
Received 12 November 2024; revised 9 December 2024; accepted 28 December 2024. Date of publication 31 December 2024;
date of current version 16 January 2025.

Digital Object Identifier 10.1109/OJCOMS.2024.3524429

Iterative Syndrome-Based Deep Neural
Network Decoding

DMITRY ARTEMASOV (Graduate Student Member, IEEE), KIRILL ANDREEV (Member, IEEE),
PAVEL RYBIN (Member, IEEE), AND ALEXEY FROLOV (Member, IEEE)

Center for Next Generation Wireless and IoT, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia

CORRESPONDING AUTHOR: D. ARTEMASOV (e-mail: d.artemasov@skoltech.ru)
This work was supported by the Russian Science Foundation under Project 23-11-00340 (https://rscf.ru/en/project/23-11-00340/).

This work was presented in part at the GLOBECOM 2023 conference [1] [DOI: 10.1109/GCWkshps58843.2023.10465120].

ABSTRACT While the application of deep neural networks (DNNs) for channel decoding is a well-
researched topic, most studies focus on hard output decoding, potentially restricting the practical application
of such decoders in real communication systems. Modern receivers require iterative decoders, a pivotal
criterion for which is the ability to produce soft output. In this paper, we focus on this property. We begin
by modifying the syndrome-based DNN-decoding approach proposed by Bennatan et al. (2018). The
DNN model is trained to provide soft output and replicate the maximum a posteriori probability decoder.
To assess the quality of the proposed decoder’s soft output, we examine the iterative decoding method,
specifically the turbo product code (TPC) with extended BCH (eBCH) codes as its component codes. A
sequential training procedure for optimizing the behavior of component decoders is utilized. We illustrate
that the described approach achieves exceptional performance results and is applicable for iterative codes
with larger code lengths [n = 4096, k = 2025], compared to state-of-the-art DNN-based methods. Finally,
we address the issues of computational complexity and memory requirements of DNN-based decoding
by analyzing the model’s compression limits through pruning and matrix decomposition methods.

INDEX TERMS Channel decoding, complexity reduction, deep neural networks, iterative codes, soft-
output.

I. INTRODUCTION

THE FIELD of machine learning (ML) has experienced
rapid expansion in recent years, with the application

of deep neural networks (DNNs) becoming increasingly
prevalent. Over the past decade, DNNs have driven remark-
able progress in areas such as text processing, computer
vision, and speech recognition [2], all of which involve
natural signals. However, the application of machine learning
techniques in the field of communications remains relatively
underexplored. This paper examines the use of ML methods
to address the problem of channel decoding. In this context,
decoding can be viewed as a classification problem: the
goal is to assign the channel output to one of a possible
classes (codewords). The primary distinction from traditional
classification tasks lies in the exponential growth of these
classes as the message length increases.

The concept of utilizing DNNs for channel decoding
has been previously explored in earlier works like [3], [4].
However, these methods were largely set aside due to
the computational limitations of that time. The approach
was revisited in a more recent work [5], which examined
decoding in a binary-input channel affected by additive white
Gaussian noise (AWGN) and proposed a fully connected
neural network for this purpose. While a common challenge
in ML is the collection and labeling of datasets, this
issue is easily addressed in decoding by generating datasets
through sampling codewords and applying random AWGN.
Despite this, the model in [5] encountered the “curse of
dimensionality”, due to the exponential growth in the number
of codewords with the increase in information message
length. Training of such a network on all possible codewords
becomes impractical for realistic parameters. The expectation

c© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025 629

HTTPS://ORCID.ORG/0000-0003-2054-2846
HTTPS://ORCID.ORG/0000-0002-2920-2015
HTTPS://ORCID.ORG/0000-0002-8255-2161
HTTPS://ORCID.ORG/0000-0002-6734-0179

ARTEMASOV et al.: ITERATIVE SYNDROME-BASED DNN DECODING

was that the network can learn the code structure from a
subset of codewords. However, the main findings in [5]
revealed that fully connected networks fail to effectively
capture the code structure. As a result, this approach was
deemed suitable only for very short codes.
Another research field focuses on augmenting classical

decoding algorithms with trainable weights. In what follows,
this methodology is referred to as the model-based approach.
Several studies [6], [7], [8], [9], [10], [11], [12] have
explored the belief propagation (BP) algorithm, including
Sum-Product and Min-Sum variants, which is applicable
to any linear code but performs best for sparse-graph
codes, such as low-density parity-check (LDPC) codes [13].
The idea is to unwrap (or unroll) the underlying Tanner
graph and obtain a sparse NN, which repeats the decoder
operations but is equipped with trainable parameters. This
technique has enhanced the performance of decoding BCH
codes [6], [7], [11] and LDPC codes [8], [9], [14]. A further
development introduced the use of hyper-networks, which
replaced conventional activation functions with trainable
ones [15], [16]. Cammerer et al. later enhanced this method
by introducing trainable functions to replace the message
updates at the nodes and edges. This enhancement allowed
the neural network to learn a more generalized version of
the message-passing algorithm [17].

An alternative approach, proposed in [18], considers a
syndrome-based decoding algorithm applicable to any linear
code. The general syndrome decoding involves the use of
a mapping (syndrome to the coset leader), which has an
exponential size relative to the number of parity-check bits.
In [18], the authors propose approximating this table using
a neural network. We note that the syndrome does not
depend on the codeword and, therefore, we do not require
the NN to have a special structure. Yet, the best results were
achieved using recurrent neural networks (RNNs) [18]. More
recently, the syndrome-based approach has been adapted to
transformer and denoising diffusion architectures [19], [20].
For further details and a comprehensive review of advances
in deep learning-based decoding, we refer readers to [21].
Existing DNN-based decoders exhibit three main prob-

lems: (i) the majority of architectures are designed to
produce hard output; (ii) their application is restricted to
short codes due to the “curse of dimensionality” problem;
(iii) excessive complexity limits their application in the
real-world communication systems. Let us consider these
problems in more detail. Hard-output decoding requires
the receiver to return the estimated information word as
a bit sequence. Modern receivers, such as multiple-input
multiple-output (MIMO) systems [22], and modern codes
composed of short component codes [23], often rely on
iterative (or turbo) decoders. In these systems, soft-output
decoding is crucial. While some works (e.g., [17], [18])
mention the potential for obtaining soft-outputs using the
proposed DNN architectures, to the best of our knowledge,
the quality of such outputs has not been thoroughly explored
in the literature. Let us consider the second issue. Training

a neural network to generalize over a long code is often
challenging due to factors like the number of parameters,
training stability, and the time required for training. Recent
research has focused on leveraging the autoencoder (AE)
architecture within turbo decoding schemes [24], [25]. Turbo
autoencoders involve jointly training linear or convolutional
neural network (CNN) layers for both encoding and iterative
decoding tasks. It’s worth noting that this approach requires
training component decoders instead of generalizing the
entire turbo code structure. However, the decoder architecture
remains similar to one outlined in [5] and thus may suffer
from the “curse of dimensionality”. Regarding the third
issue raised, we highlight the fact that DNN-based decoders
built upon general neural architectures are typically over-
parameterized, leading to redundancy and wastage of both
computational and memory resources [26], which limits their
application in real systems’ hardware.
In this paper, we address the issues mentioned above. In

what follows we focus on the syndrome-based approach [18]
and do not consider DNN decoders designed as an augmen-
tation of Tanner-based decoders [8]. The reason is that we
deal with short component codes. It is known that short,
sparse codes perform poorly in comparison to polar and BCH
codes. At the same time, the application of Tanner-based
decoders is limited to sparse codes only.
Our contribution is as follows:

• We extend the syndrome-based decoding approach
of [18] to provide soft output. The major modification
is in the training process and the loss function, which
now incorporates a maximum a posteriori probability
(MAP) output-based regularization term to enhance the
soft output quality.

• To evaluate the quality of the soft output we consider an
iterative decoding scheme: the turbo product code (TPC)
with [64, 45] extended BCH (eBCH) as row and column
component codes. We employ a sequential training
strategy, enabling precise tuning of each component
decoder to the output of the preceding one. We
demonstrate that the performance of the TPC with
the proposed method for decoding component codes
is very close to that of TPC with component MAP
decoding, while significantly outperforming TPC with
Chase decoding [27] combined with the soft output
calculation method [28].

• Finally, we address the complexity and memory require-
ments of DNN-based decoders. Specifically, we explore
the limits of model compression using pruning and low-
rank approximation methods.

Fig. 1 depicts the schematic representation of the proposed
soft-output decoding method.
The paper is organized as follows. In Section II, the

system model is introduced. In Section III, we elaborate on
the modifications made to the syndrome-based approach to
enable soft-output. This section outlines the model archi-
tecture, discusses the regularization functions employed to

630 VOLUME 6, 2025

FIGURE 1. Schematic representation of the developed iterative syndrome-based DNN decoder.

enhance soft-output quality, and presents numerical results.
Section IV considers the application of the developed
decoder in the turbo product scheme, detailing the sequential
training procedure and providing TPC decoding performance
results. Section V addresses the issue of DNN-based decoder
complexity and memory requirements through pruning and
low-rank approximation. Section VI summarizes the paper
and discusses the achieved results.

II. SYSTEM MODEL
The goal of the user is to transmit a k-bit information
sequence u ∈ {0, 1}k. The system employs a binary linear
block code C with length n and dimension k. The parity-
check matrix (PCM) and generator matrix of the code C are
denoted by H and G, respectively. The information sequence
u is encoded into a codeword c = (c1, . . . , cn) = uG ∈
{0, 1}n. Following this, the modulation is applied. In this
paper, we utilize binary phase-shift keying (BPSK)

xi =
{

1, if ci = 0
−1, if ci = 1.

,∀i ∈ [1, . . . , n]. (1)

We consider transmission over a binary-input AWGN
channel. The receiver observes the signal:

y = x+ z, (2)

where z represents noise following a normal distribution
N (0, σ 2In), with In being the n × n identity matrix. In
this context, the signal-to-noise ratio (SNR) is defined as
Es/N0 = 1/2σ 2.
As usual [29], the decoder input is represented by a vector

of log-likelihood ratios (LLRs) γ ∈ R
n. Each element of

which is given by:

γi = log
p(yi|ci = 0)

p(yi|ci = 1)
= 2yi

σ 2
, ∀i ∈ [1, . . . , n], (3)

where log(·) denotes the natural logarithm, and the
probability density function of a random variable follow-
ing the distribution N (xi, σ 2) is defined as p(yi|ci) =
1/
√

2πσ 2 exp [−(yi − xi)2/(2σ 2)].

Now, let us describe the decoding performance metric.
We begin by considering hard-output decoding. Let û =
(û1, . . . , ûk) ∈ {0, 1}k be the estimated information word.
The performance is measured using the bit error rate (BER),
given by Pb = 1

k

∑k
i=1 Pr [ui �= ûi].

To assess soft output quality, we compare the decoder
output to the bit-wise MAP output γ ∗ = (γ ∗1 , . . . , γ ∗n)

γ ∗i = log
Pr [ci = 0|y]

Pr [ci = 1|y]
= log

∑
c∈C,ci=0

exp
[
(1− c)γ T

]
∑

c∈C,ci=1
exp

[
(1− c)γ T

] ,

∀i ∈ [1, . . . , n]. (4)

Here, 1 represents the all-ones vector, and γ T is the
transposed LLR vector. For a detailed derivation, we refer
the reader to [30].

III. SOFT-INPUT SOFT-OUTPUT DNN-BASED DECODING
A. SYNDROME-BASED APPROACH
Syndrome decoding is a classical method for decoding linear
codes. It involves creating a standard array, where each
syndrome corresponds to the most likely error vector, known
as the coset leader [31]. The paper of Bennatan et al. [18]
extends the classical syndrome decoding and proposes to
utilize both the reliability vector and the syndrome for
implicit neural network-based standard array reconstruction.
The performance of the decoder described in [18] is validated
for hard output decoding only. In this work, we suggest
modifying the pre- and post-processing stages to adapt the
framework for soft-output decoding in the AWGN channel.
In [18], the authors suggest using the vector [|y|, s]

as input of the noise estimator, where [·, ·] represents
concatenation, |y| is the reliability vector, and s = bin(y)HT

is the binary syndrome. In such notation bin(·) implies the
following mapping:

bin(yi) =
{

0, if yi ≥ 0
1, if yi < 0.

,∀i ∈ [1, . . . , n] (5)

VOLUME 6, 2025 631

ARTEMASOV et al.: ITERATIVE SYNDROME-BASED DNN DECODING

Algorithm 1 Soft-Output Syndrome-Based DNN Decoding

Input: γ ∈ R
n – input LLRs, s̃ ∈ R

n−k – soft syndrome
Output: γ̂ ∈ R

n – transmitted message LLRs estimation
1: ẑ← F([|γ |, s̃])
2: γ̂ ← γ − sign(γ)
 ẑ
3: return γ̂

To bypass the hard-decision stage in preprocessing, we
propose using the so-called soft syndrome introduced by
Lugosch and Gross [32]. Since operations ({0, 1},⊕) and
({1,−1}, ∗) are isomorphic, the general hard syndrome
calculation can be expressed as

si =
∏

j∈M(i)

sign(yj),∀i ∈ [1, . . . , n− k], (6)

where sign(yj) denotes the sign of yj, and M(i) represents
the set of parity check positions in the i-th row of H.
Therefore, the hard syndrome relaxation (soft syndrome)

for the decoder input LLR vector γ can be presented as

s̃i = min
j∈M(i)

|γj|
∏

j∈M(i)

sign(γj),∀i ∈ [1, . . . , n− k]. (7)

In this notation, |γj| denotes the absolute value of the LLR
γj. In the description that follows, the vector d = [|γ |, s̃] ∈
R

2n−k represents the input of the noise estimator.
The proposed decoding method is outlined in Algorithm 1,

where the symbol
 denotes the Hadamard product. In the
following, we designate the noise estimation operator by
F(·) and choose to use the DNN model to implement it.

B. DNN-BASED NOISE ESTIMATOR
The primary objective of the neural network F(·) is to
estimate the noise vector. The selection of the optimal
DNN model architecture remains an open question. In this
paper we compare the hard decoding performance of the
stacked gated recurrent unit (Stacked-GRU) model [18]
with transformer (ECCT) [19] and denoising diffusion
(DDECC) [20] for various models’ parameters: number of
layers L and the dimension of the embedding de (see Fig. 2).1

Considering both the decoding performance and the training
time of various architectures, we choose a Stacked-GRU for
the soft-output decoding task. The complete description of
the Stacked-GRU architecture is provided in the Appendix A.
During model training, the loss is derived from the output

of the DNN-based decoder and the binary codeword. A
binary cross-entropy (BCE) loss function LBCE(γ̂ , c) is
applied for this purpose.

LBCE(γ̂ , c) = −1

n

n∑
i=1

ci log σ(−γ̂i)

+ (1− ci) log(1− σ(−γ̂i)). (8)

Here σ(·) denotes the sigmoid function.

1Models from [19] and [20] are trained for 104 epochs with default
parameters specified in the original repositories.

FIGURE 2. Bit error rate results of various DNN decoders for [64, 45] eBCH code.

C. SOFT-OUTPUT QUALITY OPTIMIZATION
To optimize the soft-output distribution, we suggest adding
a regularization term to the loss function during the final
epochs of model training. We propose two regularization
methods: Mean Squared Error (MSE) and a moments-based
approach. The MAP decoder outputs, represented as LLRs
γ ∗ (4), are used as the reference.

The MSE regularization, denoted as LMSE(γ̂ , γ ∗), is
formulated in a pointwise manner, compelling the proposed
decoder to replicate the exact output of the MAP decoder.
The moments-based regularization LM(γ̂ , γ ∗) minimizes the
differences in the expectation and variance between the
distributions produced by the MAP decoder and the DNN-
based decoder. This is achieved using a weighted sum
of the squared errors for the first and second moments,
with the weighting coefficient ρM ∈ [0, 1] balancing their
contributions.

LMSE(γ̂ , γ ∗) = 1

n

n∑
i=1

(γ̂i − γ ∗i)2 (9)

LM(γ̂ , γ ∗) = ρM

(
E(|γ̂ |)− E(|γ ∗|)

)2

+ (1− ρM)
(
Var(|γ̂ |)− Var(|γ ∗|)

)2
(10)

The resulting loss function with the introduced regular-
ization term is defined as

L = LBCE + αRegLReg. (11)

Here, LReg represents the output of the selected regularization
function, and αReg denotes its scale.

Table 1 summarizes the results of the soft-output
optimization with proposed regularization functions.

632 VOLUME 6, 2025

TABLE 1. Evaluation of the NN-decoder soft-output distribution compared to map output with proposed regularizations.

FIGURE 3. Output LLR distributions histogram for Es/N0 = 1 dB [64, 45] eBCH code.
The moments-based approach is used for regularization.

Columns denote the used loss function for training and
rows denote the type of distributions similarity metrics.
To calculate the KL divergence, output samples from
both the DNN-based decoder and the MAP decoder are
accumulated. The probability mass functions for both outputs
are calculated using the same set of uniformly distributed
values (bins), X . The number of values, |X | = 101, and
their range, [−40, 40], are determined empirically to fit
the distributions. The KL divergence is computed from the
values and associated probabilities from the MAP decoder
P(x) and the DNN-based decoder Q(x), as defined in the
equation below [33], [34]

DKL(P‖Q) �
∑
x∈X

P(x) log
P(x)

Q(x)
. (12)

Fig. 3 depicts the output distributions of the neural
decoder trained with BCE loss only, the neural decoder
trained with the moments-based regularization, and the
MAP decoder, as an example. Results are provided for the
decoder trained on [64, 45] eBCH code with evaluation on
Es/N0 = 1 dB. Scales for regularization terms are obtained
empirically: αMSE = 0.01, αM = 0.1, ρM = 0.95.

D. SIMULATION RESULTS
To assess the decoding performance of the proposed frame-
work, we train a Stacked-GRU model with 4 layers, 5 time
steps, and a hidden size of 5n, where n is the code length,
on zero codewords using a batch size of 213. The Adam
optimizer [35] is utilized for training, initialized with a
learning rate of 10−3. The learning rate is progressively

FIGURE 4. BER results for [64, 45] eBCH code.

decreased to 10−6 by the “reduce on plateau” scheduler. The
initial training is performed with the BCE loss (8) only. The
MAP-based regularization terms are included for the final
epochs due to the complexity of MAP decoding.2 During
training, AWGN is sampled with a uniformly distributed
variance, corresponding to the SNR range where each
specific code is expected to produce a BER between 5 ·10−2

and 10−4. For the [64, 45] eBCH and [64, 45] CRC-Aided
(CA)-Polar codes, a training range of Es/N0 = [0, 3] dB is
selected. For the [64, 21] CA-Polar code, the training range
is set to Es/N0 = [−3.5,−0.5] dB.
The performance of the soft-output DNN decoder is

evaluated in comparison to the Chase decoder (with the
number of least reliable positions p = 1, . . . , 7), regular
belief propagation with 50 decoding iterations (BP, 50
iter.), belief propagation decoding with overcomplete parity
check matrix (BP OC, 50 iter.) [10], and NN-Tanner [8]
with 20 decoding iterations for the [64, 45] eBCH code.
Successive Cancellation List (SCL) decoder results are used
for comparison of CA-Polar codes decoding performance
(list size Lp = 21, . . . , 27 for [64, 45] CA-Polar and Lp =
21, . . . , 25 for [64, 21] CA-Polar codes). Results are depicted
in Fig. 4–6. The Chase and SCL curves are arranged from
right to left as the list sizes increase.
From Fig. 4 we can observe that on the [65, 45] eBCH

code the Tanner-based decoders (BP and Tanner-net) show

2It is worth noting that the proposed soft-output DNN can be utilized
without the joint DNN-MAP fine-tuning stage if complexity constraints
exist. However, in this case, the DNN output distribution may not align
with MAP.

VOLUME 6, 2025 633

ARTEMASOV et al.: ITERATIVE SYNDROME-BASED DNN DECODING

FIGURE 5. BER results for [64, 45] CA-Polar code.

FIGURE 6. BER results for [64, 21] CA-Polar code.

worse performance than other decoding methods. As men-
tioned in the introduction, such behavior is caused by the
nature of the message-passing algorithm, which is more
applicable for sparse codes. Also, from Fig. 4 we can observe
that the proposed soft-output DNN decoder outperforms the
widely used in practice Chase decoder with the number of
least reliable positions p = 7 and attains MAP decoding
performance. On 10−3 BER level the gap between MAP
and the proposed DNN-based decoder is ≈ 0.25 dB.
Similar trends are observed for the [64, 45] CA-Polar code
(see Fig. 5). The DNN-based decoder provides performance
comparable to the SCL decoder with the list size Lp = 27

and attains MAP performance on 10−3 BER level by ≈
0.35 dB. For the lower code rate [64, 21] CA-Polar code,
the BER curve of the DNN-based decoder falls between the
SCL decoder curves with list sizes Lp = 24 and Lp = 25

(see Fig. 6). The worse error correcting capability of the
DNN-based decoder on lower code rates is caused by the
increase of the syndrome space size. However, the main
goal of the paper is to develop a DNN-based solution for
iterative decoding systems, which require soft-input soft-
output component decoders that typically utilize high-rate
codes. Additional decoding performance results are provided
in the Appendix B.

FIGURE 7. TPC structure.

IV. NN ITERATIVE SOFT-OUTPUT DECODING
The soft-output is required for the decoder to operate
effectively in the iterative schemes. The TPC is selected to
showcase the capabilities of the developed soft-output DNN-
based decoder.

A. TURBO PRODUCT CODE
An illustration of the TPC structure can be seen in Fig. 7.
The TPC is constructed using two component codes. Each
of these component codes are in systematic form and have
the following respective parameters: [n1, k1] and [n2, k2].
The encoding process is comprised of two distinct phases.
Initially, the k1 × k2 information submatrix is encoded by
the “column code”, which generates a “column checks”
submatrix. The next step involves the encoding of the com-
bined information and column checks submatrices through
the utilization of the “row code”, leading to the generation
of the “row checks” and “checks-on-checks” submatrices.
The resulting code rate for the TPC is represented by the
equation R = (k1k2)/(n1n2) [29].
The process of iterative neural TPC decoding is illustrated

in detail in Algorithm 2. In this context, N represents
the number of decoding half-iterations, with Dc[�i](·)
and Dr[�i](·) referring to the column and row decoding
functions (Algorithm 1), parameterized by the trainable
weights �i. The matrices Lc ∈ R

n2×n1 and Lr ∈ R
n1×n2

represent the column and row extrinsic information, respec-
tively. Additionally, ϕi ∈ [0, 1] denotes the extrinsic scale
factor, and μi ∈ [0, 1] signifies the decoder output scale
factor during the i-th half-iteration. Term η is introduced
to normalize the decoder input matrix A. Normalization is
applied to speed up the convergence during the DNN iterative
decoding training, by fixing the expectation for all half-
iteration component decoders.

B. NN TPC TRAINING SETUP
Existing iterative neural decoders are based on the autoen-
coder architecture and an unrolling strategy is utilized for
training [24], [36]. Unrolling implies the initialization of
separate sets of trainable parameters for each half-iteration

634 VOLUME 6, 2025

Algorithm 2 Neural TPC Decoding
Input: N – number of TPC half-iterations

� ∈ R
n1×n2 – channel output LLRs

[�1, . . . ,�N] – set of component decoders weights
[ϕ1, . . . , ϕN] – extrinsic scaling coefficients
[μ1, . . . , μN] – decoder output scaling coefficients

Output: �̂ ∈ R
n1×n2 – soft transmitted message estimation

1: Lc,Lr ← 0
2: �̂← �

3: for i = 1 to N do
4: if i is odd then

Column decoding:
5: A← �̂

T − Lc
6: η← 1

n1n2

∑n2
i=1

∑n1
j=1 |Ai,j|

7: L0 ← Dc[�i](A/η)

8: Lc← ϕi(μiηL0 − A)

9: �̂← AT + LTc
10: end if
11: if i is even then

Row decoding:
12: A← �̂ − Lr
13: η← 1

n1n2

∑n1
i=1

∑n2
j=1 |Ai,j|

14: L0 ← Dr[�i](A/η)

15: Lr ← ϕi(μiηL0 − A)

16: �̂← A+ Lr
17: end if
18: end for
19: return �̂

with the following joint training. Such a training scheme has
a complex and time-consuming backpropagation procedure
since it requires optimization of all half-iteration decoders’
weights simultaneously. Also, unrolled training can be
unstable on relatively high learning rates, if the number of the
component DNN-based decoder parameters becomes large.
Recent works propose to train component code decoders
separately and fit them into the iterative scheme with
extrinsic information transfer (EXIT) charts [37], [38]. EXIT
charts are an efficient design tool built on the concept
of extrinsic information flow in iterative component-based
systems [39]. Component-wise training solves the problem of
its complexity, but to apply EXIT charts to fit the component
decoders, the latter should satisfy an assumption of the
Gaussian output distribution, which is not always achievable.
To train an iterative DNN-based decoder we propose

to follow a two-stage procedure: (i) sequential training of
component decoders; (ii) joint iterative decoder and extrinsic
scaling coefficients fine-tuning.
The first training stage implies a sequential training of

the component decoders. For the first half-iteration, we use
a pretrained decoder described in Section III. The next
half-iteration decoder is initialized with the weights of the
previous half-iteration decoder and trained on its outputs.
During the training of the last appended half-iteration

Algorithm 3 DNN-Based TPC Decoder Sequential Training
(Generalized for a Single Component Code)
Input: N – number of decoding half-iterations

Nep – number of training epochs
�1 – pretrained decoder weights (Section III-D)
LBCE – BCE loss function (eq. (8))

Output: [�1, . . . ,�N] – set of optimized component
decoders parameters

1: ϕ1 ← 0.7
2: μ1 ← 1.0
3: for i = 2 to N do
4: Initialize current half-iteration decoder weights

ϕi← ϕi−1
μi← μi−1
�i← �i−1

5: Disable �i−1 gradient calculation
6: for j = 1 to Nep do
7: Generate batch of codewords C and LLRs �

8: Perform decoding (Algorithm 2)
�̂← decode

(
i,�, [�1, . . . ,�i],
[ϕ1, . . . , ϕi], [μ1, . . . , μi]

)
9: Calculate loss LBCE(�̂,C) and update weights

�i, [ϕ1, . . . , ϕi], [μ1, . . . , μi]
10: end for
11: end for
12: return [�1, . . . ,�N]

decoder, all the preceding decoders’ weights are frozen. As
the BCE (8) loss plateau is achieved, a new half-iteration
decoder is appended to the scheme. We note that the input
of the first half-iteration component decoder has a Gaussian
distribution, but it is not guaranteed for all subsequent
iterations. Sequential training allows to precisely tune all
component decoders to the shape of their input distributions,
as well as to reduce the training time and increase its
stability, since only one component decoder’s set of weights
is updated simultaneously. It is important to point out that
during the TPC training extrinsic and decoder output scaling
coefficients ϕ,μ remain unfrozen and optimized jointly with
the decoder. The described training procedure for a single
component code is summarized in the Algorithm 3.

Once all the component code decoders are trained, we
proceed to the second stage. The decoder is unrolled as
in [24] and fine-tuned in the TPC scheme jointly with the
extrinsic and decoder output scaling coefficients ϕ,μ. Fine-
tuning is performed with a low learning rate (10−6) for a
small number of epochs.
The loss function used during the fine-tuning stage of

the NN-TPC is an exponentially weighted sum of the BCE
loss (8) across all decoding iterations.

β = [e0, . . . , eN−1] (13)

LNN-TPC = 1

N‖β‖1
N∑
i=1

βiLBCE(�̂i,C). (14)

VOLUME 6, 2025 635

ARTEMASOV et al.: ITERATIVE SYNDROME-BASED DNN DECODING

FIGURE 8. BER results for TPC decoding scheme with [64, 45] eBCH as component
code, 4 full iterations.

Here, �̂i represents the decoded column/row message LLRs
at half-iteration i, and C refers to the transmitted binary TPC
message.

C. SIMULATION RESULTS
To assess the developed soft-output decoder we utilize a TPC
with a [64, 45] eBCH component code. The performance of
the proposed decoder is compared to the Chase decoder with
the soft-output calculation [28] and MAP decoding3 over
four full iterations (N = 8). BER results are depicted in
Fig. 8. We observe that the DNN-based decoder outperforms
the Chase-Pyndiah algorithm for p ≤ 8 with a large
gap and attains component MAP decoder performance by
≈ 0.2− 0.25 dB. To the best of our awareness, this is the
first neural decoder demonstrating competitive performance
in the iterative scheme for code and message lengths of
[n = 4096, k = 2025].

V. COMPLEXITY AND MEMORY REQUIREMENTS
REDUCTION
The utilization of NN-based processing techniques in com-
munication system’s hardware is frequently restricted by the
reasons of computational complexity and memory require-
ments. Deep learning models are often over-parameterized,
leading to redundancy and wastage of both computation and
memory resources [26]. When considering the complexity
reduction of the neural decoders, the main and the most
straightforward approach is to decrease the number of
trainable parameters. In this paper, we follow two methods:
unstructured pruning and low rank approximation. In the
following subsections sparsity λ is used as the compression
metric, defined as the ratio of the number of reduced weights
R in the model to the total number of trainable parameters T .

λ = R
T . (15)

A complete derivation of the computational complexity of
the decoding model described in this paper is provided in
the Appendix C.

3The MAP decoder is used for decoding component codes. The extrinsics
are scaled by a coefficient of ϕ = 0.7.

FIGURE 9. BER performance evaluation of the pruned [64, 45] eBCH decoding
model.

A. PRUNING
Pruning is a process of trainable weights sparsification.
Pruning reduces a portion of the values in the model’s weight
matrices to zero, allowing the weights to be represented
more efficiently. In a sparse representation, only the non-
zero values are stored, along with a corresponding mask.
Structured and unstructured pruning approaches can be
distinguished.
Structured pruning implies the removal of neural network

structural parts (filters, channels, layers, or groups of
weights). Structured pruning allows to greatly improve the
computational performance, by reducing part of the required
computations. Usually, structured pruning is applied for the
CNNs to reduce the number of filters [40].
Unstructured pruning is a more general approach to train-

able weights sparsification. Usually, unstructured pruning
implies the suppression of the predefined amount of weights
with the least L1 or L2 norms. The best results described in
the latest papers are achieved with the iterative approach: on
each training epoch non-masked model weights are adjusted
and the indices of the pruned neurons are reselected [41].
Unstructured pruning does not guarantee a reduction in the
computational complexity of matrix multiplication for the
model’s parameters, but it can efficiently reduce memory
requirements with minimal impact on performance.
To demonstrate pruning impact on the DNN-based

performance we utilize simple noniterative unstructured L1
norm pruning with the predefined sparsity for the trainable
matrices inside the GRU cells and FC layer, without
following model tuning. Fig. 9 demonstrates [64, 45] eBCH
decoding performance in respect to the model sparsity. We
can see that 30% of the model’s parameters can be pruned
without large performance loss.

B. LOW RANK COMPRESSION
In machine learning, tensor methods can be used to reduce
the computational complexity and memory requirements of
the DNN models that have already been trained. This is
achieved by decomposing the weight tensors of the model
into smaller, more manageable components that can be stored

636 VOLUME 6, 2025

and processed more efficiently. Tensor methods can also be
used to improve the accuracy and generalization performance
of deep learning models by incorporating additional con-
straints or regularization terms into the optimization process.
Tensor decomposition is a powerful technique for compress-

ing models, especially recurrent neural networks. It allows
one to reduce the size of the input-to-hidden layers in RNN
models by over 1,000 times [42]. There are several tensor
decomposition methods, such as Tucker decomposition [43],
canonical polyadic decomposition (CPD) [44], and tensor
train (TT) [45], which can be applied to multidimensional
tensors. However, the most straightforward method applicable
for two-dimensional matrices is the truncated singular value
decomposition (SVD).
For a NN weight matrix W ∈ R

M×B SVD decomposition
is defined as

U�VT =W, (16)

where U ∈ R
M×K,VT ∈ R

K×B are unitary matrices with
K = min(M,B) and � ∈ R

K×K diagonal matrix with

singular values σ : � =
⎡
⎢⎣

σ1 0 0

0
. . . 0

0 0 σK

⎤
⎥⎦, σ1 ≥ . . . ,≥ σK .

Dense matrices typically require MB elements to be
stored. A rank-r approximation can reduce this number to
r(M + B). Suppose each of the trained NN weight matrices
involved in matrix-vector multiplication represents a function
f (x), x ∈ R and we seek a low-dimensional parametrization
of this function. Specifically, we aim to identify the directions
in which a f (x) changes a lot on average and for the directions
in which f (x) is almost constant. SVD solves the above-
mentioned problem. From the singular values σ distribution
one can estimate the matrix rank. Truncating the columns of
U ∈ R

M×K → Uc ∈ R
M×r, VT ∈ R

K×B → VT
c ∈ R

r×B
and vector of diag(�) ∈ R

K → diag(�c) ∈ R
r to the desired

condition number we can approximate matrixW to the defined
rank r matrix Wc = Uc�cVT

c . Since the diagonal matrix �c

can be multiplied by either of the unitary matrices, Uc or
VT
c , before being stored in memory, we are required to store

r(M+B) real-valued elements. This allows us to redefine the
sparsity as λ = 1 − r(M+B)

MB . The complexity of the matrix
multiplication is reduced by the same factor λ.

Modern methods of decomposition-based compression
imply compression-aware training: decomposition is per-
formed in an online fashion during training, jointly with
the weights update. This approach generally yields bet-
ter compression and performance results. In this paper,
we will follow the simple “compression after train-
ing” approach to demonstrate the compressed DNN-based
decoder’s performance bounds. The results of the truncated
SVD compression are depicted in Fig. 10. We can compare
them with pruning compression. One can observe that low
SVD compression of the decoding model leads to worse
performance than pruning, which degrades comparatively
slowly with an increase in the compression ratio. However,

FIGURE 10. BER performance evaluation of [64, 45] eBCH decoding model
compressed by low-rank SVD approximation.

SVD-based compression performance converges at high
sparsity ratios, which describes its wide application for heavy
NN compression. We conclude that for the model utilized
in the described example, pruning solves the compression
task better when decoding performance is more important.
Truncated SVD may be applied for large compression ratios,
but the decoding performance degrades faster.

VI. CONCLUSION
This paper introduces a modified syndrome-based
DNN-decoding approach that enhances performance by
incorporating regularization and training to replicate MAP
decoder soft outputs. The approach was evaluated on
eBCH and CA-Polar codes with various rates demonstrating
its potential for iterative decoding schemes. The model
was specifically tailored for turbo product code decoding
using a sequential training method. The DNN-based
iterative decoder outperformed the Chase-Pyndiah algorithm
with p ≤ 8, achieving MAP decoder performance
within 0.2–0.25 dB. To the best of our knowledge, this
is the first neural decoder demonstrating competitive
performance within an iterative scheme for code and message
lengths of [n = 4096, k = 2025]. The study also addressed
computational challenges by employing model compression
techniques, such as pruning and matrix decomposition, to
balance resource constraints with decoding accuracy.

APPENDIX A
STACKED-GRU NOISE ESTIMATOR ARCHITECTURE
The Stacked-GRU is an RNN architecture comprised of GRU
cells [46], which include trainable “update” and “reset” gates.
The behavior of each GRU cell is defined by the following
equations (see Fig. 11 for more details).

gt = σ(Wgdt + Ugqt−1 + bg), (17)

rt = σ(Wrdt + Urqt−1 + br), (18)

q̂t = tanh
(
Whdt + Uh(rt
 qt−1)+ bh

)
, (19)

qt = gt
 q̂t + (1− gt)
 qt−1. (20)

Here, dt represents the input vector, qt denotes the output
vector, q̂t stands for the candidate output vector, gt is the

VOLUME 6, 2025 637

ARTEMASOV et al.: ITERATIVE SYNDROME-BASED DNN DECODING

FIGURE 11. Gated Recurrent Unit cell.

update gate vector, and rt is the reset gate vector. The
matrices W and U are trainable multiplicative weights, and b
represents trainable bias vectors. The function σ(·) indicates
the sigmoid activation and tanh(·) refers to the hyperbolic
tangent activation. Such architecture is commonly employed
for natural language processing tasks.
To construct a Stacked-GRU architecture, cells are orga-

nized in two dimensions. In the vertical dimension, the output
qt from the previous cell is fed into the feature input dt of
the next cell. The total number of layers in the Stacked-GRU
network is denoted by L. The horizontal stacking dimension
determines the network’s recurrent structure, where the
output from previous cells is transferred as the hidden state
qt−1 to the subsequent cells. The network’s initial hidden
state q0 is initialized by zeros. The total number of time
steps is denoted by T . It is worth noting that the number of
trainable parameters of the Stacked-GRU does not depend
on T , since the same set of GRU cells is utilized in the
recurrent manner for all of the time steps.

For a single input vector, the Stacked-GRU neural
network generates T vectors from the output of the final
layer. We represent this stacked output vector as Q(L) =
[q(L)

1 , . . . ,q(L)
t , . . . ,q(L)

T] ∈ R
nhT , where the superscript L

indicates the last layer, the subscript t refers to the GRU time
step, and nh denotes the hidden size of the cell. To reduce
the dimension of the Stacked-GRU output vector from nhT
to the length of the LLR vector n, the output Q(L) is fed
into a single fully connected layer. The overall structure of
the noise estimation model is illustrated in Fig. 12.

APPENDIX B
ADDITIONAL DECODING PERFORMANCE RESULTS
To validate the robustness of the proposed DNN-based
decoding method and to illustrate the limitations of belief
propagation-based algorithms application for codes utilized
in our studies, we present additional simulation results for
eBCH codes of lengths 32, 64, and 128 in Fig. 13.

APPENDIX C
DECODING MODEL COMPLEXITY ANALYSIS
The total computational complexity of the proposed DNN-
based decoder includes the complexity of the Stacked-GRU

FIGURE 12. Stacked-GRU model architecture.

model and the linear layer that reduces the dimensionality
of the Stacked-GRU output.
The number of real multiplications of the single

GRU-cell is

CGRU = O(nh(3ni + 3nh + 3)), (21)

where nh – cell hidden size, ni – length of input vector [47].
The input vector size of the GRU cell differs for the first

layer and all subsequent layers of the Stacked-GRU. For the
first layer, the input size is n(1)

i = 2n−k where n is the code
length and k is the code dimension. For the following layers,
the input size equals the hidden size nh of the previous cell.
Additionally, we must consider that the model’s hidden state
is initialized by zeros, resulting in reduced complexity for
the GRU cells at time step t = 1 by 3n2

h.
The resulting complexity of the Stacked-GRU model is

CS.GRU = O
(
nh

(
3ni + 3

)
+ nh

(
T − 1

)(
3nh + 3ni + 3

)
+ nh

(
L− 1

)(
3nh + 3

)
+ nh

(
T − 1

)(
L− 1

)(
3nh + 3nh + 3

))

= nh
(
(3ni + 3)+ (T − 1)(3nh + 3ni + 3)

+ (L− 1)(3nh + 3)+ (T − 1)(L− 1)(6nh + 3)
)
,

(22)

where T is the number of time steps and L is the number
of layers.
The complexity of the linear layer is determined by the

length of the input vector, denoted as nFCi , and the number of
neurons, which, in our case, is equal to the code length n. In this
application, the input to the linear layer is the flattened vector
resulting from the concatenation of the last-layer outputs of
a Stacked-GRU, meaning that nFCi = Tnh.

CFC = O(nFCin) = O(Tnhn). (23)

638 VOLUME 6, 2025

FIGURE 13. BER performance of eBCH code decoding.

REFERENCES

[1] D. Artemasov, K. Andreev, P. Rybin, and A. Frolov, “Soft-output deep
neural network-based decoding,” in Proc. IEEE Globecom Workshops
(GC Wkshps), 2023, pp. 1692–1697.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[3] X.-A. Wang and S. Wicker, “An artificial neural net Viterbi
decoder,” IEEE Trans. Commun., vol. 44, no. 2, pp. 165–171,
Feb. 1996.

[4] L. G. Tallini and P. Cull, “Neural nets for decoding error-correcting
codes,” in Proc. IEEE Tech. Appl. Conf. Workshops. Northcon/95,
Conf. Rec., Oct. 1995, p. 89.

[5] T. Gruber, S. Cammerer, J. Hoydis, and S. t. Brink, “On deep learning-
based channel decoding,” in Proc. 51st Annu. Conf. Inf. Sci. Syst.
(CISS), Mar. 2017, pp. 1–6.

[6] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein,
and Y. Be’ery, “Deep learning methods for improved decoding of
linear codes,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1,
pp. 119–131, Feb. 2018.

[7] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 1361–1365.

[8] K. Andreev, A. Frolov, G. Svistunov, K. Wu, and J. Liang, “Deep neu-
ral network based decoding of short 5G LDPC codes,” in Proc. XVII
Int. Symp. ‘Problems Redundancy Inf. Control Syst.’ (REDUNDANCY),
2021, pp. 155–160.

VOLUME 6, 2025 639

ARTEMASOV et al.: ITERATIVE SYNDROME-BASED DNN DECODING

[9] J. Dai et al., “Learning to decode protograph LDPC codes,” IEEE J.
Sel. Areas Commun., vol. 39, no. 7, pp. 1983–1999, Jul. 2021.

[10] M. Lian, F. Carpi, C. Häger, and H. D. Pfister, “Learned belief-
propagation decoding with simple scaling and SNR adaptation,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2019, pp. 161–165.

[11] E. Nachmani, E. Marciano, D. Burshtein, and Y. Be’ery, “RNN
decoding of linear block codes,” 2017, arXiv:1702.07560.

[12] B. Vasić, X. Xiao, and S. Lin, “Learning to decode LDPC codes with
finite-alphabet message passing,” in Proc. Inf. Theory Appl. Workshop
(ITA), 2018, pp. 1–9.

[13] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA,
USA: MIT Press, 1963.

[14] V. Kuzurman, D. Artemasov, K. Andreev, and A. Frolov, “On joint
neural min-sum decoding and quantization optimization,” in Proc.
IEEE Int. Multi-Conf. Eng., Comput. Inf. Sci. (SIBIRCON), 2024,
pp. 58–64.

[15] E. Nachmani and L. Wolf, “Hyper-graph-network decoders for
block codes,” in Advances in Neural Information Processing Systems,
vol. 32. Red Hook, NY, USA: Curran Assoc., Inc., 2019.

[16] E. Nachmani and L. Wolf, “A gated hypernet decoder for polar codes,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
2020, pp. 5210–5214.

[17] S. Cammerer, J. Hoydis, F. A. Aoudia, and A. Keller, “Graph neural
networks for channel decoding,” 2022, arXiv:2207.14742.

[18] A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep learning for
decoding of linear codes-a syndrome-based approach,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jun. 2018, pp. 1595–1599.

[19] Y. Choukroun and L. Wolf, “Error correction code transformer,”
in Advances in Neural Information Processing Systems, S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
Eds., vol. 35. Red Hook, NY, USA: Curran Assoc., Inc., 2022,
pp. 38695–38705. [Online]. Available: https://proceedings.neurips.
cc/paper_files/paper/2022/file/fcd3909db30887ce1da519c4468db668-
Paper-Conference.pdf

[20] Y. Choukroun and L. Wolf, “Denoising diffusion error correction
codes,” 2022, arXiv:2209.13533.

[21] T. Matsumine and H. Ochiai, “Recent advances in deep learning for
channel coding: A survey,” 2024, arXiv:2406.19664.

[22] C. Studer, “Iterative MIMO decoding: Algorithms and VLSI
implementation aspects,” Ph.D. dissertation, ETH Zürich, Zürich,
Switzerland, Jun. 2009. [Online]. Available: http://www.nari.ee.ethz.
ch/pubs/p/studerdiss09

[23] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[24] M. V. Jamali, H. Saber, H. Hatami, and J. H. Bae, “ProductAE: Toward
training larger channel codes based on neural product codes,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2022, pp. 3898–3903.

[25] J. Clausius, M. Geiselhart, and S. ten Brink, “Component training of
turbo autoencoders,” 2023, arXiv:2305.09216.

[26] M. Denil, B. Shakibi, L. Dinh, M. A. Ranzato, and N. de Freitas,
“Predicting parameters in deep learning,” in Advances in
Neural Information Processing Systems, C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Weinberger, Eds., vol. 26.
Red Hook, NY, USA: Curran Assoc., Inc., 2013. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2013/file/
7fec306d1e665bc9c748b5d2b99a6e97-Paper.pdf

[27] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Trans. Inf. Theory, vol. 18, no. 1,
pp. 170–182, Jan. 1972.

[28] R. Pyndiah, “Near-optimum decoding of product codes: Block turbo
codes,” IEEE Trans. Commun., vol. 46, no. 8, pp. 1003–1010,
Aug. 1998.

[29] W. Ryan and S. Lin, Channel Codes: Classical and Modern.
Cambridge, U.K.: Cambridge Univ. Press, 2009. [Online]. Available:
https://books.google.ru/books?id=n9BNngEACAAJ

[30] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2008.

[31] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland Math. Libr.,
1977. [Online]. Available: https://doi.org/10.1016/s0924-6509

[32] L. Lugosch and W. J. Gross, “Learning from the syndrome,” in Proc.
52nd Asilomar Conf. Signals, Syst., Comput., 2018, pp. 594–598.

[33] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951. [Online]. Available:
https://doi.org/10.1214/aoms/1177729694

[34] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Hoboken, NJ,
USA: Wiley-Intersci., 2006.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2017, arXiv:1412.6980.

[36] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Turbo autoencoder: Deep learning based channel codes for point-
to-point communication channels,” in Proc. 33rd Conf. Neural Inf.
Process. Syst., 2019, pp. 2754–2764.

[37] J. Clausius, S. Dörner, S. Cammerer, and S. ten Brink, “Serial
vs. parallel turbo-autoencoders and accelerated training for learned
channel codes,” in Proc. 11th Int. Symp. Topics Coding (ISTC), 2021,
pp. 1–5.

[38] J. Clausius, M. Geiselhart, and S. T. Brink, “Component training of
turbo autoencoders,” in Proc. 12th Int. Symp. Topics Coding (ISTC),
2023, pp. 1–5.

[39] S. ten Brink, “Convergence behavior of iteratively decoded paral-
lel concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10,
pp. 1727–1737, Oct. 2001.

[40] C. Lemaire, A. Achkar, and P.-M. Jodoin, “Structured pruning
of neural networks with budget-aware regularization,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 9100–9108.

[41] C. M. J. Tan and M. Motani, “DropNet: Reducing neural network com-
plexity via iterative pruning,” in Proc. 37th Int. Conf. Mach. Learn.,
Jul. 2020, pp. 9356–9366. [Online]. Available: https://proceedings.mlr.
press/v119/tan20a.html

[42] X. Liu and K. K. Parhi, “Tensor decomposition for model reduction
in neural networks: A review [feature],” IEEE Circuits Syst. Mag.,
vol. 23, no. 2, pp. 8–28, 2nd Quart., 2023.

[43] L. R. Tucker, “Some mathematical notes on three-mode factor
analysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966. [Online].
Available: https://doi.org/10.1007/BF02289464

[44] F. L. Hitchcock, “The expression of a tensor or a polyadic as a
sum of products,” J. Math. Phys., vol. 6, nos. 1–4, pp. 164–189,
1927. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/sapm192761164

[45] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, 2011. [Online]. Available: https://doi.
org/10.1137/090752286

[46] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio,
“On the properties of neural machine translation: Encoder-decoder
approaches,” 2014, arXiv:1409.1259.

[47] P. J. Freire, S. Srivallapanondh, A. Napoli, J. E. Prilepsky, and
S. K. Turitsyn, “Computational complexity evaluation of neural
network applications in signal processing,” 2022, arXiv:2206.12191.

DMITRY ARTEMASOV (Graduate Student Member,
IEEE) received the B.Sc. degree in telecommu-
nications from Ural Federal University in 2021,
and the M.Sc. degree in computer science from
the Skolkovo Institute of Science and Technology
in 2023, where he is currently pursuing the
Ph.D. degree. His research interests include MIMO
systems, coding theory, information theory, deep
learning, IoT, and digital signal processing. He is a
recipient of the Russian President and the Russian
Government Scholarships.

640 VOLUME 6, 2025

KIRILL ANDREEV (Member, IEEE) received the
M.Sc. degree in applied mathematics from the
Moscow Institute of Physics and Technology in
2010, and the Ph.D. degree in technical sci-
ences from the Institute of Control Sciences
of the Russian Academy of Sciences in 2016.
He is currently an Assistant Professor with the
Skolkovo Institute of Science and Technology,
Moscow, Russia. His research interests include
multiple access protocols, information and coding
theory, and applications of machine learning in
communication systems.

PAVEL RYBIN (Member, IEEE) received the M.Sc.
degree in computer science from Bauman Moscow
State Technical University in 2010, and the
Ph.D. degree in mathematics from the Institute
for Information Transmission Problems, Russian
Academy of Sciences in 2012. He is currently
a Leading Research Scientist with the Skolkovo
Institute of Science and Technology, Moscow,
Russia. His research interests include error-
correcting codes, decoding algorithms, complexity
theory, and communication systems. He is a

recipient of the Russian President Scholarship and laureate of the contest
of young scientists for participation in conferences and seasonal schools in
the field of computer science of the Dynasty fund.

ALEXEY FROLOV (Member, IEEE) received the
M.Sc. degree in computer science from Bauman
Moscow State Technical University in 2010, the
Ph.D. degree in mathematics from the Institute
for Information Transmission Problems, Russian
Academy of Sciences, in 2012, and the D.Sc.
degree in mathematics from Moscow Institute of
Physics and Technology in 2021. He is currently
a Professor with the Skolkovo Institute of Science
and Technology, Moscow, Russia. His research
interests include information theory and its appli-

cations in telecommunications, storage systems, and other areas. He was
a recipient of the IEEE GLOBECOM Communication Theory Symposium
Best Paper Award in 2020, the Russian Government Award in Science and
Technology for Young Scientists in 2016, and the Moscow Government
Award for Young Scientists in 2013.

VOLUME 6, 2025 641

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

