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ABSTRACT Over the past decade, the use of Unmanned Aerial Vehicles (UAVs) has grown significantly
due to their agility, maneuverability, and rapid deployability. An important application is the use of
UAV-mounted 360-degree cameras for real-time streaming of Omnidirectional Videos (ODVs), enabling
immersive experiences with up to six Degrees-of-freedom (6DoF) for applications like remote surveillance
and gaming. However, streaming high-resolution ODVs with low latency (below 1 second) over an air-
to-ground (A2G) wireless channel faces challenges due to its inherent non-stationarity, impacting the
Quality-of-experience (QoE). Limited onboard energy availability and energy consumption variability
based on flight parameters add to the complexity. This paper conducts a thorough survey of challenges
and research efforts in UAV-based immersive video streaming. First, we outline the end-to-end 360-degree
video transmission pipeline, covering coding, packaging, and streaming with a focus on standardization
for device and service interoperability. Next, we review the research on optimizing video streaming
over UAV-to-ground wireless channels, and present a real testbed demonstrating 360-degree video
streaming from a UAV with remote control over a 5G network. To assess performance, a high-resolution
360-degree video dataset captured from UAVs under different conditions is introduced. Encoding schemes
like AVC/H.264, HEVC/H.265, VVC/H.266, VP9, and AV1 are evaluated for encoding latency and
QoE. Results show that HEVC‘s hardware implementation achieves a good QoE-latency trade-off,
while AV1’s software implementation provides superior QoE. The paper concludes with discussions
on open challenges and future directions for efficient and low-latency immersive video streaming via
UAVs.

INDEX TERMS 360◦ video, extended reality, low latency, real-time streaming, low latency, UAV.

I. INTRODUCTION

IMMERSIVE video technology enables users to expe-
rience a quasi-realistic virtual environment, fostering

engagement and a sense of presence in a digital space.
Various visual media modalities, such as volumetric, light
field, and Omnidirectional Video (ODV), have emerged
as viable options for delivering an immersive viewing

experience [1]. Among these, ODV, commonly known
as 360-degree video, has gained widespread popularity
due to the availability of acquisition and display devices,
and standardization efforts ensuring interoperability. To
enhance immersion, interaction with the user is crucial.
This interaction can involve head movements (roll, yaw, and
pitch), mouse/keyboard controls, or in the case of viewing on
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a smartphone, the viewing angle can be controlled by moving
the device in space, providing a visual experience of up to
three Degrees-of-freedom (3DoF). However, one of the main
limitations of ODV is the absence of motion parallax, which
refers to the relative position of objects changing based on
the viewer’s position relative to the object. This can lead to
discomfort and motion sickness for users.
To address this limitation, a potential solution is to

employ a 360◦ camera mounted on a Unmanned Aerial
Vehicle (UAV). This combination offers enhanced flexibility
and mobility, allowing users to explore the environment
and move around objects within the scene. By leveraging
the mobility provided by the UAV, in addition to 360◦
video, a viewing experience of up to six Degrees-of-freedom
(6DoF) can be achieved. This advancement holds promise
for diverse applications like remote video surveillance,
scientific exploration, autonomous manufacturing assistance,
agricultural monitoring, and more. However, to fully realize
the potential of these applications, it is crucial to maintain
a seamless and responsive interaction between the user and
the UAV by ensuring a more natural viewing experience
with accurate control. This requires ODV to be delivered
with high Quality-of-experience (QoE), to ensure a truly
immersive experience through real-time control of the UAV.
Specifically, the high-quality 4K resolution videos need to be
transmitted with ultra-low End-to-end (E2E) latency (prefer-
ably below 1 sec. [2]). However, achieving these metrics over
contemporary 5G networks is highly challenging due to the
higher data volume of ODVs, compared to conventional Two-
dimensional (2D) videos. For instance, an High-efficiency
Video Voding (HEVC)-encoded 8K (ultra-high-definition)
video typically requires target bitrates ranging from 20-80
Mbps [3], significantly exceeding the typical throughput of
20 Mbps for UAVs when operating in the presence of ground
users [4], [5]. Furthermore, achieving Glass-to-glass (G2G)
latency of under one second is inherently challenging. This is
because a 30 frames-per-second video encoded with a Group-
of-pictures (GOP) size larger than 16 inherently incurs a G2G
latency of at least one second. However, reducing the size of
the GOP negatively impacts compression efficiency. Further,
the intrinsic non-stationarity of the UAV-to-ground wireless
channel and limited computational and energy resources of
UAVs further amplify these challenges for UAV-based real-
time immersive video streaming.
Addressing the above challenges will require efforts

to enhance not only the communication for UAVs and
develop adaptive and low-complexity schemes for 360◦
video encoding and streaming, but also to consider the
interplay between these two design issues. It is important
to note that the design approach of a system for real-time
streaming from a UAV mounted 360◦ camera needs to be
completely different compared to a ground-based immersive
video streaming system. This is because of the inherent
dependence of the air-to-ground (A2G) wireless channel on
the UAV trajectory and its location in the space, leading
to non-stationarity and a fundamentally different behavior

compared to terrestrial channels between a base station and a
ground-based user. On the other hand, the existing design of
UAV-based 2D streaming [6] cannot be directly adapted, due
to the interactive nature of immersive streaming and higher
data rate requirements. In addition, the interplay between
the UAV trajectory, onboard energy availability, computation
power, encoding, and communications need to be analyzed
carefully to deliver a truly immersive experience.
In addition, we note that the existing 360◦ video datasets

captured from a ground-based camera do not capture
essential characteristics of UAV-based 360◦ videos, e.g.,
vertical motion. Because the encoding parameters critically
depend on the video content, the performance of standard
video encoders needs to be re-evaluated afresh on aerial 360◦
videos to understand their QoE and latency performance.
The rest of this paper is organized as follows. In the fol-

lowing section, we present a review of the existing literature
on this topic, and in Section III we describe the main com-
ponents of the ODV streaming chain, including acquisition,
encoding, packaging, rendering, and optimization. Then, the
key performance metrics and wireless optimization tech-
niques for UAV-based 360◦ video streaming are presented in
Sections IV and V, respectively. In Section VI, we present
a review of Third Generation Partnership Project (3GPP)
activities relevant to real-time streaming of ODVs from a
UAV platform. Further, in Section VII, the proposed aerial
360◦ video dataset is presented, and then benchmarking
results and analysis of software and hardware encoders of
five video standards are provided in Section VIII. Next,
the challenges of ODV streaming from a UAV platform are
discussed in Section IX. Finally, Section X concludes the
paper.

II. RELATED WORK & CONTRIBUTIONS
In Table 1, we present a summary of recent efforts [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22] surveying state-of-the-art research
on communication for UAVs and immersive streaming. The
literature in Table 1 can be broadly classified into two
categories: covering the communication aspects of UAVs and
the streaming of 360◦ videos. The authors in [7], [8], [9]
presented a comprehensive survey of challenges and funda-
mental tradeoffs in designing wireless networks involving
the UAVs. In particular, Mozaffari et al. [7] described
analytical frameworks and tools to address design chal-
lenges, and Hayat et al. [9] surveyed the quality of
service, connectivity, safety, and other general networking
requirements for unmanned aircraft systems in civilian
applications. Baltaci et al. [10] reviewed the connectivity
requirements for aerial vehicles, especially for piloting
applications, and advocated achieving these stringent connec-
tivity requirements through multi-technology heterogeneous
networks. In [8], [11], the authors evaluated various enabling
6G technologies, highlighting the benefits, drawbacks, and
challenges in their integration into 6G wireless network with
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TABLE 1. Overview of the state of the art.

UAVs. The authors in [12] surveyed the channel models for
air-to-ground and air-to-air UAV communication.
To address high data rate requirements for UAVs,

Xiao et al. [13] reviewed antenna structures and channel
models for millimeter wave (mmWave). Furthermore, the
technologies and solutions for UAV-connected mmWave
cellular networks and mmWave-UAV ad hoc networks were
discussed. The authors in [14] and [15] reviewed the methods
for communication and trajectory co-design. In addition,
Zeng et al. [14] surveyed techniques to deal with the issues
on air-to-ground interference in cellular communication with
UAVs. Fotouhi et al. [16] also surveyed the interference
issues in serving aerial users with the existing terrestrial
Base Stations (BSs), along with potential solutions proposed
by standardization bodies. In addition, they reviewed the

ongoing prototyping, testbed activities, and regulatory efforts
to manage the commercial use of UAVs, along with cyber-
physical security of UAV-assisted cellular communication.
In [17], Marojevic et al. presented an architecture and
research platform for aerial experimentation with advanced
wireless communications, which facilitates experimental
research in controlled yet production-like environments.
In [18], Abdalla and Marojevic surveyed the ongoing 3GPP
standardization activities for enabling networked UAVs,
requirements, envisaged architecture, and services provided
by UAVs. The authors in [19] studied the UAV networks from
the perspective of cyber-physical systems and considered the
joint design of communication, computation, and control to
improve the performance of UAV networks. We note that
most of the existing research efforts do not explicitly cover
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TABLE 2. List of acronyms.

the aforementioned unique issues, described in the previous
section, relevant to immersive video streaming from a UAV
platform.
On the other hand, the work in [6], [20], [21] sur-

veyed the adaptive streaming techniques for 360◦ videos.
Yaqoob et al. [20] reviewed the adaptive 360◦ video
streaming approaches that dynamically adjust the size and
quality of the viewport. In addition, they surveyed the
standardization efforts for 360◦ video streaming, highlighting
the main research challenges such as viewport prediction,
QoE assessment, and low latency streaming for both the
on-demand and live 360◦ video streaming. Further, [21]
surveyed the Field-of-view (FoV) prediction methods, along
with compression, and coding schemes for reducing the
bandwidth required for streaming immersive videos. In
addition, they reviewed caching strategies and datasets for
immersive video streaming. The work in [6] focused on 2D
video streaming from an aerial platform. In particular, they
surveyed the works using Artificial Intelligence (AI)-based
techniques to enhance the video streaming performance.
While these works provide key insights into various aspects

of immersive video streaming from a ground-based platform,
they fail to capture the unique characteristics and trade-offs
of the aerial immersive video streaming systems.
In this work, we present a thorough survey of key

trade-offs, challenges, and research efforts in UAV-based
immersive video streaming. In addition, we benchmark
the existing video encoding schemes for their encoding
latency and QoE, using a high-resolution 360-degree video
dataset captured from UAVs under different conditions. Our
contributions are the following:

• We present a comprehensive review of existing video
streaming efforts from a UAV, and provide key insights
into the design trade-offs.

• We present a new 360◦ video dataset, captured from a
UAV in diverse acquisition conditions.

• Assess the coding efficiency and complexity of software
and hardware encoders of five video standards and
formats for immersive 360◦ video streaming.

• We highlight the open challenges related to ODV
streaming from a UAV.
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This is the first paper surveying the key trade-offs, research
efforts, and open design challenges for UAV-based real-
time immersive streaming. In addition, the presented dataset
of 360◦ videos captured from UAV is the first in the
field and will aid research efforts in joint optimization
of communication and encoding schemes for real-time
immersive streaming of aerial 360◦ videos. In the following
section, we describe the main blocks of an ODV streaming
pipeline.

III. OMNIDIRECTIONAL VIDEO STREAMING
An omnidirectional visual signal is presented in a spherical
space with angular coordinates: the azimuth angle φ ∈
[π,−π ], and the elevation or polar angle θ ∈ [−π

2 , π
2 ],

assuming a unit sphere (radius r = 1) for acquisition
and rendering. The sphere’s origin represents the viewing
reference that captures the light coming from all directions.
Since the human visual system has a limited field of view,
at a time a user cannot view the entire 360◦ content in its
spherical representation. Instead, only a portion of the sphere,
known as the “viewport”, is displayed, which is an image
tangent to the sphere. Initial streaming approaches, termed
viewport-independent streaming, involved transmitting the
entire 360-degree video content at high quality, allowing
users to extract the desired viewport based on their head
position, with low latency. However, it is a bandwidth-
intensive solution, requiring over 100 Mbps to transmit an 8K
resolution video at high quality [23]. This is inefficient since
the end user only observes a small portion (approximately
15%) of the ODV. To address this, more advanced techniques
have been proposed to transmit only a portion of the sphere,
corresponding to the current viewport. Due to their superior
bandwidth efficiency, viewport-dependent strategies have
gained wide adoption at the projection (projection-based) and
encoding (tile-based) stages. As shown in Figure 1, ODV
streaming strategies can be broadly categorized as either
viewport-dependent or viewport-independent, depending on
whether the FoV is considered in the optimization process
or not.
In the following, we provide an overview of the archi-

tecture of the E2E ODV streaming pipeline, illustrated in
Figure 2. We briefly describe the technology used at each
stage to deliver ODV to the end user, highlighting the
features included to support viewport-dependent streaming.

A. ACQUISITION AND PREPROCESSING
In practice, an omnidirectional visual signal is captured using
a multi-view wide-angle acquisition system, often utilizing
fish-eye lenses. Since a single eye-fish camera can only cap-
ture a partial sphere, combining multiple acquisitions from
such cameras allows for complete sphere coverage through
the process of stitching the images [24]. However, the
stitching operation introduces two main challenges. The first
challenge involves blending and wrapping non-overlapping
captured images, while also addressing inconsistencies in
illumination and color that may arise after stitching. The

FIGURE 1. ODV streaming strategies.

FIGURE 2. ODV E2E streaming pipeline. Note that, the HTTP request by WebRTC
client is used for signaling.

second challenge arises when dealing with video signals, as
the camera sensors need to be perfectly synchronized.
The omnidirectional visual signal in spherical representa-

tion is mapped over another surface during the pre-processing
stage to facilitate further processing after acquisition. At
a high level, the mapping schemes differ in terms of the
geometry of the surface to be mapped. The most commonly
used mapping technique is Equirectangular Projection (ERP),
which is particularly well-suited for production and con-
tribution purposes, and uniformly maps the pixels on the
sphere over a rectangular plane. More advanced mapping
techniques, such as Cube Map Projection (CMP) and
Truncated Square Pyramid (TSP), map the spherical signal
over the six faces of a cube and square-based pyramid with
four triangular faces [25], respectively. Notably, compared
to ERP, CMP and TSP offer enhanced coding efficiency,
achieving bitrate savings of 25% and 80%, respectively,
making them more suitable for distribution purposes [26].
On the other hand, dynamic projection methods, such as

pyramidal projection and its refined version, offset cubic
projection [27] facilitate viewport-dependent streaming by
modulating the pixel density depending on the viewing direc-
tion. Offset cubic projection allocates higher pixel density
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and better quality near the offset direction which corresponds
to the user’s viewing direction. Another solution proposed
in [28] is oriented projection for real-time 360-degree video
streaming, which allocates more pixels in the projected frame
to areas on the sphere that are close to a target pixel-
concentration orientation.

B. ENCODING
After mapping the sphere in a 2D plane,1 ODV content
is encoded in practice by conventional 2D video stan-
dards such as Advanced Video Coding (AVC)/H.264 [29],
HEVC/H.265 [30],VersatileVideoCoding (VVC)/H.266 [31],
as well as VP9 (VP9) and AOMedia video 1 (AV1) video
formats. In particular, tailored coding tools are integrated
into the HEVC/H.265 and VVC/H.266 standards to enhance
the ODV coding efficiency and enable advanced streaming
features, improving the user’s QoE.

1) HEVC/H.265 TOOLS FOR ODV

The HEVC/H.265 leverages the tile concept, where the
mapped pixels are subdivided into small non-overlapping
rectangular regions, to facilitate the viewport-dependent
streaming. The tile concept enables independent and parallel
encoding/decoding of rectangular regions within the picture.
By breaking the dependency of context prediction in arith-
metic encoding and intra-prediction, tiles allow for efficient
processing and coding of specific regions [32]. Additionally,
the tile boundaries also enable the possibility of disabling
in-loop filters, further enhancing the flexibility of the
encoding process. Moreover, the introduction of the Motion-
constrained Tile Set (MCTS) technique in HEVC/H.265,
along with supplemental enhancement information messages,
extends the tile concept to the sequence of frames. This
technique restricts the Motion Vectors (MVs) to a selected
set of tiles in the reference picture, thereby enabling the
fetching and decoding of only the tiles within the displayed
viewport during ODV streaming. This approach significantly
improves the user’s QoE by delivering high-quality content
while efficiently utilizing bandwidth. However, the limitation
of restricting MVs within a set of tiles in the refer-
ence picture can decrease coding efficiency. To overcome
this, the literature proposes non-normative solutions that
enhance inter-prediction by utilizing the base layer as a
reference in the scalable HEVC extension [33]. Alternatively,
Bidgoli et al. [34] propose an enhanced intra-prediction
technique with fine granularity random access capability,
allowing end-users to request specific parts of the stream
while ensuring efficient intra-coding. Furthermore, in the
context of spherical bitrate allocation, a new entropy equilib-
rium optimization strategy is proposed in [35]. This strategy
derives the Lagrangian multiplier at the block level, which is
used in rate-distortion optimization. The proposed solution,
evaluated with ERP and CMP, demonstrates significant
bitrate gains when compared to the HEVC reference software
encoder [35].

1For ease of exposition, we describe the ODV pipeline with the ERP.

2) VVC/H.266 TOOLS FOR ODV

The VVC/H.266 standard introduces several advancements
for efficient encoding of ODV content, including the ability
to signal the used projection technique and the definition
of tailored coding tools [31]. In the case of 360-degree
representation and ERP mapping, objects can span across the
left and right picture boundaries continuously. Consequently,
in VVC/H.266, inter-prediction samples may wrap around
from the opposite left or right boundary when MVs point
outside the coded area. Additionally, virtual boundaries are
defined to skip in-loop filters across edges. For CMP,
where cube maps may exhibit content discontinuities, virtual
boundaries can be signaled to disable in-loop filtering
and prevent artifacts arising from non-homogeneous bound-
aries. Furthermore, VVC/H.266 introduces the concept of
subpictures, which allows for the extraction of indepen-
dent rectangular regions within the picture, specifically
designed for viewport-dependent VVC streaming applica-
tions. Subpictures offer two critical improvements over the
previous MCTS concept. Firstly, subpictures enable MVs
to refer to blocks outside the subpicture, and padding at
subpicture boundaries is permitted, similar to picture bound-
aries. This facilitates higher coding efficiency compared to
the tight motion constraints applied in MCTS. Secondly, a
need to rewrite slice headers when extracting a sequence of
subpictures to build a new VVC/H.266 compliant bitstream
is eliminated, streamlining the encoding process [31].

In addition to standard encoders, some non-normative
techniques are also proposed in the literature, e.g., encoding
the ODV content in spherical representation to prevent
projection distortions, leading to higher coding efficiency.

3) LEARNING-BASED CODING FOR ODV

Machine learning techniques have been extensively investi-
gated in the literature to optimize and improve the coding
efficiency of ODV content. In [36], a Convolution Neural
Network (CNN) was trained to learn the rotation of the
sphere, resulting in an improvement in the coding efficiency.
This rotation is applied as a pre-processing step along the
spherical axis before projection, leading to different rotations
of the cube map. Experimental results demonstrate that
incorporating rotation prediction achieve a significant coding
gain of 8% to 10% with a prediction accuracy of 80%.
Similar to conventional video standards, learning-based

video codecs can encode ODV content after its projec-
tion onto a 2D plane. Initially, the 2D representation is
transformed into a compact latent space using an analysis
transform based on an Artificial Neural Network (ANN).
The resulting latent representation is then encoded with
a lossless entropy encoder to construct the bitstream. At
the decoder side, a synthesis transform, also based on an
ANN, reconstructs a version of the input 2D representation
from the received bitstream. Moreover, the hyperparameters
of the latent space entropy distribution, such as mean and
variance, are encoded using an auto-encoder and utilized by
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the encoder and decoder to enhance the performance of the
entropy encoder [37].

C. STREAMING PROTOCOLS
Various packaging protocols can be employed for streaming
ODV content, depending on the specific application and
end-user requirements concerning video quality, latency, and
advanced functionalities provided by the protocol [38]. In
the following, we outline the key features of two widely
utilized streaming protocols: Omnidirectional Media Format
(OMAF) and Web Real-time Communication (WebRTC). For
further details, readers are encouraged to refer to overview
papers on OMAF [39] and WebRTC [40].

1) OMAF

The ISO/IEC 23090-2 standard, also known as OMAF,
is a system standard developed by the Motion Picture
Experts Group (MPEG) to ensure device and service
interoperability for storing and streaming omnidirectional
media content. This includes various forms of media such
as 360◦ images and videos, spatial audio, and associ-
ated text. The initial version of the standard, completed
in October 2017, provides fundamental tools for stream-
ing 360◦ images and videos, enabling a 3DoF viewing
experience. In the subsequent release of the standard in
October 2020, the second version introduced additional
tools to support more advanced features. These features
include enhanced viewport-dependent streaming, overlay
capabilities, and the ability to stream multiple viewpoints,
marking the initial steps towards achieving a 6DoF viewing
experience, desired for UAV-based real-time immersive
streaming.
The specifications of OMAF are organized into three

main modules: content authoring, delivery, and player.
Furthermore, these specifications serve as extensions to the
ISO Base Media File Format (ISOBMFF) and Dynamic
Adaptive Streaming over HTTP (DASH), ensuring back-
ward compatibility with conventional 2D media formats.
OMAF supports three types of omnidirectional visual signal
representations: projected, mesh, and fish-eye. Each of
these formats requires specific pre-processing for encoding
and post-processing for rendering and display. Among the
projected formats, OMAF includes support for two widely
used projection algorithms: ERP and CMP. Additionally,
OMAF incorporates a Region-wise Packing (RWP) oper-
ation, which allows for optional pre-processing operations
before encoding. These operations include resizing, reposi-
tioning, rotation by 90◦, 180◦, and 270◦, as well as vertical
and horizontal mirroring of specific rectangular regions.
RWP serves various purposes, such as signaling the exact
coverage of a partial spherical representation, generating
Viewport-specific (VS) video, enhancing coding efficiency,
or compensating for over-sampling in the pole areas of ERP.
The RWP metadata indicates the applied operations to the
player, which then performs inverse operations to map the

regions of the decoded picture back into the projected picture.
This ensures proper rendering and display of the content,
aligning with the intended transformations specified by the
RWP.
The OMAF standard supports both viewport-

dependent\independent streaming profiles, as outlined
in [27]. The viewport-dependent ODV streaming profile
of OMAF enables the selection of segments covering the
user’s viewport at high quality and other segments at lower
quality and bitrate. This approach allows for more efficient
utilization of network bandwidth, resulting in an improved
user experience. Viewport-dependent ODV streaming can be
achieved through two methods: VS and tile-based streaming.
In the Viewport-specific approach, multiple VSs are created
and signaled, each encoding different viewports at high
quality. Users can select the appropriate VS stream based on
their viewing orientation. The OMAF region-wise quality
ranking metadata can be used to signal the quality of
different regions in the sphere. On the other hand, in the tile-
based configuration, the ODV is divided into independent
rectangular regions called tiles. Following the projection
stage, the ODV is encoded into tiles representing different
quality representations. The end user can then request
the tiles covering the viewport at high quality, while the
remaining area tiles can be requested at a lower quality. Each
tile only depends on the co-located tile in the sequence and
can be decoded independently of other tiles. There are two
alternatives for encoding video in independent regions. The
first method utilizes the HEVC tile concept, where tiles are
grouped into motion-constrained slices known as Motion-
constrained Tile Sets. This profile employs HEVC encoding
to achieve low-quality coverage of the entire 360-degree
video, while high-quality sub-pictures are encoded to cover
specific regions of the video. The second method, applicable
to AVC which does not support tiles, partitions the video
into sub-picture sequences, each representing a spatial subset
of the original sequence. These sub-picture sequences are
then encoded with motion constraints and merged into tiles
in a single bit-stream. Each tile or sub-picture sequence
is stored in its respective track. Additionally, tiles can
be encoded in different bitrates and resolutions, allowing
users to select the optimal combination of tiles based on
viewing orientation, available bandwidth, and decoding
capability.
In total, the OMAF standard specifies six video media

profiles that define the type of video representation and
the supported video standard with its associated levels.
For example, the “HEVC-based viewport-independent” pro-
file uses the ERP representation and is constrained to
HEVC Main 10 profile level 5.1. This level limits the
spatial resolution to 4K (4096 × 2160). However, the
“unconstrained HEVC-based viewport-independent” profile,
introduced in the second edition, supports all HEVC Main
10 profile levels, thus increasing the decoding capacity and
display resolution. Furthermore, there are already several
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FIGURE 3. WebRTC block diagram.

open-source implementations available that support the first2

edition of the OMAF standard. Further, some tools of the
OMAF second edition have been demonstrated in [41], [42].

2) WebRTC

The WebRTC framework is an open-source solution specif-
ically designed to facilitate real-time and low-latency video
transmission. As shown in Figure 3, within the WebRTC
transmitter, the “video collector” module performs video
encoding and encapsulates the encoded video frames into
Real-time Transport Protocol (RTP) packets. These packets
are subsequently transmitted using the secure real-time
transport protocol. On the receiver side, relevant information
regarding the received RTP packets is collected, and
this information is relayed back to the “video collector”
through the transport-wide feedback message of the real-
time transport control protocol. The “bandwidth controller”
module, located within the “video collector,” utilizes these
control messages to compute essential network metrics such
as inter-packet delay variation, queuing delay, and packet
loss. These metrics play a crucial role in determining the
target bitrate, which is then employed by the rate control
module of the video encoder. The rate control module
dynamically adjusts the encoding parameters, such as the
quantization parameter and resolution, based on the target
bitrate requirements. Although, unlike OMAF, the standard
WebRTC implementation does not offer explicit tools for
transmitting immersive video, it has gained significant pop-
ularity for real-time and ultra-low latency ODV transmission
by treating 360◦ video representation as a conventional 2D
video [28], [43]. Additionally, viewport-dependent streaming
can be effectively supported by incorporating a combination
of high-resolution and low-resolution tiles. This approach
optimizes bandwidth utilization while ensuring high quality
within the FoV and maintaining a low Motion-to-photon
(M2P) latency [44].

D. RENDERING AND DISPLAY
The limited FoV of the human visual system prevents the end
users from visualizing the entire 360◦ content in the spherical

2NOKIA: https://github.com/nokiatech/omaf, Fraunhofer HHI:
https://github.com/fraunhoferhhi/omaf.js, Intel Open Visual Cloud:
https://github.com/OpenVisualCloud/Immersive-Video-Sample.

representation. Therefore, only a portion of the sphere (i.e.,
an image tangent to the sphere called viewport) is displayed.
The viewport acts as a window through which the viewer
can observe a segment of the entire spherical video. The
positioning and size of the viewport are dynamically adjusted
based on the viewer’s head and gaze orientation, which are
tracked in real-time by the Head-mounted Display (HMD)‘s
sensors. By continuously tracking the user’s head movements
and adjusting the viewport accordingly, the mobility provided
by the UAV along with the 360◦ video facilitates a viewing
experience that supports up to 6DoF. Nonetheless, to achieve
seamless rendering and display of remotely captured UAV
sequences, with accurate viewport adaptation, the end-to-end
latency in the downlink control channel needs to be ultra-
low to adjust the UAV position depending on the head and
eye tracking data.
As described in the previous subsections, the spherical

video content is transmitted in an equirectangular format,
where the video frame represents a flattened sphere. A
critical step before rendering is to effectively project this flat
image back onto a sphere within the VR environment. This
transformation requires meticulous geometrical adjustments
to ensure that the spherical illusion is maintained without
visible artifacts or distortion. In terms of display technology,
modern VR headsets utilize dual organic light-emitting
diode-based display or liquid crystal display panels that
offer fast response times and high refresh rates, essential
for maintaining immersion and reducing motion sickness.
Each eye views its display, and the combined effect of this
binocular display creates a stereoscopic effect, enhancing
the content’s depth and fullness of presence. To optimize
the viewer’s experience, modern devices employ rendering
techniques that prioritize the resolution and update rate of
the area within the viewport. This method, often referred
to as foveated rendering [45], reduces the graphical fidelity
in the peripheral vision outside the immediate area of
focus, thus allowing for higher frame rates and improved
resolution where it is most crucial—typically in direct line
of sight. These features enable a more natural viewing
experience and better remote control, effective for user
interaction.
In the following section, we present the key performance

metrics for a UAV-based immersive video streaming system
and benchmark the technologies discussed in this section.

IV. UAV-BASED REAL-TIME IMMERSIVE VIDEO
STREAMING: PERFORMANCE METRICS
This section describes the key performance metrics for
real-time UAV-based immersive video streaming systems.
The discussion encompasses three essential aspects: latency,
video quality, and UAV energy consumption. We highlight
key trade-offs involved in optimizing these metrics and
their impact on the design choices. In addition, we bench-
mark the various technologies discussed in the previous
section.
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A. LATENCY
The latency in video transmission from a UAV significantly
impacts the user’s QoE in 360-degree video streaming. It is
captured using metrics such as E2E latency, M2P latency,
and motion-to-high resolution latency, defined below.
End-to-end latency: In a point-to-point real-time video

transmission, E2E latency plays a vital role in ensuring a
seamless and immersive experience. It represents the total
delay from event capture by the sensor to actuator response,
including processing and transmission latency. The E2E
latency between the camera and user’s display is often
referred to as G2G latency. It measures the difference
between time instances when the photons of an event first
pass through the camera lens and when the event is displayed
to the viewer. Another metric, termed as Glass-to-algorithm
(G2A) latency, represents the time gap between the photon
corresponding to an event passing through the camera lens
and the availability of the first image corresponding to
that event for processing before display. G2A latency is
crucial in applications utilizing computer vision algorithms
for tasks such as control, object detection, segmentation,
and viewport prediction. Figure 2 provides an overview of
G2G latency and its relationship to G2A latency. At a
high level, the total G2G latency encompasses the delay
between the input at the acquisition and stitching block and
the output of the rendering block. It comprises network
latency as well as latency originating from video processing
components at both the transmitter and client sides. The
overall G2G latency can be expressed as the sum of delays
incurred during camera acquisition, encoding, network trans-
mission, decoding, and display processing. Notably, G2A
latency can be derived from G2G latency by subtracting
the latency introduced during the rendering and display
processes.
Table 3 presents a breakdown of G2G latency for a

state-of-the-art WebRTC-based implementation of an ODV
streaming pipeline [46]. This pipeline transmits 8K reso-
lution 360◦ videos captured using an Insta 360 camera to
a Samsung S10 client. The latency breakdown in Table 3
highlights that the acquisition and stitching process, along
with the encoder, contributes to approximately 80% of the
total G2G latency. We note that the total G2G latency shown
in Table 3 also includes the transmission latency, incurred
over the network. It is important to note that the latency
introduced at the transmitter scales proportionally with the
video resolution and the frame rate.
Based on the preceding discussion, it can be deduced

that reducing latency entails reducing the number of pro-
cessed pixels across the ODV streaming pipeline, which
is primarily determined by the frame rate and resolution.
Additionally, higher frame rates and quality necessitate
increased transmission rates, resulting in higher overheads in
transmission delay and transmit power. On the other hand,
when the encoding bitrate does not dynamically adapt to
fluctuations in the wireless channel conditions, the queuing

TABLE 3. Glass-to-glass latency brake up [46].

delay increases due to the generation of more data than
the instantaneous wireless channel capacity, leading to an
increased E2E delay. As a result, efforts to minimize latency
have a direct impact on video quality. Therefore, the design
of wireless communications for UAV-based ODV streaming
predominantly revolves around maximizing video quality
while adhering to a latency constraint, typically imposed
as a delay outage probability constraint representing the
probability of packet delay exceeding a predefined delay
budget. Note that, the delay outage probability constraint
only encompasses queuing and transmission delays, focusing
on a portion of the overall G2G delay by ignoring the
latency introduced during the preprocessing, encoding, and
packaging of the ODV data.
Motion-to-photon latency: For viewport-dependent stream-

ing, the user’s quality of service is better captured by
the latency metrics such as M2P latency and motion-to-
high resolution latency. M2P latency measures the delay
required to display the new viewport corresponding to the
user’s updated viewing direction after head movement. It
measures the time needed to request and render the viewport
aligned with the user’s viewing direction. The specific
streaming approach and the technology of the HMD can
influence the motion-to-photon latency. Additionally, recent
work presented in [47] demonstrates the potential of utilizing
head motion prediction algorithms at the end user’s side to
significantly reduce the M2P latency. These algorithms can
effectively anticipate the user’s Head Movements (HMs) and
optimize the rendering process accordingly.
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B. ODV QUALITY
In addition to the latency metrics described above, an end
user’s Quality-of-experience (QoE) is primarily determined
by the perceived video quality. For 2D videos, widely
used full-reference objective quality metrics include Peak
Signal-to-noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM), and Video Multi-method Assessment
Fusion (VMAF). These metrics provide a comprehensive
assessment of the perceived quality by comparing the original
and reconstructed videos. However, for 360-degree video
content, specialized quality metrics have been proposed to
account for the unique geometrical distortions introduced
by the spherical representation. Notable examples include
Spherical PSNR (S-PSNR) and weighted to spherically
uniform PSNR, which are full-reference objective quality
metrics specifically developed for 360-degree video con-
tent [48]. However, to assess video quality in the presence
of imminent frame drops due to adverse wireless channel
conditions, novel no-reference objective quality metrics must
be developed. This is crucial as the majority of existing
AI-based no-reference quality metrics rely on data availabil-
ity, which is not always guaranteed in scenarios with frame
drops.
As noted earlier, video quality is influenced by various

factors, including encoding bitrate, frame resolution, frame
rate, and the characteristics of the air-to-ground wireless
channel. Generally, higher quality and lower distortion can
be achieved by using a higher bitrate (or resolution) while
exploiting the favorable channel conditions. However, it is
important to note that bitrate selection not only affects video
quality but also impacts latency, via increased processing
and queuing delay. In addition, a higher bitrate necessitates a
more stringent throughput requirement, posing challenges for
efficient wireless resource allocation. Therefore, the system
design is characterized by a trade-off between reconstruction
quality/distortion and bitrate selection, which is impacted
by the requirement for optimal provisioning of wireless
resources to meet the selected video bitrate.
Note that, in contemporary systems, the enhancement

in video quality not only increases the latency, but also
the energy consumption in the pre-processing and encoding
stages [49]. In particular, the energy consumption increases
in direct proportion to the increase in the number of pixels,
frames, and bitrate used for encoding. Considering the
limited energy available3 on a UAV, the QoE implicitly
affects the UAV flight time. In the following, we elaborate
on this trade-off.

C. UAV ENERGY CONSUMPTION/ FLIGHT TIME
The energy consumed by a UAV during movement is
referred to as “propulsion energy,” which is influenced by
the UAV‘s velocity and acceleration. Additionally, when

3Majority of the UAVs are equipped with a single battery to power the
drone, LIDAR, and the CPU [50], [51] and the battery size is limited by
the weight consideration.

the UAV hovers at a fixed position while streaming the
video, it consumes “hovering energy” [52], [53]. On the
other hand, as discussed below, the A2G channel between
the UAV and the ground user directly depends on the UAV‘s
position in the 3D space which, in turn, also determines
the energy consumption. For instance, the small-scale fading
component of the UAV-ground wireless channel can be
modeled as an “angle-dependent Rician fading channel”
with the Rician factor directly proportional to the UAV-
ground elevation angle [54]. This model captures the fact
that as the elevation angle increases, the UAV-ground link
tends to experience less scattering, resulting in a larger
Line-of-sight (LoS) component. In addition, the large-scale
fading component, which includes path-loss and shadowing,
depends not only on the 3D locations of the UAV and
the ground user but also on the geographic distribution of
buildings. In urban areas, the signal propagation of a UAV
flying at a lower altitude may be obstructed by buildings,
leading to the shadowing effect [55]. In contrast, when
the UAV transmits at a higher altitude, it only experiences
path loss without any shadowing. However, conducting a
comprehensive path-loss measurement for a wide geographic
area is infeasible. Therefore, a generic probabilistic A2G
channel model that statistically incorporates both LoS and
Non Line-of-sight (NLoS) large-scale fading is used [56].
In this model, the probability of experiencing LoS path
increases as the UAV raises its altitude or moves closer to
the ground user horizontally.
Note that the energy consumed in data transmission forms

an important component of the onboard energy consumption
of a UAV, which also includes the transmit power. Further,
the transmit power affects both the latency as well as
the quality of the received video, as it determines the
probability of the successful transmission of data packets.
While the power consumption for communications is notably
lower than that for hovering and propulsion, it is not
insignificant [57] and thus warrants optimization. Overall,
due to the limited on-board energy, the total power/energy
consumption – including the power consumption of the
onboard Graphics Processing Unit (GPU) used for encoding
and pre-processing – becomes a crucial factor in the design
of UAV-based real-time 360◦ video streaming systems,
significantly impacting the design choices.
Thus, the trajectory and position of a UAV affect not only

its energy consumption but also the quality of the transmitted
video. Hence, in the deployment and trajectory design of
UAVs for video streaming, the distinctive features of the air-
to-ground channel, as well as the propulsion and hovering
energy consumption needs to be accounted.

D. BENCHMARKING AND OPTIMIZATION
The metrics to be optimized for UAV-based real-time
streaming consist of perceived video quality, flight time,
required bandwidth, and various latency measures (e.g.,
E2E, M2P, or motion-to-high-resolution/quality latency).
Low M2P latency is particularly important to minimize user
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TABLE 4. Performance of streaming approaches.

discomfort when changing the displayed viewport while
achieving low E2E latency is crucial to enable accurate
remote control, especially during high-speed flying.
As discussed in Figure 1, ODV streaming strategies can

be categorized as either viewport-dependent or viewport-
independent, depending on whether the FoV is considered
in the optimization process or not. Table 4 benchmarks the
performance of 360◦ video streaming strategies, described
in Section III, with respect to required bandwidth, M2P
latency, and encoding complexity.4 As can be observed
from Table 4, although the tile-based encoding incurs low-
bandwidth usages and moderate M2P latency, encoding ODV
tiles in multiple representations, each with different rate-
quality characteristics, leads to high encoder computational
complexity and E2E latency. To improve this, the VR
Industry Forum guidelines [60] introduced the HEVC-
based FoV Enhanced Video Profile. This profile employs
HEVC encoding to achieve low-quality coverage of the
entire 360-degree video, while high-quality sub-pictures
are encoded to cover specific regions of the video. Each
bitstream is then encapsulated within a track compliant with
the HEVC-based viewport-dependent OMAF profile. The
player can subsequently request the bitstream covering the
viewport in high quality, along with the low-quality bitstream
representing the entire 360-degree coverage. Moreover, in
live scenarios, the low-quality stream can be transmitted via
multicast, allowing for more efficient bandwidth utilization,
while maintaining ultra-low motion-to-photon latency.
Furthermore, the prediction of end-user HMs can be

leveraged to enhance QoE by assigning higher fetching
priority to tiles within the predicted viewport. This “human-
centric” streaming approach focuses on optimizing the user
experience, in contrast to the “system-centric” approach that
prioritizes overall system performance without considering
user behavior. The design can be categorized as single-user
or cross-user, with the latter considering the behavior of
multiple users in predicting the viewport. These techniques
rely on accurate viewport prediction models, which are used
to optimize the streaming system. In [61], the potential of
predicting HMs for optimizing 360-degree video streaming

4Quantifying the encoding complexity of a video involves measuring
various factors that contribute to the computational complexity and
resources required to encode the video. Several factors impact the encoding
complexity: including spatial complexity, temporal complexity, bitrate and
resolution, and quantization parameter. Further, the encoding complexity can
be quantified in terms of metrics such as encoding time and computational
load. We refer the reader to [58], [59] for a further discussion on this.

over cellular networks was demonstrated, resulting in up to
80% network bandwidth savings. This approach has been
adopted by several research papers and commercial products,
aiming to optimize network and computational resources and
provide a highly immersive experience [62].
The following section provides a detailed exploration of

these design challenges and state-of-the-art, by providing a
comprehensive survey of the research efforts in the wireless
community to address the challenges in live immersive
streaming from a UAV.

V. QoE OPTIMIZATION & PERFORMANCE EVALUATION
In this section, we present a comprehensive survey of the
research on optimization and performance evaluation of
UAV-based real-time video streaming systems. First, we
review the work focusing on QoE maximization through
optimal wireless resource allocation, and next, we describe
the research that also leverages trajectory optimization
as an additional ‘degree-of-freedom’ for optimizing the
performance. Further, we present an overview of work on
evaluating the performance of these systems in diverse
settings.

A. OPTIMIZATION
1) WIRELESS RESOURCE ALLOCATION FOR QoE
MAXIMIZATION

The inherent randomness of wireless channels poses a
significant challenge in achieving a high QoE, as varying
channel conditions result in unpredictable latency, which
leads to interrupted or choppy video streaming. Maximizing
QoE is generally approached as a problem of maximizing
PSNR by optimizing wireless resource allocation, including
transmit power, rate, or bandwidth, while adhering to the
wireless network and UAV-imposed constraints. In this
section, we survey state-of-the-art advancements in this area.
In [63], Xiao et al. utilized the internal sensor data

of the UAV for adaptive bitrate selection. They leveraged
location, velocity, and acceleration information to predict
future throughput and proactively select the video bitrate
accordingly. The performance was evaluated using a DJI
Matrice 100 drone with an attached Android smartphone in
an outdoor environment, communicating with a laptop on the
ground using the IEEE 802.11n protocol. The simulations
demonstrated that the selected bitrates effectively adapted
to future throughput, maintaining relatively stable video
bitrates over time, resulting in a seamless video viewing
experience despite channel fluctuations. In another study,
Muzaffar et al. [64] studied a multicast video streaming
framework where a UAV delivers video to ground users.
The proposed approach incorporated feedback from the
users to dynamically adjust the transmission rate and video
bitrate. The performance evaluation was conducted using the
AscTec Pelican drone equipped with a Logitech C920 camera
and employing the IEEE 802.11a protocol and AVC/H.264
video format, investigated throughput, packet loss, and delay.
The rate-adaptation approach demonstrated improvements in
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throughput, latency, and packet loss compared to a constant
transmission rate and bitrate baseline, resulting in up to 30%
PSNR gain. These works represent significant advancements
in enhancing QoE through adaptive bitrate selection and rate
control mechanisms, showcasing the potential of optimizing
wireless communications for UAV-based video streaming.
In [65], the authors considered a multi-UAV setup where

UAVs competed for transmission rates by incurring a cost
to obtain higher rates. Each UAV aimed to maximize its
utility, comprising PSNR and cost, by selecting a transmis-
sion rate within the network capacity budget. The authors
designed a rate allocation algorithm using game theory to
address the rate competition among UAVs. Compared to
the equal rate allocation baseline, the proposed algorithm
increased network utility while considering video quality
requirements.
Another line of work, e.g., [66], [67], attempts to maximize

the PSNR by using a Scalable Video Coding (SVC) based
video transmission. In SVC, the video is encoded into a base
layer and N enhancement layers. If the nth enhancement
layer (or quality) is selected for the streamed video, the base
layer and all lower enhancement layers, i.e., 1, . . . , n − 1,
have to be delivered along with the nth layer [66]. Note
that, more enhancement layers lead to a better quality of
the received video, i.e., the higher PSNR, but require more
transmit power at the UAV. In [66], Zhang et al. considered a
system where a UAV transmits video to a terrestrial BS with
SVC. The objective was to maximize the energy efficiency
subject to the delay outage probability constraint, i.e., the
probability that packet delay exceeds a predetermined delay
budget. Energy efficiency is defined as the ratio of the PSNR
to the total power. The optimal solution jointly determined
the number of enhancement layers and transmit power. In
contrast with the baseline, which randomly selects the number
of layers and power, the proposed approach improved the
energy efficiency by 40% and decreased the delay outage
probability from 0.3 to 0.05. The work [67] studied a system
in which the base and enhancement layers of the SVC
video are sent from a terrestrial BS and the UAV BSs, with
storage and computation capabilities, to the ground users.
Each layer of the video can be served by either the terrestrial
BS or a UAV BS, i.e., a user can obtain the layers of the
video from multiple BSs. The computation capabilities at the
BSs can be used for video processing, e.g., encoding the
video’s base layer and enhancement layers. In addition, the
UAVs without the storage and computation capabilities act
as relays to help the transmission from the terrestrial BS to
the users. Since the number of enhancement layers affects
the video quality, the users desire more enhancement layers.
By optimizing the transmit power and allocated bandwidth
of the BS and UAVs, the number of enhancement layers for
the users, the video layer assignment (i.e., from which BS),
and the 2D deployment of the UAVs, the objective in [67]
was to maximize the sum of all users’ QoE metric, e.g.,
normalized PSNR, subject to the constraint on the transmission
and computation delays. The proposed approach achieved

15% better QoE, i.e., received video quality improvement,
than a baseline, where the video layers for the user originate
from a single BS delivering the highest throughput. In
contrast with the other baselines in which the video layers
for all users originate from the terrestrial BS, and the video
transmission is helped by the UAV relays, the proposed
approach achieved 68% QoE enhancement. However, it is
important to note that due to its high computational complexity
and lack of support by broad-based consumer devices, the
SVC based approach is not preferable for real-time video
transmission.
We note that all the above-discussed work focused only on

the transmission of 2D videos from UAVs. In contrast to this,
Hu et al. [68] conducted a numerical analysis of a UAV-based
ODV streaming system, where ground users request specific
video tiles within their FoV from the UAV. The UAVs
then transmit the requested tiles to the users via associated
Access Points (APs) which act as decode-and-forward relays.
These APs collaboratively broadcast the video data to the
corresponding users. The objective of their approach was
to maximize the PSNR by scheduling time slots to the
UAVs and associating them with the APs. The proposed
approach yielded an enhancement in PSNR compared to
baselines where APs worked either totally independently or
collaboratively.

2) UAV DEPLOYMENT AND TRAJECTORY DESIGN

Along with wireless resource allocation, such as transmit
power and bandwidth, the maneuverability of UAVs offers an
additional dimension for enhancingstreaming performance,
by improving both throughput and latency. By optimizing
the UAV‘s location or trajectory in Three-dimensional
(3D) space, both energy consumption and wireless channel
conditions can be improved.
Guo et al. [69] focused on the 3D trajectory design of a

UAV deployed to inspect multiple facilities and transmit real-
time video to a control center. The objective was to minimize
the total energy consumption associated with propulsion and
hovering. The trajectory between successive facilities directly
impacted propulsion energy, while hovering energy depended
on the inspection time at each facility, determined by video
bitrate and transmission latency. Therefore, a trajectory
planning algorithm was proposed in [69] to minimize
total energy consumption, assuming a fixed video bitrate.
Simulation results demonstrated that the proposed algorithm
significantly reduced the UAV‘s energy consumption and
flight time. The work in [70], undertook joint optimization of
trajectory and resources, e.g., time slots, transmit power, and
transmission rate, for a UAV-based video delivery to multiple
ground users. The trajectory design took into account the
propulsion energy consumption. The authors formulated the
user’s utility as the normalized transmission rate relative to
a predetermined bitrate (considering fairness among users).
They aimed to maximize the lowest time-averaged utility
among all users by jointly designing trajectories and allocat-
ing wireless resources. The proposed approach outperformed
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TABLE 5. Summary of the QoE optimization research.

three baselines: trajectory optimization, wireless resource
optimization, and no optimization. It achieved up to a
3-fold increase in transmission rate. Building upon the work
in [69], Burhanuddin et al. [71] considered a scenario of
collaborative inspection of a fire area by multiple UAV
users, with the inspection videos sent to a UAV-BS. The
optimization involved the transmit power of all UAVs, 3D
trajectories of UAV users, and dynamic bitrates of the
inspection videos transmitted by the users. The focus was
on QoE maximization, which accounted for transmission
delay violation and the normalized transmission rate based
on the selected video bitrate. Additionally, the transmission
rate was constrained to be greater than the selected video
bitrate, considering the trajectories and transmit power of the
UAVs. The proposed approach supported the transmission of
720p and 1080p videos with an average delay of 0.05 ms,
whereas a greedy approach relying on immediate QoE
decisions only supported 140p videos with an average delay
of 1.2 ms. Overall, these studies highlight the importance of
jointly optimizing UAV trajectories and resource allocation
to enhance video streaming performance, achieving energy
efficiency, reduced delay, and improved QoE. In [72], the
authors developed a dynamic placement strategy for multiple
UAVs to maximize the expected immersion fidelity for a
scene of interest. The objective was to minimize the overall
reconstruction error of all users by optimizing transmit power
and source-channel coding.
Furthermore, Khan et al. [73] investigated a UAV-to-

UAV communication network where UAVs collaboratively
streamed video to a ground server. Their approach involved
utilizing dual paths for transmitting SVC video with one
enhancement layer. The base layer is sent directly from a
UAV to the ground server via a radio frequency link, while
the enhancement layer is relayed to the server by neighboring
UAVs using free-space-optical links. The objective was
to minimize distortion in the received video by jointly
optimizing the bitrates of the base and enhancement layers,
the routing path, and UAVs deployment. The optimization

TABLE 6. Summary of testbed & measurement activities.

was subject to a constraint on propulsion energy consumption
and the channel capacity’s bitrate limitations. The proposed
approach achieved an average PSNR gain of 6 dB, compared
to a baseline approach that used dual paths with only radio
frequency links, without optimizing the routing path and
UAV deployment. In summary, Khan et al. explored UAV-to-
UAV communication networks, demonstrating the benefits
of jointly optimizing routing paths, UAV deployment, and
bitrate allocation for enhanced video streaming performance.

B. TESTBED & MEASUREMENT ACTIVITIES
In the following, we survey the testbed setups and measure-
ment activities focused on evaluating the video quality and
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the network performance, characterized by throughput and
latency, for video transmission from a UAV.
Stornig et al. [74] employed the ns-3 network simulator

to study E2E delays and video quality metrics (PSNR and
SSIM) for video streaming over 4G networks. They modeled
the UAV‘s 3D trajectory using a Gauss-Markov mobility
model, and the video traffic was simulated using the MPEG-4
formats with the Evalvid application. The impact of UAV
mobility on latency performance was thoroughly examined.
Simulation results indicated that approximately two-thirds of
frames were received with good or excellent quality, while
27% of frames in regular mobility and 30% of frames in high
mobility exhibited inferior quality. Moreover, the average
PSNR and SSIM values for the received video were 33 dB
and 0.945, respectively, indicating good quality.
In the testbed presented in [75], a DJI Matrice 100 drone

equipped with the Quectel EC25 Long Term Evolution
(LTE) module and a Raspberry Pi camera were utilized. A
computer with a USRP B210 radio frequency unit served
as the BS, connected to the UAV remote controller via
a wireline connection. The experiments were conducted
indoors using the AVC/H.264 encoded videos. Various met-
rics were evaluated, including transmission delay, packet loss
probability of control commands, and video data throughput.
The results demonstrated that when the control command
was updated less than 40 times per second, the command
delivery experienced a 20 ms transmission delay without
any packet loss. Also, the average delay and throughput
for 480p and 720p video resolutions ranged from 1.5 s to
5.5 s, and from 2 Mbps to 9 Mbps, respectively. In [76], the
authors evaluated the performance of a testbed equipped with
the Huawei MH5000 5G module, operating in an outdoor
environment. The transmission rates for streaming 1080p
video in HEVC/H.265 format over 4G and 5G networks were
measured at 16 Mbps and 97 Mbps, respectively. The G2G
delays were evaluated as 3 s and 1.2 s for the respective
networks. Additionally, the E2E delay of control command
delivery was measured to be 30 ms in the 5G network.
In UAV teleportation, an operator at a remote location

guides the UAV to accomplish tasks, over a live video
feed. This requires simultaneous uplink streaming of real-
time video and downlink delivery of control commands.
Targeting these applications, the work in [77] implemented
an immersive UAV control testbed using the Oculus Quest
2 HMD to control UAV movement and FoV over 4G, 5G,
and WiFi networks. The Insta360 One X camera captured
360◦ video, and streaming rates of 2 Mbps to 8 Mbps
were considered. Various delay metrics were evaluated:
G2G delay, glass-to-reaction-to-execution delay, and sensor
reaction delay. The G2G delay ranged from 0.595 sec. to
0.985 sec., the glass-to-reaction-to-execution delay ranged
from 0.89 sec. to 1.38 sec., and the sensor reaction delay
ranged from 0.67 sec. to 1.12 sec., as the streaming rate
varied from 2 Mbps to 8 Mbps. The control command
transmission delay was measured at 138 ms, 103 ms,
and 88 ms for 4G, 5G, and WiFi networks, respectively.

Additionally, the PSNR of the received video for 720p and
4K resolutions ranged from 30 to 47 dB.
In [78], [80], the network simulator ns-3 and Evalvid

application were used to investigate the performance of MP4
format video transmission from the UAV to the BS in 4G
networks. The study in [78] primarily focused on throughput
investigation in both outdoor and indoor environments. In
the outdoor scenario, the average throughput achieved by
a static macrocell UAV was found to be 60 kbps, which
decreased to 20 kbps as the UAV moved at speeds ranging
from 1 to 5 m/s. In the indoor environment, the improvement
in throughput was more significant for multi-story buildings
with an increased number of deployed femtocell BSs. In a
related work, Singhal and Chandana [79] leveraged network
simulator ns-2.29 to evaluate the throughput, packet loss,
packet retransmission, and E2E delay performance of video
streaming between UAVs and from a UAV to the ground
control station, in different network configurations, including
wireless local area network (WLAN), WLAN router, WiFi
hotspot, and WiFi Direct. Results indicated that WiFi Direct
achieved the best performance for all metrics, followed by
the WiFi hotspot, while the WLAN network exhibited the
poorest performance in all considered metrics.
Naveed et al. [80] explored the relationship between the

Reference Signal Received Power (RSRP) and throughput.
Their findings revealed that as the RSRP varied from
−110 dBm to −75 dBm, the UAV achieved video stream-
ing throughput ranging between 2 Kbps and 80 Kbps.
Additionally, the authors evaluated the received video quality
using PSNR and SSIM scores under various wireless channel
conditions. The PSNR scores were observed to be 49.41 dB,
35.42 dB, and 24.31 dB in the best, good, and poor channel
conditions, respectively. Similarly, the SSIM scores were
found to be 0.99, 0.63, and 0.35 in the respective channel
conditions. Furthermore, the effects of various channel
conditions on video quality were visually highlighted.
The performance evaluation of multi-path video streaming

in 4G networks was conducted by Liu and Jiang [81], and
Nihei et al. [82]. In the testbed presented in [81], video
data was transmitted from dual devices inside the UAV
to a smartphone. The dual-stream approach employed in
this study demonstrated the capability to reduce the E2E
delay to approximately 50 ms. In an independent study,
Nihei et al. [82] tested the multi-path video streaming method
in 4G networks, for forest fire surveillance, by distributing
the video data over two 4G mobile network operators in
Indonesia. The objective of data splitting was to minimize
the average E2E delay. The experimental setup involved the
use of a DJI Spreading Wings S800 drone equipped with
a Raspberry Pi. Outdoor experiments were conducted using
the AVC/H.264 format encoded videos. Visual illustrations
provided in the study showcased the quality improvement
achieved with the multi-path method. The performance of
60 GHz mmWave for video transmission was evaluated
by Yu et al. [83]. In their experiment, conducted in
an outdoor environment, a 4K uncompressed video was
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transmitted from the UAV to a nearby server to offload
further computations. The testbed achieved a throughput of
1.65 Gbps, and the results indicated that offloading compu-
tations to the server enabled the UAV to save 271.8 watts
in computations at the expense of 4.1 watts for mmWave
communication.
Based on the aforementioned results, it can be concluded

that the design of wireless systems for UAV-based video
streaming can vary depending on the specific wireless
network architectures employed. Each network architec-
ture comes with its restrictions, advantages, overheads,
and hardware requirements, leading to diverse performance
outcomes. These evaluation outcomes can also serve as
guidance for selecting an appropriate network architecture,
depending on the application requirements of UAV-based
video streaming. It is worth noting that while most of the
studies discussed in this section focused on non-real-time
video streaming, they offer valuable insights into the design
of UAV-based real-time ODV streaming. For example,
the work by Yu et al. [83] emphasizes the importance
of joint communications, computation, and control design
for UAV-based real-time video streaming. Similarly, the
results presented in [81], [82] demonstrate the effective-
ness of multi-path streaming in significantly reducing E2E
delays.

VI. OVERVIEW OF 3GPP STANDARDIZATION ACTIVITIES
In this section, we survey the relevant standardization
activities conducted by 3GPP. The standardization activities
related to UAV-based immersive video streaming within the
3GPP can be divided into two main categories. The first
category focuses on the integration of UAVs with cellular
networks, while the second category includes efforts on 5G
support for media streaming applications, such as augmented
reality, VR, and real-time communication. In the rest of the
section, we provide an overview of the recent advancements
and state-of-the-art in these two areas.

A. COMMUNICATION FOR UAVS
To evaluate the potential of LTE networks in supporting
UAVs through cellular connectivity, the 3GPP initiated the
Release 15 study in March 2017 [84]. The findings of this
study are documented in TR 36.777 [85]. The study revealed
that the LoS signal propagation in UAV communications
increases the likelihood of severe interference in both uplink
and downlink scenarios. Consequently, various interference
detection and mitigation solutions were proposed as study
and work items. Additionally, solutions related to mobility
information management and aerial user identification were
put forth. In Release 16, the focus shifted towards inves-
tigating the feasibility of remotely identifying UAVs [86].
In Release 17, 3GPP further addressed the operational 5G
support for UAVs by providing functionalities for UAV
authentication, authorization, and tracking [87]. Moreover, it
allows for command and control authorization.

TABLE 7. Summary of 3GPP release 18 activities for supporting media streaming
over 5G networks.

B. SUPPORT FOR MEDIA STREAMING OVER 5G
The support for VR over wireless networks was investigated
in 3GPP Release 15, and conclusions are documented
in TR 26.918 [88]. This report aimed to identify the
potential gaps and use cases for facilitating VR services over
wireless networks. Further, Release 17 TS 26.118 introduced
operation points, such as resolution and color mappings,
and defined media profiles for the distribution of VR
content. To address the challenges associated with real-time
immersive media streaming, Release 18 of 3GPP is currently
investigating several relevant issues. For a comprehensive
overview of the activities under Release 18, refer to Table 7.
Based on the above discussion, we note that the develop-

ment of UAV-based real-time immersive streaming system
is still in its infancy. For instance, the choice of the most
suitable video encoder is still not clear from the available
set of standard encoders. A key reason for this is the lack
of a standard evaluation approach to provide a common
benchmark for the developed algorithms. Towards this, in the
following section, we present a dataset consisting of 360◦
videos captured from a UAV under various flying conditions.

VII. AERIAL ODV DATASET
As discussed earlier, the utilization of visual attention and
saliency information can provide valuable insights into
human visual scene analysis patterns. Visual attention and
saliency information can be derived by analyzing viewers’
HM and Eye Movement (EM) during video playback. This
knowledge can be harnessed to develop effective encoding
and streaming methods. However, it is important to note that
for real-time video transmission, the HM and EM data can
only be collected causally. Therefore, it needs to be collected
in real-time and leveraged in an online manner to enhance
the performance of real-time ODV streaming from UAV. On
the other hand, there is no existing dataset containing aerial
ODVs captured from a UAV. In this section, we present a
survey of ODV datasets containing EM and HM information.
In addition, we introduce a new dataset that we have curated
for this study, containing ODVs captured from a UAV.
In the literature, several ODV datasets contain EM and

HM information of viewers [98]. For better understanding
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TABLE 8. Summary of existing datasets.

TABLE 9. Summary of our dataset.

the user behavior while watching ODVs, these datasets
categorize the ODVs, based on the number of moving objects
and camera motion, and include users’ feedback about their
viewing experience [99]. In contrast, [100] classified the
videos based on their genre, such as documentaries, movies,
etc. The majority of these datasets consist of videos with
3DoF which makes them less suitable for learning the user
viewing pattern for a UAV-based ODV streaming. Indeed,
inferences obtained using ODV with 3DoF may not be
applicable for video transmission platforms with 6DoF, such
as UAV-based ODV transmission. This raises the need to
develop novel datasets of ODVs captured using UAVs. In
the following, we briefly survey the existing datasets based
on the videos captured from UAVs.
While many datasets in the literature include images

and 2D videos captured by UAVs for applications such as
remote sensing and navigation, only a limited number of
publicly available datasets capture EM and HM information
for UAV-recorded videos, with only one dataset currently
accessible [96]. Similarly, there is only one dataset available
for UAV-based 360◦ videos. We summarize these datasets in
Table 8. The EyeTrackUAV2 dataset [94] collects binocular
gaze information from 30 viewers watching 43 2D videos
under both free viewing and task conditions. The AVS1K
dataset comprises ground truth salient object regions for
1000 videos observed by 24 viewers in free viewing

conditions. The WinesLab dataset contains eleven 360◦
videos, seven of which were recorded by a pedestrian
using a handheld camera, and the remaining four were
captured using a drone-mounted camera in various sur-
roundings and lighting conditions. The 360Track dataset
consists of nine 360◦ videos with manually marked ground
truth positions of salient objects. In the following, we
describe our dataset of aerial 360◦ videos, presented
in Table 9.

The dataset presented in Table 9 comprises a total
of ten 360-degree videos. The resolution of all videos,
except for “FreeStyleParaGliding,” is 3840 × 1920, while
“FreeStyleParaGliding” has resolution 5120× 2560. Each
video sequence in the dataset has a length of 40 seconds.
All the videos, except “DubaiVertical” and “AbuDhabiCity,”
have a frame rate of 30 frames per second (fps), whereas
“DubaiVertical” and “AbuDhabiCity” consist of 50 fps.
The dataset consists of five outdoor videos, one sports
video, and one video recorded in nighttime conditions. The
“NorthPoleTrip” video captures motion in the azimuth plane,
while the “DubaiVertical” video captures motion in the
elevation.
In the following section, we use the above dataset to study

the suitability of standard video encoders for real-time 360◦
streaming from a UAV. Also, we present our testbed for
360◦ streaming from a UAV.
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FIGURE 4. The average quality in S-PSNR (dB), SSIM, and VMAF at different bit rates for the seven considered encoders.

TABLE 10. Specifications of workstation used for simulations.

VIII. BENCHMARK AND ANALYSIS
In this section, we first perform a comprehensive
performance benchmarking of five video coding standards
and formats (i.e., AVC/H.264, HEVC/H.265, VVC/H.266,
VP9, and AV1) through their software implementa-
tions: libx264, libx265, Fraunhofer versatile video encoder
(VVenC), libvpx-vp9, and libsvtav1, respectively. We
also considered two NVIDIA hardware encoders, namely
hevc_nvenc, and avc_nvenc, for the AVC/H.264 and
HEVC/H.265, respectively. Next, we present a real-time
drone ODV streaming testbed, employing a hardware
AVC/H.264 encoder and WebRTC streaming protocol, for
remote UAV control and navigation with a 6DoF viewing
experience.

A. CODING AND COMPLEXITY PERFORMANCE
In this section, we evaluate the coding and latency
performance of the above-mentioned software and hardware
encoders on the video sequences contained in the dataset.
Table 11 lists the used hardware and software encoder
libraries for the five standards and formats. All the encoders
are configured in their fastest preset, targeting live 360◦
video streaming applications. The encoding was conducted
on a DELL precision 7820 tower workstation, equipped with
an Intel Xeon CPU with 8 cores, running at a maximum
frequency of 3.9 GHz, and a NVIDIA RTX A5000 GPU.
The quality of decoded 360◦ videos is assessed using three
objective quality metrics: Spherical PSNR (S-PSNR), SSIM,

TABLE 11. Video encoder Software (SW)/Hardware (HW) libraries.

and VMAF. The videos are encoded at four practical UAV
target bitrates of 1.5 Mbps, 3 Mbps, 4.5 Mbps, and 5.8
Mbps [101], enabling the computation of the Bjøntegaard-
Delta rate (BD-rate) performance. The BD-rate gives the
average bitrate saving or loss compared to the anchor encoder
over the four considered bitrates.
Figures 4(a), 4(b), and 4(c) provide the average quality

performance of the encoders on the proposed dataset, using
three distinct quality metrics: S-PSNR, SSIM, and VMAF.
From the results, it is evident that the AV1 software
encoder achieves the highest quality in terms of S-PSNR
and VMAF across all four bitrates. The performance of
VVenC software encoder is quite close to AV1, particularly
at high bitrates, for the SSIM metric. On the other hand, the
libx264 software encoder achieves the lowest quality among
the tested encoders. It is worth noting that the hardware
design for the AVC/H.264 standard significantly outperforms
the libx264 software encoder across all quality metrics
and bitrates. Interestingly, the software implementation of
the HEVC/H.265 standard exhibits slightly higher quality
than its hardware implementation. This can be attributed
to increased focus on speed and complexity introduced
by the new tools in the HEVC/H.265 standard, making
the configurability of a hardware encoder for HEVC more
challenging compared to the AVC/H.264 hardware encoders.
The associated BD-rate results concerning the

AVC/H.264 software encoder for S-PSNR, SSIM, and
VMAF are depicted in Figures 5(a), 5(b), and 5(c),
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FIGURE 5. The BD-rate performance in S-PSNR (dB), SSIM, and VMAF versus encoding time for the seven considered encoders on 10-second video sequences.

respectively. These metrics are plotted against the encoding
time. The results reveal that the hardware encoders
(h264_nvenc and h265_nvenc) and the AV1 software
encoder offer the best tradeoff between coding efficiency
and encoding time. Notably, only the hardware encoders
can achieve real-time encoding at 30 frames per second.
To achieve real-time encoding, the AV1, AVC, and VP9
software encoders would require a powerful processor
with multiple cores operating at a higher frequency.
In contrast, the VVC/H.266 software encoder (VVenC)
exhibits significantly longer encoding times, taking more
than one hour to encode a 10-second video. The new
coding tools introduced in the VVC/H.266 standard have
expanded the search space for rate-distortion optimizations,
leading to increased encoding complexity. To enable real-
time capability, advanced algorithmic optimizations, along
with more efficient low-level optimizations, are necessary.
Furthermore, the development of efficient hardware designs
for the VVC/H.266 standard becomes crucial for low-energy
embedded devices to achieve real-time encoding and benefit
from its high coding efficiency and advanced features for
ODV contents.

B. TESTBED FOR UAV 360◦ VIDEO STREAMING
The proposed testbed consists of a UAV equipped with
a 360-degree camera and a 5G modem, and an edge
server. The 360-degree camera captures a comprehensive
view of the surroundings, providing an immersive 6DoF
viewing experience. The 5G modem enables real-time
transmission of high-resolution footage from the UAV to
the edge server. The user connects to the edge server
through an HMD to view live 4K 360-degree video
footage.
Figure 6(a) depicts the setup for the field tests conducted

with a First Person View (FPV) UAV operator controlling the
UAV in a desert environment. The operator sent commands
to the UAV through a central server, located 100 km away
from both the UAV and the operator. Both the UAV and the
operator were connected to a consumer 5G network. The
details of other settings are outlined in Table 12. During
the experiment, the operator flew the drone at a fixed

FIGURE 6. Illustration of the field test setting and the UAV configuration.

position, while varying the altitude. Simultaneously, the
onboard computer of the UAV recorded the information
received from the 5G modem, including the Cell ID,
throughput, and network latency from the UAV to the central
server.
Figures 7(a) and 7(b) provide insights into the handovers

and the instantaneous throughput as a function of altitude
in the scenario of vertical movement of the drone. In
Figure 7(a), it can be observed that the drone experienced
a total of ten handovers, across four available BSs that
cover the flying area. Figure 7(b) shows that most handovers
resulted in improved instantaneous throughput. However,
the throughput exhibited significant fluctuations due to
fluctuating wireless connectivity and interference. At higher
altitudes, the drone encountered interference from BSs,
primarily designed for ground-based users. Consequently, the
latency and quality of the video and control signals degraded
and thereby posed challenges for effective drone navigation
by the operator. Our field tests showcased the control of
UAV through 5G using a VR headset and 360-degree video
feedback, at altitudes of up to 600 meters. These tests shed
light on the potential challenges imposed by interfering
BSs and suboptimal handover conditions in VR-based UAV
control.
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TABLE 12. Testbed configuration for 360◦ video streaming over UAV.

FIGURE 7. Handovers and instantaneous throughput performance versus the drone
altitude in vertical landing flying conditions. The average throughput values of the
cells in green, orange, black, and red are 14.55 Mbps, 17.19 Mbps, 11.21 Mbps, and
10.79 Mbps, respectively.

IX. OPEN CHALLENGES
From Figure 7(b), it is evident that UAV communication,
particularly at high altitudes and during mobility, is suscep-
tible to significant throughput variation. This inherent issue
raises concerns about attaining a high video quality and
low G2G latency. To address these challenges, several open
research directions need to be pursued. In the following, we
describe a few prominent open directions.

A. ADAPTIVE LOW-LATENCY 360◦ VIDEO STREAMING
Ensuring rapid and accurate adaptation of the video bitrate
to channel throughput fluctuations is crucial to prevent
buffering at both the transmitter and receiver, and thereby
minimizing G2G latency. In this regard, utilizing information
from the physical layer, as well as UAV status, position,
and environmental conditions, can significantly enhance
throughput prediction, and facilitate proactive adaptation
of encoder parameters such as spatial resolution, temporal
frame rate, quantization parameter, and projection format.
Furthermore, sophisticated rate control mechanisms can
further minimize G2G latency and maximize perceived qual-
ity. Advanced machine learning techniques, including deep
reinforcement learning, have shown promise in bitrate adap-
tation while optimizing perceived video quality [109], [110].
However, leveraging these machine learning techniques for
real-time bitrate adaptation remains an open challenge.
Additionally, exploring advanced optimization techniques,

like FoV prediction, can prioritize higher quality for the
viewport of aerial ODVs, thereby improving bandwidth
utilization and enhancing the user experience. Addressing
these open research challenges will be pivotal in facilitating
improved QoE, reduced latency, and superior video quality.
Further, as observed in Table 3, encoding complexity con-

stitutes a major component of the G2G latency. Leveraging
the latest video coding standards and efficient hardware
encoders, such as hevc_nvenc, can substantially enhance
perceived video quality. The hevc_nvenc encoder enables
real-time encoding with low energy consumption [111],
harnessing the coding efficiency promised by the advanced
video coding standard, HEVC/H.265. This, in turn, extends
the UAV‘s battery life. At the cloud level, more efficient
software encoders like SVT-AV1 can be utilized for video
transcoding. However, these standard codecs need to be
benchmarked systematically by analyzing their encoding and
decoding latency, quality, and error resilience [112] for a
diverse range of receive Signal-to-noise-ratio (SNR) values
and GOP sizes. In addition, neural-based codec designs can
be explored to develop robust encoders to counter channel-
induced errors [113] and enhance the quality.

B. COOPERATIVE AERIAL VIDEO STREAMING
Cooperative immersive video streaming, exemplified by
Intel’s Trueview [114], has the potential to enable a
truly immersive viewing experience [115]. This approach
allows users to independently select their preferred viewing
angle by streaming from multiple cameras or sources,
leveraging spatial diversity in terms of viewing angle,
content, or geographic location. In multi-UAV applications,
the individual UAVs collaboratively and cohesively cap-
ture videos, which are then synthesized into a panoramic
video. Moreover, employing multiple UAVs enhances the
immersive experience with 6DoF capabilities [116], [117].
However, developing a multi-UAV cooperative immersive
video streaming system entails addressing a unique set of
challenges in joint communication, computation, and control
design. Cooperative aerial video streaming requires effective
synchronization and coordination among the UAVs to ensure
comprehensive scene coverage, without compromising QoE
while minimizing network bandwidth usage. Additionally,
capturing more dynamic events, such as sports or moving
ground targets [115], [117], necessitates accurate motion
prediction, such as player or target movement, which, in turn,
relies on coordinated trajectory planning and 3D placement
of UAVs, considering their battery levels in addition to the
QoE.
Note that, streaming videos from all UAVs simultane-

ously poses a significant resource burden. To address this
challenge, bandwidth-saving streaming techniques can be
employed by leveraging users’ attention information [118].
Specifically, UAVs whose videos are deemed unnoticed by
users can remain idle during transmission. However, we
argue that instead of staying idle, these UAVs can contribute
to real-time video streaming, thus enhancing communication
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efficiency and throughput further. For instance, the UAV
swarm can collectively form a virtual Multiple-input and
Multiple-output (MIMO) system [119]. This type of MIMO
system exhibits distinct wireless channel characteristics.
Considering the unique channel model and the requirements
for throughput and latency, designing a cooperative aerial
video streaming for real-time and interactive panoramic
videos poses considerable challenges. Addressing these
challenges requires innovative solutions that account for
coordination, resource optimization, wireless channel char-
acteristics, throughput, and latency requirements.

C. QoE-AWARE CONTROL AND COMMUNICATION
In this section, we discuss mechanisms to support the high
data rates and low latency required for real-time transmission
of aerial ODVs [120]. UAV-based real-time ODV stream-
ing represents a distinct class of services, encompassing
both enhanced mobile broadband and ultra-reliable low-
latency traffic, necessitating novel communication designs.
Additional challenges arise due to their dynamic topol-
ogy and limited energy resources [121], [122], requiring
judicious resource allocation strategies [123]. The channel
quality and network throughput of aerial users are also
influenced by their flight trajectory, necessitating the orches-
tration of joint QoE-aware resource allocation and drone
route selection mechanisms [124], [125].

One potential approach is to develop QoE-aware Network
Slicing (NS) mechanisms. Unlike traditional QoS-based NS
[126], a dynamic NS framework is needed that considers
UAV mobility and position, optimizes energy levels, and
ensures minimal resource overhead. The NS scheme must
also guarantee strong isolation to minimize the impact on
ground-based users. In multi-UAV streaming systems for
360◦ videos [65], additional challenges arise in resource
allocation among UAVs. Each UAV can independently
adjust its encoding bitrate and position [71], competing for
resources with other UAVs in the swarm.
In addition, the design of schemes leveraging video

saliency to predict users’ FoV and employing multicast
transmission techniques based on users’ locations and FoV
correlations can be studied, as grouping and multicasting
can improve network throughput and QoE [127], [128].
Additionally, the design of policies adapting the encoding
bitrate of tiles based on channel quality, available resources,
and content quality, can further enhance QoE [120].
Furthermore, in applications involving the teleoperation of
UAVs, such as fire disaster monitoring [82] and suspicious
vehicle tracking [129], the QoS relies on the interplay
between control command delivery and video data transmis-
sion. The latency experienced in one link can impact the
latency budget of the other link. Moreover, unreliable control
command communication can influence the UAV‘s reaction
and view angle, resulting in undesired information for the
remote operator. Therefore, the entanglement and mutual
influence between control command delivery and real-time

aerial video transmission require dedicated consideration in
the design.

D. DESIGN OF COMMUNICATION PROTOCOLS
TAILORED FOR UAV-BASED VIDEO STREAMING
Transmission Control Protocol (TCP), due to its inherent lim-
itations such as connection delays and head-of-line blocking,
poses challenges in delivering satisfactory QoE for real-
time 360◦ video streaming. Moreover, its implementation
within the operating system kernel hinders the development
and deployment of variants that can be optimized using
application-layer data (e.g., FoV) and other parameters
like UAV position [130]. To address these limitations,
protocols like QUIC [131] have been proposed. Notably,
Park and Das [130] introduced a cross-layer scheduling
mechanism for QUIC, leveraging both application-layer
data (e.g., object sizes and priorities) and network-layer
information. Such tailored designs, incorporating specific
characteristics of video streaming and the unique attributes
of A2G channels, hold significant potential for enhancing
performance.
Conversely, adopting a semantic communication

approach [132], where the emphasis is on effectively
conveying the intended meaning of information rather than
merely transmitting raw data, holds promise for enabling
various applications reliant on real-time streaming from
UAV platforms. However, to leverage the benefits of joint
optimization using both video content and physical layer
data, the development of customizable communication
protocols is crucial. For example, similar to [133], utilizing
bandwidth estimation provided by the WebRTC protocol can
enable optimization of encoding parameters at the application
layer, thereby impacting frame drops and latency.
Furthermore, reported testbed studies frequently rely on

existing protocols without tailored optimization for video
streaming, leading to an inaccurate assessment of real-
world performance. A comprehensive evaluation utilizing
wireless protocols specifically optimized for UAV-based
real-time 360◦ video streaming is crucial to reveal the
true state-of-the-art performance achievable in practical
scenarios.

E. LLM FOR IMMERSIVE VIDEO STREAMING
The rapid advancement in natural language processing has
paved the way for the development of Large Language Model
(LLM) like BERT [134], GPT-3/GPT-4, and FALCON.
These versatile models push the state-of-the-art on many
downstream tasks, finding applications in various domains,
including conversation, medicine, telecommunications [135],
and robotics [136]. In the context of streaming 360-degree
video from one or multiple UAVs, illustrated in Fig. 8,
leveraging these LLMs can greatly enhance performance. In
the following, we describe some examples to illustrate the
potential of LLMs in enhancing the performance of real-time
streaming of aerial 360◦ videos.
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FIGURE 8. Use case scenario for LLMs control commands for UAV with 360◦

camera.

In control scenarios, end-users can provide task prompts
to the LLM along with descriptions of the environ-
ment captured by the 360-degree camera. The LLM can
then generate commands for the UAVs to successfully
execute tasks while minimizing energy consumption and
avoiding obstacles. Notably, the description of the surround-
ing environment can be provided either by the end-user
or automatically generated by leveraging vision-language
models, such as SimVLM [137], Flamingo [138], or
BLIP-2 [139].
Other use cases integrate LLM and Multimodal Large

Language Model (MLLM) into the video streaming frame-
work for enhanced compression efficiency. The first use case
involves the application of LLM for the lossless compres-
sion of images or videos, serving as an entropy encoder.
Recent research, from DeepMind [140], underscores the
potent versatility of LLMs as general-purpose compressors,
owing to their in-context learning capabilities. Experiments
utilizing Chinchila 70B, solely trained in natural language,
revealed impressive compression ratios, achieving 43.4% on
ImageNet patches. Notably, this rate outperforms domain-
specific image compressors such as Portable Network
Graphics (PNG) (58.5%). The second use case harnesses
MLLM shared at both the transmitter and receiver for
a lossy coding setting. The transmitter first generates an
accurate description of the image or video content through
the image captioning capability of the MLLM. Instead
of transmitting the image or video, the text description
(semantic information) is then sent to the receiver, requiring
a significantly lower data rate. At the receiver, the generative
capability of the MLLM is used to reconstruct the image or
video based on the received text description. In addition to
the text prompt, the generation can also be guided by side
information like edge map, color map to generate a more

compelling representation. In the third use case, the MLLM
is employed solely at the transmitter to leverage its code-
generation capability, representing the image or video for
transmission. Subsequently, the code, requiring a lower data
rate, is shared with the receiver, enabling direct utilization to
render the image or video through the code description [141].
The above examples illustrate the tantalizing poten-

tial of LLMs in not only improving the compression
performance but also in configuring the physical layer
parameters [142]. Nonetheless, the LLMs still suffer from
long inference time and high memory requirement which
needs to be addressed to leverage LLMs for enhancing
the performance of real-time streaming of aerial ODVs. In
addition, there is a need for development of customized
LLMs.

X. CONCLUSION
In this paper, we conducted a thorough survey of chal-
lenges and research efforts in UAV-based immersive video
streaming. By enabling immersive viewing with up to 6DoF,
this technology enhances the QoE for various applications
such as surveillance, autonomous driving, healthcare, and
education. However, real-time streaming of aerial 360-degree
videos poses unique challenges in terms of communications,
computation, and control, owing to the unique characteristics
of the UAV-to-ground wireless channel and limited onboard
energy availability. We highlighted these challenges by first
reviewing the key components of 360-degree video streaming
over A2G wireless channels and reviewed the technology
used to achieve low end-to-end latency. Additionally, we
introduced a new dataset consisting of ten 360-degree videos
captured by UAV in diverse flying conditions, enabling
us to evaluate the coding efficiency and complexity of
various software and hardware video encoders. Through our
experiments, we found that only hardware implementations
of AVC/H.264 and HEVC/H.265 encoders achieved real-
time encoding, making them suitable for UAV platforms,
with limited computing and energy resources. Furthermore,
the AV1 encoder demonstrated the best coding performance,
albeit with high complexity, and therefore can be utilized
for efficient video transcoding on more powerful devices in
the cloud. Moreover, we presented a testbed for 360-degree
video streaming over a drone with 5G communication,
illustrating the impact of mobility on interference, han-
dovers, and video quality. Finally, we discussed open
challenges and future research directions to enhance the key
performance metrics of live immersive video streaming over
UAVs.
This paper delves into real-time streaming of omnidirec-

tional videos captured via UAVs, offering valuable insights
to enhance the QoE in this domain. The findings in the paper
pave the way for further advancements in live immersive
UAV video streaming, ultimately benefiting a broad spectrum
of applications and industries.
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