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ABSTRACT This paper introduces an innovative predictive caching strategy tailored to a real-world
dataset, specifically the Facebook video dataset. Making caching decisions for the dataset is challenging
due to its dynamic nature, where users’ content requests vary over time without fitting into any known
models. Traditional caching strategies, which often rely on a constant pool of files, do not suit this
dataset as content is requested by users, and then its popularity fades over time; furthermore, the list of
available content changes. We propose a two-stage predictive caching strategy. Initially, it forecasts the
number of user requests using content features and historical request data, achieved through training a
long short-term memory (LSTM) network. Then, we employ our proposed extended Cox proportional
hazard (E-CPH) model to predict the survival probability of content. This facilitates proactive content
caching. Caching new content is made possible by the timely eviction of content unlikely to be requested
again. To incorporate the predicted content popularity and its life cycle into the caching decision, we
introduce a partially observable Markov decision process (POMDP)-based caching strategy. Here, the
survival probability of content contributes to the belief state of the associated content which leads to
our believed predicted reward - a cache hit. The caching algorithm then stores the files based on their
predicted believed reward taking into account both the popularity and survival probability predictions.
Simulation results validate the efficacy of our proposed predictive caching method in enhancing the cache
hit rate compared to conventional recurrent neural network (RNN)-based caching and policy-based caching
approaches, such as least frequently used caching and its variants.

INDEX TERMS Predictive caching, LSTM networks, Cox proportional hazard model, POMDP, cache hit
maximization.

I. INTRODUCTION

THE RAPID development of the 5th generation (5G)
of wireless networks and the Internet of things (IoT)

has led to a remarkable increase in network traffic [1].
In addition, with the continuing implementation of 5G
networks, research and development are focused on 6th
generation (6G) wireless networks wherein the increase in
traffic volumes is expected to continue [2]. Our emphasis
lies on caching, which brings content closer to the network
edge, thereby reducing strain on both fronthaul and backhaul
links. This approach also allows for quicker response

times to user requests, addressing them with minimal
latency [3].
Caching strategies can be reactive or proactive [4].

Reactive caching determines whether to cache a file upon
considering requests; caching decisions are based on factors
like its popularity, available cache space, etc. In contrast,
proactive caching forecasts future requests for files by
analyzing their request history and features such as the genre
of films, length of file, etc.
Due to the dynamic nature of content requests, popularity

prediction is a key enabler of effective proactive caching [5].
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The first crucial step in video popularity prediction is
gathering data information, known as features, which include
static, temporal, social, and cross-domain features [5]. Static
features are fixed attributes prepared before the video’s
publication, such as category, video quality, title, and
description. Temporal features refer to dynamic aspects such
as the number of views for each video, the age of the
video, and so on. Social interactions, which can significantly
influence the future popularity of the content, are modeled
by social graphs, where users are represented as nodes and
the relationships among them as edges. Understanding social
interactions in advance can aid in predicting future content
requests. Cross-domain features are extracted from external
sources and can be instrumental in forecasting future content
demand. For example, features from Twitter can be utilized
in prediction models to determine the popularity of YouTube
videos [6].
Predicting future trends by leveraging historical data on

content requests, which assumes a correlation between past
and future requests, has been studied in the literature [7], [8].
The authors believe that historical information about data is
embedded in past content requests, as there is a correlation
between past and future requests. In this approach, the past
video popularity data is utilized to forecast what comes
next. A similar approach is used in [9], [10] to predict
future workloads and optimize resource utilization in the
network. The introduction of a segment-based prediction
and cache replacement strategy in [11], [12] represents an
improvement, despite its greater computational complexity.
This strategy, using the proximity of segments as a predictive
tool, leverages the relationship between video segments
to make more precise predictions about the popularity of
future segments. To reduce computational complexity, [13]
proposes an autoregressive (AR) model. This model uti-
lizes sufficient durations of time series data for accurate
prediction, while also aiming to reduce network costs and
improve cache hits in the network (cache hits are defined
as the summation of the fraction of total requests directly
serviced by the cache, where there is no need to fetch data to
respond to the users’ requests). It is worth noting that these
methods all assume that requests follow Zipf’s distribution.
The authors in [14] move towards online prediction,

adapting a popularity model to accommodate variations in
request patterns. They define a smoothing parameter that
quantifies the influence of past data on future predictions. For
new videos for which enough historical data is unavailable,
video metadata and user data such as watch time, shares,
subscribers, and video age can be considered. In [15], a
hybrid approach to predict content popularity, combining
offline and online methods is introduced, based on multi-
variate regression analysis on video features. This approach
starts with fixed coefficients derived from offline training
and dynamically updates them using an exponential weighted
moving average (MA), effectively addressing the limitations
in both offline and online models.

Popularity-based caching has been studied in [16], [17].
In [16], the authors address popularity-based caching in
cloud radio access networks (C-RANs) by formulating an
optimization problem to maximize effective capacity. This
approach combines predicting content popularity and user
mobility through a deep learning framework. Predictive
methods include estimating the likelihood of content requests
and forecasting user locations, facilitating optimal caching
decisions in the cloud, etc. Meanwhile, [17] introduces
the use of social graphs to improve content request
predictions. These graphs help predict video popularity
spread and future view increases, with content retention
in caches adjusted accordingly. However, the dynamic
nature of social interactions and the extensive depen-
dent information they generate can complicate network
management.
In this paper, the ultimate goal is to analyze real-world

traffic, make predictions and use the information to make
caching decisions for a limited-capacity caching network.
The caching optimization can be implemented at the base
station, where user request information can be effectively
gathered and utilized. However, the location of the cache
is flexible and can be adjusted according to the network
topology. We make caching decisions to maximize cache
hit rate, which is the summation of the total requests that
are directly addressed by the cache, eliminating the need to
fetch data to respond to the users’ requests.
It is evident that storing the most popular files would lead

to cache hit maximization. However, due to the environ-
ment’s dynamics, the content we consider popular now might
not be popular in the future or even might be eliminated.
In this regard, instead of modeling the environment, we
interact with the environment to predict user requests and
make caching decisions. Our predictive caching strategy
includes two stages to learn the environment: predicting the
number of user requests based on time series forecasting
methods and predicting the requests’ popular time or life
cycle. Subsequently, by integrating this knowledge into a
partially observable Markov decision process (POMDP), we
aim to maximize cache hits within the network.
Our prediction strategy is based on time series forecasting

of user requests assuming that the requests will survive for
the upcoming time slots. To make the pattern predictions,
we use a long short-term memory (LSTM) network to learn
the dataset. Then, it is the responsibility of a survival time
analyzer to predict the probability of whether the content
survives or dies. We use an extended Cox proportional hazard
(E-CPH) survival model to find the survival probabilities of
different content in the future. In developing E-CPH, we
extend the original CPH approach using a wiser choice of
inputs.
At each time block, we need to make caching decisions

based on two sets of information: obtained content popularity
evolution and survival probabilities. We model sequential
decision-making as a POMDP in which the state of the
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content is not fully observable. In other words, we have
predicted content popularities for the future; however, we
are not sure whether the state of the content is alive or dead.
Survival probabilities introduce extra information as beliefs
about states which helps us to make caching decisions based
on the believed reward, which is the number of cache hits
here.
The main contributions of this manuscript can be summa-

rized as:
• Providing a predictive caching solution for a real-world
dataset without common assumptions in the literature,
such as assuming the user requests are drawn from a
known popularity distribution or having a known or
unlimited life cycle.

• Introducing a time series prediction approach based
on LSTM networks with a custom loss function that
highlights our caching goal.

• Taking into account the limited life cycle of user
requests and enhancing the available features to improve
learning the life cycle with our introduced E-CPH
method.

• Even though the environment does not follow
Markovian evolution, with the aid of life cycle
predictions, we inject the information of the life cycle
as extrinsic information on the beliefs to approximate
our optimization problem with an MDP.

The rest of this paper is organized as follows: Section II
introduces the related works. Section III explains the
characteristics of the required dataset for caching deci-
sions and introduces the dataset used along with its
features and details the pre-processing steps to prepare
the dataset for further processing. In Section IV, we
propose our popularity forecasting model, featuring our
LSTM predictor network. Section V introduces our E-CPH
survival model, and Section VI develops a POMDP-based
caching strategy that combines request prediction outputs
with survival probabilities. Section VII presents numerical
results to validate the effectiveness of our approach in a
real setting and compares its performance with previous
caching methods. Finally, Section VIII concludes the
paper.

II. RELATED WORKS
Our work lies at the intersection of prediction-based caching
and caching under uncertain conditions. An LSTM network,
a special type of recurrent neural network (RNN), is
renowned for its ability to learn and remember long-term
dependencies [18]. In this regard, LSTM networks are suited
for predicting patterns in time series data, a capability
crucial for forecasting requests in caching scenarios [19],
[20], [21], [22], [23], [24]. The authors in [19] propose
LSTM-C, an edge-assisted caching replacement algorithm
that learns cache replacement strategies from past request
sequences without needing data pre-processing or addi-
tional information. The study in [20] focuses on cache hit
maximization based on proactive caching using an LSTM

network. First, each user group is trained on an LSTM model;
the results are then averaged to obtain the average demand
for user groups to generate an efficient caching policy.
The authors in [21] employ an LSTM architecture to make
user popularity requests and trajectory predictions to cache
popular content in the best cache locations. Similarly, in [22],
a deep learning architecture named Stacked Autoencoder-
Long Short Term Memory Network (SAE-LSTMNet) is
proposed to capture both the correlation of request pat-
terns among different content files and the periodicity
in the time domain to improve prediction accuracy of
content popularity. In [23], a user preference learning-based
proactive edge caching (UPL-PEC) strategy is developed,
utilizing bidirectional LSTMs and graph convolutional
networks to predict user preferences and optimize caching
strategies. Finally, the study in [24] presents a clustering-
based LSTM (C-LSTM) approach to predict content
requests for optimizing caching policies in wireless coded
caching.
The impact of uncertainty on caching decisions has also

been studied in the literature [25], [26], [27]. In [25], the
authors describe the uncertainty in predicting popularity
trends by using a Gaussian distribution to represent the
additive errors in predictions. In [26], the approach is slightly
different, with the added errors being represented by a
uniform distribution. The authors also look at files’ ranking
errors within a set library, assuming these rankings are based
on predicted popularity for caching purposes. However, the
models used in these studies are based on assumptions
on popularity distributions and may not accurately capture
the changing nature of what becomes popular. In [27], the
authors address the uncertainties associated with dynamic
popularities by considering additive errors in predictions,
which arise from both prediction and estimation inaccuracies,
miss alarms, which are mainly caused by the arrival of new
popular files that were not anticipated, and false alarms,
which occur primarily due to the aging of files that were
previously popular.
In this paper, we analyze real-world user request data,

which shows dynamic content requests over time with
probability of the content vanishing. Hence, in our dataset,
due to the environment’s dynamics, what we now consider
popular might not be popular in the future or even might be
dead. This study is different from the introduced proactive
caching studies. Unlike [19], [20], [21], which overlook
the finite nature of user request lifecycles, or [27], which
assumes a long lifespan for the user requests, or even [28],
which considers a known distribution for the user requests’
lifecycle, we explicitly acknowledge the variable and limited
duration of content requests over time.
In addition, instead of modeling the environment and

making decisions based on the model assumptions as we
did in our previous papers [29], [30], [31], [32], we interact
with the environment and predict future user requests in the
short term. Then, we adapt our caching decisions based on
these predictions.
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FIGURE 1. Structure of the Facebook dataset [33].

III. DATASET USED AND PRE-PROCESSING
A. DATASET CHARACTERISTICS
To verify the caching techniques on a real dataset we require
one that includes the exact time of user requests and the
number of user requests for each content. In this paper, we
use the dataset of the Facebook Live Dynamic platform [33].
The content here is videos posted by users. Facebook Live
allows verified users to upload content. Specifically, the data
spans from March 23, 2018, at 13:38:20, to June 22, 2018,
at 15:23:59. After the removal of outliers and incomplete
data, the final dataset comprised 644,938 distinct files.
The structure of the dataset is represented in Fig. 1. Each

video class is defined by its dataset “id”, the identifier given
by Facebook “idvideo”, the “latitude” and “longitude”
of the broadcaster location, the broadcasting time called
“created time”, and finally, the “height” and the “width”
of the content, which serve to determine the quality of the
video. It also has a “refresh time” which shows the request
time and “viewers count” which represents the number of
requests for each content.
To extract the information and build up the dataset, we

start with the file viewers-by-fetch, which has the information
on request times. We then search for the associated ID of
the video in the viewers-by-fetch file and the video file
to attach video features such as category and location of
content creation. To determine the location of the users
requesting the videos, we search for the ID from the viewers-
by-fetch file and then in the viewers-all-locations file to
obtain the location and number of requests for each video.
This process allows us to refine the dataset by adding relevant
features that improve the training process and the overall
predictive performance. We cannot mathematically model the
user requests of this dataset as the file popularities of the
videos do not follow any known models. Files are created at
a time, requested by users and then requests for that specific
video die out. In other words, the requests in this case have
life cycles and they are neither stationary nor piece-wise
stationary. An illustration for the case of two videos can be
found in Fig. 2. As can be seen, a video is created, after a
period of time, which we call passive time, is requested by
users and after passing its life cycle, no one requests that
file again.

FIGURE 2. Request numbers for two videos vs time-slots.

TABLE 1. Description of dataset features - original group.

FIGURE 3. 3D histogram of log (r0) and log(life cycle) in the dataset.

Table 1 summarizes the original features in the dataset and
explains their characteristics. As can be seen, this dataset has
the time of user requests (“Refresh time”) and the number of
requests (“Request count”) for each specific content (“Video
id”). The other features add extra information to assist us in
making caching decisions based on predicted future requests.

B. DATA PRE-PROCESSING
In this section, we explain the pre-processing of the dataset
to prepare the data for further predictions. Importantly, we
derive some new features to help in the learning process.

1) FEATURE EXTRACTION AND AUGMENTATION

Table 2 summarizes the features derived to help in the
learning process.
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FIGURE 4. Various histograms representing different aspects of the data.

TABLE 2. Description of dataset features - created group.

The introduction of new features serves to add meaningful
information to the dataset and ensure the feasibility of
predictions. For instance, “Life cycle”, representing the total
time slots during which a specific video has an active refresh
time, provides valuable additional information. On the other
hand, “Content category number” converts string categories
into numerical values, making them suitable for prediction
algorithms. Another feature, “First number (r0)”, represents
the first number of requests for a video, as we believe the
number of initial requests can indicate potential popularity.

Additionally, features such as the “Requested time in a
day” and “Created time in a day” are defined with a nighttime
reference, focusing on the time of day rather than the specific
date of the requests. “Passive time” is another feature that
shows the time difference between a file’s creation and its
first request, further enriching the dataset for more accurate
predictions. All time scales are based on a 5-minute interval.
This choice unifies the dataset’s refresh time duration, which
varies between 4 to 5 minutes and simplifies processing. The
interval can be adjusted without loss of generality, though
the duration impacts prediction performance; longer intervals
may reduce sensitivity to new requests.
Having described the features collected, we analyze these

features to illustrate how they capture information about the
dataset. Fig. 3 shows the empirical frequency of different
content, using a logarithmic scale, of r0 and life cycle which
approximates the joint probability distribution function of
these features. Since these features do not have equal
probabilities across all instances, we should be able to learn
the features’ contribution in predicting the user requests and
life cycle. In other words, This non-uniformity is beneficial
because it suggests that there are patterns or trends within the
data. Fig. 4 represents the joint histograms of different pairs
of features. The subfigures are for visualization purposes

VOLUME 5, 2024 5381



ROSTAMPOOR et al.: PREDICTIVE CACHING IN NON-STATIONARY ENVIRONMENTS

to confirm that there is no visible correlation between
features. As a consequence, we might not be able to
extract information and make predictions with basic linear
regression methods.
Another important pre-processing step is to ensure that

all the features that participate in the learning process are
numeric. This is easily accomplished for the time-based
features which are converted to numeric values (as men-
tioned, with a scale of 5-minute blocks). Content categories
are word descriptions of the files’ content. Initially, we
had 1174 different categories. To convert content categories
to numerical vectors we use the Google 300 NLP Model
(Google News Word2Vec), a pre-trained model developed
by Google [34]. Each word in the Google News Word2Vec
model is represented by a 300-dimensional vector. To
avoid unnecessary complexity and large dimensions, we
use principal component analysis (PCA) for dimensionality
reduction [35]. Here, we use the first principal component,
which represents the direction of maximum variance in the
data as the numeric representation of content categories.1 The
reason we do not use simpler coding methods, such as one-
hot encoding, is that one-hot encoding does not necessarily
assign similar codes to similar categories. This can degrade
the training process, as the category numbers are selected
based solely on their order of appearance.

2) HANDLING MISSING DATA

In the available dataset, there are two types of missing data:
missing a few time slots and missing some days. For the first
category, to make use of all the available data, we assume
that the content has been requested but the requests are not
recorded. In these cases, we use linear interpolation to fill
the missing time slots with neighboring numbers [36].
The other missing data belongs to the group in which we

do not have any record of the content requests for days.
In these cases, we do not know whether there have been
no requests for the content or the information is censored.
Censored data refers to information that is incomplete due
to an observation period ending or data not being recorded,
rather than the absence of the underlying event (e.g., content
requests). We treat this portion of data as censored data,
where the true duration of content requests is unknown;
the content might have ceased being requested or continued
beyond the last observation.
This censored data must be identified and treated appro-

priately to accurately predict survival probability, as it does
not provide complete information on the content’s life cycle.
However, the data representing the period when requests
were observed can still contribute valuable insights for
training our pattern prediction section. In other words, each
existing segment within the time series can be employed
to predict the subsequent existing segment, ensuring that
predictions are made only within the bounds of the available

1Using only the first principal component was a choice; we do not believe
adding more dimensions changes our contributions in any material way.

FIGURE 5. LSTM unit [18].

data. However, the truncated data lacks information about
the life cycle, as the cut data does not include details on
when the request sequence ends.

3) REMOVING OUTLIERS AND ERRORS

We identify and remove outliers from our dataset, ensuring
the integrity and reliability of our analysis. First, we calculate
the interquartile range (IQR) for each variable, which is the
difference between the 75th and 25th percentiles [37]. We
then define outliers as those data points that fell outside the
bounds of 1.5 times the IQR below the 25th percentile and
1.5 times the IQR above the 75th percentile. By applying
this widely accepted statistical technique [38], we effectively
filter out extreme values that could bias our results.
In addition, the dataset has some data points that are

not correct. For example, for out-of-range longitudes and
latitudes, we cut them and push them back to the boundaries.

4) NORMALIZATION

Our feature space comprises different variables with different
scales, from the number of requests to time slots and width.
To unify all of them, we use a common range between zero
and one. In this regard, for each feature, we scale the feature
based on the maximum and minimum of that feature in the
whole dataset to the range that we need, which is called
Min-Max scaling technique [39].

IV. PROPOSED FILE POPULARITY FORECASTING
LSTM networks address the challenge of incorporating long-
term dependencies in RNNs through a specialized design.
This architecture introduces a memory cell, represented as
ct, which operates outside the traditional RNN data stream
by adding an auxiliary state unit [40]. We briefly review
LSTM networks to illustrate their use in our application.
As depicted in Fig. 5, LSTMs partition the hidden state

of the RNN into two components: the memory cell ct and
the active memory ht. The duty of the memory cell is to
conserve the sequential input features, with its previous state
modulated by a forget gate f . The active memory ht acts
as the output, with its proportion of the current memory ct
governed by the output gate o. The input gate i is responsible
for managing how much of the present state information
ht−1 and input xt is stored in the memory cell. These
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gates are not static; they adjust their responses based on a
nonlinear activation after linearly combining the preceding
state information ht−1 and the current input xt. The LSTM
framework is mathematically formulated as follows:

ft = σ
(
Wf ·

[
ht−1, xt

]+ bf
)

(1)

it = σ
(
Wi ·

[
ht−1, xt

]+ bi
)

(2)

c̃t = tanh
(
Wc ·

[
ht−1, xt

]+ bc
)

(3)

ct = ft × ct−1 + it × c̃t (4)

ot = σ
(
Wo ·

[
ht−1, xt

]+ bo
)

(5)

ht = ot × tanh(ct) (6)

where Wf , Wi, Wc, and Wo denote the weight matrices, and
bf , bi, bc, and bo are the bias vectors. The new candidate
state c̃t is formulated through a tanh layer processing xt and
ht−1. The sigmoid function, σ(·), constraints outputs within
the range of 0 to 1, thus facilitating gate operations that
resemble binary decisions in controlling information flow.
An LSTM forecasting method consists of several LSTM

units in which the weights are updated based on the training
data and cost function. The network attempts to find the
optimum weights for carrying the past, forgetting, making
predictions and forwarding the results to the output. These
weights can be controlled by the cost function, representing
the ultimate goal for the updating process.
In our dataset, the input sequences consist of user requests

over time. As users request different content for variable
times, these input sequences vary in length, presenting
a challenge for LSTM networks, which typically require
uniform sequence lengths for processing. To address this
variability, we use zero padding for shorter sequences to
match the length of the longest sequence within a batch.
While this approach facilitates the operational requirements
of neural network libraries, it introduces the problem
of skewed computations, as the padded values are not
representative of any meaningful data and can adversely
affect the network’s learning process.
To mitigate this issue, we use masking. Masking is a

process through which the LSTM network is instructed to
selectively ignore the padded values during training and
inference [41]. This is achieved by constructing a binary
mask that parallels the input data tensor. Each element of
this mask correlates with the corresponding element in the
input tensor, with a binary value of 1 indicating a valid data
point and 0 signifying a padded value.
When integrated into the LSTM architecture, this binary

mask operates as a filter during the forward and backward
propagation phases. The LSTM units utilize the mask to
bypass operations on time steps where the mask value is 0,
ensuring that the padded entries do not contribute to the loss
function and have no influence on the weight update process
during backpropagation. Furthermore, for sequence-wide
computations such as averaging or summarizing, the mask
ensures that only the actual sequence data is considered.
With masking, the LSTM network ensures that it does not

FIGURE 6. Two sample LSTM predictions of user requests.

learn from padded values, which are not real data. It focuses
solely on sequences with meaningful temporal dependencies
and facilitates efficient batch processing, making the use of
masking highly advantageous.
In our dataset, as the content requests are time series, we

use an LSTM network to detect patterns over time and do
forecasting. We train an LSTM block such that we provide
the network video features and some consecutive requests
over time and predict the upcoming requests. It should be
noted that here, we just predict the request number and not
the life cycle. In other words, if we do not take into account
that the requests might die after a while, the prediction is
not accurate. Hence, this stage is the first stage which must
be combined with the survival analysis information to make
accurate decisions. Fig. 6 shows sample outputs of the LSTM
predictor which follows the pattern without accounting for
the life cycle.
As the inputs of our LSTM network, we use the following

features from Table 1: “Longitude”, “Latitude”, “Height”,
“Width”, “Request count”, and from Table 2: “Content
category number”, “Passive time”, “Created time in a day”,
“Requested time in a day”, and “First number r0”. We skip
some features from Table 1, such as “Video id”, “Content
category”, and “Description”, as they are not numeric.
Instead of using “Refresh time” and “Creation time”,
we utilize the relative time-related variables introduced in
Table 2. In addition, as we want to make predictions at any
time even in the middle of an ongoing time series, we do
not include life cycle information as a feature which has
information of the future and makes the prediction non-
causal. The input vector for our LSTM model includes the
listed features and the past “Request Count” for each specific
video up to the current time, resulting in a vector length of
27. This length allows us to include the maximum lengths
of the time series after removing outliers. For videos with
insufficient past data, we use the masking technique to zero-
pad the vector elements, later removing the effect of zeros
from the predictions.
Table 3 details our LSTM architecture. Since the network

needs a fixed-size input, we consider the maximum length of
the user requests (the one with the maximum life cycle) in
addition to the other features as the input size. In the cases
where the life cycle is lower, we use the masking technique
with zero padding as described. A batch size of 32 means
that we update the LSTM weights after every 32 samples
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TABLE 3. LSTM network architecture.

which are trained in parallel. Then as these samples are
picked randomly from the data, we repeat the training 100
times.
An important factor that is different in our modeling is that

we define a custom loss function which calculates the rank
difference. Since our application is in caching with a limited
cache capacity, we are interested in the most popular files.
In this regard, the numerical value of the requests is less
important than the file’s rank in a ranked list of popularity;
we, therefore, want to highlight the rank in our loss function.
Our loss function accounts for the number of files that are
mislocated in the predictions, i.e., it counts the files that
receive an incorrect rank after the prediction.
If we define ŷt = [ŷt,1, . . . , ŷt,Nt ], t ∈ {1, . . . ,T} as

the predicted output of our LSTM network and yt =
[yt,1, . . . , yt,Nt ], t ∈ {1, . . . ,T} as the vector of actual output
values and Nt as the total content number at time t, we
define our loss function as2

L(θ) =
∑T

t=1
∑Nt

i=1 |g
(
ŷt,i, ŷt

)− g(yt,i, yt
)|

∑T
t=1 Nt

, (7)

where, g(a, a) is a function that calculates the rank of
the input element a in the vector a and θ is the learning
parameter vector. Fig. 7 represents the flowchart of our
request evolution predictor with all the details of LSTM
network for T = 3 (predicting 3 upcoming time slots). The
algorithm also adds the survival probability predictions and
transfers all the information to the reward calculator (which
we will explain in the following sections). The input to
the LSTM network shows all the pre-processing stages, the
hidden layer consists of several LSTM units optimizing the
output with an Adam optimizer and our custom loss function.

V. PROPOSED SURVIVAL TIME ANALYSIS
In this section, we use survival analysis to predict the
life cycle of content requests. Survival analysis is about
predicting the time duration until an event occurs, and in
our case, the event is the death of specific content. The
hazard function is defined as the instantaneous rate at which
events occur, at a specific time, given that the event has
not occurred before that time. This means it measures the

2It should be noted that as the LSTM optimizer uses gradient descent
to adjust the weights, we need to make this loss function differentiable. In
this regard, with the aid of a Softmax function, we introduce a Soft ranking
function to implement our LSTM network.

likelihood of the event happening at a particular moment,
assuming it has not yet happened [42]. Considering TE as
the random time-to-event variable and xi = [xi,1, . . . , xi,p]T

as specific content i with p features, the hazard function at
time t given xi, is expressed as:

h(t|xi) = lim
�t→0

P(t ≤ TE < t +�t|TE ≥ t)
�t

. (8)

Here, time-to-event is defined as the time remaining until
there is no request for the content or in other words, the
content is dead. Eq. (8) measures the probability of the
event happening at the next �t time, knowing that it has not
occurred until now.
The survival probability given content xi, Pt,is (t|xi), is the

probability that the time of an event, TE, is later than time t,
conditional on xi. The survival probability can be formulated
as [43]:

Pt,is (t|xi) = exp

(
−

∫ t

0
h(u|xi) du

)
, (9)

where h(u|xi) is the hazard at time u given covariates xi. In
the CPH approach, the hazard function at time t is modeled
as [44]:

h(t|xi) = h0(t) exp
(
βTxi

)
, (10)

where β = [β1, . . . , βp]T is a vector of regression parame-
ters, and h0(t) is the baseline hazard function, assumed to be
not a function of xi making the model semi-parametric [45].
The regression parameters in the CPH can be estimated

by minimizing the negative log partial likelihood cost
function [46]:

l(β) = −
n∑

i=1

Ei

⎛

⎝βTxi − log
∑

j∈R(ti)

exp
(
βTxj

)
⎞

⎠, (2)

where n is the number of files, ti is the censored or observed
survival time for content i, and Ei is an indicator for whether
the survival time is censored (no Event) (Ei = 0) or observed
(Ei = 1). We note that, if a part of the data is missing
and there is no request for the content which was requested
before the missing portion, it is not evident when exactly
the content has died, i.e., is censored. R(ti) is the risk set
at time ti, which is the set of all the content which are still
requested at time ti.
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FIGURE 7. Flowchart of the proposed algorithm.

To compare the performances in survival probability
prediction, the concordance index (CI) is used as an
evaluation metric [47]. The CI is defined as follows:

CI = #correctly ordered pairs

#all possible ranking pairs
. (11)

This equation is the fraction of all pairs of subjects whose
survival times are correctly ordered among all possible
ranking pairs [47]. The value of 0 is with the worst
performance, 0.5 is a random guess and 1 is the perfect
condition.

A. OUR PROPOSED E-CPH MODEL
In this section, we explain our proposed extensions to the
CPH approach, referred to as our E-CPH model. To improve
the CPH performance, as it relies on the regression between
the content features, we extend the feature dimensions to
capture more information. We note that here instead of
mainly relying on the previous time slots’ content requests

to predict future requests (which was the LSTM-based
approach), we rely on the content’s characteristics to be able
to predict its survival rate.
In the E-CPH framework, instead of coding content

categories as scalar numbers, we map them to a higher
dimensional space to capture as much information as
possible. As we mentioned, to convert content categories
to informative vectors we use the Google 300 NLP Model.
Then, with PCA we lower the dimension, but unlike in the
LSTM case, a single dimension, we keep more components
as long as they can be informative.
Fig. 8 illustrates our approach to preparing data as input

to our E-CPH model. In our approach, we employ PCA
to reduce the dimensionality of our dataset while retaining
significant information. Specifically, we select the number
of principal components such that the cumulative variance
they explain reaches 90%. In practical terms, this leads to a
reduction from 300 features to 50 principal components in
our dataset.
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TABLE 4. Content characteristics at time 2018-05-18 13:28 - 13:33.

FIGURE 8. Data pre-processing for E-CPH.

Table 4 presents characteristics of the input data for
our E-CPH model at a given time slot, including content
requested by users, the content’s age, its life cycle, and
whether the data point is censored (Event = 0). Note that
the features used for life cycle prediction are the same ones
utilized as inputs for the LSTM network and those presented
in Table 4.

It is important to note that, for the sake of clarity, this
table does not display the 50-element vector resulting from
PCA or other specific features of each content item.

VI. POMDP-BASED CACHING
Having described the data preprocessing steps, the use of
LSTMs to predict requests and the E-CPH approach to
estimate content lifetimes, we are ready to present our
caching strategy that exploits these developments.
We consider content requests arriving through discrete

time blocks of 5 minutes with a caching decision cycle of
every T blocks. The environment, which is the user requests,
constitutes a finite-state finite-horizon Markov process. The
state set S is the set of cache states and user requests and
A and � are the action and observation spaces, respectively.
Considering the current and past features as observations,
the content requests in the future as our network states can
be variable.

In other words, the current observations lead to a belief of
alive or dead content. In fact, in a POMDP, the agent does
not have direct access to the true state of the environment
due to its partial observability. Instead, the agent maintains
a belief b(s), which is a probability distribution over the set
of possible states S. The belief b(s) represents the agent’s
degree of confidence that the environment is in state s, given
the history of actions and observations. b0 is an initial PMF
over states such that b0(s) is equal to the probability that
the initial state of the system is s, which indicates the initial
belief. R(·, ·) is a bounded reward function, such that R(s, a)
is the real-valued reward obtained executing action a in state
s. Hence, we can define our finite-horizon POMDP as a
tuple (S,A,�,R, b0) [48].
We formulate our caching problem with a POMDP, in

which the hidden state is the state of the content. At each
time slot, we cannot be sure if the file remains alive for the
upcoming time slots or if it dies. In this regard, the survival
probabilities as the outputs of our E-CPH are used as the
inputs to our POMDP. POMDPs usually learn the belief
states within the learning process and update the popularities.
However, in our case, as the network is not stationary, we
use our previously proposed methods to extract the life
cycle information as belief. In other words, we help the
POMDP problem with extra belief information to learn a
non-stationary environment.
In E-CPH, the output is the vector of survival probabilities

for each content for the upcoming T time slots. We also
have the prediction vector from LSTM for the next T time
slots, each the predicted content popularity at time t is r̂t =
[r̂t,1, . . . , r̂t,Nt ]. We aim to make caching decisions for every
T time slots. In other words, we update our cache content
every T time slots. Our objective is to maximize cache hit,
which is the number of requested content at each time that
can directly be served by the cache memory.
If we define the number of cache hits as H(st,i, at,i) for

the content state st,i ∈ {alive, dead} and action at,i ∈ {0, 1}
indicating whether we store the file (1) or not (0), H(st,i =
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FIGURE 9. Flowchart of the proposed POMDP-based reward calculator for content A.

alive, at,i = 1) can be written as

H
(
st,i = alive, at,i = 1

) = max{δt,j}

⎧
⎨

⎩

Nt∑

j=1,j �=i
r̂t,jδt,j + r̂t,i

⎫
⎬

⎭

s.t. δt,j ∈ {0, 1} ∀j ∈ {1, . . . ,Nt},
Nt∑

j=1

δt,j = Cc − 1, (12)

where Cc is cache memory capacity and δt,j is an indicator
for each content and takes an integer value showing the
existence of content j in the cache at time t. If content
i is alive and we take the action of storing it, it adds
r̂t,i to the total cache hits. For the remaining vacant
spots in the cache memory, we store the (Cc − 1) top
candidates.
Similarly, H(st,i = dead, at,i = 1) can be defined as

H
(
st,i = dead, at,i = 1

) = max{δt,j}

⎧
⎨

⎩

Nt∑

j=1,j �=i
r̂t,jδt,j

⎫
⎬

⎭

s.t. δt,j ∈ {0, 1} ∀j ∈ {1, . . . ,Nt},
Nt∑

j=1

δt,j = Cc − 1. (13)

As can be seen, when the state of the file in the next time
slot is dead, even if the action was storing the content, it
does not have any contributions to the total number of cache
hits. This is because we do not wish to cache content we
believe to be dead.
For every content i, the reward Rtr,i(bt,i, at,i = 1) at a

reference time tr for the upcoming T time slots is defined

as

Rtr,i
(
bt,i, at,i = 1

)

=
tr+T−1∑

t=tr

∑

si∈{alive, dead}
b(si, t)H

(
st,i, at,i = 1

)
. (14)

For each content i, assuming Pt,is as the survival probability
of time t and Pa as the corresponding accuracy for
calculating the survival probability, b(si, t) can be calculated
as

b(si, t) =
{
Pt,is Pa +

(
1− Pt,is

)
(1− Pa) if si = alive,

Pt,is (1− Pa)+
(
1− Pt,is

)
Pa if si = dead.

(15)

Fig. 9 at, represents the reward calculation for each time
slot after receiving the predicted values of the LSTM network
and survival probabilities of E-CPH for a sample file, here
called content “A”. As can be seen, the first step is checking
whether the file will survive the next time slot, which is True
with probability Ps and False with probability 1−Ps. Then,
for each case, we check whether the calculated probability
is accurate or not. Finally, the total reward for the next time
slot t is the summation of all the rewards.
Algorithm 1 shows the steps to calculate the action a∗tr =

[a∗1,tr
, . . . , a∗Ntr ,tr ] which is the caching decisions for the

Ntr files for time slot tr for the upcoming T time slots.
According to the algorithm, we start from a reference time
tr, knowing the cache capacity Cc and the output of the
LSTM network, {r̂t1, r̂t2 , r̂t3 , . . . , }, and the E-CPH survival
probabilities, Pt,is ,Pa for t ∈ {t1, t2, . . . , }. For each T time
slots, we calculate the reward of caching each of the Nt, t ∈
{tr, . . . , tr+T−1} files. Then, we decide to cache Cc number
of files that have the highest reward values.
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Algorithm 1: POMDP-Based Cache Decision Making

Input: {r̂t1 , r̂t2, . . .}, Pt,is ,Pa for t ∈ {t1, t2, . . .}, Cc, T
Output: a∗tr
for tr ← t1 to ... for every T time slots do

Rtr ← 0Ntr
for i← 1 to Ntr do

Rtr [i] = Rtr,i(btr,i, atr,i = 1)

a∗tr = arg max{RTtratr }
s.t. ai,tr ∈ {0, 1} for i ∈ {1, . . . ,Ntr }∑Ntr

i=1 ai,tr = Cc

FIGURE 10. Loss function reduction in our LSTM training versus different epochs.

VII. SIMULATION RESULTS
In this section, we present the numerical results of our
proposed predictive caching algorithm.
Fig. 10 shows the loss function reduction in our LSTM

network with the characteristics explained in Table 3. The
network predicts the popularity for three upcoming time
slots (T = 3), a choice made to balance prediction accuracy
and caching complexity. In general, the prediction can be
extended to more time slots. As can be seen, the loss function
decreases with an increasing number of epochs, which shows
the effectiveness of training. Our loss function is the average
file rank difference. After 100 epochs, we achieve an average
rank difference of 0.1. Assuming 500 content requests at a
time, the loss function implies that approximately 50 files
are given incorrect rankings. We note that this can be either
one dislocated video for a rank difference of 50 or several
videos which are dislocated for more than one level for a
maximum of 50 videos dislocated each for just one level.
Fig. 11 presents the results of training the LSTM network

with the available dataset. The figure shows the sorted
number of requests in one time slot of 5 minutes and
compares it with the predicted values. The x-axis shows
different content and as can be seen, the distribution is similar
to a Zipf distribution which is one of the most common
distributions for user requests. In addition, the predicted
curve shows that the algorithm is trying to keep the ranking

FIGURE 11. Number of requests for different videos in one time slot for the real and
predicted requests.

FIGURE 12. Samples of content request predictions for three upcoming time slots.

FIGURE 13. Survival probabilities of different videos at one time-slot over time.

orders with the original values as much as possible. However,
some jumps and drops that suggest order dislocation are
visible.
Fig. 12 represents 5 samples of content prediction as

the output of our LSTM network. To avoid unnecessary
information on the x-axis, we labeled the time slots with
relative numbers, each showing periods of 5 minutes. In this
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FIGURE 14. Cache hit versus time for different caching methods.

figure, we made a prediction at time slot 17 for the upcoming
slots of 18, 19 and 20. As can be seen, some content has
a lower duration which shows different times of requests.
The dashed curves represent the predicted values of each
content, plotted in the same color as the original ones. As
can be seen, in a large part, the predicted values follow the
user request patterns, specifically the order of the files.
Fig. 13 shows the probability of survival for 15 randomly

selected videos in our test dataset. As can be seen, different
videos have different survival probabilities. Besides, the
survival probability decreases over time which shows the
limited life cycle of the videos. At each time slot, we calculate
the survival probabilities of each video for the upcoming T
time slots, T = 3 in our case, and feed it as the input of our
POMDP caching optimizer. We note that the CI factor, defined
in (11), with the CPH survival model is 0.54, but improves to
0.63 upon using our proposed E-CPH approach.

Fig. 14 compares the total number of cache hits in our
proposed model and perfect prediction (which is an upper
bound for the network cache hit) and the traditional caching
strategy, window-based least frequency used (W-LFU), with
W = 10 time slots and Cc = 50. It also compares the
performance with an RNN-based predictive caching model
that utilizes 50 units, three output layers, and the Adam
optimizer as the LSTM network. In a perfect prediction, the
network is non-causal and hence it has all the information
about the future, even the request numbers for new content.
Each time slot is 5 minutes and hence the caching decisions
are made for every three time slots, i.e., 15 minutes. We
note that since the cache capacity is limited, even perfect
prediction does not result in a 100% cache hit rate.

It should be noted that the accuracy of survival probabili-
ties is calculated based on averaging over all the test datasets.
In this regard, if we predict the file is alive (its survival prob-
ability is more than 50%) but the file is dead, we consider it
an error and then sum up all the errors and divide it by the
total number of predictions. For our dataset and E-CPH the
probability of accuracy is Pa = 78%. As can be seen, both
our proposed methods with and without considering survival
probabilities, have a higher number of hits in comparison
with W-LFU. In most cases, the RNN predictor demonstrates
a higher hit rate compared to the W-LFU caching method,
which lacks artificial intelligence capabilities. However, the
RNN predictor still underperforms relative to our proposed
methods. In the final time interval, the W-LFU method per-
forms comparably to the RNN predictor and even performs
slightly better in that specific time. This is likely due to a
potential correlation with previous time slots in that interval,
which can surpass the predictive power of artificial intelli-
gence, especially considering the inherent randomness in AI
algorithms.
When we introduce the survival probabilities, in almost

all the cases, we experience hit improvement. The reason
for this improvement is that when we have content survival
information, the cache optimization strategy will save the
available spots in the cache memory for the files that will
survive with a higher probability. In this regard, the cache
memory is less occupied with content which is no longer
requested. As can be seen, in the period 13:58 to 14:13,
survival probability does not improve the cache hit. It can
be explained due to the accuracy error which is 22% and
also the existence of censored data.
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VIII. CONCLUSION
In this paper, we investigated the application of caching
techniques through practical experiments with a real-world
dataset. Working with the dataset required customized
preprocessing steps. This dataset indicates that user requests
change over time and have a lifecycle, suggesting that
some content may no longer be requested. We introduced
a POMDP-based approach focused on improving cache hits
by predicting the users’ request patterns. To do so, we
designed an LSTM network to forecast user requests over
time by treating past request numbers as time series data.
Furthermore, recognizing the finite lifespan of the content,
we introduced an E-CPH model for survival analysis to
estimate how long the content remains active. We then
combined the predictions from the LSTM and the survival
probabilities as inputs of our POMDP-based caching strategy,
enhancing the cache hit rate in the network. Our findings
compellingly showcase the effectiveness of our predictive
caching strategy in dynamically adjusting to evolving user
popularity trends and enhancing cache hit rates. For future
work, we plan to consider additional performance metrics
such as latency, throughput, and system resource utilization
to further evaluate the effectiveness of our prediction
methods in making caching decisions and improving these
metrics.

REFERENCES
[1] H. Yeganeh and J. Rostampoor, “Downlink user association and uplink

scheduling for energy harvesting users in software-defined mobile
networks,” Phys. Commun., vol. 28, pp. 11–18, Jun. 2018.

[2] I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the
6G network era: Opportunities and challenges,” IT Prof., vol. 22, no. 1,
pp. 34–38, Jan./Feb. 2020.

[3] J. R. Bhat and S. A. Alqahtani, “6G ecosystem: Current status and
future perspective,” IEEE Access, vol. 9, pp. 43134–43167, 2021.

[4] N. Nomikos, S. Zoupanos, T. Charalambous, and I. Krikidis, “A survey
on reinforcement learning-aided caching in heterogeneous mobile edge
networks,” IEEE Access, vol. 10, pp. 4380–4413, 2022.

[5] H. S. Goian, O. Y. Al-Jarrah, S. Muhaidat, Y. Al-Hammadi, P. Yoo,
and M. Dianati, “Popularity-based video caching techniques for cache-
enabled networks: A survey,” IEEE Access, vol. 7, pp. 27699–27719,
2019.

[6] W. Hoiles, A. Aprem, and V. Krishnamurthy, “Engagement and
popularity dynamics of YouTube videos and sensitivity to Meta-
data,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 7, pp. 1426–1437,
Jul. 2017.

[7] B. Shulman, A. Sharma, and D. Cosley, “Predictability of popularity:
Gaps between prediction and understanding,” in Proc. Int. Conf. Web
Soc. Media (ICWSM), 2016, pp. 348–357.

[8] G. Szabo and B. A. Huberman, “Predicting the popularity of online
content,” Commun. ACM, vol. 53, no. 8, pp. 80–88, 2010.

[9] H. Huang, Z. Wang, H. Zhang, X. Wang, C. Zhang, and W. Wang,
“One for all: Unified workload prediction for dynamic multi-tenant
edge cloud platforms,” in Proc. 29th ACM SIGKDD Conf. Knowl.
Discov. Data Min. (KDD), 2023, pp. 788–797. [Online]. Available:
https://doi.org/10.1145/3580305.3599453

[10] S. Tuli, G. Casale, and N. R. Jennings, “CILP: Co-simulation-
based imitation learner for dynamic resource provisioning in cloud
computing environments,” IEEE Trans. Netw. Service Manag., vol. 20,
no. 4, pp. 4448–4460, Dec. 2023.

[11] A. Ioannou and S. Weber, “Exploring content popularity in
information-centric networks,” China Commun., vol. 12, no. 7,
pp. 13–22, Jul. 2015.

[12] Y. Zhang, X. Tan, and W. Li, “PPC: Popularity prediction caching in
ICN,” IEEE Commun. Lett., vol. 22, no. 1, pp. 5–8, Jan. 2018.

[13] H. Nakayama, S. Ata, and I. Oka, “Caching algorithm for content-
oriented networks using prediction of popularity of contents,” in
Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), 2015,
pp. 1171–1176.

[14] N. Ben Hassine, D. Marinca, P. Minet, and D. Barth, “Popularity
prediction in content delivery networks,” in Proc. IEEE 26th Annu.
Int. Symp. Pers., Indoor, Mobile Radio Commun. (PIMRC), 2015,
pp. 2083–2088.

[15] E. B. Abdelkrim, M. A. Salahuddin, H. Elbiaze, and R. Glitho, “A
hybrid regression model for video popularity-based cache replacement
in content delivery networks,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), 2016, pp. 1–7.

[16] M. Chen, W. Saad, C. Yin, and M. Debbah, “Echo state networks for
proactive caching in cloud-based radio access networks with mobile
users,” IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3520–3535,
Jun. 2017.

[17] A. O. Nwana, S. Avestimehr, and T. Chen, “A latent social approach to
YouTube popularity prediction,” in Proc. IEEE Glob. Commun. Conf.
(GLOBECOM), 2013, pp. 3138–3144.

[18] Y. Yu, J. Cao, and J. Zhu, “An LSTM short-term solar irradiance
forecasting under complicated weather conditions,” IEEE Access,
vol. 7, pp. 145651–145666, 2019.

[19] C. Zhang et al., “Toward edge-assisted video content intelligent
caching with long short-term memory learning,” IEEE Access, vol. 7,
pp. 152832–152846, 2019.

[20] T.-V. Nguyen et al., “User-preference-based proactive caching in edge
networks,” in Proc. Int. Conf. Inf. Netw. (ICOIN), 2021, pp. 755–757.

[21] H. Mou, Y. Liu, and L. Wang, “LSTM for mobility based content
popularity prediction in wireless caching networks,” in Proc. IEEE
Globecom Workshops (GC Wkshps), 2019, pp. 1–6.

[22] D. Li, H. Zhang, D. Yuan, and M. Zhang, “Learning-based hierarchical
edge caching for cloud-aided heterogeneous networks,” IEEE Trans.
Wireless Commun., vol. 22, no. 3, pp. 1648–1663, Mar. 2023.

[23] D. Li, H. Zhang, H. Ding, T. Li, D. Liang, and D. Yuan, “User-
preference-learning-based proactive edge caching for D2D-assisted
wireless networks,” IEEE Internet Things J., vol. 10, no. 13,
pp. 11922–11937, Jul. 2023.

[24] M. Y.-K. Chua, F. R. Yu, and S. Bu, “Dynamic operations of
cloud radio access networks (C-RAN) for mobile cloud computing
systems,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1536–1548,
Mar. 2016.

[25] H. Kim, J. Park, M. Bennis, S.-L. Kim, and M. Debbah, “Mean-
field game theoretic edge caching in ultra-dense networks,” 2021,
arXiv:1801.07367.

[26] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably effi-
cient online collaborative caching algorithm for multicell-coordinated
systems,” IEEE Trans. Mobile Comput., vol. 15, no. 8, pp. 1863–1876,
Aug. 2016.

[27] P. Cong, K. Qi, and C. Yang, “Impact of prediction uncertainty of
popularity distribution on proactive caching,” in Proc. IEEE/CIC Int.
Conf. Commun. China (ICCC), 2019, pp. 747–752.

[28] S.-E. Elayoubi and J. Roberts, “Performance and cost effectiveness
of caching in mobile access networks,” in Proc. 2nd Int. Conf. Inf.-
Centric Netw. (ICN), 2015, pp. 79–88.

[29] J. Rostampoor and R. Adve, “Dynamic caching in a hybrid Millimeter-
wave/microwave C-RAN,” in Proc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), 2022, pp. 1–6.

[30] J. Rostampoor and R. S. Adve, “Optimizing caching in a C-RAN
with a hybrid millimeter-wave/microwave fronthaul link via dynamic
programming,” IEEE Trans. Commun., vol. 71, no. 2, pp. 923–934,
Feb. 2023.

[31] J. Rostampoor, R. S. Adve, A. Afana, and Y. A. E. Ahmed, “CPRL:
Change point detection and reinforcement learning to optimize
cache placement strategies,” IEEE Trans. Commun., vol. 72, no. 4,
pp. 2339–2353, Apr. 2024.

[32] J. Rostampoor, R. Adve, A. Afana, and Y. Ahmed, “Learning when
and how to forget in variable window LFU caching,” in Proc. IEEE
Globecom Workshops (GC Wkshps), 2023, pp. 781–786.

[33] E. Baccour, A. Erbad, K. Bilal, A. Mohamed, M. Guizani, and
M. Hamdi, “FacebookVideoLive18: A live video streaming dataset for
streams metadata and online viewers locations,” in Proc. IEEE Int.
Conf. Informat., IoT, Enabling Technol. (ICIoT), 2020, pp. 476–483.

5390 VOLUME 5, 2024



[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 3111–3119.

[35] S. Sehgal, H. Singh, M. Agarwal, V. Bhasker, and Shantanu, “Data
analysis using principal component analysis,” in Proc. Int. Conf.
Med. Imaging, m-Health Emerg. Commun. Syst. (MedCom), 2014,
pp. 45–48.

[36] T. Blu, P. Thevenaz, and M. Unser, “Linear interpolation revital-
ized,” IEEE Trans. Image Process., vol. 13, pp. 710–719, 2004.

[37] K. Benkert, E. Gabriel, and M. M. Resch, “Outlier detection in
performance data of parallel applications,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process., 2008, pp. 1–8.

[38] J. Kim, “Using median as a threshold in determining anomaly in
back-end authentication,” in Proc. 3rd Int. Conf. Comput. Intell. Appl.
(ICCIA), 2018, pp. 249–254.

[39] H. W. Herwanto, A. N. Handayani, A. P. Wibawa, K. L. Chandrika,
and K. Arai, “Comparison of min-max, Z-score and decimal scaling
Normalization for zoning feature extraction on javanese character
recognition,” in Proc. 7th Int. Conf. Elect., Electron. Inf. Eng.
(ICEEIE), 2021, pp. 1–3.

[40] Y. Huang, L. Shen, and H. Liu, “Grey relational analysis, principal
component analysis and forecasting of carbon emissions based on long
short-term memory in China,” J. Clean. Prod., vol. 209, pp. 415–423,
Feb. 2019.

[41] F. Chollet et al., “Keras documentation: Masking and padding with
Keras.” 2015. [Online]. Available: https://keras.io/guides/

[42] K. Monterrubio-G’omez, N. Constantine-Cooke, and C. A. Vallejos,
“A review on competing risks methods for survival analysis,” 2022,
arXiv:2212.05157.

[43] B. Liu, “Cumulative hazard function based efficient multivariate
temporal point process learning,” 2024, arXiv:2404.13663.

[44] S. Sundrani and J. Lu, “Computing the hazard ratios associated
with explanatory variables using machine learning models of survival
data,” JCO Clin. Cancer Inform., vol. 5, pp. 364–378, Mar. 2021.

[45] X. Zhu, J. Yao, and J. Huang, “Deep convolutional neural network for
survival analysis with pathological images,” in Proc. IEEE Int. Conf.
Bioinf. Biomedicine (BIBM), 2016, pp. 544–547.

[46] H. Kvamme, O. Borgan, and I. Scheel, “Time-to-event prediction with
neural networks and Cox regression,” J. Mach. Learn. Res., vol. 2,
no. 1, pp. 1–30, 2019.

[47] H. Steck, B. Krishnapuram, C. Dehing-Oberije, P. Lambin, and
V. C. Raykar, “On ranking in survival analysis: Bounds on the
concordance index,” in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp. 1209–1216.

[48] H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and
K. V. Srinivas, “POMDP-based handoffs for user-centric cell-
free MIMO networks,” in Proc. IEEE Glob. Commun. Conf.
(GLOBECOM), 2022, pp. 341–346.

JAVANE ROSTAMPOOR (Member, IEEE)
received the B.Sc. and M.Sc. degrees in electrical
engineering from the Iran University of Science
and Technology, Tehran, Iran, in 2012 and
2015, respectively, and the Ph.D. degree in
electrical and computer engineering focusing on
caching optimization in wireless networks from
the University of Toronto in 2024, where she
is currently a Postdoctoral Fellow working on
quantum-enhanced sensors. From June 2015 to
December 2018, she worked as a Researcher with

the Communication Technology Institute, Iran Telecommunication Research
Center, Tehran. In 2023, she had an internship with Ericsson Canada under
the Mitacs Accelerate Program. Her current research interests include
caching, optimization techniques, signal processing, time-series analysis,
dynamic programming, machine learning, and quantum sensing. She is
a recipient of the University of Toronto Fellowship, the Nortel Institute
Graduate Scholarship for Telecommunications, the Edward S. Rogers Sr.
Graduate Scholarship, the H. W. Price Research Fellowship in Electrical
Engineering, and the Ewing Rae Graduate Scholarship.

RAVIRAJ S. ADVE (Fellow, IEEE) was born in
Mumbai, India. He received the B.Tech. degree in
electrical engineering from IT Bombay in 1990
and the Ph.D. degree from Syracuse University
in 1996. From 1997 to 2000. he was a Research
Associate with Defense Conversion Inc., on con-
tract with the Air Force Research Laboratory,
Rome, NY, USA. He joined the Faculty of the
University of Toronto in 2000, where he is
currently a Professor. His research interests include
analysis and design techniques for cooperative

and heterogeneous networks, energy harvesting networks, and in signal
processing techniques for radar and sonar systems. He received the 2009
Fred Nathanson Young Radar Engineer of the Year Award. His thesis was
the recipient of the Syracuse University Outstanding Dissertation Award.

ALI AFANA received the M.Sc. degree in
communications engineering from Birmingham
University, U.K., in 2009, and the Ph.D.
degree in electrical and computer engineering
from Concordia University, Montreal, Canada,
in 2014. He is a Research and Development
5G/6G Wireless Systems Developer with Ericsson,
Canada, where he leads/co-leads the industry-
university research collaborations in the areas
of next generation radio access networks (RAN)
intelligence, low latency communications, and

spectrum sharing technologies, drives early-phase system designs and
algorithms development, and contributes to intellectual property devel-
opment (patents) for next generation RANs. Prior to joining Ericsson,
he was with Lakehead University and the Memorial University as an
Instructor/Postdoctoral Fellow. His research interests include 5G/6G wireless
networking, signal processing for communications, and robust machine
learning for networks. He is a co-recipient of the IEEE ICC 2022 Best
Paper Award.

YAHIA A. ELDEMERDASH AHMED received the
B.Sc. and M.Sc. degrees in electrical and computer
engineering from Al-Azhar University, Cairo,
Egypt, in 2002 and 2007, respectively, and the
Ph.D. degree in electrical and computer engineer-
ing from Memorial University, St. John’s, NL,
Canada, in 2015, where he was a Postdoctoral
Fellow from 2016 to 2018. From 2003 to 2010, he
was a Research and Teaching Assistant with the
National Telecommunication Institute, Cairo. He
is currently a 5G System Developer with Ericsson,

Ottawa, ON, Canada. His research interests include wireless communi-
cations and signal processing. He has served as a Technical Program
Committee Member for numerous flagship international communication
conferences, such as IEEE ICC, VTC, and CrownCom.

VOLUME 5, 2024 5391



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


