showcases the simulation results and their anal-
ysis. Finally, Section V concludes the paper.
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II. PROPOSED LAGRANGIAN RELAXATION BASED
PARALLELIZED QUANTUM ANNEALING ALGORITHM
Existing quantum computers cannot be extensively used as
expected because their applications are currently hindered by
several significant limitations, including the limited number
of available qubits, the stability of quantum systems, and
embedding techniques. To overcome these difficulties and
fully exploit quantum annealing for large-scale problem-
solving, we develop a novel parallelized quantum anneal-
ing algorithm combining quantum annealing, Lagrangian
relaxation, and the tabu search method. In this section, we
introduce these three crucial techniques and explain the
proposed algorithm in detail. In Subsection A, there is a brief
introduction to quantum annealing principles and a clear
analysis of the annealing process. Subsection B shows how
to use the Lagrangian relaxation method to decompose the
programming model. Subsection C briefly explains the tabu
search algorithm. In Subsection D, our proposed algorithm is
developed on these computing techniques, and its framework
is shown.

A. QUANTUM ANNEALING
Quantum annealing is similar to the classical algorithm,
simulated annealing. Simulated annealing is a famous heuris-
tic algorithm designed to solve optimization problems by
searching the solution space through thermal fluctuations.
In theory, quantum annealing should perform better than
simulated annealing because quantum annealing leverages
quantum fluctuations rather than thermal fluctuations to get
the optimal solution [20]. Quantum annealing applies quan-
tum efforts like quantum tunneling to accelerate searching
the ground state of an Ising Hamiltonian which corresponds
to the optimal solution of the optimization problems. This
process follows the quantum evolution of the time-dependent
Schrödinger equation. The Schrödinger equation is

i
d

dt
|Ψ(t)⟩ = H(t)|Ψ(t)⟩, (1)

where ψ(t) is the state vector of the quantum system and
the H(t) is the Hamiltonian operator. This equation is the
general description of the quantum system evolution. It is a
great challenge to solve this equation directly because the
computational complexity increases exponentially when the
problem complexity increases. Quantum annealing basically
follows adiabatic evolution, which points out that the quan-
tum system will stay in the ground state if the Hamiltonian
related to the dynamics changes slowly enough.

To obviously analyze the quantum annealing process,
the Hamiltonian of the whole quantum system in adiabatic
evolution is briefly explained as

H(t) = A(t)Hi +B(t)Hf , (2)

where A(t) and B(t) are time-dependent prefactors and they
control the evolution process [21], [22]. Hi and Hf are
the initial Hamiltonian and final Hamiltonian, respectively.
Both can be expressed by linear combinations of several

eigenstates. At the beginning of the adiabatic evolution,
the whole system is at the minimum energy eigenstate of
the initial Hamiltonian state. In other words, A(0) = 1
and B(0) = 0. In the evolution process, A(t) gradually
decreases while B(t) gradually increases so A(t) and B(t)
are supposed to be differentiable. Finally, at time T , the
end of the annealing process, A(T ) reaches 0, and B(T )
arrives at 1, which means the whole quantum system finishes
the state change from the initial Hamiltonian state to the
ground state of the final Hamiltonian. The ground state is
the eigenstate with the lowest eigenvalue, which means the
whole system is at the lowest energy eigenstate. Finally, the
system will stay at the ground state of the final Hamiltonian
in the ideal case.

For quantum computing, the final Hamiltonian can be
represented by the Ising model with operators σz

i , which
shows the interaction state of n qubits in a 2n dimension
Hilbert space. If qubits are prepared as spins, σz

i is the spin
component state of spins projected on axis z component. The
Ising model can be expressed as

H =
∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j , (3)

where σz
i can be set as 1 or −1. hi indicates how the external

field affects the qubit σz
i . Jij is the coupling parameter of

σz
i and σz

j . The external field can have effects on the spin
state which can be spin-up and spin-down. The two spin
states have different energy levels. The sign of hi represents
which spin state is more preferred under the influence of
the external field. The value of hi is determined by the
field strength and the energy of the spin particle. Every spin
can be considered as a magnetic dipole that can produce
a small magnetic field so every spin is influenced by its
neighbor magnetic field. The sign of Jij shows whether
these spins prefer to be aligned or anti-aligned with their
neighbors. It determines the ferromagnetic characteristics
of the substance. The value of Jij indicates the coupling
strength of the neighbor spins. It mostly depends on the
distance between these two interactional spins.

For the whole process of quantum annealing, the Ising
model can be expressed as

H(s) =− A(s)

2

(∑
i

σx
i

)
+
B(s)

2

(∑
i

hiσ
z
i +

∑
i<j

Jijσ
z
i σ

z
j

)
,

(4)

where σx
i is the spin component state of spins projected

on axis x component. A(s) and B(s) are two prefactors
that change along time. s = t/tannealing, which means s
denotes the progress of the whole annealing process. tannealing
is the total time of quantum annealing. The first term is
the initial Hamiltonian which is generally set at the lowest-
energy eigenstate in practice. The second term is the final
Hamiltonian. Before starting quantum annealing, the system
is situated in the lowest-energy eigenstate of the initial
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FIGURE 1. The framework of the proposed Lagrangian relaxation based
parallelized quantum annealing algorithm.

Hamiltonian. In the quantum annealing process, the state of
spins is changed and their interaction makes efforts on the
Hamiltonian of the whole quantum system. Consequently,
the final Hamiltonian is produced and then the whole system
tends to evolve into the lowest-energy eigenstate of the final
Hamiltonian, which is also called the ground state of the
final Hamiltonian. In ideal conditions, the evolution process
adheres to the adiabatic evolution, which presents that the
whole system always stays at the lowest-energy state so it
is easy to achieve the lowest-energy eigenstate of the final
Hamiltonian. However, the quantum annealing process is
fraught with complexities, and there may be other energy
levels close to the ground state. The system may decide to
move to these energy levels and stay at these energy levels at
the end of the quantum annealing. Consequently, the system
may only find the local minimum of the objective function
rather than the global minimum at the end.

B. LAGRANGIAN RELAXATION
The Lagrangian relaxation technique is a crucial tool in
assisting to solve optimization problems [23]–[25]. It works
based on the separability of problem models and the de-
composition makes the models much easier to solve due
to removing the complex constraints. The method involves
relaxing the coupling constraints through the use of Lagrange
multipliers, which leads the models to approach the optimal
solutions of original problems in the solving process.

Assume there is an integer programming model shown as

LIP = min
x1,...,xI

I∑
i=1

Li(xi) (5a)

s.t. aixi ≤ bi, i = 1, . . . , I, (5b)
I∑

i=1

cixi ≤ d, (5c)

where xi are variables, and ai, bi, ci and d are constants.
The objective function can be divided into I terms based on
the variables xi. There are I constraints, which make the IP
model hard to solve. Thus, Lagrangian relaxation is applied
to relax these constraints and then add them to the objective
function. The new model is

LLR(λ) = min
x1,...,xI

I∑
i=1

(
Li(xi) + λ(

I∑
i=1

cixi − d)

)
(6a)

s.t. aixi ≤ bi, i = 1, . . . , I. (6b)

This new model can be divided into I sub-models that every-
one only has variables xi and then the surrogate subgradient
method is leveraged to update λ. The process is briefly
shown in Fig. 1. In our proposed algorithm, this process
is structured into two distinct levels, the low level and the
high level. At the low level, the sub-models are individually
solved by quantum computing and get the optimal solution
and also the value of xi, which is used to update λ. At
the high level, the coordination between the sub-problems is
performed through the updating of the Lagrange multiplier
λ. The iterations of updating λ and solving sub-models
cannot end until the solutions tend to converge. At the same
time, the optimal feasible solution of the original model
is achieved. The Lagrangian relaxation method is easier to
use in many cases and the process is convenient to adjust
depending on problems.

C. TABU SEARCH ALGORITHM
The tabu search algorithm is a neighborhood search algo-
rithm and it is widely used in finding the approximate solu-
tion to NP-hard combinatorial optimization problems [26]–
[28]. The tabu search algorithm continuously searches for
better solutions in the neighborhood by iterations and then
replaces the current solution to achieve optimal solutions
step by step. During the search process, the information
of found solutions is recorded in the tabu list. This tabu
list not only prevents the algorithm from cycling back to
already explored solutions but also enables it to escape local
optima by allowing moves that may seem non-beneficial.
Thus, this mechanism significantly enhances the efficiency
and effectiveness of the search process. The tabu search
algorithm has a strong dependence on the initial solution,
and a good initial solution can markedly shorten the search
process. In our proposed algorithm, the final result achieved
by the Lagrangian relaxation based parallelized quantum
annealing algorithm is a good initial solution. Therefore, we
choose this method to rapidly converge the solution found by
quantum annealing to the global optimum with reasonable
parameter settings.

D. PROPOSED ALGORITHM
We propose a Lagrangian relaxation based parallelized quan-
tum annealing algorithm based on Lagrangian relaxations
to solve large-scale optimization problems. The workflow
protocol of the algorithm is shown in Fig. 2. We first
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FIGURE 2. The flowchart of the proposed Lagrangian relaxation based
parallelized quantum annealing algorithm.

build the integer programming model and then decompose
it by Lagrangian relaxations to form several sub-problem
models LLRi. Then we use quantum annealing to solve these
sub-problem models LLRi separately and get the optimal
solutions to these models and the value of xi at these points.
The value of λ is updated based on the subgradient methods.
Finally, we check if the objective function value ZLR can
satisfy the stop criterion or not. Z(p)

LR denotes the objective
function value got in the previous iteration. ϵ is a sufficiently
small value. Thus, the solving process stops repeating when
the solution result of every iteration does not change. If
the stop criterion cannot be reached, the updated λ will
replace the previous one and then we will solve sub-problem
models again. Actually, quantum annealing may lead to the
issue of achieving the local optimal solution rather than the
global optima because of the limit of hardware equipment.
Furthermore, the Lagrangian relaxation method only reaches
the approximate optimal solution of the original problem.
Thus, we design post-process steps that leverage tabu search

FIGURE 3. The diagram of the NFV network.

after quantum annealing in our algorithm to help converge
and achieve the optimal solution. In Section V, we use the
proposed Lagrangian relaxation based parallelized quantum
annealing algorithm to solve an optimization problem in
communication networks and explain this process in detail.

III. USE CASE IN COMMUNICATION NETWORK
NFV emerges to standardize functions in a wireless network
and enhances the flexibility and scalability of networks to
accommodate new services efficiently. Among the various
optimization problems inherent in NFV networks, network
resource allocation problems, especially the VNFs schedul-
ing problem, stand out. The VNFs scheduling problem is
arranging VMs to process functions of service chains to
minimize the delay of all service chains’ processing. In Sub-
section A, we explain the system model of NFV networks
and build the integer linear programming (ILP) model to
describe the VNFs scheduling problem. In Subsection B,
the Lagrangian relaxation method is employed to divide the
whole problem into two subproblems. These subproblems
are transformed into QUBO models in Subsection C. Finally,
we operate the proposed algorithm mentioned in Section II
to solve the VNFs scheduling problem. The whole solving
process is concisely described in Subsection D.

A. SYSTEM MODEL AND ILP FORMULATION
In the NFV network system, as shown in Fig. 3, the
hardware providing computing and storage resources usu-
ally is abstracted as VMs and these VMs connect through
virtual links. Each VM can run several virtual functions
to conduct computing following users’ requests. If a user
request requires processing large amounts of data among
different data centers, the processing delay at the VMs and
the transmission delay between them cannot be ignored. A
user request is fulfilled through the operation of a service
chain, which combines several VNFs in the network. Hence,
the total delay in processing the request is the time it takes
for data to be processed by VNFs of the service chain and
the transmission delay between the corresponding VMs. The
model proposed in this paper is built to provide the best
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arrangement to minimize the total delay of all activated
service chains in the network.

We abstract the system model from the real network
system. It is assumed that there are several types of VMs
in the network and VMs can provide some different virtual
functions fk. These functions fk, with k indicating the type
of functions, may be operated on more than one type of
VMs. For example, VM 1 can process function f1, f3 and
f4. f3 can be served on VM 1, VM 2 and VM 5. In the
model, the number of VMs in the network is M , and also
m and n are indexes of VMs. We divide the running time
of VMs, denoted as Tmax, into multiple time slots, and every
time slot has the length of ∆T . Every VM can only process
one function in one time slot. In the NFV network, VMs
communicate with each other by one virtual link. The virtual
link between VM m and VM n is denoted as l(m,n). Every
virtual link can only serve data transmitting for one instance
of the virtual function at the same time. When the NFV
network receives the users’ request, the service chains will
be invoked to process users’ data. As shown in Fig. 3, the
service chain 1 is used to meet the request of users. The
virtual functions of service chain 1 are operated on VMs
that can provide corresponding VNFs.

There are I service chains that are ready to process data
following the customers’ requests submitted to the NFV
network. Service chains can be regarded as sequences of
virtual functions with specific orders. In our system model,
all virtual functions and service chains are instantized to
clearly denote different individuals. These instances of vir-
tual functions are denoted as fkij , which means the virtual
function is the jth in the service chain i and it is divided
into the kth type of function. All VMs that can process
fkij compose the set V k

ij . Appropriate VM is chosen from
this set to process these fkij . In the system model, the
processing time of fkij is denoted as tijm, which is calculated
by Wijm/Cm. The size of data that needs to be processed
is Wijm and the computing rate of VM m is denoted as
Cm. Tijm is the number of time slots, which the total time
length corresponds to tijm. Tij(m,n) is the number of time
intervals occupied by the transmission of fkij processing
results through the virtual link l(m,n). Based on the system
model, we build an ILP model with binary decision variables,
xijm, yijmt, zijmt, pijmt, uijmn, and vijmnt, to minimize
the total delay including processing delay and transmission
delay in processing customers’ requests. All properties of
the system model are expressed in the constraints of the
ILP model. Constraints related to arranging VMs to employ
virtual functions to process data are listed in Appendix A
equation (48)-(58), which are also explained in [3]. Decision
variables, xijm, yijmt, zijmt, and pijmt, are introduced to
formulate these constraints. One other constraint is shown as

uij(m,n) ≤ xijm, ∀i, j,m, n. (7)

If xijm equals 1, it signifies that VM m is used to process
the virtual function fkij . If uij(m,n) equals 1, it means that

the virtual link l(m,n) is used to transmit the results of fkij .
Thus, constraint (7) shows that the link l(m,n) may be chosen
to transmit the result of jth function in service i because the
VM m is chosen to process the function fkij . Constraint (7)
indicates the relationship between xijm and uij(m,n). If VM
m conducts processing function fkij , which means xijm = 1,
then the link l(m,n) can be used to transmit the result, which
denotes as uij(m,n) = 1. There is one other constraint shown
as

N∑
m=1

uij(m,n) =

N∑
m′=1

ui(j+1)(n,m′),

∀i, j; n ∈ V k′

i(j+1).
(8)

Constraint (8) shows that the VM n must be the end point
of the link that is used to transmit the result of jth function
in service i and also it must be the start point of the link that
is responsible to transmit the result of (J + 1)th function.
In other words, constraint (8) keeps the continuity of the
service chain. There is also one constraint shown as∑

m∈V k
ij

∑
n∈V k′

i(j+1)

uij(m,n) = 1, ∀i, j. (9)

Constraint (9) limits that there is only one link that can
be occupied to transmit the result of any function fkij . Thus,
there should be only one uij(m,n) that equals to 1 for all
possible values of m and n. One other constraint is shown
as

(1− uij(m,n)) · vij(m,n)t = 0, ∀i, j,m, n, t. (10)

If vij(m,n)t equals 1, it means that the virtual link l(m,n)

starts to transmit the results of fkij at the beginning of the
time slot t. Constraint (10) indicates that vij(m,n)t could be
1 if and only if uij(m,n) equals to 1. It is because only when
the link is chosen to transmit the result of any functions, the
link will serve this transmission in the time slot t. There is
one other constraint shown as

I∑
i=1

J∑
j=1

vij(m,n)t +

I∑
i′=1

J∑
j′=1

vi′j′(n,m)t ≤ 1.

∀m,n, t.

(11)

Constraint (11) presents that there is only one transmission
allowed between VM m and VM n in the time slot t. For
example, if the virtual link l(m,n) is used to transmit the
processing results of fkij in the time slot t, which means
vij(m,n)t = 1, both l(m,n) and l(n,m) cannot transmit other
data in this time slot. There is also one constraint shown as

Tmax∑
t=1

vij(m,n)t = Tij(m,n) · uij(m,n),

∀i, j; m ∈ V k
ij , n ∈ V k′

i(j+1).

(12)

Constraint (12) indicates that the result of the function fkij
must be transmitted reaching the required transmission time
Tij(m,n). If and only if VM m can process function fkij and
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VM n can process function fk
′

i(j+1), the link l(m,n) can be
selected, and then there should be the presence of Tij(m,n).
There is one other constraint shown as

Tmax∑
α=1

pijm(t−α+1) ≥
∑

n∈V k′
i(j+1)

vij(m,n)t,

∀i, j, t; m ∈ V k
ij .

(13)

Constraint (13) ensures that starting the transmission of
function results must be after completing processing this
function. Thus, there must be one pijmt′ that equals 1 in
previous time slots when we find vij(m,n)t = 1. One other
constraint is shown as

Tmax∑
β=1

zi(j+1)n(t+β) ≥
∑

m∈V k
ij

vij(m,n)t,

∀i, j, t; n ∈ V k′

i(j+1).

(14)

If zi(j+1)nt equals 1, it signifies that VM n starts to
process the virtual function fk

′

i(j+1) at the beginning of
the time slot t. Constraint (14) guarantees that starting
processing fk

′

i(j+1) must be after receiving the results of last
function fkij . Therefore, if there is one zi(j+1)nt that equals
1, we can find vij(m,n)t′ = 1 in previous time slots. One
other constraint is shown as

uij(m,n) = vij(m,n)t = 0,

∀i, j, t; m /∈ V k
ij or n /∈ V k′

i(j+1).
(15)

Constraint (15) shows that if VM m cannot process
function fkij or VM n cannot process function fk

′

i(j+1), which
implies that neither l(m,n) nor l(n,m) will not be used to
transmit the results of function fkij , vij(m,n)t and uij(m,n)

must be 0.
These above constraints (7) to (15) describe how the users’

data is transmitted along the service chain between different
VMs. One other constraint is shown as

siJ =

M∑
m=1

Tmax∑
t=1

piJmt · (t− 1) ·∆T, ∀i. (16)

Eq. (16) is used to calculate siJ , which represents the
completion time of processing fkiJ that is the last function of
the service chain i. piJmt = 1 means that VM m completes
processing fkiJ at the beginning of the time slot t. Therefore,
the finishing time of the service chain i can be known by
calculating the equation (16). All in all, the ILP model of
VNFs scheduling problem can be expressed as

ZIP = min
s

I∑
i=1

siJ ,

s.t. (7)− (16), (48)− (58),

(17)

where constraint (48)-(58) are listed in Appendix A. The
objective function aims to minimize the total processing
time of all service chains. In the following subsection, the

Lagrangian relaxation method is leveraged to decompose this
ILP model and transform these sub-problem models into
QUBO forms.

B. LAGRANGIAN RELAXATION
We combine (16) and (17), and have

ZIP = min
p

I∑
i=1

M∑
m=1

Tmax∑
t=1

piJmt · (t− 1) ·∆T. (18)

We use Lagrangian relaxation method to transform (7),
(13), and (14), and then add them to the original objective
function. Now the objective function should be

ZIP = min
x,p,z,u,v

I∑
i=1

M∑
m=1

Tmax∑
t=1

piJmt · (t− 1) ·∆T

+

I∑
i=1

J∑
j=1

∑
m∈V k

ij

Tmax∑
t=1

λijmt(
∑

n∈V k′
i(j+1)

vij(m,n)t

−
Tmax∑
α=1

pijm(t−α+1))

+

I∑
i=1

J∑
j=1

∑
n∈V k′

i(j+1)

Tmax∑
t=1

λijnt(
∑

m∈V k
ij

vij(m,n)t

−
Tmax∑
β=1

zi(j+1)n(t+β))

+

I∑
i=1

J∑
j=1

N∑
m=1

N∑
n=1

λijmn(uij(m,n) − xijm),

(19)

with
λijmn ≥ 0, ∀i, j,m, n, (20)

λijmt ≥ 0, ∀i, j, t; m ∈ V k
ij , (21)

λijnt ≥ 0, ∀i, j, t; n ∈ V k′

i(j+1). (22)

Lagrange multipliers λijmn, λijmt, and λijnt are used to
control the influence of these three constraints on the new
objective function. These constraints are relaxed through the
transformation to reduce the complexity of the original ILP
model. This new optimization problem can be divided into
two sub-problems. The objective function of the first sub-
problem is

ZIP1 = min
x,p,z

I∑
i=1

Tmax∑
t=1

(

M∑
m=1

piJmt · (t− 1) ·∆T

−
J∑

j=1

∑
m∈V k

ij

λijmt

Tmax∑
α=1

pijm(t−α+1)

−
J∑

j=1

∑
n∈V k′

i(j+1)

λijnt

Tmax∑
β=1

zi(j+1)n(t+β))

−
I∑

i=1

J∑
j=1

N∑
m=1

N∑
n=1

λijmnxijm.

(23)
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The first sub-problem is with constraints (48)-(58) and
(20)-(22). This sub-problem is to give the optimal assignment
of VMs to process these service chains following the system
model. The objective function of the second sub-problem is

ZIP2 =min
u,v

I∑
i=1

J∑
j=1

Tmax∑
t=1

(
∑

m∈V k
ij

λijmt

∑
n∈V k′

i(j+1)

vij(m,n)t

+
∑

n∈V k′
i(j+1)

λijnt
∑

m∈V k
ij

vij(m,n)t)

+

I∑
i=1

J∑
j=1

N∑
m=1

N∑
n=1

λijmnuij(m,n).

(24)

The second sub-problem has constraints (8)-(12), (15), and
(20)-(22). This sub-problem aims to arrive at the optimiza-
tion of total transmission time while neglecting processing
delay.

We use the subgradient iterative technique to update the
set of Lagrange multipliers λijmn, λijmt, and λijnt. In every
iteration k, λijmn, λijmt, and λijnt are updated to help
converge to the optimal solution. The equations we used to
update λijmn are shown as

g
(k+1)
1 = u

(k)
ij(m,n) − x

(k)
ijm, (25)

λ
(k+1)
ijmn = max

(
0, λ

(k)
ijmn + g

(k)
1 γ

(k)
1

)
. (26)

g
(k)
1 is the subgradient that along to direction of constraint

(7) in the kth iteration. The subgradient g(k)1 and the step
size γ(k)1 control the change of λijmn. We also use the same
method to calculate λijmt and λijnt. These equations are
shown as

g
(k)
2 =

∑
n∈V k′

i(j+1)

v
(k)
ij(m,n)t −

Tmax∑
α=1

p
(k)
ijm(t−α+1), (27)

λ
(k+1)
ijmt = max

(
0, λ

(k)
ijmt + g

(k)
2 γ

(k)
2

)
, (28)

g
(k)
3 =

∑
m∈V k

ij

v
(k)
ij(m,n)t −

Tmax∑
β=1

z
(k)
i(j+1)n(t+β), (29)

λ
(k+1)
ijnt = max

(
0, λ

(k)
ijnt + g

(k)
3 γ

(k)
3

)
. (30)

(g2, γ2) and (g3, γ3) are pairs of problem subgradients
and step size parameters related to constraints (13) and
(14). We initially set Lagrange multipliers and then they
updated according to equations (25)-(30) in iterations. After
finishing every iteration, we calculate the solution of the
whole problem model (17). If the results of any iteration
reach the stop criterion, we will terminate the iteration and
get the final solutions. Before using the proposed algorithm
to solve this problem, we also need to transform these two
sub-problem models into QUBO models independently.

C. QUBO MODEL
The QUBO model distinguishes itself by comprising solely
an objective function that includes quadratic terms, devoid of
explicit constraints. As a result, to convert the ILP model into
a QUBO model, it is essential to transfer all constraints into
equivalent quadratic penalties which are then incorporated
into the objective function. These transformations ensure
that the restrictive conditions of the original constraints are
preserved within the objective function, thereby guiding the
model towards reaching the optimal solution. We transform
all constraints following the rules shown in Table 1. x1, x2
and x3 are used to denote binary decision variables of
original constraints. rl denotes the binary slack variable
introduced in penalty terms. al and b are constants. P is
the penalty coefficient, which is a sufficiently large positive
constant.
TABLE 1. List of Constraint-Penalty Pairs

Constraint Equivalent Penalty

x1 + x2 = 1 P (x1 + x2 − 1)2

x1 + x2 + x3 ≤ 1 P (x1x2 + x1x3 + x2x3)

x1 + x2 ≤ x3 P (x1 + x2 − x3 +
∑

l alrl)
2

x1 + x2 = b P (x1 + x2 − b)2

We transform all constraints to penalty terms and all
penalty terms of the QUBO model are listed below. We
transform (48) and (49) to equations shown as

P1ij

 ∑
m∈V k

ij

xijm − 1

2

, ∀i, j, (31)

P1ijm

(
Tmax∑
t=1

zijmt − xijm

)2

, ∀i, j; m ∈ V k
ij . (32)

Eq. (31) is transformed from (48). When and only when
one xijm equals 1 with m ∈ V k

ij , this penalty with penalty
coefficient P1ij will not add a big positive value to the
objective function. This design ensures that, to find the
minimum, the QUBO model will not allow more than one
xijm to equal to 1. Thus, (31) has the same function with
(48). Eq. (32) is transformed from (49). This penalty requires

that xijm and
Tmax∑
t=1

zijmt must have the same values so it has

the same effect as constraint (49) on the problem models.
We transform (50) to the equation shown as

Pmt

 ∑
(i ̸=i′)∨(j ̸=j′)

(yijmt · yi′j′mt)

 , ∀m, t. (33)

Eq. (33) is equivalent to (50). Constraint (50) ensures
that only one yijmt may be chosen to be set as 1 in any
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case. If this constraint does not be followed, the terms in
(33) will add a large constant to the objective function. This
mechanism will lead the QUBO model to follow constraint
(50). We transform (51) to the equation shown as

P1ijmt

(
y2ijmt − xijmyijmt

)
, ∀i, j,m, t. (34)

yijmt is binary variable so yijmt is equal to the squre of
yijmt. This characteristic of binary variables facilitates the
direct transformation of constraint (51). If the values of xijm
and yijmt don’t obey constraint (51), these terms in (34) will
lead the solution away from the minimum. We transform (52)
to the equation shown as

P2ijm

(
Tmax∑
t=1

yijmt − Tijmxijm

)2

,

∀i, j; m ∈ V k
ij .

(35)

Eq. (35) will add a large value to the objective function
with the assistance of a penalty if constraint (52) is not sat-
isfied, which means the right-hand side terms have different
values from the left-hand side terms. Thus, the optimizer will
try to set values of xijm and yijmt to obey the constraint
(52). We transform (53) to the equation shown as

P2ijmt

(
zijmt · pijmt

)
, ∀i, j,m, t. (36)

If both zijmt and pijmt are equal to 1, terms in (36)
will add a large constant to the objective function, so the
optimizer will avoid this case. That is what constraint (53)
tries to do. Thus, we can transform (53) into the terms
in (36). We transform (54), (55) and (56) to the equations
shown as

P3ijmt

(
yijm(t−1) − yijmt + zijmt − pijmt

)2
,

∀i, j,m, t.
(37)

P4ijmt

Tijm∑
α=1

zijm(t−α+1) − yijmt + r1ijmt

2

,

∀i, j, t; m ∈ V k
ij .

(38)

P1ijm′t

(
zi(j+1)m′t −

∑
m∈V k

ij

Tmax∑
β=1

pijm(t−β+1)

+rijm′t

)2

, ∀i, j, t; m′ ∈ V k′

i(j+1).

(39)

Eq. (37) can force the solution to follow the constraint
(54). Eq. (38) is transformed from (55) by adding a binary
slack variable r1ijmt. Eq. (39) is equivalent to (56) and slack
variables are also needed in this transformation. We only
add one binary slack variable to (39) because the maximum
difference between the right-hand side and the left-hand side

of constraint (56) is 1. We transform (57) and (58) to the
equations shown as

P3ijm · x2ijm + P5ijmt · y2ijmt + P6ijmt · z2ijmt

+P7ijmt · p2ijmt, ∀i, j, t; m /∈ V k
ij ,

(40)

P2ij

( ∑
m∈V k

ij

Tmax∑
t=1

zijmt − 1

)2

+P3ij

( ∑
m∈V k

ij

Tmax∑
t=1

pijmt − 1

)2

, ∀i, j.

(41)

To form the QUBO formulation of sub-problem 1, all terms
in equations (31)-(41) need to be integrated into the right-
hand side of (23). The new model of sub-problem 1 denotes
as Z∗

IP1. All constraints of the second sub-problem are also
transformed into penalty terms. Here are the transformation
results. We transform (8) to the equation shown as

P1ijn

(
N∑

m=1

uij(m,n) −
N∑

m′=1

ui(j+1)(n,m′)

)2

,

∀i, j; n ∈ V k′

i(j+1).

(42)

Eq. (42) has the same effect as (8) because if there is a
case that does not satisfy (8), the penalty term in (42) will
affect the objective function. Thus, to minimize the objective
function, the solver is inclined to steer clear of any case
that would trigger this penalty, thereby enforcing compliance
with the conditions outlined in (8). We transform (9) and (10)
to the equations shown as

P2ij

( ∑
m∈V k

ij

∑
n∈V k′

i(j+1)

uij(m,n) − 1

)2

, ∀i, j, (43)

P1ijmnt

(
v2ij(m,n)t − uij(m,n)vij(m,n)t

)
,

∀i, j,m, n, t.
(44)

Eq. (9) is transformed into (43) following the same idea
as the transformation of constraint (48). Eq. (44) obviously
has the same effect as constraint (10). It specifically avoids
the scenarios that there exits yijmt equals 1 while no xijm
is equal to 1. Constraint (11) is transformed to the equation
shown as

Pmnt

( ∑
(i ̸=i∗)∨(j ̸=j∗)

vij(m,n)t · vi∗j∗(m,n)t

+
∑

(i′ ̸=i∗)∨(j′ ̸=j∗)

vi′j′(n,m)t · vi∗j∗(n,m)t

+
∑

(i ̸=i′)∨(j ̸=j′)

vij(m,n)t · vi′j′(n,m)t

)2

, ∀m,n, t.

(45)
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Algorithm 1 Lagrangian Relaxation based Parallelized
Quantum Annealing Algorithm

1: Require: parameters, I , J , M ; the functions in service
chain i, fkij ; the set of VMs which can process fkij , V k

ij ;
the NFV network; the value of penalty coefficients;

2: Initialize: λijmn, λijmt, λijnt, γ1, γ2, γ3 ;
3: find a feasible Tmax;
4: ZIP∗ ← −∞;
5: while | (Z∗

IP − Z
(p)∗
IP )/Z∗

IP |≥ ϵ do
6: solve the QUBO model of subproblem 1 and the

QUBO model of subproblem 2 individually by hybrid
solvers;

7: get Z∗
IP1, Z∗

IP2, Z∗
IP, xijm, yijmt, zijmt, pijmt, uijmn,

and vijmnt;
8: update λijnt, λijmt, and λijmn by (25) to (30);
9: end while

10: output ZIP, xijm, yijmt, zijmt, pijmt, uijmn, vijmnt;
11: find the neighborhood of the current solution;
12: search the possible optimal solution and update the tabu

list;
13: reach the optimal solution;
14: return ZIP, xijm, yijmt, zijmt, pijmt, uijmn, vijmnt.

We transform constraint (11) to (45) following the same
principle used in the transformation of constraint (50). Any
vij(m,n)t or vij(n,m)t is set as 1, and then others cannot be
equal to 1. Otherwise, these penalty terms in (45) will lead
the objective function away from the optimal solution. We
transform (12) to the equations shown as

P1ijmn

(
Tmax∑
t=1

vij(m,n)t − Tij(m,n) · uij(m,n)

)2

,

∀i, j; m ∈ V k
ij , n ∈ V k′

i(j+1).

(46)

Eq. (46) is equivalent to constraint (12). If the values of
vij(m,n)t and uij(m,n) cannot satisfy the constraint (12), (46)
will add a big value to the objective function so the final
solution cannot be minimum. Thus, (46) has the same effects
as the constraint (12). Constraint (15) is transformed to the
equation shown as

P2ijmn · u2ij(m,n) + P3ijmnt · v2ij(m,n)t,

∀i, j, t; m /∈ V k
ij , n /∈ V k′

i(j+1). (47)

If and only if the vij(m,n)t and uij(m,n) where m ∈ V k
ij

and n ∈ V k′

i(j+1), equal to 1, (47) will lead the objective
function to the optimal solution. Thus, (47) has the same
function as the constraint (15). All terms in equations (42)-
(47) need to be added to the right-hand side of (24) to
formulate the QUBO model of sub-problem 2. These penalty
terms maintain the integrity of the original constraints within
the transformed model. This new model of sub-problem 2
denotes as Z∗

IP2 and the whole QUBO model denotes as Z∗
IP.

D. ALGORITHM
The framework of the proposed Lagrangian relaxation based
parallelized quantum annealing algorithm is shown in Algo-
rithm 1, which is used to solve the VNFs scheduling problem
in this paper. To solve this optimization problem, we first
build the ILP model and then decompose it by Lagrangian
relaxations to form two sub-problems, which are explained
at great length in Section IV. We transfer these models to
QUBO forms and then use quantum annealing to solve these
subproblems separately. Quantum computers will return their
optimal solutions to the classical computer. The variables’
values in optimal solutions are used to update Lagrange
multipliers λijmn, λijmt, and λijnt. If the solutions cannot
meet the stop criterion, these updated multipliers will be used
to solve sub-problem models again. Finally, the solutions
after several iterations satisfy the stop criterion and the loop
ends to output an approximal optimal solution to the original
model. There are steps of tabu search that can generate the
neighborhood of the current solution and then search for the
optimal solution to the original problem model.

IV. EXPERIMENT
In this section, we verify the feasibility of the proposed
Lagrangian relaxation based parallelized quantum anneal-
ing algorithm and analyze its advantages in solving VNFs
scheduling problems under many cases.

A. QUANTUM COMPUTING IMPLEMENTATION
The whole proposed algorithm and Lagrangian relaxation-
based classical algorithm run in the Python 3.8 environment.
The quantum annealing part of our proposed algorithm was
operated on the D-Wave quantum annealers by hybrid solvers
named hybrid binary quadratic model version2. These hy-
brid solvers preprocessed the uploaded QUBO models and
leveraged quantum annealers to solve them. The hybrid
solver can tackle the model with up to 1, 000, 000 variables
and employ over 5, 000 qubits. The quantum process units
(QPU) have the topology with the Pegasus graph. The QUBO
models were embedded on QPU through corresponding
packages in D-Wave ocean software to automatically use
minor embedding and it can simplify the operations of using
quantum annealing. The two sub-problems, formed by the
Lagrangian relaxation method shown in Section IV, were
solved by two independent hybrid solvers simultaneously
to shorten the simulation time further. Compared with the
proposed hybrid algorithm, the Lagrangian relaxation-based
classical algorithm replaced the hybrid solvers with the
Cplex solvers.

B. SIMULATION SETUP
To show the performance of the proposed Lagrangian re-
laxation based parallelized quantum annealing algorithm,
we randomly set different parameters I , J , and M , and
different service chains to generate different cases. These
parameters are used to provide an expected Tmax by a greedy
algorithm. Lagrange multipliers λijnt, λijmt and λijmn are
set to 1 initialy. In practice, the transmitting rate of data is
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(a) Case a: sub-problem 1 (b) Case a: sub-problem 2 (c) Case a: every iteration

(d) Case b: sub-problem 1 (e) Case b: sub-problem 2 (f) Case b: every iteration

FIGURE 4. The solver running time of solving sub-problem 1 (a) and sub-problem 2 (b) of case a. (c) is the solver running time per iteration. The
solver running time of solving sub-problem 1 (d) and sub-problem 2 (e) of case b. (f) is the solver running time per iteration.

(a) Case a (b) Case b

FIGURE 5. The accumulated solver running time of solving cases a and
b.

relatively small so the time delay of transmitting is set as
one time slot in all cases. The assumption helps reduce the
complexity of QUBO models. We randomly set the value of
the workload of all functions in service chains to objectively
evaluate the general performance of the proposed algorithm.
The penalty coefficients of QUBO models are set to 1, 000
times larger than the solutions. Different penalty terms have
different penalty coefficients depending on the situations of
corresponding constraints. The hybrid solver may solve the
sub-problem models several times to achieve the optimal
solution in some iterations. Furthermore, to prevent over-
convergence while running these two algorithms, the stop
criterion starts working after 30 iterations.

C. SIMULATION RESULT
In this subsection, we investigate the simulation results of
the VNFs scheduling problem in many cases. The data

presented in Fig. 4 compares the running time of hybrid
solvers, which incorporate quantum annealing, against that
of Cplex solvers in two distinct cases. For sub-problem 1, it
is obviously shown that hybrid solvers obtain the solutions
in a much shorter time per iteration compared with classical
solvers. These results verify that quantum annealing has
superiority while solving complex QUBO models. Based on
our observations, the QUBO models in cases a and b are
complex for Cplex solvers so Cplex solvers may perform
several restarting to reach the optimal solution in iterations. It
results in significantly varying classical solver running times
per iteration. For sub-problem 2, the classical solvers can
get the solution faster than hybrid solvers, which is because
the preprocessing procedure consumes a certain amount of
time while using hybrid solvers. In case b, the hybrid solver
may not reach the optimal solution of sub-problem 2 models,
so the solver is employed several times in some iterations.
The solver running time per iteration depends on the longer
solver running time between solving sub-problem 1 and
sub-problem 2 so that the running time of hybrid solvers
is shorter than classical solvers per iteration. The classical
solver running time per iteration is contributed by the time of
solving sub-problem 1. The accumulated solver running time
of solving cases a and b is shown in Fig. 5. It is significantly
presented that the total classical solver running time is much
higher than the hybrid solver running time.

In Table 2, the solver running time of two algorithms
in 6 cases are shown in detail. The first column shows
the parameter setting of (I, J,M, Tmax). The second column
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TABLE 2. Time Consuming

Case Parameter Hybrid Solver
Run Time (s)

Classical Solver
Run Time (s)

c (2, 2, 2, 6) 116.83 664.40

d (2, 2, 2, 7) 104.83 621.92

e (2, 2, 3, 8) 119.81 13, 204.85

f (2, 3, 2, 8) 248.55 > 150, 000.00

g (3, 2, 2, 10) 182.68 > 150, 000.00

h (2, 3, 3, 11) 374.41 > 150, 000.00

(a) Case a (b) Case a

(c) Case b (d) Case b

FIGURE 6. Histograms of the total running time for hybrid solvers and
classical solvers in case a and b.

and the third column present the solver running times in
the whole iteral procedure by hybrid solvers and classical
solvers. The last column shows the gain of hybrid solvers
over classical solvers. In all listed cases, hybrid solvers
present significant advantages in solving time. For case c,
the hybrid solver running time of the whole process is
116.83s but the classical solver running time is up to 664.4s,
which shows that our proposed algorithm has significant
advantages. For other cases, which are with larger QUBO
sizes and more complex formulations, the hybrid solver can
achieve much more superiority. Under cases f , g, and h, for
every iteration, the classical solver cannot find the optimal
solution to subproblem 1 in a reasonable time. It is because
the model in these cases is too complex for the classical
solver and it gets stuck in the search process. However, these
cases are much easier for hybrid solvers to achieve optimal
solutions in a short time. These results present our proposed
algorithm can solve large-scale VNFs scheduling problems
much faster than the Lagrangian relaxation-based classical
algorithm.

(a) Case a (b) Case a

(c) Case b (d) Case b

FIGURE 7. Histograms of the solver running time per iteration in case a
and b.

Fig. 6 showcases the performance of our proposed al-
gorithm versus a classical algorithm based on Lagrangian
relaxation through the analysis of simulation results across
25 attempts for each algorithm. In case a, the hybrid solver
running times for all iterations fall within the range of 90s
to 150s. The distribution of hybrid solver running time for
all iterations concentrates in the range of 521s to 551s, but
some results are around 617s, which is much higher than
others. This noted deviation suggests classical solvers may
meet occasional challenges in reaching the optimal solution.
In case b, most simulation results using hybrid solvers obtain
the solver running time between 96s and 132s. However, the
classical solver results are dispersed and distributed between
11, 400s and 15, 600s. It signifies that hybrid solvers are
much more stable in solving the VNFs scheduling problems
in this scenario. The analysis of 200 iterations results from
the hybrid solver and the classical solver are shown in
Fig. 7. It is found that the running times of hybrid solvers
present more concentrated distributions in these two cases.
For some iterations, hybrid solvers are employed more than
one time because hybrid solvers fail to achieve the optimal
solutions sometimes. From Figs. 6 and 7, it can be seen that
our proposed hybrid algorithm shows better performance in
robustness.

V. CONCLUSION
In this paper, we proposed a Lagrangian relaxation based
parallelized quantum annealing algorithm, designed to tackle
complex optimization problems by effectively breaking them
down into smaller and more manageable sub-problems. The
success of our proposed hybrid algorithm in addressing the
VNFs scheduling problem illustrates its applicability and
effectiveness in solving large-scale optimization problems.
From the results of the case study, we can find that the
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time performance of the proposed algorithm is better in
all cases compared with the Lagrangian relaxation-based
classical algorithm. For cases with relatively fewer variables,
hybrid solvers spend 116.83s to solve the models but clas-
sical solvers spend 5.69 times more than hybrid solvers.
Hybrid solvers can reach the solutions to some relatively
large-scale cases in 374.41s but these cases are unsolvable
for classical solvers in a certain time. Furthermore, our
proposed algorithm shows excellent advantages in the aspect
of robustness. Based on these experimental results, this
paper demonstrates that the Lagrangian relaxation based
parallelized quantum annealing algorithm can effectively
solve complex ILP models that cannot be solved by the
algorithm proposed in [3]. This advantage stems from the
fact that the parallelized quantum annealing algorithm avoids
the limitations imposed by a restricted number of qubits.
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Appendix A
The settings of VMs will influence the arrangement of
scheduling virtual functions to process users’ data, so the
following constraints are used to represent the characteristics
of VMs and to prevent unreasonable arrangements. xijm,
yijmt, zijmt and pijmt are binary decision variables in these
constraints. One of these constraints is shown as∑

m∈V k
ij

xijm = 1, ∀i, j. (48)

V k
ij denotes the set of VMs that can allow function fkij runs

on it. If xijm is equal to 1, it means that the function fkij is
arranged on VM m to operate. Constraint (48) shows that
only one VM that belongs to V k

ij can be used to process
function fkij . One other constraint is shown as

xijm =

Tmax∑
t=1

zijmt, ∀i, j; m ∈ V k
ij (49)

zijmt denotes when the function fkij starts to be processed
on VM m. Constraint (49) limits that if and only if VM m is
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employed to process the function fkij , there will be a starting
time of process function fkij on VM m. One other constraint
is shown as

I∑
i=1

J∑
j=1

yijmt ≤ 1, ∀m, t. (50)

yijmt denotes that, at the time slot t, VM m is processing
the function fkij . Constraint (50) represents that VM m can
process only one function at the same time. One other
constraint is shown as

(1− xijm) · yijmt = 0, ∀i, j,m, t. (51)

Constraint (51) shows that if and only if VM m is arranged
to process the function fkij , VM m can process it in time
slot t. One other constraint is shown as

Tmax∑
t=1

yijmt = Tijm · xijm, ∀i, j; m ∈ V k
ij . (52)

Constraint (52) describes that if VM m is chosen to serve
the function fkij , it must work for fkij in the required time
Tijm. One other constraint is shown as

zijmt · pijmt = 0, ∀i, j,m, t. (53)

pijmt denotes that VM m finishes processing the function
fkij before the beginning of the time slot t. Constraint (53)
represents the mutually exclusive relationship of zijmt and
pijmt in the same time slot. One other constraint is shown
as

yijm(t−1) − yijmt + zijmt − pijmt = 0,

∀i, j, t; m ∈ V k
ij .

(54)

Constraint (54) forces time-dependent decision variables,
zijmt, yijmt, and pijmt, must follow the logical order. One
other constraint is shown as

Tijm∑
α=1

zijm(t−α+1) ≤ yijmt, ∀i, j, t; m ∈ V k
ij . (55)

Constraint (55) uses zijmt and yijmt to makes sure that VM
m process the function fkij for enough long time. One other
constraint is shown as

∑
m∈V k

ij

Tmax∑
β=1

pijm(t−β+1) ≥ zi(j+1)m′t,

∀i, j, t; m′ ∈ V k′

i(j+1).

(56)

Constraint (56) presents that after finishing processing the
function fkij , fki(j+1) will be processed in some time slots.
Other constraints are shown as

xijm = yijmt = zijmt = pijmt = 0,

∀i, j, t; m /∈ V k
ij ,

(57)

∑
m∈V k

ij

Tmax∑
t=1

zijmt =
∑

m∈V k
ij

Tmax∑
t=1

pijmt = 1, ∀i, j. (58)

Constraint (57) guarantees that all decision variables related
to VM m which cannot provide corresponding virtual func-
tions, cannot equal to 1. Constraint (58) shows that VMs
can only start processing the function fkij for one time and
also only finish processing it for one time. The detailed
explanations of constraint (48)-(58) are shown in [3].
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