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ABSTRACT This paper investigates nested lattice codes generated through Construction A from the ring
of integers of an imaginary quadratic field. Our primary goal is to offer a streamlined proof of the existence
of nested lattice codes that can attain the capacity of an Additive White Gaussian Noise (AWGN) channel.
We alter the random ensemble of nested lattice codes by introducing discrete random dithers instead of
continuous random dithers. This adjustment enables us to draw a parallel between nested lattice codes
and nested linear codes, facilitating a proof that remains as straightforward as that used for nested linear
codes. Furthermore, we demonstrate that this collection of lattices exhibits favorable properties for Mean
Square Error (MSE) quantization under specific constraints.

INDEX TERMS Algebraic integers, AWGN channel, lattice codes, MSE quantization.

I. INTRODUCTION

LATTICES are discrete subgroups of R
n that serve

as essential structures with applications spanning
numerous disciplines such as sphere packing, quantization,
modulation, and channel capacity optimization. Construction
A, B, C, D, and E are notable lattice construction approaches
that frequently use linear block codes for implementation [1].
The primary distinctions among Constructions A, B, and
C lie in the types of codes they employ. In Construction
B, a binary code with even weight is utilized, whereas
Constructions A and C can employ any code. Additionally,
as defined in [2], Construction B specifies that a vector x =
(x1, x2, . . . , xn) is a lattice point if

∑n
i=1 xi is divisible by 4.

In contrast, Construction C is described as a sphere packing
in Rn, which does not necessarily form a lattice. Furthermore,
Construction D is a special case of Construction C that
utilizes nested codes.
Algebraic lattices, formed from the ring of integers of

number fields or their ideals, are a diverse family of lattices.
Construction A generates lattices over Rn by using a linear
code C of length n over a finite field Fp, as well as a mapping

from Z
n to F

n
p via reduction modulo p. These lattices,

known as algebraic Construction A lattices, have been widely
investigated [3], [4]. Despite their theoretical significance,
algebraic lattices’ practical application has been hampered
by the inherent difficulty of their structured construction.
Recent improvements expand Construction A to include
a broader class of imaginary quadratic fields, allowing
research of varied lattice structures outside typical Principle
Ideal Domains (PIDs), such as Gaussian integers Z[i] and
Eisenstein integers Z[ω], where ω = ei2π/3 [4].

Algebraic lattices defined over imaginary quadratic fields,
such as Gaussian integers and Eisenstein integers, prove to
be a potent tool in combating errors in AWGN channels.
By harnessing their properties, we can design robust error
correction codes and construct cryptographic primitives,
such as public-key cryptosystems, to secure data transmis-
sion over these channels. The unique algebraic structure
of these lattices enables the construction of multilevel
codes, which significantly enhance the spectral efficiency
of communication systems. For example, using the dense
packing properties of Gaussian and Eisenstein lattices, we
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can create error-correcting codes that are highly effective
in mitigating noise and ensuring reliable data transmission.
This is particularly beneficial in scenarios where maintaining
data integrity is critical, such as wireless communication,
satellite communication, and data storage systems. Moreover,
the algebraic properties of these lattices facilitate the
development of cryptographic schemes that are both secure
and efficient. Public-key cryptosystems based on algebraic
lattices offer strong security guarantees and can be used
to protect sensitive information from eavesdroppers and
cyber attacks. Importantly, these lattice-based cryptographic
systems are considered to be resistant to quantum attacks,
making them suitable for post-quantum security applications.
This ensures that data remains secure even in the advent
of quantum computing, which poses a significant threat to
traditional cryptographic methods.
Despite extensive research, signal constellations utiliz-

ing algebraic lattices, aside from Gaussian integers and
Eisenstein integers used in phase-shift keying modulation,
have seen limited practical adoption, largely due to their
typical outcome of signal points not being a power of two [5].
However, recent developments have proposed non-binary
hexagonal modulation schemes for various uses, such as
multicarrier modulation [6], multilevel coded modulation [7],
and wireless video transmission [8].
As one specific instance of applying algebraic lattices,

in [4], Construction A of lattices is extended to algebraic
integers in general imaginary quadratic fields, which may not
form a PID. This extension aims to create effective lattices
for coding according to Poltyrev’s criteria and for optimizing
MSE quantization. The authors apply these lattices to
the compute-and-forward paradigm with limited feedback,
introducing an adaptive scheme that selects the optimal
ring of imaginary quadratic integers based on channel state
feedback. Simulation results show that this adaptive approach
outperforms traditional compute-and-forward schemes based
solely on Gaussian or Eisenstein integers. The proposed sig-
nal constellations in [4] also find application in generalized
spatial modulation, a technique that improves spectral effi-
ciency by selectively activating antennas for each transmitted
symbol. Considering these applications and potentials, our
work paves the way for the application of algebraic lattices
in new domains, enabling researchers with a background in
linear codes to develop algebraic lattice versions that are
particularly well-suited for channel coding and quantization.
By integrating algebraic lattices into communication systems,
our approach demonstrates the potential for significant
improvements in reliability, efficiency, and security. These
advancements not only enhance existing paradigms but also
open up new avenues for exploration in the design of robust
communication protocols.
Seminal works like [9], [10] established the feasibility

of creating nested lattices over Z using Construction A,
exhibiting their usefulness in both coding and quantization
problems. For example, [10] presented a simplified demon-
stration of the existence of nested integer lattices useful for

coding and quantization. Extending the foundational proof
in [4], [9] demonstrated the effectiveness of these lattices
in coding and quantization, applying a groundbreaking tech-
nique for the compute-and-forward method across AWGN
channels, therefore enabling greater computation rates. The
covering radius rcov of a lattice is a critical factor in this
context, defined as the minimum radius r at which closed
spheres of radius r centered at all lattice points wrap the
entire space. This assures that each point within span(�)

stays within a distance of rcov from the lattice. In [11],
a Gaussian broadcast channel with a single transmitter
and many receivers was analyzed using the methodology
of [12]. Using Construction A over integers, they assumed
a covering radius of rcov(�c) = √

n for the coarse lattice and
established the quality of their random ensemble of lattices
for covering. Previous studies have explored the efficiency
of Construction A when applied to Gaussian integers
and Eisenstein integers, utilizing PID properties in the
construction of lattices over these rings [13], [14]. In [13],
it was demonstrated that there is an infinite-dimensional
sequence of nested lattices over Eisenstein integers, with
the coarse lattice proving good for quantization and AWGN
channel coding, and the fine lattice specifically for AWGN
channel coding. Building on this, it was demonstrated that
nested lattice codebooks over Eisenstein integers can reach
greater information rates than those over integers. In [14],
lattice network codes were created from Eisenstein integers,
introducing quantization and error-correcting capacity, with
a focus on decoding error probability. Campello et al.
proposed the concept of generic random lattices derived
from linear codes and demonstrated its packing quality [15].
In addition, using the compute-and-forward approach over
block fading channels, it was demonstrated that algebraic
lattices generated from linear codes over finite fields showed
goodness in quantization [16]. While the aforementioned
references predominantly employed continuous dither, [17]
took a different approach. They considered Z-lattices over
AWGN channels and simplified previous proofs regarding
their goodness in coding with high probability through the
application of a uniformly distributed discrete random dither.
While previous studies, like [17], have shown that nested

lattice codes using Construction A achieve the capacity of
an AWGN channel without erasures, in [18], an AWGN
channel with erasures, which operates as an AWGN channel
with probability 1 − ε and produces an erased output with
probability ε, was examined. This study demonstrates that
by employing a simplified decoder that discards erasures, the
same codes presented in [17] can also achieve the capacity
of an AWGN channel with erasures.
In the realm of Wyner-Ziv problems, Nested Lattice

Coding (NLC) has emerged as a robust solution, offering
a comprehensive framework for efficient compression. At
the heart of NLC lies the label-set, a crucial codebook
that plays a pivotal role in determining the scheme’s
performance. Recently, a significant enhancement to tra-
ditional NLC has been proposed, leveraging algebraic
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label-set and geometric label-set, which satisfy the coset
property and geometric binning, respectively. This innovative
approach, termed Nested Lattice Coding with Algebraic
Encoding and Geometric Decoding (NLC-AC-GD), builds
upon the strengths of conventional NLC, maintaining
equivalent decoding reliability while achieving improved
compression rates, thereby pushing the boundaries of effi-
cient data compression [19]. Recently, algebraic lattices
from complex bases and imaginary quadratic integer rings
have been explored, yielding efficient reduction algorithms.
Notably, the algebraic Gauss’s algorithm and extended
Lenstra-Lenstra-Lovász (LLL) reduction have been shown to
effectively reduce lattice bases, with the latter demonstrating
numerical efficiency in wireless communications and cryp-
tography [20].
The study in [21] explores low-dimensional quantizers

within the framework of complex lattices. It intro-
duces checkerboard lattices Em and Gm, constructed using
Eisenstein and Gaussian integers, respectively. These lattice
constructions are intricately linked to associated cosets,
which has led to the discovery of E+

m,2 lattices. The
research also proposes fast quantization algorithms tailored
for generalized checkerboard lattices, enabling efficient
evaluation of normalized second moments using Monte
Carlo integration techniques. In [22], a novel approach
was presented to transform infinite lattice constellations,
originally optimized for the unconstrained Gaussian channel,
into a sequence of codes that achieve capacity in the power-
constrained Gaussian channel. This transformation leverages
lattice decoding and non-uniform signaling. Importantly, this
method stands out from previous approaches by imposing
no additional constraints on the lattices, such as quantization
goodness or a vanishing flatness factor. This makes it a more
general and versatile solution.
In communication systems, especially when transmitting

over an AWGN channel, discrete dithers offer distinct
advantages over continuous dithers. One primary benefit
is their ease of implementation, as discrete dithers require
less computational power and are more efficient to generate
and apply in digital signal processing. This efficiency is
particularly advantageous in scenarios where computational
resources and power consumption are critical. Additionally,
discrete dithers seamlessly integrate into existing digital
frameworks, simplifying system design and maintenance.
Their limited set of noise values can be precisely con-
trolled to minimize quantization errors without significant
computational overhead. Moreover, discrete dithers facili-
tate more efficient quantization and encoding, enhancing
bandwidth efficiency and reducing complexity in transmitter
and receiver design. They also exhibit greater resilience
to channel noise and errors, promoting a more uniform
distribution of lattice points that simplifies error detec-
tion and correction. In contrast, continuous dithers can
lead to uneven lattice point distributions, which increases
the risk of error propagation and reduces overall system
performance.

The goal of this study is to present a more clear
argument for the existence of an ensemble of lattices formed
by Construction A using the imaginary quadratic ring of
integers. Under certain conditions, these lattices can do both
coding and quantization over the AWGN channel. Our study
stands out from previous research, particularly [17]. In the
conference version [17], we have successfully demonstrated
a straightforward proof that nested lattice codes generated
through Construction A over integers achieve the capacity
of the AWGN channel. In this work, we further extend the
construction and proof in [17] to a wider variety of imaginary
quadratic rings of integers, rather than just integer lattices.
We demonstrate the usefulness of these lattices for coding
and quantization using a simplified discrete dither technique.
The key contributions of this paper are highlighted as

follows:

• While the majority of existing literature employs con-
tinuous dithers, we introduce a novel approach by
modifying the random ensemble of nested lattice codes
to use discrete random dithers instead. It is important
to note that an independent study explores lattice codes
via Construction A over the imaginary quadratic ring
of integers for the Compute-and-Forward scheme [4].
Our approach differs significantly in the generation
of random dithers, leading to a simpler and more
transparent proof. Specifically, we assume the dither
is a random vector uniformly distributed over γZn[ξ ],
whereas [4] uses a random dither uniformly distributed
over the Voronoi region of the coding lattice V�c . This
difference in the distribution of the dither is a key aspect
of our methodology.

• In contrast to our previous work focused on integer
lattices [17], our current study extends this research
by exploring lattices over general imaginary quadratic
rings of integers. This expansion not only validates
these lattices as effective coding tools but also estab-
lishes their utility in minimizing MSE under specific
conditions. Algebraic lattices over imaginary quadratic
integers, such as those within Q(

√−d) where d > 0,
offer superior packing density compared to their integer
counterparts. This denser packing enables more efficient
utilization of signal space, leading to higher data rates
and improved communication system performance. For
example, lattices like the hexagonal lattice in Q(

√−3)

exhibit denser packing than typical integer lattices such
as the square lattice. Moreover, the geometric properties
inherent in algebraic lattices contribute to enhanced
error-correcting capabilities. These lattices facilitate
more effective nearest-neighbor decoding, crucial for
minimizing bit error rates (BER) in noisy channels.

The rest of this paper is organized as follows. In Section II,
we provide some background on lattices and algebraic
number theory. Section III is about Construction A integer
lattices and transmission over AWGN channels. The error
probability of coding scheme is calculated in Section IV.

5586 VOLUME 5, 2024



Section V is allocated to the construction of lattices over
imaginary quadratic integers and we discuss how these
lattices can be used for transmission over AWGN channels to
achieve the capacity of the channel. In Section VI, we show
the constraints that must be met to achieve a substantially
low probability of error and the necessity for the second
moment of the coarse lattice to be small. Finally, we find
the parameters for which the scheme is good for coding
and quantization in Section VII. Section VIII contains the
concluding remarks.

II. PRELIMINARIES
This section is dedicated to reviewing the fundamentals
of this work, including lattices, nested lattice codes, and
algebraic number theory.

A. LATTICES
An n dimensional lattice � is a discrete subgroup of the
Euclidean space R

n with vector addition operation. This
implies that for any two lattice points λ1,λ2 ∈ �, both
λ1+λ2 and λ1−λ2 are also in �. A lattice � can be specified
in terms of a generator matrix G as � = {aG : a ∈ Z

n},
where the rows of G form the lattice basis elements. A
necessary condition for the generator matrix G to produce
a lattice is that it possesses full rank over R, as having full
rank over Z is not sufficient. It is also evident that a rank-
deficient G fails to define a lattice structure. In other words,
the set of points generated by G only forms a lattice if and
only if the matrix has full row rank over R, emphasizing the
importance of this requirement in lattice construction. We
also account for this requirement and its probability in our
analysis of the error probability for our coding scheme.
Example 1: Consider the Z-module generated by the

matrix G =
[

1√
2

]

in R, which generates the set S =
{a+ b

√
2 : a, b ∈ Z}. We demonstrate that the set S is not

a lattice. Although the rows of G are linearly independent
over Z, they are dependent over R. Specifically, we prove
that S is dense in R and thus not discrete. To establish the
density of S in R, we need to show that for any real number
x and any ε > 0, there exists s ∈ S such that |x − s| < ε.
It can be observed that this corresponds to the special case
of Kronecker’s theorem with m = 1 and n = 1, which is a
significant result in diophantine approximations and extends
Dirichlet’s approximation theorem to multiple variables [23].
Theorem 1 [23]: Given real n-tuples αi =

(αi1, . . . , αin) ∈ R
n, i = 1, . . . ,m and β = (β1, . . . , βn) ∈

R
n, the condition:

∀ε > 0 ∃ qi, pj ∈ Z :

∣
∣
∣
∣
∣

m∑

i=1

qiαij − pj − βj

∣
∣
∣
∣
∣
< ε, 1 ≤ j ≤ n,

holds if and only if for any r1, . . . , rn ∈ Z with
∑n

j=1 αijrj ∈
Z, i = 1, . . . ,m, the number

∑n
j=1 βjrj is also an integer.

For the specific case when m = 1 and n = 1, Kronecker’s
theorem implies that for any α, β, ε ∈ R with α irrational

and ε > 0, there exist integers p and q, with q > 0, such
that |p+ qα − β| < ε.

The volume of the lattice � is defined as V(�) =
| det(G)|. The Construction A lifting of a linear (n, k)-code
C over Fnp is the lattice

�C = {x ∈ Z
n : x (mod p) is a codeword in C};

such a lattice is called a modulo-p lattice. For any x ∈ R
n,

the set x + � = {x + λ : λ ∈ �} is a lattice shift of � in
R
n. A nearest neighbor quantizer Q� : Rn → � associated

with the lattice � maps a vector in R
n to its closest lattice

point,

Q�(x) = λ ∈ �, if ‖x − λ‖ ≤ ‖x − λ′‖, ∀λ′ ∈ �. (1)

For each lattice point λ, the Voronoi region V�(λ) is the
set of all x’s in R

n such that Q�(x) = λ. The modulo-�
operation with respect to � is defined as

x (mod �) = x − Q�(x), (2)

which is also the quantization error of x. The module-�
operation has also a geometrical interpretation as follows:

x (mod �) = (x + �) ∩ V�(0).

Let B(r) be an n-dimensional ball with center 0 and radius
r. The set � + B(r) composed of spheres centered around
the lattice points, is a covering of Euclidean space if

R
n ⊂ � + B(r).

Each point in space is covered by at least one sphere.
Therefore, the covering radius is the minimum radius of balls
that cover the entire space. Define the covering radius of the
lattice rcov(�) by

rcov(�) = min{r : � + B(r) covers R
n}.

The radius of a sphere which has the same volume as the
lattice cells is called the effective radius that is, reff(�) =
[V(�)

Vn

] 1
n
where Vn is the volume of a sphere of radius 1.

The second moment of a lattice is also defined as

σ 2(�) = 1

n

1

V(V�)

∫

V�

||x||2 dx, (3)

and the normalized second moment of the lattice � is

G(�) = σ 2(�)

V(V�)
2
n

.

Therefore, a sequence of lattices is good for MSE quantiza-

tion if limn→∞G(�) = 1

2πe
.

Consider an AWGN channel in which the noise compo-
nents are Zi ∼ N (0, η2), then, Poltyrev goodness is defined
as follows. A sequence of lattices is Poltyrev-good when, for

η2 <
V(V�)

2
n

2πe
, the decoding error probability of transmitted

signal x from the received signal y can be decreased to an
arbitrary low value.
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A sublattice �c of �f is a subset of �f which itself
is a lattice. Thus, a pair of lattices (�c,�f ) is a nested
lattice if �c is a sublattice of �f , that is, �c ⊂ �f . In this
case, �c and �f are called the coarse and the fine lattices,
respectively. For each λ ∈ �f , the lattice shift λ + �c is a
coset of �c in �f and the point λ (mod �c) is called the
coset leader or representitive of λ+�c. Two cosets λ1 +�c

and λ2 + �c are either identical that is (λ1 − λ2) ∈ �c or
disjoint (λ1 − λ2) /∈ �c. The set of all disjoint cosets of �c

in �f , denoted by �f /�c, forms a partition of �f . A nested
lattice code L(�c,�f ) is defined as the set of points of fine
lattice �f in the fundamental region of �c, that is,

L(�c,�f
) = �f (mod �c) = {λ (mod �c) : λ ∈ �f }.

Thus, if dim(�f ) = dim(�c), the number of codewords in

L(�c,�f ) is equal to
V(�c)

V(�f )
.

Throughout this paper, Q�f denotes the quantizer function
applied to the fine lattice �f , and (mod �c) denotes the
modulo operation relative to the coarse lattice �c.

B. ALGEBRAIC NUMBERS AND ALGEBRAIC INTEGERS
Let K be a subfield of C such that [K : Q] is finite, then K is
called a number field. For a number field K, the ordered pair
(s, t) where s is the number of real embeddings of K and
t is the number of complex conjugate pairs of embeddings,
is called the signature of K. The degree of K is defined
as n = s + 2t. Let B is the set of all algebraic integers
which is a subring of C, then OK = K ∩ B is called the
ring of integers of K. If [Q(θ) : Q] = n, we can define n
distinct embedding σi : Q(θ) → Q(θ) where σi(θ) = θi for
i = 1, 2, . . . , n. Let {α1, α2, . . . , αn} form a basis for Q(θ)

over Q. Then, the discrimiment of Q(θ) is  = det [σi(αj)]2

where i, j = 1, 2, . . . , n.
Definition 1 (Quadratic Fields): A quadratic field is a

number field K of degree 2 over Q, that is, [K : Q] = 2.

We can write K = Q(
√
d) where d is a square free element

in Z. K is an imaginary quadratic field if d < 0.
Generally, for the imaginary quadratic field K = Q(

√
d),

its ring of integer OK is defined as Z[ξ ], where ξ is as
follows:

ξ =
⎧
⎨

⎩

√
d, d ≡ 2, 3 (mod 4),

1 + √
d

2
, d ≡ 1 (mod 4).

Therefore,  = 4d if d ≡ 2, 3 (mod 4) and  = d if d ≡ 1
(mod 4). When d = −1, we have Gaussian integers and
when d = −3, we have Eisenstein integers. Let P be a
prime ideal of OK. We say P lies above p if P|pZ. The
ideal pOK can be uniquely factorized as pOK = ∏m

i=1 Pel
i

where Pi’s are distinct prime ideals of OK. We call el the

ramification index of Pl over p and fl =
[OK

Pl :
Z

pZ

]

the

inertia degree of Pl over p. Finally, since every prime ideal
P of OK is maximal with norm N(P) = pf , where f ∈ {1, 2}
is the inertia degree, we have

OK

P
∼= Fpf .

In the following, we have useful lemmas showing the
number of lattice points which is in a ball of radius r.
Lemma 1 [10]: For any point s ∈ R

n, the number of
points of Zn inside B(s, r) can be bounded as
(

max{r −
√
n

2
, 0}

)n
Vn ≤ |Zn ∩ B(s, r)| ≤

(
r +

√
n

2

)n
Vn.

(4)

To determine the number of elements of OK that lies
within a ball with radius r the following lemma is useful.
Lemma 2 [4]: For any point s ∈ R

2n and r > 0, the
number of points of On

K inside 2n dimensional ball B(s, r)
can be bounded as

(max{r − ρ, 0})2n ≤ |On
K

∩ B(s, r)|
μ

≤ (r + ρ)2n, (5)

where μ = V2n

(

√||
2

)n

and ρ =
√

2n||
2

.

Lemma 3 [24]: There always exists a natural prime
congruent to 1 (mod 3) between integers m and 2m where
m > 4.

III. CODING SCHEME FOR NESTED LATTICES OVER
INTEGERS
According to the construction of nested lattices, in this
section, we define encoding and decoding for our coding
scheme and prove that total error probability of the proposed
scheme is very small under some constraints.

A. CONSTRUCTION A NESTED LATTICES OVER
INTEGERS
Consider C2 ⊂ C1 as two nested linear codes generated by
matrices G1 ∈ F

k1×n
p and G2 ∈ F

k2×n
p , respectively. Let

G1 =
[
G2
G′

]

,

where G′ is a matrix of size (k1 − k2) × n. Therefore, the
matrix G2 is full rank if G1 is.
By applying Construction A to these nested codes, we

have the following nested lattices

�2 = {x ∈ Z
n : x (mod p) ∈ C2},

�1 = {x ∈ Z
n : x (mod p) ∈ C1},

with �2 ⊂ �1 ⊂ Z
n. Let γ be a scaling factor, hence, we

have the following coarse and fine lattices

�c = γ�2,

�f = γ�1,

where γ pZn ⊂ �c ⊂ �f ⊂ γZn. In this case, the volumes
of the voronoi region of the coarse and fine lattices are
V(�c) = γ npn−k2 and V(�f ) = γ npn−k1 , respectively. Let
ϕ : γZn → F

n
p be a map from points in γZn to vectors in

F
n
p given by

ϕ(x) = 1

γ
x mod p.
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Clearly, ϕ is a surjective homomorphism, i.e.,

∀x, y ∈ γZn, ϕ(x + y) = ϕ(x) + ϕ(x),

hence, let us assume ϕ̃ is an inverse of ϕ that maps a vector
c in F

n
p to a point x in γZn with the shortest Euclidean norm

such that ϕ(x) = c.
Now, according to the construction of nested lattices, we

define encoding and decoding for our coding scheme and
prove that total error probability of the proposed scheme is
very small under some constraints.

B. ENCODING FOR NESTED LATTICES OVER INTEGERS
Let G1 ∈ F

k1×n
p be a random matrix whose entries are

independent and identically distributed (i.i.d) with uniform
distribution over Fp. Unlike prior approaches utilizing
continuous dithers, our proposed scheme harnesses the
benefits of discrete dithers, capitalizing on their simplicity
of implementation, ease of design and maintenance, and
encoding efficiency. Embracing discrete dithers leads to
reduced complexity in both transmitter and receiver designs,
thereby enhancing overall system performance. Discrete
dithers also enable the parallelism and help simplify the
proof so that rudimentary probability arguments suffice.
This intentional design choice allows us to overcome the
constraints associated with continuous dithers, resulting in
superior outcomes. Let U ∈ F

n
p be a vector which is drawn

independently and uniformly over Fnp, then we use ϕ̃(U) ∈
γZn as our random dither. Our codebook consists of pk1−k2

shifted cosets of the form
{
ϕ̃
(
mG′)+ ϕ̃(U) + �c : m ∈ F

k1−k2
p

}
.

To send a message vector m ∈ F
k1−k2
p , the encoder first finds

an “information-carrying” shifted coset ϕ̃(mG′)+ϕ̃(U)+�c.
The encoder then transmits a shortest vector X ∈ R

n in the
shifted coset, i.e.,

X = ϕ̃
(
mG′)+ ϕ̃(U) (mod �c).

C. DECODING FOR NESTED LATTICES OVER INTEGERS
Upon receiving Y = X+Z, the decoder searches for a unique
vector m̂ ∈ F

k1−k2
p such that the corresponding shifted coset

ϕ̃( ˆmG′) + ϕ̃(U) + �c and αY for the scaling factor α > 0
has the minimum distance, i.e.,

m̂ = arg min
m

d
(
ϕ̃(mG′) + ϕ̃(U) + �c, αY

)
.

The decoder proceeds the decoding in a few steps. First, the
decoder scales the received signal Y by α to obtain

αY = X + W, (6)

where W = (α − 1)X + αZ is called the effective noise.
After subtracting ϕ̃(U) from the scaled version of received
signal and applying the module-�c operation, the decoder
quantizes the vector with the fine lattice to obtain

ϕ̃
( ˆmG′

)
= Q�f (αY − ϕ̃(U)) (mod �c) (7)

= Q�f

(
X − ϕ̃(U)

)
(mod �c)

+ Q�f (W) (mod �c)

= ϕ̃
(
mG′)+ Q�f (W) (mod �c),

where Q�f denotes the quantizer function on �f as defined
in (1), and (mod �c) represents the modulo operation on
�c per Definition 2.

The last step is to apply the labeling ϕ, hence,

ˆmG′ = mG′ + ϕ
(
Q�f (W) (mod �c)

)
. (8)

The decoding is successful if and only if ϕ(Q�f (W)

(mod �c)) = 0, or equivalently, if and only if Q�f (W) ∈ �c.

IV. ANALYSIS OF ERROR PROBABILITIES FOR NESTED
LATTICES OVER INTEGERS
The connection between the total error probability in our
coding scheme and the rank of the generator matrix, as well
as the error probabilities in both encoding and decoding,
is readily evident. This correlation arises because the total
error probability is defined as the union of the probabilities
associated with not having independent lattice codes, as
well as the probabilities of encoding and decoding errors.
Consequently, to establish the effectiveness of the coding
scheme, we establish an upper bound based on the generator
matrix, as well as the error probabilities associated with
encoding and decoding. This upper bound is shown to
markedly decrease as the value of n grows towards infinity.

A. THE GENERATOR MATRIX G1 IS FULL RANK WITH
HIGH PROBABILITY
A critical requirement for the generator matrix G1 is
that it must have full rank over R; otherwise, it cannot
generate a lattice. When the components of G1 are integers,
independency in R is equivalent to independency in Z.
Further, since we select the components of G1 from Fp,
independency in Fp is sufficient [25, Lemma 3]. It is
clear that G1 is not full rank if and only if at least two
rows are dependent. Thus, if we define E1 = {G1 ∈
F
k1×n
p s.t rank(G1) < k1}, the probability of E1 is given by

Pr(E1) = 1 −
k1−1∏

i=0

(

1 − pi

pn

)

≤
(
pk1 − 1

)
p−n <

1

pn−k1
. (9)

Certainly, this probability approaches zero as long as k1 is
less than n.

B. THE ENCODING ERROR PROBABILITY FOR NESTED
LATTICES OVER INTEGERS
The encoding is successful if and only if X ∈ B(

√
nP)

where P is the signal power. Additionally, we know, X ∈
ϕ̃(mG′) + ϕ̃(U) + �c. Hence, the encoding succeeds if and
only if ϕ̃(mG′) + ϕ̃(U) + �c ∩B(

√
nP) �= ∅ and fails if and

only if ϕ̃(mG′) + ϕ̃(U) + �c ∩ B(
√
nP) = ∅. Let

E2(m) = {m : ϕ̃
(
mG′)+ ϕ̃(U) + �c ∩ B

(√
nP
)

= ∅}.
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Clearly, because the set {ϕ̃(mG′ +u+ lG2):l ∈ F
k2
p } contains

all the points of ϕ̃(mG′) + ϕ̃(U) + �c inside [
−γ p

2
,
γ p

2
]n,

E2 is equivalent to
∑

l∈Fk2p
I

(
ϕ̃
(
mG′ + u + lG2

) ∈ B
(√

nP
))

= 0,

where I is the characteristic function.
Let us denote ϕ̃(mG′ + u + lG2) by tl, for l ∈ F

k2
p , and

define the set of points γZn ∩ [
−γ p

2
,
γ p

2
]n ∩ B(

√
nP) as

A. It is known that tl is uniformly distributed over the grid

γZn ∩ [
−γ p

2
,
γ p

2
]n which contains a total of pn points, and

B(
√
nP) ⊂ [

−γ p

2
,
γ p

2
]n. According to the properties of the

characteristic function and uniform distribution, we have

E
(
I(tl) ∈ B

(√
nP
))

= |A|
∣
∣
∣
∣γZ

n ∩
[−γ p

2
,
γ p

2

]n∣∣
∣
∣

=
|γZn ∩ B

(√
nP
)
|

pn
,

Var
(
I(tl) ∈ B

(√
nP
))

= |A|
∣
∣
∣
∣γZ

n ∩
[−γ p

2
,
γ p

2

]n∣∣
∣
∣

⎛

⎜
⎜
⎝1 − |A|

∣
∣
∣
∣γZ

n ∩
[−γ p

2
,
γ p

2

]n∣∣
∣
∣

⎞

⎟
⎟
⎠

=
∣
∣
∣γZn ∩ B

(√
nP
)∣
∣
∣

pn

⎛

⎝1 −
|γZn ∩ B

(√
nP
)
|

pn

⎞

⎠.

Hence,

Pr(E2) = Pr

⎛

⎜
⎝
∑

l∈Fk2p
I

(
tl ∈ B

(√
nP
))

= 0

⎞

⎟
⎠

≤
Var

(∑
l∈Fk2p I

(
tl ∈ B

(√
nP
))

= 0
)

(
E
(∑

l∈Fk2p I

(
tl ∈ B

(√
nP
))

= 0
))2

≤ pn−k2

|γZn ∩ B
(√

nP
)
|

≤ pn−k2

(
max

{
0,

√
nP
γ

−
√
n

2

})n
Vn

(10)

where the first inequality follows from Chebyshev’s inequal-
ity, the second one follows from the pairwise independency
of lattice points, and the third inequality follows from
Lemma 1. We need to choose the prime p, γ , and k2 such
that Equation (10) goes to zero as n approaches infinity.

As the power constraint is not consistently met, and, in
fact, there is a probability Pr(E2) of the power constraint
being breached, a solution to this challenge is presented by
introducing a spherical shaping strategy as follows:

Xs =
{
X ||X||2 ≤ nP
0 otherwise.

Certainly, the power constraint is met with the new coding
scheme. It’s worth noting that the error probability for this
scheme remains bounded by Pr(E1) + Pr(E2) + Pr(E3). This
is due to the spherical shaping, which effectively transforms
an encoding failure into a decoding failure. This concludes
the proof that our random ensemble attains AWGN capacity
through lattice encoding and decoding.

C. THE DECODING ERROR PROBABILITY FOR NESTED
LATTICES OVER INTEGERS
Having received the vector Y, the decoding fails if there
exists a message m′ such that

d
(
ϕ̃(m′G′) + ϕ̃(U) + �c, αY

)

< d
(
ϕ̃(mG′) + ϕ̃(U) + �c, αY

)
. (11)

Equivalently, it is shown that the decoding declares failure if
and only if Q�f (W) /∈ �c. Let define E3 = {W:Q�f (W) /∈
�c}. By Total Probability Theorem, there exists the radius
re such that

Pr(E3) ≤ Pr(W /∈ B(re)) + Pr
(
Q�f (W) /∈ �c|W ∈ B(re)

)
.

(12)

Since X = ϕ̃(mG′) + ϕ̃(U) (mod �c) is the shortest vector
in the corresponding coset,

d
(
ϕ̃(mG′) + ϕ̃(U) + �c, αY

) ≤ ‖X − αY‖
= ‖(α − 1)X + αZ‖
= ‖W‖.

For a fixed representative X = x, we have

‖W‖2 = (α − 1)2‖x‖2 + α2‖Z‖2 + 2α(α − 1)‖xZT‖, (13)

where we have xZT ∼ N (0, ‖x‖2η2). We know ‖X‖2 ≤ nP
and ‖Z‖2 ≤ nη2 with high probability. Additionally, it can
be shown that X and Z are almost orthogonal for sufficiently
large n. Therefore, for any ε > 0, the norm of the effective

noise W is upper bounded by ‖W‖2 ≤ (1 + ε)
nPη2

P+ η2
for

α = P

P+ η2
. We define re =

√

(1 + ε)
nPη2

P+ η2
.

The first step is to find an upper bound for Pr(W /∈ B(re)).
For any ε > 0 and α > 0, according to Equation (13),
W /∈ B(re) if one of the following events occurs

EX =
{
X : ‖X‖ >

√
nP
}
, (14)

EZ =
{
Z : ‖Z‖ > nη2

}
, (15)

EO =
{

XZT : ‖XZT‖ > n
1
4

√

nPη2

}

. (16)

Hence, Pr(W /∈ B(re)) ≤ Pr(EX) + Pr(EZ) + Pr(EO). In
the previous part, it is shown that Pr({‖X‖ >

√
nP}) ≤

pn−k2

|γZn ∩ B(
√
nP)| . Since Z ∼ N (0, η2In), we get Pr(‖Z‖ >
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√
nη2) ≤ 1

n
by Chebyshev’s inequality. Additionally, we

have

Pr

(

‖XZT‖ > n
3
4

√

Pη2

)

≤ Pr

(

‖XZT‖ > n
3
4

√

Pη2|‖X‖ ≤ √
nP

)

+ Pr
(
‖X‖ >

√
nP
)

≤
E
(
‖XZT‖2|‖X‖ ≤ √

nP
)

n
3
2Pη2

+ pn−k2

|γZn ∩ B
(√

nP
)
|
,

where the last inequality follows since for any given X = x
with ‖x‖ ≤ √

nP and xZT ∼ N (0, ‖x‖2η2), we get
E(‖XZT‖2|‖X‖ ≤ √

nP) ≤ nPη2. Thus, Pr(W /∈ B(re)) is
upper bounded by

Pr(W /∈ B(re)) ≤ n− 3
2 + 2

pn−k2

|γZn ∩ B
(√

nP
)
|
. (17)

Now, we need to find an upper bound for Pr(Q�f (W) /∈
�c|W ∈ B(re)). For any fixed coarse lattice �c, let us define
ϕ̃(U) + �c by �, then we have

Pr
(
Q�f (W) /∈ �c|W ∈ B(re),G2 = G2

)

≤ Pr
(
∃m′ �= m:d

(
ϕ̃(m′G′) + �,αY

) ≤ ‖W‖
|W ∈ B(re),G2 = G2

)

≤
∑

m′ �=m

Pr
(
d
(
ϕ̃(m′G′) + �,αY

) ≤ ‖W‖

|W ∈ B(re),G2 = G2

)

≤
∑

m′ �=m

Pr
(
d
(
ϕ̃(m′G′) + �,αY

) ≤ re|W ∈ B(re),

G2 = G2

)

≤
∑

m′ �=m

Pr
(
d
(
ϕ̃(m′G′) − ϕ̃p(mG′) + �c,W

) ≤ re

|W ∈ B(re),G2 = G2

)
,

where the last step follows by

d
(
ϕ̃(m′G′) + ϕ̃(U) + �c, αY

)

= d
(
ϕ̃(m′G′) + ϕ̃(U) + �c,X + (α − 1)X + αZ

)

= d
(
ϕ̃(m′G′) − ϕ̃(mG′) + �c,X + W

)

= d
(
ϕ̃(m′G′) − ϕ̃(mG′) + �c,W

)
.

Since X is uniformly distributed over γZn ∩ V(�c) and
independent of mG′, it is independent of ϕ̃p(mG′); conse-
quently W = (α − 1)X + αZ and ϕ̃(mG′) are conditionally
independent. By the Total Probability Theorem, we have

Pr
(
d
(
ϕ̃(m′G′) − ϕ̃(mG′) + �c,W

) ≤ re|W ∈ B(re),

G2 = G2

)
=
∫

W∈B(re)
f̃W|G2(W | G2)

Pr
(
d
(
ϕ̃
(
m′G′)− ϕ̃

(
mG′)+ �c,W

) ≤ re|G2 = G2

)
dW

where

f̃W|G2(W | G2) = fW|G2(W | G2)

Pr(W ∈ B(re) | G2 = G2)
.

It turns out that the term Pr(d(ϕ̃(m′G′) − ϕ̃(mG′) +
�c,w) ≤ re|G2 = G2) can be bounded by following the
Loeliger’s approach [26].
Since d(ϕ̃(m′G′) − ϕ̃(mG′) + �c,W) ≤ re implies

[
ϕ̃
(
m′G′)− ϕ̃

(
mG′)] (mod �c) ∈ B(W, re) (mod �c),

we have

Pr
(
d
(
ϕ̃
(
m′G′)− ϕ̃

(
mG′)+ �c,W

) ≤ re|G2 = G2

)

≤ Pr
([

ϕ̃
(
m′G′)− ϕ̃

(
mG′)] (mod �c)

∈ [W + B(re)] (mod �c) | G2 = G2

)
.

On the other hand, [ϕ̃(m′G′) − ϕ̃(mG′)] (mod �c) is
uniformly distributed over γZn ∩ V(�c), so

Pr
([

ϕ̃
(
m′G′)− ϕ̃

(
mG′)] (mod �c) ∈ B(W, re)

(mod �c))|G2 = G2

)
= |γZn ∩ V(�c) ∩ B(W, re)|

pn−k2

≤ |γZn ∩ B(W, re)|
pn−k2

.

Therefore,

Pr
(
d
(
ϕ̃(m′G′) + ϕ̃(U) + �c, αY

) ≤ ‖W‖|W ∈ B(re),

G2 = G2

)
≤ max

W∈B(re)

|γZn ∩ B(W, re)|
pn−k2

,

and

Pr
(
Q�f (W) /∈ �c|W ∈ B(re),G2 = G2

)

≤ pk1−k2 max
W∈B(re)

|γZn ∩ B(W, re)|
pn−k2

≤ max
W∈B(re)

|γZn ∩ B(W, re)|
pn−k1

. (18)

Therefore, if E3 = {W:Q�f (W) /∈ �c}, the probability that
the decoding fails is given by:

Pr(E3) ≤ n−1 + n
−1
2 + 2

pn−k2

(

max

{

0,

√
nP

γ
−

√
n

2

})n

Vn

+

(
re
γ

+
√
n

2

)n
Vn

pn−k1
. (19)
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D. THE TOTAL ERROR PROBABILITY FOR NESTED
LATTICES OVER INTEGERS
According to Equations (9), (10), and (19), the total error
probability of the coding scheme is given by:

Pe = Pr(E1 ∪ E2 ∪ E3)

≤ Pr(E1) + Pr(E2) + Pr(E3)

≤ 1

pn−k1
+ 3

pn−k2

(

max

{

0,

√
nP

γ
−

√
n

2

})n

Vn

+

(
re
γ

+
√
n

2

)n
Vn

pn−k1
. (20)

Let t > 0 and δ ∈ (0, 1), then for parameters p = μn1+t, γ =
n

−1
2 t, k1 = �n(1 − logp((ren

t
2 − 1

2 + 1

2
)

√

(1 − δ)nV
2
n
n ))�, and

k2 = �n(1−logp((
√
Pn

t
2 − 1

2
)

√

(1 − δ)nV
2
n
n ))�, the total error

probability of our coding scheme decreases as n approches
infinity.
Now by substituting parameters chosen above, it can be

verified that the rate approches the capacity:

lim
n→∞

(
k1 − k2

n

)

log2 p = lim
n→∞

1

2
log2

(
nP

r2
e

)

= 1

2
log2

(
1 + P

η2

1 + ε

)

(21)

Since ε can be made arbitrarily small, achieving an error
probability close to zero is possible with lattice encoding

and decoding for any rate below
1

2
log2(1 + P

η2
).

V. CODING SCHEME FOR NESTED LATTICES OVER
IMAGINARY QUADRATIC INTEGERS
Building on the foundation of lattices over integers, we
now explore the advantages of algebraic lattices. Algebraic
lattices present several advantages over traditional integer
lattices, including superior error correction, optimal packing
densities, enhanced spectral efficiency, improved diversity,
cryptographic security, energy efficiency through spheri-
cal shaping, and efficient implementation. These benefits
make algebraic lattices a powerful tool in the design and
analysis of modern communication systems. One notable
feature of algebraic lattices is their ability to facilitate
spherical shaping, where signal points are confined to a
spherical region. This approach minimizes the average power
required for transmission while maintaining the same error
performance, resulting in a more energy-efficient com-
munication. Additionally, lattices over imaginary quadratic
fields, such as Gaussian integers and Eisenstein integers,
often exhibit superior packing densities compared to integer
lattices. This allows them to pack more points within a given
volume without reducing the minimum distance between
points, thereby decreasing the likelihood of errors.

In this section, we introduce Construction A lattices over
imaginary quadratic integers and once again incorporate
discrete dither into our coding scheme to achieve improved
performance. We consider lattices over imaginary quadratic
integers, that is Z[ξ ]-lattices. This choice is motivated by the
ability of these lattices to achieve higher information rates
in comparison to Z-lattices. Following the construction of
nested lattices in our framework, this section introduces the
encoding and decoding procedures for our coding scheme
and demonstrates that, subject to certain conditions, the
overall error probability of the proposed scheme is highly
negligible. Since one can define an isomorphism between
C
n and R

2n as vector spaces for all n > 0, we can apply
R

2n and C
n interchangeably.

A. CONSTRUCION A FOR IMAGINARY QUADRATIC
INTEGERS
Due to the fact that not all rings of integers OK are principal
ideal domains (PIDs), let’s make the assumption that p is a
splitting prime in OK. This implies that pOK can be factored
as

∏m
i=1 Pi, where there exists a prime ideal P0 with a

norm of N(P0) = p. Additionally, it holds that
OK

P0

∼= Fp.

By the definition of canonical embedding, which associates

an element in Z[ξ ] with its coset leader in
Z[ξ ]

P0
, a one-

to-one correspondence is established between the elements
of an algebraic number field of degree n and the vectors
within an n-dimensional Euclidean space. The objective is
to establish a mapping from Z[ξ ] to the finite field Fp.
Clearly, we can define a surjective homomorphism between

Z[ξ ] and the quotient ring
Z[ξ ]

P0
, along with an isomorphism

between
Z[ξ ]

P0
and Fp. Consequently, there exists a surjective

homomorphism, denoted as ϕ, from Z[ξ ] to Fp, implying
the definition of an inverse operation ϕ̃ componentwise. This
operation maps a vector in F

n
p to a point in Z

n[ξ ].
Similar to Z-lattices, we can apply Construction A for

Z[ξ ]-lattices to generate nested lattices. Let C1 and C2 be
two linear codes generated by matrices G1 ∈ F

k1×n
p and

G2 ∈ F
k2×n
p , respectively. Let C2 ⊂ C1 ⊂ F

n
p which means

G1 =
[
G2
G′

]

.

If G1 is full rank, then the same holds true for G2. By
applying Construction A, and lifting these two linear codes
over Z[ξ ], we can obtain the following nested lattices:

�2 = {x ∈ Z
n[ξ ] : ϕ(x) ∈ C2},

�1 = {x ∈ Z
n[ξ ] : ϕ(x) ∈ C1},

with �2 ⊂ �1 ⊂ Z
n[ξ ]. By introducing an scaling factor

γ > 0, we have the following coarse and fine lattices

�c = γ�2,

�f = γ�1,
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where �c ⊂ �f ⊂ γZn[ξ ]. Since V(Zn[ξ ]) =
(

√||
2

)n, V(�c) = γ 2npn−k2(

√||
2

)n and V(�f ) =
γ 2npn−k1(

√||
2

)n.

Following the construction of nested lattices in our
framework, first we introduce the encoding and decoding
procedures for our coding scheme and demonstrate that,
subject to certain conditions, the overall error probability
of the proposed scheme is highly negligible. Since one can
define an isomorphism between C

n and R
2n as vector spaces

for all n > 0, we can apply R
2n and C interchangeably.

B. ENCODING FOR NESTED LATTICES OVER
IMAGINARY QUADRATIC INTEGERS
Let U be a discrete dither. Since all shifted cosets can be
expressed as

{
ϕ̃
(
mG′)+ ϕ̃(U) + �c:m ∈ F

k1−k2
p

}
,

to send a message m ∈ F
k1−k2
p , the encoder transmits X =

ϕ̃(mG′) + ϕ̃(U) (mod �c).
Since the power constraint is not consistently satisfied,

and, indeed, there exists a probability Pr(E2) of the power
constraint being exceeded, with the following coding scheme
the power constraint is assuredly met.

Xs =
{
X ||X||2 ≤ nP
0 otherwise.

This is attributed to the spherical shaping, effectively
converting an encoding failure into a decoding failure.

C. DECODING FOR NESTED LATTICES OVER
IMAGINARY QUADRATIC INTEGERS
The decoding procedure closely resembles the decoding
process outlined in Section III-C. Therefore, upon receiving
the signal Y ∈ C

n, the decoder initiates the process of
estimating the message m as follows:

m̂ = arg min d
(
ϕ̃(mG′) + ϕ̃(U) + �c, αY

)
.

VI. ANALYSIS OF ERROR PROBABILITIES FOR NESTED
LATTICES OVER IMAGINARY QUADRATIC INTEGERS
In order to drive the total error probability of the extended
scheme to zero, we require three conditions that bear
resemblance to those described in Section IV as (9), (10),
and (19). The main difference is considering Z[ξ ]-lattices
instead of Z-lattices. Consequently, we apply Lemma 2
to derive an upperbound for the total error probability of
proposed coding scheme. To establish the goodness of the
ensemble for coding, we establish an upper bound rooted in
the generator matrix, as well as the probabilities of encoding
and decoding errors. This upper bound is shown to decrease
markedly as n approaches infinity. Furthermore, the goodness
for quantization, as defined by the second moment of the
coarse lattice, is demonstrated to be minimal through its
covering radius under a specific constraint.

A. THE GENERATOR MATRIX G1 IS FULL RANK WITH
HIGH PROBABILITY
As before, if we establish the set E1 = {G1 ∈
Fk1×n
p s.t rank(G1) < k1}, the probability associated with E1

is expressed as:

Pr(E1) = 1 −
k1−1∏

i=0

(

1 − pi

pn

)

≤
(
pk1 − 1

)
p−n <

1

pn−k1
. (22)

Certainly, this probability approaches zero as long as k1 is
less than βn, where 0 < β < 1.

B. THE ENCODING ERROR PROBABILITY FOR NESTED
LATTICES OVER IMAGINARY QUADRATIC INTEGERS
Successful encoding occurs if and only if the coset leader
X adheres to the power constraint.. Additionally, we know,
X ∈ ϕ̃(mG′) + ϕ̃(U) + �c. Hence, the encoding fails if and
only if ϕ̃(mG′) + ϕ̃(U) + �c ∩ B(

√
nP) = ∅. Let

E2(m) = {m : ϕ̃
(
mG′)+ ϕ̃(U) + �c ∩ B

(√
nP
)

= ∅}.
Let us denote ϕ̃(mG′ + u + lG2) by tl for l ∈ F

k2
p , then we

have

Pr(E2) = Pr

⎛

⎜
⎝
∑

l∈Fk2p
I

(
tl ∈ B

(√
nP
))

= 0

⎞

⎟
⎠

≤
Var

(∑
l∈Fk2p I

(
tl ∈ B

(√
nP
))

= 0
)

E2
(∑

l∈Fk2p I

(
tl ∈ B

(√
nP
))

= 0
)

≤ pn−k2

∣
∣
∣γZn[ξ ] ∩ B

(√
nP
)∣
∣
∣

≤

(√||
2

)n
pn−k2

(

max

{

0,

√
nP

γ
−

√
2n||

2

})2n

V2n

, (23)

where the first inequality follows from Chebyshev’s inequal-
ity, the second one follows from the pairwise independency
of lattice points, and the third inequality follows from
Lemma 2. We need to choose the prime p such that
Equation (23) goes to zero as n goes to infinity.

C. THE DECODING ERROR PROBABILITY FOR NESTED
LATTICES OVER IMAGINARY QUADRATIC INTEGERS
Upon receiving the vector Y, decoding failure occurs if for
the effective noise W, Q�f (W) /∈ �c. Let define E3 =
{W:Q�f (W) /∈ �c}. According to the Total Probability
Theorem, there exists the radius re such that

Pr(E3) ≤ Pr(W /∈ B(re)) + Pr
(
Q�f (W) /∈ �c|W ∈ B(re)

)
.

(24)

For a fixed representative X = x, we have

‖W‖2 = (α − 1)2‖x‖2 + α2‖Z‖2 + 2α(α − 1)‖xZT‖, (25)
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where we have xZT ∼ N (0, ‖x‖2η2).

The initial stage involves determining an upper bound for

Pr(W /∈ B(re)) where re =
√

(1 + ε)
nPη2

P+ η2
. For any ε > 0

and α > 0, based on the expression in Equation (25), W
is outside the set B(re) if any of the following situations
occurs:

EX =
{
X : ‖X‖ >

√
nP
}
, (26)

EZ =
{

Z : ‖Z‖ >

√

nη2

}

, (27)

EO =
{

XZT : ‖XZT‖ > nα

√

nPη2

}

. (28)

Hence, Pr(W /∈ B(re)) ≤ Pr(EX) + Pr(EZ) + Pr(EO). We

know Pr({‖X‖ >
√
nP}) ≤ pn−k2

|γZn[ξ ] ∩ B(
√
nP)| . Since Z ∼

N (0, η2In), we get Pr(‖Z‖ >
√
nη2) ≤ η2

nη2
by Chebyshev’s

inequality. Additionally, we have

Pr

(

‖XZT‖ > nα

√

nPη2

)

≤ Pr

(

‖XZT‖ > nα

√

nPη2|‖X‖ ≤ √
nP

)

+ Pr
(
‖X‖ >

√
nP
)

≤
E
(
‖XZT‖2|‖X‖ ≤ √

nP
)

n2αnPη2
+ pn−k2

|γZn[ξ ] ∩ B
(√

nP
)
|
,

where the last inequality follows since for any given X =
x with ‖x‖ ≤ √

nP and xZT ∼ N (0, ‖x‖2η2), we get
E(‖XZT‖2|‖X‖ ≤ √

nP) ≤ nPη2. Thus, Pr(W /∈ B(re)) is
upper bounded by

Pr(W /∈ B(re)) ≤ η2

nη2
+ n−2α + 2

pn−k2

|γZn[ξ ] ∩ B
(√

nP
)
|
.

(29)

Now, we establish an upper bound for Pr(Q�f (W) /∈ �c|W ∈
B(re)). For any fixed coarse lattice �c,

Pr
(
Q�f (W) /∈ �c|W ∈ B(re),G2 = G2

)

≤ pk1−k2 max
W∈B(re)

|γZn[ξ ] ∩ B(W, re)|
pn−k2

≤ max
W∈B(re)

|γZn[ξ ] ∩ B(W, re)|
pn−k1

. (30)

Therefore, if E3 = {W : Q�f (W) /∈ �c}, the probability that
the decoding fails is given by:

Pr(E3) ≤ η2

nη2
+ n−2α + 2

(√||
2

)n
pn−k2

(

max

{

0,

√
nP

γ
− ρ

})2n

V2n

+

(
re
γ

+ ρ

)2n

V2n

(√||
2

)n
pn−k1

. (31)

where ρ =
√

2n||
2

.

D. THE TOTAL ERROR PROBABILITY
According to Equations (22), (23), and (31), the total error
probability of the coding scheme is given by:

Pe = Pr(E1 ∪ E2 ∪ E3) ≤ Pr(E1) + Pr(E2) + Pr(E3)

≤ 1

pn−k1
+ η2

nη2
+

3

(√||
2

)n
pn−k2

V2n

(

max

{

0,

√
nP

γ
−

√
2n||

2

})2n

+

(
re
γ

+
√

2n||
2

)2n

V2n

(√||
2

)n
pn−k1

. (32)

E. GOOD NESTED LATTICES FOR QUANTIZATION OVER
IMAGINARY QUADRATIC INTEGERS
In the presence of Gaussian noise, it is common to shape
the lattice such that its second moment is less than the
average power. This shaping strategy is frequently included
in a rate-distortion optimization approach, aiming to strike
a balance between the transmission rate of information and
the distortion introduced by encoding. This trade-off is
vital for achieving efficient communication while minimizing
information loss.
Now, we will demonstrate the existence of a coarse lattice

�c within our proposed ensemble, satisfying the condition
that its second moment is less than or equal to the average
power. Let λ∗ be a deep hole point which is a point in
span (�c) at distance rcov(�c). We know that σ 2(�c) ≤
1

2n
E(||λ∗||2). Therefore by substituting parameters we get

σ 2(�c) ≤ 1

2n
E
(
||λ∗||2

)

≤ 1

2n
Pr
(
λ∗ /∈ B(

√
nP)

)
.E
(
||λ∗||2|λ∗ /∈ B(

√
nP)

)

+ 1

2n
E
(
||λ∗||2|λ∗ ∈ B(

√
nP)

)

≤ pn−k2

|γZn[ξ ] ∩ B
(√

nP
)
|
r2
cov(�c)

2n
+ P

2

≤

(√||
2

)n
pn−k2γ 2p||

4V2n

(

max

{

0,

√
nP

γ
−

√
2n||

2

})2n
+ P

2
, (33)
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where the second inequality can be derived using the law
of total expectation, the third inequality is a result of our
demonstration in Section VI along with the information that
λ∗ is a lattice point located at a distance of rcov(�c), and
the final inequality is a consequence of Equation (23) and
the upper bound for the value of rcov(�c) as described in
Lemma 2.

F. CODING RATE
The coding rate of algebraic nested lattices of dimension 2n

is R = 1

2n
log2

V(�c)

V(�f )
. Hence, for any ε > 0, we get

R = 1

2n
log2

(
V2nr2n

c

V2nr2n
f

)

= 1

2
log2

(
nP

r2
e

)

= 1

2
log2

(
P+ η2

(1 + ε)η2

)

= 1

2
log2(1 + SNR) − log2(1 + ε),

(34)

where re =
√

(1 + ε)
nPη2

P+ η2
.

VII. ESTIMATION OF PARAMETERS
In this part, we will define the constraints under which
the proposed coding scheme is good for coding and MSE
quantization. According to Lemma 3, let us assume the prime
number p = μn

1
t +ε and γ = n− 1

2t−ε for any t, ε > 0.
Therefore, γ p → ∞ and γ 2p → 0. Hence, we derive the
constraints under which the following equations are satisfied.

1

pn−k1
→ 0, (35)

(√||
2

)n
pn−k2

(

max

{

0,

√
nP

γ
−

√
2n||

2

})2n

V2n

→ 0, (36)

(
re
γ

+
√

2n||
2

)2n

V2n

(√||
2

)n
pn−k1

→ 0, (37)

(√||
2

)n
pn−k2

(

max

{

0,

√
nP

γ
−

√
2n||

2

})2n

V2n

· γ 2p||
4

→ 0. (38)

Since we already assumed k1 < βn for 0 < β < 1,
Equation (35) goes to zero. In the following, we will define
k1 and k2 as functions of n. We consider

k1 = n

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + logp

⎛

⎜
⎜
⎜
⎝

(√||
2

)

(1 − δ)2nV
1
n

2n

(

bγ −1 +
√||

2

)2

⎞

⎟
⎟
⎟
⎠

⎥
⎥
⎥
⎥
⎥
⎥
⎦

and k2 = n

⎡

⎢
⎢
⎢
⎢
⎢
⎢

1 + logp

⎛

⎜
⎜
⎜
⎝

(√||
2

)

(1 − δ)2nV
1
n

2n

(

aγ −1 −
√||

2

)2

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥

.

Equations (36), (37), and (38) will be very small as n grows,

where a =
√
P

2
and b =

√

(1 + ε)
Pη2

P+ η2
are constants.

Using the facts that limn→∞(2n)V
1
n

2n = 2πe and r2
e < nP,

for small ε, one can prove that k2 ≤ k1 ≤ n.
Example 2: Assume K = Q[

√−3] with discriminant

 = −3 and OK = Z[ω] where ω = 1 + √−3

2
. For any

integer n, the volume of the lattice (Z[ω])n is (

√
3

2
)n. Let

P be a prime ideal in the factorization of pOK with norm
N(P) = p. Let �c and �f be a nested lattices generated
according to Section V. Hence, for t > 0 and δ ∈ (0, 1), by
assigning parameters p = μn

1
t +ε , γ = n− 1

2t−ε ,

k1 = n

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + log3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(√
3

2

)

(1 − δ)2nV
1
n

2n

⎛

⎝

√

(1 + ε)
Pη2

P+ η2
n

1
2t+ε +

√
3

2

⎞

⎠

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and k2 = n

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

1 + log3

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(√
3

2

)

(1 − δ)2nV
1
n

2n

(√
P

2
n

1
2t+ε −

√
3

2

)2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Equations (35)-(38) are satisfied for any ε > 0. We can
also determine the achievable rate R by substituting the
values of k1 and k2 as follows:

R = lim
n→∞

k1 − k2

2n
log2 p

= lim
n→∞

1

2
log2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
P
2 −

√
3

2 γ

⎛

⎝

√

(1 + ε)
Pη2

P+ η2
+

√
3

2
γ

⎞

⎠

2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 1

2
log2

(
P+ η2

η2

)

− log2(1 + ε)

In contrast, assume we have scaled ingeter lattices �c

and �f such that γ�c ⊂ γ�f ⊂ γ (

√
3

2
Z)n with the

same volume of the lattices defined previously. Therefore,
p = μn1+t and γ = n

−1
2 t for any t > 0. k1 = �n(1 −

logp((ren
t
2 − 1

2 +
√

3

4
)

√

(1 − δ)nV
2
n
n ))� and k2 = �n(1 −

logp((
√
Pn

t
2 −

√
3

4
)

√

(1 − δ)nV
2
n
n ))�. It is evident that in the

case of quadratic lattice, by setting p = μn
1
t +ε , we get a

VOLUME 5, 2024 5595



SADEGHI et al.: SIMPLER PROOF ON THE EXISTENCE OF GOOD NESTED LATTICE CODES

FIGURE 1. Comparison of n1/t and n1+t for n values of 10, 100, and 1000, showing
n1/t dominance at low values of t and rapid growth of n1+t at higher values of t .

slower-growing prime number that ensures a denser lattice
packing. To see this more clearly, we compare the behavior
of the functions n1/t and n1+t for different values of n and
t in Figure 1.

At lower values of t, n1/t is significantly higher than
n1+t. As t increases, n1/t decreases and n1+t increases,
eventually leading to a crossover point where n1+t becomes
larger than n1/t. For larger n, the crossover point occurs at
a smaller t. This behavior is crucial for achieving higher
data rates because it allows for denser packing within a
given volume. The higher density of lattice points directly
translates into increased throughput, which is essential
for high-capacity communication channels. Additionally,
this choice of p facilitates efficient use of the available
bandwidth, making it well-suited for modern communication
systems that demand high spectral efficiency. Furthermore,
the scaling factor γ = n−1/(2t) plays a pivotal role in
maintaining a balance between error performance and data
rate. By adopting this scaling factor, we achieve a more
conservative decrease in the minimum distance between
lattice points as the dimension n increases. This gradual
reduction in distance helps preserve the robustness of the
lattice against noise, ensuring reliable communication even
in challenging environments. This is particularly valuable for
applications requiring high reliability and low bit error rates.

VIII. CONCLUSION
In this work, we have extended Construction A of nested
lattice codes to the ring of algebraic integers of a general
imaginary quadratic field. Our study has focused on eval-
uating the performance of the defined ensemble of lattices
for coding and quantization over AWGN channels. Through
our comprehensive analysis, we have demonstrated that these
codes are highly effective and capable of achieving the

channel capacity. Furthermore, we have demonstrated that
these codes can achieve the capacity of AWGN channel when
the prime number p is of the order O(n

1
t ) for some t > 0.
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