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ABSTRACT Non-orthogonal multiple access (NOMA) is already considered a viable multiple access
scheme in fifth-generation networks. However, the stochastic behaviour of a wireless channel becomes a
key performance limiting factor. To combat this, and with the advancement of metasurface technology,
NOMA networks are being integrated with intelligent reflecting surfaces (IRSs) to improve signal strength.
But IRS complicates the detection accuracy of a NOMA system, which is dependent on the correctness
of the successive interference cancelation (SIC) process. In this article, we propose a machine learning
(ML)-based approach to perform joint channel estimation and signal detection in an IRS-enabled uplink
NOMA network under efficient mitigation of SIC error propagation. The proposed scheme exploits a
four layer deep learning (DL) model by employing a long short-term memory (LSTM) core structure.
Further, to optimize the phase shifts of IRS, we exploit a low complexity iterative solution using the
element-wise block coordinate descent (EBCD) method. Monte Carlo simulations are performed to analyze
the performance of the proposed scheme, and the findings show a considerable improvement in channel
estimation and signal detection using the LSTM based IRS-NOMA receiver. The comparison is made with
a maximum likelihood detector employing conventional SIC scheme using least squares and minimum
mean square error channel estimation approaches in a realistic path loss channel model with severe
inter-symbol interference.

INDEX TERMS Non-orthogonal multiple access (NOMA), intelligent reflecting surface (IRS), machine
learning (ML), signal detection, channel estimation, deep learning (DL), long short-term memory
(LSTM).

I. INTRODUCTION

WITH the progressive development of fifth genera-
tion (5G) and beyond, the anticipated demands for

enhanced spectral efficiency (SE), massive connectivity,
higher reliability, and low communication latency have
increased drastically [1]. In order to address the massive need
of next-generation applications, new technologies are being
investigated to provide fast and reliable data communication.
The non-orthogonal multiple access (NOMA) scheme has
already proven to be an effective multiple access scheme for

the 5G and beyond 5G (B5G) wireless networks [2], [3], [4],
providing improved performance in terms of connectiv-
ity, coverage, SE, energy efficiency (EE), and resource
allocation [5], [6], [7].

By facilitating multiple users on a single resource,
NOMA defies the concept of orthogonal multiple access
techniques and offers a wide range of degrees of
freedom (DoF) [8]. Additionally, it demonstrates great
flexibility in terms of integrating with the key enabling
technologies for 5G and B5G, including multiple-input
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multiple-output (MIMO), cooperative communication, het-
erogeneous networks (HetNets), cognitive radio networks
(CRNs), millimetre wave (mmWave) communication, and
intelligent reflecting surfaces (IRSs) technology [9], [10],
[11], [12]. However, in a multi-user environment, the
stochastic behaviour of a wireless channel becomes one of
the primary limiting factors for performance enhancement.
To combat the random fluctuations of these wireless radio
links, and with the progress in metasurfaces, IRSs appears
as a passive albeit promising solution [13], [14], [15].
NOMA is generally classified into two distinct categories,

namely, code domain NOMA (CD-NOMA) [16] and power
domain NOMA (PD-NOMA) [17]. CD-NOMA multiplexes
in the code domain by employing user-specific spreading
sequences that are either sparse or non-orthogonal cross-
correlation sequences with a low correlation coefficient [18].
Whereas, multiple users are served simultaneously, with
varying power levels, in the PD-NOMA scheme [19], [20].
Hence, it offers a multi-user access system that provides an
additional level of signal separation and base station (BS)
access [21]. With the evolution towards heterogeneous and
software controlled networks [22], the integration of IRS-
enabled NOMA networks have the capability to improve
performance gains in a dense user environment with diverse
applications [23], [24], [25], [26]. The potential vision of
reconfigurable environments unveils a new avenue for the
researchers to investigate the integration of IRS with NOMA
networks [12], [27].
An IRS is comprised of several low-cost passive meta-

surfaces that can be individually tweaked to control the
phase and amplitude of incident signals [28]. The symmetric
array of IRS elements provide flexible control of reflections
using a low-cost IRS controller. By superimposing construc-
tive/destructive signals at the receiving end through IRS, the
received signal strength can be increased [29]. IRS differs
from conventional relay technologies such as amplify-and-
forward (AF), decode-and-forward (DF), and back-scatter
communication [30], [31] and does not require any signal
processing capabilities [32]. Therefore, combining these
two complimentary technologies considerably improves the
performance of NOMA communication systems. NOMA
users attainable rates, sum rate, and EE can be maximized by
using optimal passive IRS phase shift components [27], [33].
In conventional power domain (PD) NOMA systems,

superposition coding (SC) is performed at the transmitter side
based on varied power allocation, and successful interference
cancelation (SIC) is performed at the receiving side [17]. The
SC process introduces additional signal interference, which is
removed on the receiving side by SIC. In NOMA systems the
acquisition of channel state information (CSI) is critical for
SIC performance, which becomes exceedingly difficult with
IRS-enabled networks [34]. In case of imperfect SIC, the
residual interference significantly degrades the performance
of NOMA systems. Further, the detection accuracy of a
network is highly dependent on the correctness of the SIC
process, where multiple users are decoded in a sequential

manner. The SIC process also suffers with the effects of error
propagation in a real-time wireless channel which degrades
the performance. With IRS enabled NOMA networks, the
situation becomes more challenging due to multiple signal
reflections and increased attenuation losses [35].
Therefore, to address the aforementioned challenges, ML

particularly deep learning (DL) has gained considerable
attention in wireless communication networks [36]. The
anticipated demands of users escalates the system complexity
for B5G networks; which brings the deep neural networks
(DNNs) in frame and therefore are often a partial substitute
in several communication configurations [37]. Previously,
several studies have been done for channel estimation and
signal detection in conventional NOMA networks through
DL. Narengerile and Thompson in [38] investigated a
DL-based uplink NOMA receiver for joint channel estima-
tion and signal detection. The proposed receiver provide
improved performance over the conventional maximum-
likelihood detector (MLD). Emir et al. in [39] proposed a
DL-based detector for joint channel estimation and signal
detection under both perfect and imperfect CSI for multi-user
orthogonal frequency division multiplexing (OFDM)-NOMA
over Rayleigh fading channels. The proposed detector
outperformed the conventional detectors both in offline and
online training.
To reduce SIC error propagation and perform signal

detection, Zhu et al. in [40] proposed a DL-based soft
information receiver (DLSI) for uplink multiple-input-single-
output (MISO)-NOMA networks. Emir et al. in [41]
proposed a novel deep learning-aided multi-user detection
(DeepMuD), to enable the machine type communication with
enhanced error performance in uplink NOMA networks. To
reduce system complexity, Chitti et al. in [42] investigated
a MuD based on DNN. The MuD approach outperformed
conventional detectors with the least complexity. Gui et al.
in [43] also proposed a novel DL enabled NOMA system
to serve multiple random deployed users with single BS. To
provide end-to-end simultaneous transmissions with channel
estimation, equalization, and demodulation, Xie et al. in [44]
developed a novel receiver based on DL for NOMA signal
detection. However, when NOMA networks are aided with
IRS, the channel estimation and signal detection become
more complicated because of dual channel paths. Hence,
it has become very challenging to estimate the channels
of large-dimensional intelligent surfaces having multiple
passive reflecting elements. This constraint puts a major limit
on the effective deployment of IRSs in NOMA networks due
to computational cost and complexity.
For realizable systems, few studies have recently proposed

DL-based estimation and detection models for IRS-assisted
frameworks, which reduce the complexity and mitigate
error propagation issues [35], [45], [46]. Taha et al. in [47]
addressed training overhead and hardware complexity of
large intelligent surfaces through a DL-based solution.
Jiang et al. in [48] performed channel estimation by
collecting real data from IRS active elements to train the
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DNNs. Inspired by this, the authors in [49] proposed an
intelligent receiver model for IRS-assisted cognitive-NOMA
network by employing a DL approach, thus resulting in
improved channel estimation and signal detection. However,
the investigation of channel estimation and signal detection
in IRS-enabled uplink NOMA networks by employing ML-
based signal detection techniques needs to be investigated.
Based on the potential advantages of IRS and the

exploitation of DL in a reconfigurable environment, we
have proposed a low complexity ML approach for channel
estimation and signal detection in an uplink IRS-assisted
orthogonal frequency division multiplexing (OFDM)-NOMA
network. Using the proposed model, channel estimation and
signal detection is performed more effectively in a complex
fading environment with least SIC error propagation. The
following are the article’s key contributions:

• We propose a low complexity ML-based approach for
an uplink IRS-assisted OFDM-NOMA framework to
perform joint channel estimation and signal detection.
The proposed scheme exploits a four layer DL model
based on a long short-term memory (LSTM) core
structure. Moreover, a less complex iterative approach,
i.e., the element-wise block coordinate descent (EBCD)
method, is embedded in the framework to optimize the
IRS phase shifts.

• We investigate the ML-based MuD receiver in a NOMA
network employing a distance-dependent fading path-
loss channel model with severe intersymbol interference
under optimized IRS phase shifts and also compare its
performance to a conventional NOMA system without
IRS scenario. The proposed model demonstrate a high
accuracy with least loss error.

• We evaluate the performance of the proposed framework
with minimum signal-to-interference-plus-noise ratio
(SINR) requirements in terms of symbol error rate
(SER) formulations. The simulation results are bench-
marked with maximum-likelihood detector (MLD)
under perfect CSI and conventional SIC scheme by
employing least squares (LS) and minimum mean
square error (MMSE) channel estimation approaches
under imperfect CSI scenario.

A. MANUSCRIPT ORGANIZATION AND NOTATIONS
The remaining of the manuscript is organized as follows:
Section II describes the IRS-enabled network model along-
with problem formulation. Section III discuses the LSTM
model for MuD in uplink IRS-assisted NOMA transmis-
sion. The simulation results and analysis are presented in
Section IV, and Section V concludes the work.
Notations: The italic light letters (h), boldface lowercase

letters (h), and uppercase boldface letters (H) in this
work represent scalars, vectors, and matrices, respectively.
The absolute square and Hermitian are represented by the
symbols | · |2 and (·)H , respectively. Complex Gaussian
random variables are denoted as CN while complex spaces
characterized by n dimensions are represented by the notation

FIGURE 1. System model of uplink IRS-assisted NOMA network.

C
(·). The symbols diag(·), ∑(·), E[·], and R[·] represents the

diagonal matrix, summation operator, statistical expectation
of random variables, and real part of a complex value,
respectively.

II. IRS-ENABLED NOMA NETWORK MODEL
For IRS-assisted uplink single-input-single-output (SISO)-
NOMA transmission, we investigate the system model
presented in Fig. 1. An IRS made up of R reflecting com-
ponents is placed between the BS and the user equipments
(UEs) to facilitate the users lying in dead zone, i.e., no direct
signal path exists between the users and BS. The location of
BS and IRS is assumed to be fixed, but the UEs position may
be dynamic. The IRS is equipped with a low-power controller
to perform coordination between BS and IRS through a
backhaul link. For simultaneous data transmission, an OFDM
modulation scheme having N-subcarriers with L users per
subcarrier is presumed. Assuming that sj(n) is the baseband
symbol of jth user with normalized power as E{|sj(n)|2} = 1,
then the intended signal at each user end is represented as

x(n) =
√
Ptαj(n)sj(n), (1)

where Pt is the total power allocated to each of the
N-subcarriers and αj is the NOMA power allocation coef-
ficient for jth users such that αj(n) = Pj(n)/Pt, subject to∑L

j=1 αj(n) = 1 for ∀j ∈ L with Pj(n) as the transmission
power allocated to jth user on nth subcarrier. The signal
received at the BS after reflection from IRS on nth subcarrier
is given by

yk(n) = fk,r(n)x(n) + zk(n), k ∈ {1, 2, . . . ,L},

= fk,r(n)
L∑

j=1

√
Ptαj(n)sj(n) + zk(n). (2)

The factor fk,r(n) represents the two-fold channel gain, which
is expressed as

fk,r(n) = g(n)�(n)hj,r(n), k ∈ {1, 2, . . . ,L}, (3)
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where g ∈ C
1×R indicates the channel gains between BS and

IRS, and hj,r ∈ C
R×1 shows the channel gains between IRS

and UE’s. The reflection matrix for IRS is defined as � ∈
C
R×R and comprises the information of the amplitude as well

as the phase shift coefficients of IRS, which is represented
as follows:

�(n) = diag
(
γ1e

jϑ1 , γ2e
jϑ2 , . . . , γR

jϑR
)
. (4)

Here, γ1, γ2, . . . , γR ∈ [0, 1] denote the amplitude reflection
coefficient. In the literature, this coefficient is frequently
considered fixed to reduce the hardware complexity over-
head [28]. The phase reflection coefficients are given by
ϑ1, ϑ2, . . . , ϑR ∈ [0, 2π). The factor zk(n) ∼ CN (0, σ 2

k (n))
represents the complex symmetric Gaussian noise with zero
mean and variance σ 2

k . For simplicity, albeit without loss of
generality we consider a single cell with two users; thus,
received signals at near user (UE1) and far user (UE2) are
given respectively by yk(n), k = {1, 2}.

III. PROPOSED METHODOLOGY
For detection of intended users’ symbols from the received
signal, we study a DL-based receiver in this section.
Furthermore, to obtain phase shifts of IRS, a low com-
plexity iterative suboptimal solution based on the EBCD
optimization algorithm is employed. The NOMA power allo-
cation assignment is assumed on ascending users’ channel
ordering, where CSI is obtained via channel estimation.

A. ELEMENT-WISE BLOCK COORDINATE DESCENT
APPROACH FOR IRS PHASE SHIFTS
Firstly, the IRS phase shifts are obtained with an iterative
approach, i.e., EBCD method. For brevity, we optimize phase
shifts by considering the rate of near user only. Hence, for
a single cell with two users; the SNR expression for near
user is given by

�1 =
√
Ptα1|f1,r(n)|2

σ 2(n)
. (5)

From (5), the desired maximization problem is defined as

max
ϑ

|f1,r(n)|2 (6a)

s.t. |ϑi| = 1, i ∈ {1, 2, . . . ,R}. (6b)

To solve (6), we first convert it into a tractable form. Let

v = [v1, . . . , vR]H and vi = ejϑi , ∀i ∈ R.

Furthermore, consider that

vHak(n) = g(n)�(n)hk,r(n).

where

ak(n) = diag
(
hk,r(n)

)Hg(n) ∈ C
R×1.

The fully separable phase shifts of all elements make it
possible to solve (6) via an iterative solution. To this end,
we adopt the suboptimal EBCD method to optimize the
phase shifts by iteratively optimizing each element of v, i.e.,

Algorithm 1 EBCD Method for IRS Phase Optimization

Input: iteration number r, feasible solution vi, stopping
criteria ε > 0;
Output: Optimal solution v∗i ;
Set r = 0 and initialize vi = v(0)

i ;
repeat

for i = 1:R
Calculate v∗i using (13), ∀i ∈ R;

end
Update v∗i and keep vl unchanged, i.e., vrl = vr−1

l , ∀l �= i;

Perform iterations r = r + 1 until stopping criteria met.

vi, ∀i ∈ R given the other phase shifts as, vl, ∀l ∈ R, where
l �= i in the absence of direct channel links. With fixed vl,
we formulate (6) as follows;

max
v

vUvH + 2R{vθ} + A (7a)

s.t. |vi| = 1, i ∈ {1, 2, . . . ,R}, (7b)

where

U =
∑

k

akaHk , ∀k, (8)

θi =
R∑

l �=m
U(l,m)vHi − θ̃(l), (9)

A = U(l, l) − 2R
R∑

l �=m
vmθ̃(m), (10)

θ̃ =
∑

k

ak, ∀k. (11)

Using algebraic properties, (7) becomes a simplified update
rule as follows;

max
vi

2R{viθi} (12a)

s.t. |vi| = 1, i ∈ {1, 2, . . . ,R}. (12b)

Hence, by fixing vl, ∀l ∈ R, l �= i, the optimal solution to
the above problem becomes

v∗i = θHi

|θi| , ∀i. (13)

By iteratively optimizing each block of R − 1 phase shifts
and fixing the other R phases, the optimal phase shifts can
be obtained based on the update rule of (13). Algorithm 1
provides the pseudo-code for the EBCD approach for IRS
phase shift optimization.

B. ML MODEL FOR IRS-NOMA RECEIVER
For the proposed framework of Section II, here a DL-based
model with long short-term memory (LSTM) layers and
fully linked layers is employed for channel estimation and
user symbol detection at the BS in a one-shot process. The

32 VOLUME 6, 2025



FIGURE 2. DL model of uplink IRS-OFDM-NOMA receiver.

proposed model can effectively capture temporal dependen-
cies and long-range correlations in OFDM-NOMA packets,
which are critical for accurate channel estimation and signal
detection. To train ML model, data is provided in the form
of OFDM-NOMA packets with a total of 64 subcarriers,
with one packet transmitted per subcarrier. Each OFDM
packet has 2 pilot symbols for channel estimation and 1
data symbol containing the SC signals of near and far
users. Quadrature phase shift keying (QPSK) with 2 bits
per subcarrier is used for baseband modulation, while the
OFDMA technique is employed for passband modulation.
The inverse discrete Fourier transform (IDFT) is used to
create OFDM orthogonal carriers. A cyclic prefix (CP) with
a predetermined length is inserted as a guard interval to
counteract inter-symbol interference (ISI). After performing
OFDM modulation, packets are transmitted to BS through an
IRS reflected wireless radio link. The phase shifts of IRS are
tuned via low computational micro-controller. With AWGN
noise, the BS gets both users’ two-path reflected overlaid
signals.
The ML model is trained for a given feature vector y(n)

that contains both the real and imaginary components of
the OFDM symbol, by using the OFDM packets received
from NOMA users. With 64 subcarriers and 3 OFDM
symbols per subcarrier, the total number of input features
used is 384. Labels are assigned to transmitted symbols
by considering QPSK modulation. The architecture of DL
model as illustrated in Fig. 2, comprises of 4 main layers
having an LSTM core layer with an input size of 384
and output size of 128. The LSTM layer take advantage
of the OFDM data’s temporal dependency, and the OFDM
subcarriers are considered time steps that assist the ML-
model in obtaining relevant data from channel acquisition.
The next layer is a fully connected layer with an output
size of 16, which works independently on each time step
in the LSTM-based DL model. Following that, a softmax
layer is introduced to extract data from a fully connected
layer. The softmax activation function transforms the fully
connected layer output into a normalized vector of [0, 1].
The classification layer is used in the final stage to get
output vector, followed by terminal layers with output sizes

Algorithm 2 LSTM Model

Preprocessing:
Total Samples = 560000; cross-validation = 6: 4;
Training data: X;
Training data labels: Xl;

Framework of DL Model:
Input layer: LSTM {input: 384; output: 128};
Hidden layer: 128 neurons;
Output layers: output size 16;

Training of DL Model:
for i = 1 : No. of epochs
xk = randperm(n)

for j = 1 : No. of mini − batches
batchX = X[xk[(j− 1) × m + 1 : j× m], :];
batchXl = Xl[xk[(j− 1) × m + 1 : j× m], :];

end
end

Testing of DLModel: Evaluate trained DL model for real
testing data;
Output: user’s symbols;

equal to the number of classes, i.e., 16. The loss function for
detecting each user symbol in the given network is given by;

floss = 1

L
L∑

τ=1

|(sk(τ ) − ŝk(τ )|2, (14)

here L denotes the number of training OFDM packets, sk(τ )

denotes the target output, and ŝk(τ ) shows the predicted
output at the response τ , respectively. The model is trained
offline using simulated data and then tested online to confirm
MuD’s performance under certain channel conditions. The
pseudo-code for the investigated LSTM model is provided
in Algorithm 2.

IV. SIMULATION RESULTS AND DISCUSSION
This section provides the simulation results to demonstrate
the channel estimation and symbol detection through ML-
based scheme. The DL model is trained offline using
simulation data and evaluated with the dynamic data in
an online phase. For performance analysis, the proposed
receiver is compared to conventional SIC and MLD algo-
rithms. Because the static deployment of IRS provides a
line-of-sight (LoS) connection between BS and IRS, the
Rician channel model is employed for two-fold channel
pathways given as

g(n) =
√(

d

d0

)−η1
(√

κ

1 + κ
g̃(n)LoS +

√
1

1 + κ
g̃(n)NLoS

)

.

(15)

Similarly, the channel paths between IRS and users are
expressed by non-line of sight (NLoS) Rayleigh channel
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TABLE 1. Simulation parameters.

model

hHk,r(n) =
√(

d1,2

d0

)−η2
(√

κ

1 + κ

(
h̃Hk,r

)LoS

+
√

1

1 + κ

(
h̃Hk,r

)NLoS
)

, (16)

where d0 = 1m is the reference distance, d and d1,2
represents the respective distances from BS to IRS and
IRS to UEs, and η{1,2} shows the path loss exponents
of the individual links, respectively. Further, we consider
the Rician factor κ = 5 dB. g̃LoS, (h̃Hk,r)

LoS and g̃NLoS,
(h̃Hk,r)

NLoS represent the LoS and non-LoS components
of channel links, respectively. To estimate the wireless
channel links under imperfect CSI (ipCSI), conventional
LS [50] and MMSE [51] schemes are employed. The
parameters used in the simulations are listed in Table 1.
The MATLAB computing environment is used to develop
the DL model. We created 400, 000 samples for training
and 160, 000 samples for testing, taking into consideration
the performance efficiency of LSTM model. The training is
executed on a Core i7-7500U CPU.
First, we analyze the accuracy and loss error of the

proposed DL model in Fig. 3 and Fig. 4, respectively. Fig. 3
shows the prediction accuracy of the correct outcomes. The
training accuracy (solid line) rises fast in the beginning
and reaches the highest point. The validation accuracy
(dashed line) follows the training accuracy closely, which
further demonstrates that the model is not over-fitting
the training data. The stable level of both training and
validation accuracy, which stay around 97%, after about
400 iterations. This high accuracy, which lasts for the 50
epochs, proves that the model performs well and keeps
its performance. Furthermore, the substantial fluctuations
observed around 3000 iterations demonstrate the attainment
of the global minima by the proposed approach. Fig. 4 shows
the loss error of the proposed model during the training
and validation process. As demonstrated by the curves, the
training loss (solid line) and validation loss (dashed line) both
drop quickly within the first few hundred iterations, showing

FIGURE 3. Accuracy curve of proposed DL model.

FIGURE 4. Loss error curve of proposed DL model.

that the model is learning fast from the training data and
the error is decreasing. After around 400 iterations, the loss
becomes low and steady at a minimum value of 0.1 for the
rest of the training process. This low value and stable loss,
along with high accuracy, show that the proposed LSTM
model not only reduces errors quickly but also maintains
high efficiency during the training process.
Fig. 5 shows the SER performance curves of single cluster

users, i.e., near (UE1) and far (UE2) users, using the LSTM-
based receiver versus conventional MLD receiver under the
IRS-aided network. The comparison is also performed in the
absence of the IRS scenario, in which the system model
is reduced to a conventional wireless network. As a result,
in the presence of obstacles and practical path loss channel
model concerns, users employ direct communication links.
When users are assisted with IRS, the simulation curves
show a substantial improvement of 5dB under ipCSI in
performance. This demonstrate that IRS-enabled networks
succeed to improve the performance of both users under path
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FIGURE 5. SER versus SNR (dB) with LSTM-based and conventional receiver
comparison for UE1 and UE2 with IRS and without IRS-aided NOMA network.

loss channel models. The second key finding is the improved
user performance with the DL-based receiver, particularly
for a far-distance user with poor channel conditions. The
inter symbol interference reduces with a fixed CP length
of 32, and the MLD under perfect CSI (pCSI) achieves
the best possible performance curves with the lowest SER,
as shown in Fig. 5. The far user’s performance degrades
substantially when using traditional SIC scheme via LS and
MMSE approaches, but with the LSTM based receiver, the
far user achieves better results. The fact behind is that the
SIC error propagation in case of DL-based approach reduces
to a minimum, resulting in improved SER performance
curves. To further investigate the performance analysis of the
proposed LSTM-based model, various aspects are presented
below.

A. IMPACT OF IRS ELEMENTS
The effect of IRS elements on the SER performance curves
with ML-based receiver is examined in this section. Two
alternative symmetric arrays of IRS elements, 32 and 64,
are used to emulate the considered uplink model. Fig. 6(a),
and Fig. 6(b) show the efficiency of the LSTM-based
receiver for near and far users under different number of
IRS elements, respectively. Conventionally, increasing the
number of IRS elements R, introduces more reflected signals,
which improves information reflections at the intended
receiver end. Furthermore, it confirms the performance
gain obtained by introducing a constant number of IRS
elements in a conventional NOMA framework without IRS
scenario. Additionally, it underscores the effectiveness of
enhancing spatial multiplexing of the network by increasing
the number of low-cost IRS elements, compared to the
number of high-cost transmit and receive antennas [3], [4].
However, with an increased number of IRS elements, the
channel estimation becomes very challenging which results
in the poor performance of a conventional SIC receivers
as shown in Fig. 6. Here, the LSTM model provides

FIGURE 6. SER versus SNR (dB) comparison for UE1 and UE2 with different IRS
elements.

enhanced performance curves for both users as compared
to conventional SIC approach via LS and MMSE, by
performing channel estimation efficiently as depicted in
Fig. 6(b).

B. IMPACT OF CP LENGTH
In conventional OFDM systems the orthogonality of sub-
carriers is maintained by inserting a CP of fixed length.
The presence of intersymbol interference (ISI) in OFDM
signals will cause an error in receiving bits of information
on the receiver side. With IRS-enabled NOMA networks, the
effect of multipath propagation increases, as the transmitter
signal travels via dual reflected paths to the receiver. Thus, it
enhances symbol error propagation during the SIC process,
thereby interfering with the correct detection of symbols.
Here, the use of CP is critical to the reliability of the OFDM
signals. To prevent OFDM signals from ISI, the CP functions
as a buffer region or guard interval. By varying the length
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FIGURE 7. Comparison of SER versus SNR (dB) for UE1 and UE2 with different CP lengths.

of CP, the performance curves show variations, as shown in
Fig. 7(a) and Fig. 7(b). Here, we consider two different CP
length, i.e., 32 and 24. The results demonstrate that when the
length of CP is equal to channel response, the performance
of near user increases significantly but this is done at the cost
of far user performance degradation, as shown in Fig. 7(a).
Similarly, when the CP length becomes very short, the
ISI becomes very dominant; therefore, the performance of
conventional SIC scheme degrades drastically resulting in
poor performance of MLD. Here, the LSTM-based receiver
works efficiently and provides better results under severe ISI
as shown by performance curves in Fig. 7(b).

C. IMPACT OF CHANNEL BEHAVIOUR
In a practical wireless communication environment, the
signal suffers with multipath fading effects which degrades
the performance. With IRS-enabled NOMA networks the
dual paths introduces more multipath reflections, hence
interference becomes more prominent and SIC performance
degrades. To further scrutinise the robustness of the LSTM-
based receiver, we investigate the formulated framework
under LoS as well as NLoS fading channel models.
The comparison is made by considering the Rician (Ric)
(LoS) and Rayleigh (Ray) (NLoS) wireless channel models
using Monte Carlo simulations, as shown in Fig. 8. The
performance of the Rician channel model is significantly
better than that of the Rayleigh channel due to the presence
of a line of sight component. Moreover, the LSTM model
provides better results under the Rayleigh fading model at
low SNR, but the performance degrades at higher SNR
values, as compared to conventional receiver using SIC
via LS and MMSE channel estimation schemes. It shows
that the DL model performs better under LoS channel
conditions, which is a substantial assumption in IRS-
empowered wireless transmission networks due to IRS static
deployment.

FIGURE 8. Comparison of SER versus SNR (dB) with LSTM-based receiver for UE1

and UE2 under LoS and NLoS fading channel models.

V. CONCLUSION AND FUTURE DIRECTIONS
In this paper, a DL-based model is leveraged for an uplink
IRS-assisted OFDM-NOMA network. LSTM based receiver
employs the sequential OFDM symbols in a single shot
process to perform joint channel estimation and signal
detection. The DL model is trained offline with the optimal
IRS phase shifts obtained through EBCD by keeping the
trade-off in performance and complexity. The results indicate
that the improved performance is attained with low complex-
ity LSTM-based receiver in IRS-enabled NOMA network,
where channel estimation becomes more challenging. When
ISI is greater, the LSTM-based receiver provides better signal
detection as compared to the conventional SIC scheme.
Moreover, performance analysis of the proposed receiver is
provided under LoS and NLoS channel conditions for uplink
wireless communication networks.
The investigated work highlights the potential of inte-

grating IRS with NOMA to enhance connectivity by
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improving signal strength and coverage for 6G networks. The
proposed LSTM-based approach can effectively facilitates
Ultra-Reliable Low-Latency Communications (URLLC) and
Massive Machine-Type Communications (mMTC), proving
advantageous for applications such as autonomous vehi-
cles, smart cities, and extensive IoT networks. However,
the proposed approach also presents challenges related to
computational complexity and scalability in large networks,
as well as issues concerning robustness in dynamic environ-
ments and integration with current 5G infrastructure. Future
research should focus on the development of more efficient
DL algorithms and the assurance of compatibility for seam-
less deployment. The proposed approach can be extended for
the investigation of massive multi-antenna environment with
multiple IRSs deployment. The presented frameworks can
also be investigated further using different DL-based NOMA
power allocation and IRS phase optimization algorithms for
multi-user interference scenarios.
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