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ABSTRACT Given the rising demand for low-power sensing, integrating additional devices into an
existing wireless infrastructure calls for innovative energy- and spectrum-efficient wireless connectivity
strategies. In this respect, wireless-powered or energy-harvesting symbiotic radio (EHSR) is gaining
attention for establishing the secondary relationship with the primary wireless systems in terms of RF
EH and opportunistically sharing the spectrum or schedule. In this paper, assuming the commensalistic
relationship with the primary system, we consider the energy-efficient optimization of such an EHSR by
intelligently making EH and transmission decisions under the inherent nonlinearity of the EH circuitry
and dynamics of pre-scheduled primary devices. We present a state-of-the-art deep reinforcement learning
(DRL)-engineered, energy-efficient transmission strategy, which intelligently orchestrates EHSR’s uplink
transmissions, leveraging the cognitive radio-inspired non-orthogonal multiple access (CR-NOMA) scheme.
We first formulate the energy efficiency (EE) optimization metric for EHSR considering the nonlinear
EH model, and then we decompose the inherently complex, non-convex problem into two optimization
layers. The strategy first derives the optimal transmit power and time-sharing coefficient parameters,
using convex optimization. Subsequently, these inferred parameters are substituted in the subsequent layer,
where the optimization problem with continuous action space is addressed via a DRL framework, named
modified deep deterministic policy gradient (MDDPG). Simulation results reveal that, compared to the
baseline DDPG algorithm, our proposed solution provides a 6% EE gain with the linear EH model and
approximately a 7% EE gain with the non-linear EH model.

INDEX TERMS Symbiotic radio, RF EH, cognitive radio-inspired non-orthogonal multiple access (CR-
NOMA), energy efficiency (EE), deep deterministic policy gradient (DDPG).

I. INTRODUCTION

WITH the escalating requirements for the meticu-
lous sensing and monitoring of various physical

environments, modern wireless networks are anticipated to
cater not only to the standard or scheduled communication
devices but also to facilitate opportunistic transmissions
using symbiotic radios (SRs) [1]. For instance, SRs can serve
as additional sensing nodes installed in remote, inaccessible,
or perilous zones within an industrial setting. Still, given the

impracticality of regular battery replacements in SRs due
to cost and safety concerns, adopting zero-energy radios is
vital. In this respect, radio-frequency (RF) energy harvesting
(EH) is gaining momentum in modern wireless networks for
its potential to create self-sustaining communication systems,
particularly in the Internet-of-things (IoT) paradigm [2], [3]
and 6G communications [4]. EH-capable systems reduce
dependency on traditional power sources and increase device
lifespans by converting RF signals from the environment into
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usable electrical energy, thus promoting green communica-
tion [5], [6]. As a result, wireless-powered or EH symbiotic
radios (EHSR) are gaining attention for establishing the
secondary relationship with the primary wireless systems in
terms of RF-EH and opportunistically sharing the spectrum
or schedule. Hence, to effectively accommodate EHSRs in
future IoT networks, it is imperative to formulate energy-
and spectral-efficient communication strategies.
In practical scenarios, the conversion efficiency of the RF-

DC circuit varies depending on the input power level. At
lower input power levels, the efficiency typically tends to
increase as input power increases. However, this increase
in efficiency encounters diminishing returns and has upper
bounds on the energy that can be harvested [7]. Traditional
linear EH models fail to encapsulate this non-linear behavior
of the RF-DC circuit. For certain input powers, the linear
model overestimates the conversion efficiency compared to
the actual RF-DC circuit’s performance. Hence, the non-
linearity introduced by RF circuits is equally significant, as
many existing RF-EH models fail to accurately represent
real-world complexities, leading to sub-optimal practical
performance [8], [9].
The cognitive radio-inspired non-orthogonal multiple

access (CR-NOMA) framework stands out as a revo-
lutionary approach in wireless communication promising
spectral efficiency, and capacity-enhancing solution. The
fundamental principle of CR-NOMA is to serve the user
n while ensuring the quality of service (QoS) of user m.
In particular, the signal-to-interference-noise ratio (SINR)
of the user m limits the transmit power allocated to
the user n [10], [11]. Nevertheless, given the dynamic
network conditions, i.e., channel conditions and energy
supply conditions, it is a challenging task to implement
the transmission plan for EHSRs. Fortunately, intelligent
algorithms driven by deep reinforcement learning (DRL) can
play a key role in EHSRs’ capacity for intelligent decision-
making, facilitating the creation of wireless networks of
heterogeneous (industrial) IoT devices [12]. For example,
supervised learning aids link adaptation and channel estima-
tion in orthogonal frequency-division multiplexing (OFDM)
systems [13], [14]. Unsupervised learning enhances wireless
location accuracy [5] and reduces beamformer design com-
plexity [6]. Reinforcement learning’s applications encompass
resource allocation, offloading data and computation, EH,
and network security [15], [16]. Building on this, it is
anticipated that next-generation wireless networks will be
fueled in the future by machine learning, which stands
out as a major enabling technique [17]. Its core principle
is the use of data-driven learning to enhance decision-
making [18], [19]. Due to its adaptability, it has been used
to address a variety of wireless communication issues.
Given the aforementioned complexities and the challenges

presented by the non-linearity of energy conversion in RF-
EH circuits, this paper considers the application of DRL,
specifically the combined experience replay deep deterministic
policy gradient (CER-DDPG) algorithm, which we refer to as

the modified DDPG (MDDPG). In MDDPG the latest tuple
of experiences is assured to be incorporated, when selecting
a random batch of experiences for training the agent [20],
to optimize the energy efficiency (EE) of the EHSR. DRL,
with its capability to navigate complex, dynamic environments
and make intelligent decisions, is particularly tailored for
this challenge. The proposed method divides the problem
into two layers; first, it derives the optimal solutions for the
optimal parameters using convex optimization, and then uses
MDDPG to handle the one-dimensional continuous space
optimization problem. This hierarchical approach, supported
by DRL, ensures a more efficient sampling process and a
quicker path to optimal solutions. Thus, the application of
DRL not only addresses the inherent challenges of the research
problem but also offers a robust pathway toward practical and
effective real-world solutions.

A. PRIOR WORK
Wireless-powered communications and NOMA have been
extensively researched for their potential to enhance EE and
spectrum utilization in modern wireless networks. The study
in [21] addressed the optimization of simultaneous wireless
information and power transfer (SWIPT) under a non-linear
EH model, but its reliance on semidefinite relaxation and
variable substitutions limits its scalability and efficiency,
particularly in dynamically changing environments. The work
in [22] presented a resource allocation algorithm for multiuser
SWIPT systems, yet its non-convex sum-of-ratios approach
and iterative algorithm lack the robustness and comprehensive
integration of RF circuit power and CR-NOMA as in our
work. The study in [23] explored an intelligent reflecting
surface (IRS)-aidedwireless powered communication network
(WPCN) with NOMA, but it adopted a simplified linear
EH model and failed to ensure strict user quality-of-service
requirements. Our research addresses these shortcomings by
employing a non-linear EH model, integrating CR-NOMA,
and utilizing an advanced MDDPG algorithm within a two-
layer optimization framework, thereby providing amore robust
and practical solution.
Similarly, the work in [24] optimized EH time and power

allocation in a WPCN under linear and nonlinear EH models
using time-division multiple access (TDMA) or orthogonal
frequency-division multiple access (OFDMA). However, its
approach is confined to simpler resource allocation schemes
and does not address the integration of CR-NOMA or
advanced DRL algorithms, thereby, limiting its applicability
to complex scenarios. The authors in [25] focused on EE
in WPCNs with NOMA and formulated resource allocation
problems for half-duplex and asynchronous transmission;
however, it lacked a realistic non-linear EH model and
advanced DRL algorithms, making it less applicable to more
intricate and dynamic environments.
To increase throughput in a peer-to-peer network, the study

in [26] combines convex optimization with the DDPG to
promote energy-efficient communication options. Using a
linear EH model, this method creates optimal EH and power
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allocation policies. Similarly, the authors in [27] proposed an
optimal transmission policy for an energy-constrained device
based on cognitive radio. A DRL-assisted approach is used
to solve the long-term throughput maximization problem
in a communication network that employs CR-NOMA.
Similarly, the work presented in [28], addressed the EE
maximization problem for an EH radio functioning amidst
scheduled primary devices. By leveraging an RL approach,
the authors proposed an optimal transmission policy that
enhances spectral efficiency and maximizes the EE of the
EH device through CR-NOMA. However, their analysis
was predicated on a linear EH model. The authors in [29]
addressed an optimization problem to maximize the EE of
the EH device using the DDPG algorithm. The authors
derived closed-form expressions that account for the impact
of RF circuit power, yet the foundational EH model remained
linear.
To the best of our knowledge, previous studies in wireless-

powered communications and NOMA have limitations. The
study in [21] optimizes SWIPT under a non-linear EH model
but relies on semidefinite relaxation, limiting scalability.
The resource allocation algorithm in [22] lacks robustness
and RF circuit power integration. Research in [23] uses a
simplified linear EH model, and [24] does not integrate
CR-NOMA or advanced DRL algorithms. Studies such
as [26] and [27] use linear EH models. Research in [28]
and [29] also use linear EH models with RL and DDPG
algorithms. Our contributions include the development of
a non-linear EH model, accounting for RF circuit power
consumption, and the implementation of CR-NOMA, all
optimized through an advanced DRL algorithm, termed the
MDDPG algorithm. These advancements set our work apart
from existing literature and provide a comprehensive solution
to the challenges faced in modern wireless communication
systems.
In the subsequent section, we outline the key contributions

of this work.

B. PAPER CONTRIBUTIONS
Our key contributions are listed as follows.

• We derive an explicit analytical expression for a non-
linear EH model, offering practical insights into realistic
EH scenarios. This model paves the way for more
accurate and practical designs in energy-harvesting
communications.

• To find the appropriate combination of transmission
and EH parameters of the EHSR, we formulate the
EE [30] metric of the EHSR as an optimization problem,
integrating the non-linear EH model. Our approach
uniquely accounts for RF circuit power and signal
processing power consumption, ensuring a holistic and
practical optimization framework.

• We decompose the inherently complex and non-
convex optimization problem into a two-layer structure.
The first layer leverages convex optimization to
derive closed-form expressions for transmit power and

time-sharing coefficients. These solutions seamlessly
integrate into the second layer, where a DRL frame-
work, specifically, the MDDPG algorithm efficiently
addresses the one-dimensional continuous action space
optimization problem of EE maximization.

• We thoroughly explore various influencing factors, such
as the number of primary devices in the network,
RF circuit, and signal processing power consumption,
and transmit power of primary devices. Our compre-
hensive comparative analysis highlights the superior
performance of our proposed MDDPG algorithm over
baseline methods, including DDPG, random, and greedy
algorithms, under both linear and non-linear EH models.

C. PAPER ORGANIZATION
The rest of the paper is organized as follows. In Section II,
we present the system model, followed by Section III,
which articulates the problem formulation in depth. In
Section IV, we discuss the core principles of the proposed
DRL framework and structure our optimization problem
accordingly. Extensive simulation results are presented in
Section V, and finally, Section VI concludes the paper.

II. SYSTEM MODEL
We examine a wireless IoT network configuration consisting
of a central base station (BS) and J prescheduled primary IoT
devices, represented by Mj, where 1 ≤ j ≤ J. The primary
devices transmit using a time division multiple access
(TDMA) mechanism, whereby each device is allocated a
designated time slot lasting T seconds within an overarching
frame duration of NT , given that N ≥ J. The scheduling
for these devices is as follows: During the k-th time slot,
labeled, tk and satisfying 1 ≤ k ≤ N, the j-th primary
device is engaged. Here j is determined by the relation
((k − 1) ⊕ J) + 1, with ⊕ as the modulo operation.

In this setup, an energy-constrained device, termed EHSR,
transmits sensor readings to the BS within the time slots
reserved for primary devices. EHSR achieves this using the
CR-NOMA method. The CR-NOMA methodology permits
the transmissions of EHSR to be integrated seamlessly within
the primary devices’ designated time slots while maintaining
their stipulated QoS requirements. The assurance of this
QoS is realized through a unique QoS-driven successive
interference cancelation (SIC) decoding sequence. This
ensures that the signal of the EHSR undergoes decoding in
the initial phase of the SIC decoding process [10].
A standout feature of the EHSR is its ability to derive

energy from the uplink RF transmissions initiated by the
primary devices. Given the k-th time slot as an example,
where tk is equal for all k, the EHSR allocates the first γkT
seconds to data transfer while designating the subsequent
(1 − γk)T seconds to energy accumulation, where γk ∈
[0, 1], is the time-sharing coefficient. To enhance notation
readability, let the primary device scheduled at time tk be
denoted by Mk, wherein Mk = Mj, and j = ((k−1) ⊕ J)+1.
Hereafter, the symbol k will denote both the time slot and
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FIGURE 1. Depiction of the system model for EH symbiotic radio (EHSR).

the primary device. The channel gain between EHSR and
the BS at the k-th time slot is symbolized by h̃k. Moreover,
for any k-th primary device, its channel gains to the BS
and EHSR at the k-th time slot are denoted by hk, and hk,o,
respectively. The detailed system model, including the EH
and CR-NOMA transmission scheme, is shown in Fig. 1.

We assume that the EHSR has full battery power at the
start of communication and that it is aware of the channel
condition information 1 of each primary device broadcasting
at time tk before the communication starts. Since we define
�k as the amount of energy stored in the battery of EHSR at
time tk, therefore, the total transmission energy of the EHSR
is upper bounded on �k, which is expressed as

γkT
(
�̃k + λ

)
≤ �k, (1)

where λ denotes the constant RF circuit power and RF signal
processing power of the EHSR, which characterizes the fixed
power consumption associated with RF circuitry and signal
processing tasks and �̃k represents the transmit power of
EHSR at time tk. Consequently, the total energy available in
the battery of the EHSR at time tk+1 is represented as

�k+1 = min
{
�k + (1 − γk)T[�Prac(�k)]|hk,o|2

− γkT
(
�̃k + λ

)
, �max

}
, (2)

where �Prac(�k) is the practical non-linear EH model of
the EHSR, and �k represents the transmit power of k-th
primary device. In Eq. (2), �max represents the maximum
battery capacity of the EHSR.

1The required CSI can be obtained as follows. Before transmission, the k-
th primary device, Mk , can broadcast a pilot signal. This signal allows both
the BS and the EHSR to simultaneously estimate hk and hk,0, respectively.
Through a reliable feedback channel, the BS can communicate its knowledge
of hk to the EHSR. Additionally, the BS broadcasts another pilot signal to
enable the EHSR to estimate h̃k . For applications with low mobility, such
as static sensors in the IoT, the system overhead from channel estimation
is moderate because pilot signals can be transmitted infrequently.

A. NON-LINEAR EH MODEL
The expression for the practical non-linear EH model for the
EHSR is given by [7]

�Prac(�k) = P̄− α3S

1 − S
, (3)

where,

P̄ = α3

1 + e(−α1(�k−α2))
,

and

S = 1

1 + e(α1α2)
.

Here, P̄ represents a traditional logistic function with respect
to the power of the k-th primary device, i.e., input received
power, the constant S is used to ensure zero-input/zero-output
response for the EH. Constants α1 and α2 represent the
EH circuit specifications, for instance, capacitance, diode
turn-on voltage, and resistance. Whereas, α3 denotes the
maximum harvested energy when the EH circuit is saturated.
Practically, the EH circuit of each EHSR is fixed and the
constant parameters, i.e., α1, α2, α3, and S can be determined
by employing a standard curve fitting tool.
Lemma-1: An explicit expression for (3) can be expressed

as:

�Prac(�k) =
α3

[
eα1�k − 1

]

eα1�k + eα1α2
. (4)

Proof: See the Appendix.
In the sequel, we adopt the practical non-linear EH model

given in (4), hence, (2) is reformulated as follows

�k+1 = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − γk)T

[
α3

[
eα1�k − 1

]

eα1�k + eα1α2

]
|hk,o|2

︸ ︷︷ ︸
Harvested Energy

− γkT
(
�̃k + λ

)
︸ ︷︷ ︸
Consumed Energy

+�k, �max

⎫⎪⎪⎬
⎪⎪⎭

, (5)

which is always positive under the condition set in (1).

III. PROBLEM FORMULATION
This section provides the mathematical modeling of the
EE maximization problem and its formulation into a DRL
framework.
We define the data rate achieved by the EHSR at time tk

by

R̃k = γklog2

(
1 + �̃k|h̃k|2

1 + �k|hk|2
)

. (6)

The order of SIC decoding is specified by (6), where the
signal of EHSR is decoded in the first cycle of SIC decoding,
and that of the scheduled primary device is decoded in the
later phase of the SIC decoding cycle, thereby, ensuring the
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QoS requirements of the primary devices. As our goal is to
maximize the EE of the EHSR, hence, based on (6), the EE
of the EHSR, at k-th time slot, is given by

�k

(
γk, �̃k

)
=

γklog2

(
1 + �̃k|h̃k|2

1+�k|hk|2
)

λ̄ + λ
, (7)

which is the ratio of the instantaneous data rate the EHSR
achieves to the total power used by the EHSR. In (7), λ̄

denotes the total transmit power and reflects the average
power available for transmission over a specified period.
We can observe that (7) satisfies the QoS of the scheduled
primary device by first decoding the signal of the EHSR
and decoding the signal of the scheduled primary device,
without any interference from the EHSR. In EE expression,
the parameters to be optimized are γk and , �̃k. Accordingly,
the maximization problem is formulated as

maximize
γk, �̃k

E

{ N∑
k=1

βk−1�k

(
γk, �̃k

)}
(P1)

s.t. �k+1 = min

{
(1 − γk)T

[
α3

[
eα1�k − 1

]

eα1�k + eα1α2

]
|hk,o|2

− γkT
(
�̃k + λ

)
+ �k, �max

}
, (P1a)

Rk ≥ τk, (P1b)

γkT
(
�̃k + λ

)
≤ �k, (P1c)

0 ≤ �̃k ≤ �max, (P1d)

0 ≤ γk ≤ 1. (P1e)

In Problem (P1), E{·} is the expected sum of discounted
energy efficiencies of the EHSR, with β denoting the
discount factor, preferring to yield a long-term gain, Rk =
log (1 + �k|hk|2), presents the data rate of the k-th primary
device, and τk denotes the minimum achievable rate by the
k-th primary device. Constraint (P1a) gives the total amount
of energy available in the battery of the EHSR at time tk+1,
whereas, Constraint (P1b) ensures the QoS requirements
of the primary devices. Constraint (P1c) caps the total
energy consumed by the EHSR by the total energy available
in the battery of the EHSR at time tk. Constraints (P1d)
and (P1e) limit the values of transmit power and time
sharing coefficient of EHSR, respectively, where �max is the
maximum transmit power of the EHSR.
As it can be observed, Problem (P1) is non-convex

because i) the objective function is a non convex long-
term EE function, ii) Constraint (P1a) is not an affine
function, and iii) Constraint (P1c) involves both optimization
variables being multiplied making it non convex. However,
in the considered optimization problem, timely decisions
about EH and transmissions must be made according to the
resources available at the EHSR. These decisions motivate
the application of reinforcement learning to address this
optimization problem, and the continuous nature of the
optimization variables makes Problem (P1) well-suited to be

approached using the MDDPG algorithm. However, (P1d)
and (P1e) assume different ranges of values, which makes
it challenging to directly apply the MDDPG algorithm.
Therefore, we take advantage of the primal decomposi-
tion method and deal with Problem (P1) as a two-layer
optimization problem to facilitate the application of the
MDDPG algorithm.
Similar to [26], we first introduce an energy fluctuation

parameter �̄k, which is the difference between harvested and
consumed energy, and is given by

�̄k = (1 − γk)T

[
α3

[
eα1�k − 1

]

eα1�k + eα1α2

]
|hk,o|2

︸ ︷︷ ︸
Harvested Energy

− γkT
(
�̃k + λ

)
︸ ︷︷ ︸
Consumed Energy

.

(8)

Note that �̄k can be interpreted as energy deficit if �̄k < 0
or energy surplus if �̄k > 0 at time tk. Accordingly, the first
layer problem can be formulated as follows

maximize
γk, �̃k

�k

(
γk, �̃k

)
(P2)

s.t. �̄k = (1 − γk)T

[
α3

[
eα1�k − 1

]

eα1�k + eα1α2

]
|hk,o|2

−γkT
(
�̃k + λ

)
, (P2a)

(P1b), (P1c), (P1d), (P1e), (P2b)

and the second layer optimization problem is given by

maximize
�̄k

E

{ N∑
k=1

βk−1�k

(
γk, �̃k

)}
(P3)

s.t. �k+1 = min
{
�max, �̄k + �k

}
, (P3a)

which has been formulated following [31].

A. SOLUTION APPROACH
The solution approach to this problem is divided into two
phases; in the first phase, we use convex optimization to
derive closed-form expressions for the optimization variables
for a given �̄k in Problem (P2). Hence, the optimal solution
is expressed as functions of �̄k in Problem (P2), i.e., γ ∗

k (�̄k)

and �∗
k (�̄k). In the second phase, we employ MDDPG

algorithm to solve Problem (P3) while using the derived
optimal solutions in the first phase. Consequently using the
closed-form expressions, Problem (P3) could be reformulated
as follows

maximize
�̄k

E

{ N∑
k=1

βk−1�k

(
γ ∗
k (�̄k), �̃

∗
k (�̄k)

)}
(P4)

s.t. �k+1 = min
{
�max, �̄k + �k

}
, (P4a)

which highlights the fact that the action of the EHSR is to
choose �̄k. We can observe that Problem (P4) is a single
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variable function and the continuous nature of the parameter
of interest, i.e., �̄k, makes this one-dimensional, continuous
action space optimization problem best fitted to be addressed
by a DRL algorithm, which in our case is the MDDPG
algorithm.

B. CLOSED-FORM EXPRESSIONS FOR γ ∗
K (�̄K ) AND

�∗
K (�̄K )

To find closed-form expressions, we rewrite Problem (P2)
as follows

maximize
γk, �̃k

�k

(
γk, �̃k

)
(P5)

s.t. (1 − γk)T

[
α3

[
eα1�k − 1

]

eα1�k + eα1α2

]
|hk,o|2

− γkT
(
�̃k + λ

)
− �̄k = 0, (P5a)

(P1b), (P1c), (P1d), (P1e). (P5b)

Problem (P5) is clearly a non-convex problem due to
Constraint (P5a) not being affine and also the fact that
optimization variables appear in multiplication in (P1c).
Following [31], an equivalent form of (P5) is given by

maximize
γk

f̂o(γk) (P6)

s.t. 0 ≤ γk ≤ 1, (P6a)

where, f̂o(γk) = sup{�k(γk, �̃k)| (P5a), (P1b), (P1c), (P1d)}.
Using (P5a), we develop an expression for �̃k as follows

�̃k =
[

(1 − γk)Tα3
[
eα1�k − 1

]|hk,o|2(
eα1�k + eα1α2

)
γkT

]
− �̄k

γkT
− λ. (9)

Similarly, using (P1c), we develop an inequality expres-
sion for �̃k as follows

�̃k ≤ �k

γkT
− λ. (10)

Using (9) and (10), Problem (P5) is reformulated as a
function of �̃k as follows

maximize
�̃k

�k

(
γk, �̃k

)
(P7)

s.t. �̃k =
[

(1 − γk)Tα3
[
eα1�k − 1

]|hk,o|2(
eα1�k + eα1α2

)
γkT

]

− �̄k

γkT
− λ, (P7a)

�̃k ≤ �k

γkT
− λ, (P7b)

(P1b), (P1d). (P7c)

We can observe that Problem (P7) is a function of �̃k only,
where �k is fixed. Using (P7a), an optimal solution for f̂o(γk),
i.e., f̂ ∗o (γk), can be computed as follows

f̂ ∗o (γk) =
γklog2

(
1 + |h̃k|2

(
(1−γk)Tα3

[
eα1�k−1

]
|hk,o|2−A�̄k−AγkTλ

)
AγkT(1+�k|hk|2)

)

λ̄ + λ
,

(11)

where A = eα1�k + eα1α2 . Constraints (P7b) and (P1d) in
Problem (P7) are guaranteed by the domain of f̂o(γk), which
can be expressed as follows

D =
{

γk

∣∣∣∣0 ≤
[

(1 − γk)Tα3
[
eα1�k − 1

]|hk,o|2(
eα1�k + eα1α2

)
γkT

]
− �̄k

γkT

− λ ≤ min

{
�max,

�k

γkT
− λ

}}
. (12)

Using the optimal solution, f̂ ∗o (γk), and using constraints in
the domain of f̂o(γk), we can reformulate Problem (P6) as
in the following lemma.
Lemma-2: Reformulation of Problem (P6) can be

expressed as:

maximize
γk

f̂ ∗o (γk) (P8)

s.t. γk ≥ B− (
eα1�k + eα1α2

)
�̄k

B+ T
[
λ + �max

](
eα1�k + eα1α2

) , (P8a)

γk ≥ 1 −
[
�̄k + �k

](
eα1�k + eα1α2

)

B
, (P8b)

γk ≤ B− (
eα1�k + eα1α2

)
�̄k

B+ (
eα1�k + eα1α2

)
Tλ

, (P8c)

(P1b), (P1e). (P8d)

In Problem (P8), B = Tα3[eα1�k − 1]|hk,o|2. By exploiting
the properties of constraints in the Problem (P8) a closed-
form optimal solution can be derived as follows. First, to
simplify, we recast Problem (P8) and get

maximize
γk

γklog2

(
1 +

(
(1−γk)p1−p2

)
γk

− p3

)

p4
, (P9)

s.t. γk ≥ max

{
B− (

eα1�k + eα1α2
)
�̄k

B+ T
[
λ + �max

](
eα1�k + eα1α2

) , 0,

1 −
[
�̄k + γk

](
eα1�k + eα1α2

)

B

}
, (P9a)

γk ≤ min

{
1 −

[
�̄k + �k

](
eα1�k + eα1α2

)

B
, 1

}
, (P9b)

(P1b), (P9c)

where, p1 = |h̃k|2Tα3[eα1�k−1]|hk,o|2
AT(1+�k|hk|2) , p2 = �̄k|h̃k|2

T(1+�k|hk|2) , p3 =
λ|h̃k|2

(1+�k|hk|2) , and p4 = λ̄ + λ. Let γ̂k be the optimal solution
for (11), after some algebraic manipulations we get
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ˆf ∗o
(
γ̂k

) =
γ̂klog2

(
1 − p1 − p3 + p1−p2

γ̂k

)

p4
, (13)

where the argument of the log function, i.e., (1 − p1 −
p3 + p1−p2

γ̂k
) is strictly positive once all the constraints in

Problem (P8) are met. The first and second derivatives of (13)
w.r.t γ̂k are, respectively, given as

=
log2

(
1 − p1 − p3 + p1−p2

γ̂k

)
−

(
p1−p2

γ̂k−p1γ̂k−p3γ̂k+p1−p2

)

p4
,

(14)

= −
(
p2

1 − p2
2

)2

p4γ̂k
(
γ̂k − p1γ̂k − p3γ̂k + p1 − p2

)2
, (15)

which is less than 0, and thus implies that the function
f̂ ∗o (γk) is a concave function for γk ≥ 0, hence there exists a
single solution (maximum) γ̂k. Following the concave nature
of (13), it becomes the root of the following equation

log2

(
1 − p1 − p3 + p1−p2

γ̂k

)
−

(
p1−p2

γ̂k−p1γ̂k−p3γ̂k+p1−p2

)

p4
= 0.

(16)

Simplifying (16) further we get

z∗log2
(
z∗

) − (
z∗ − 1 + p1 + p3

)

z∗p4
= 0, (17)

where, z∗ = (1 − p1 − p3 + p1−p2
γ̂k

). Further algebraic
manipulation reduces (17) to

z∗log2
(
z∗

) − z∗ = 1 − p1 − p3. (18)

Note that (18) could easily be transformed into the form of
Lambert W function. Let z∗ = eq

∗
, Eq. (18) is transformed

to

eq
∗(
q∗ − 1

) = 1 − p1 − p3. (19)

To make the application of Lambert W function to (19) pos-
sible, we multiply both sides of (19) with e−1, consequently,
we get

(
q∗ − 1

)
eq

∗−1 = e−1(1 − p1 − p3), (20)

which is in the form of the Lambert W function, i.e.,
UeU = Y . Since the value of (1 − p1 − p3) can be positive
or negative, two real-valued solutions of q∗ are given by

q∗ = U0

(
e−1(1 − p1 − p3)

)
+ 1, (21)

and

q∗ = U−1

(
e−1(1 − p1 − p3)

)
+ 1. (22)

Fortunately, the solution corresponding to the principal
branch of Lambert W function given by (22), could be

FIGURE 2. Illustration for possible scenarios for γ̂k .

discarded, as it is not a feasible solution. Consequently,
using (21), the optimal solution for z∗ is given by

z∗ = eq
∗ = eU0

(
e−1(1−p1−p3)

)
+1

. (23)

Using the relation z∗ = (1 − p1 − p3 + p1−p2
γ̂k

) an explicit
equation for γ̂k is given by

γ̂k = p1 − p2

z∗ + p1 + p3 − 1
. (24)

Based on (23), (24) becomes

γ̂k = p1 − p2

eU0

(
e−1(1−p1−p3)

)
+1 + p1 + p3 − 1

. (25)

Although γ̂k could be an optimal solution for (11), it may
not necessarily be an optimal solution for (P8), because γ̂k
is obtained by discarding the constraints, (P8a) and (P8b),
and (P8c), thereby, it may violate any of the inequality
constraints. Therefore, an optimal solution for problem (P8)
is computed as follows:
Firs we define the feasibility set for γk as

max{0, �} ≤ γk ≤ min{1, �̃}, (26)

where, � = max{ B−(eα1�k+eα1α2 )�̄k
B+T[λ+�max](eα1�k+eα1α2 )

, 1 −
[�̄k+�k](eα1�k+eα1α2 )

B }, and �̃ = min{ B−(eα1�k+eα1α2 )�̄k
B+(eα1�k+eα1α2 )Tλ

}. By

using the concavity of the objective function, i.e., f̂ ∗o (γk),
(given by Eq. (16)), we have

0 ≤ γ̂k ≤ �̃. (27)

Based on (28), it is evident that the relationship among
0, �̃, and γ̂k is predetermined. However, the relationship
involving γ̂k, 1, and � is not fixed, leading to three distinct
cases resulting in three different solutions:

• Case 1: When γ̂k ≥ max{0, �} and γ̂k ≤ min{1, �̃}, γ̂k
is inside of the feasible set of problem (P8) as shown
in Fig. 2 (a). Hence, γ̂k is the optimal solution to the
problem.

• Case 2: When γ̂k ≤ �, the feasible set of γk is
[�, min{1, �̃}] and γ̂k is at the left-hand side of the
feasible set as shown in Fig. 2 (b). The function is
monotonically decreasing over the feasible set, and
hence � is the optimal solution to the problem.
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• Case 3: When γ̂k ≥ 1, the feasible set of γk becomes
[ max{0, �}, 1] and γ̂k is at the right-hand side of
the feasible set as shown in Figure 2(c). The function
is monotonically increasing over the feasible set, and
hence 1 is the optimal solution to the problem.

Consequently, the optimal solution for Problem (P8) is
given by

γ ∗
k

(
�̄k

) =
{
min

{
�, 1

}
if Rk ≥ τk

0 otherwise,
(28)

where � = max{γ̂k, �}, and it can be observed that (28) is
a function of �̄k. Finally, using (28), the optimal solution
�∗
k (�̄k) is given by (from (9))

�∗
k

(
�̄k

) =
[(

1 − γ ∗
k (�̄k)

)
Tα3

[
eα1�k − 1

]|hk,o|2(
eα1�k + eα1α2

)
γ ∗
k

(
�̄k

)
T

]

− �̄k

γ ∗
k

(
�̄k

)
T

− λ. (29)

Consequently, we employ the optimal values obtained
from (28) and (29) to address Problem (P4) through the appli-
cation of the MDDPG algorithm. Specifically, the MDDPG
algorithm facilitates the determination of an optimal action,
denoted as �̄k. This action is used in calculating the values
in (28) and (29), which are subsequently reincorporated into
the objective function of Problem (P4), thereby enhancing
the EE of the EHSR.

IV. PROPOSED DRL FRAMEWORK
In this section, we first discuss the basic principles of the
DDPG algorithm. Following that, we briefly explain how
the proposed MDDPG algorithm differs from the DDPG
algorithm. Finally, we give insight into how to structure
our optimization Problem (P4) within the framework of the
MDDPG algorithm.

A. UNDERLYING FRAMEWORK OF MDDPG
The DDPG algorithm generally operates as an actor-critic
DRL method, tailored ideally for DRL challenges with
continuous action dimensions. It finds its roots in the
Deep Q-Network (DQN) and Deterministic Policy Gradient
(DPG) [32]. In the DDPG algorithm, a pool of past
experiences is stored in the replay buffer, and a batch of
experiences is chosen at random from this pool to train
the agent and enhance its learning process. The size of the
pool and the batch of experiences can significantly affect the
performance of the DDPG algorithm. For instance, a random
selection of a batch from a small-sized pool can degrade
the episodic reward performance, as it may not provide a
diverse and representative sample of experiences for effective
learning. Consequently, a larger pool size is often selected in
the DDPG algorithm to ensure a richer variety of experiences
for training.
To further enhance performance, the MDDPG algorithm

employs the concept of combined experiences, integrating

efficient sampling of experience tuples. This process ensures
that the latest experience tuples encountered by the agent are
included in the batch selection procedure. By incorporating
the most recent experiences, the algorithm benefits from
up-to-date information about the environment, which helps
improve learning efficiency and stability. This approach
reduces the dependency on a large experience pool size while
improving performance in terms of episodic rewards. The
inclusion of recent experiences ensures that the agent adapts
more quickly to changes in the environment, thereby achiev-
ing better overall performance compared to the traditional
DDPG algorithm.

B. EXECUTION OF MDDPG FRAMEWORK
To adapt the MDDPG to our problem, we define the
necessary state space, action space, and reward parameter as
follows.

1) STATE SPACE

The available energy from the EHSR and all of the channel
gains are given as a tuple in the state space as

s̄k =
[
�k, |hk|2, |hk,o|2, |h̃k|2

]T
. (30)

2) ACTION SPACE

The action space contains the action taken by the EHSR.
In our case, the action space is �̄k. The upper and lower
bounds on the value of �̄k is given by

− min

{
T(�max + λ), �k

}
≤ �̄k ≤ min

{
�max − �k,

B

A

}
.

(31)

The upper limit is valid when the EHSR refrains from
transmission, specifically when γk = 0, and solely harvests
energy. Conversely, the lower limit applies when the EHSR
exclusively transmits without harvesting energy; that is, when
γk = 1. Given its capacity to adopt considerably smaller or
substantially larger values, (31) can be normalized as follows

�̄k = ζkmin

{
�max − �k,

B

A

}

− (1 − ζk)min

{
T(�max + λ), �k

}
. (32)

Hence, the suitable action parameter for the suggested
algorithm is ζk ∈ [0, 1].

3) REWARD PARAMETER

The reward metric is defined by the EE of the EHSR, as
represented by

�k

(
γ ∗
k (�̄k), �̃

∗
k (�̄k)

)
=

γ ∗
k

(
�̄k

)
log2

(
1 + �̃∗

k (�̄k)|h̃k|2
1+�k|hk|2

)

λ̄ + λ
.

(33)

Using the specified state space, action space, and reward
allows for the direct application of MDDPG to the
Problem (P4).

VOLUME 5, 2024 5239



ULLAH et al.: DRL-DRIVEN OPTIMIZATION OF A WIRELESS POWERED SR WITH NONLINEAR EH MODEL

Algorithm 1MDDPG Algorithm Steps for EE Maximization
Initialization

1: Initialize the actor network, A(s̄|θA) with random weights, θA.

2: Initialize the critic network,C(s̄, a|θC), randomly with random weights,
θC;

3: Initialize the actor target network, Ak(s̄k|θAk ) and the critic target
network Ck(s̄k, ak|θCk ) with weights θAk and θCk , respectively;

4: Create a replay buffer with a capacity of B;
Main Loop

5: for Episode i = 1 to Q do
6: Produce a random noise process to facilitate action

exploration;
7: Capture the initial state s̄k from the environment;

8: for Episode Steps j = 1 to Q̄ do
9: Select an action aj using the current policy and explor-

action noise and obtain �̄k from (32);

10: Execute the action ak , obtain reward rk and retrieve the
subsequent state s̄k+1 from the environment

11: Save the observed experience tuple, (s̄k, ak, rk, s̄k+1), in-
to the replay buffer;

12: Draw a random batch of S− 1 experiences from the
replay buffer;

13: Incorporate the most recent experience tuple into the
batch of experiences chosen in step 12;

14: Define yk = rk + γCk(s̄k+1,Ak(s̄k+1|θAk )|θCk );
15: Minimize the loss function L(θC) = ∑

k |yk −C(s̄k, ak|θC)|2
and subsequently update the critic network;

16: Update the actor network by applying the gradient:
∇

θAJ(θ
A) = ∇akQ(s̄k, ak|θC)∇

θAA(s̄k|θA);

17: Update both the actor and critic target networks:
θAk → ξθA + (1 − ξ)θAk and θCk → ξθC + (1 − ξ)θCk

18: end for
19: end for

4) STEPS INVOLVED IN EXECUTING MDDPG

Algorithm 1 outlines the execution steps of the MDDPG
algorithm. Initially, the actor and critic networks, together
with their respective target networks, have their network
weights randomly initialized in the first stage (lines 1-3, in
Alg. 1). Subsequently, a buffer replay of capacity B is created
(line 4, in Alg. 1) to store and sample the past experiences.
As the algorithm initiates, in each episode, random noise
is generated to help the agent explore the environment first
and concurrently, observe initial states from the environment
(lines 6-7, in Alg. 1). Progressing sequentially, in each
episodic step, the agent selects the action using the current
policy, evaluates the reward using the predicted action and
then transitions to the next state (lines 9-10, in Alg.1). Within
this iterative framework, the newly observed state along
with the preceding state, action, and reward is stored in the
buffer replay (line 11, in Alg.1). An experiences extraction
procedure is then executed, wherein a random batch of
experiences, denoted as S− 1, selected from replay buffer,
to which the most recent tuple of experiences is appended
(lines 12-13, in Alg.1). The value network is updated next,
using the Bellman equation (line 14, Alg. 1). The critic

network is updated using the loss function given in line 15,
in Alg. 1. The policy of the actor network is updated by
applying the gradient to the objective function with respect
to the policy parameter, θA (line 16, Algorithm 1). To
monitor the learning progress of the networks, a copy of
the target networks parameters are used (line 17, in Alg. 1).
The cycle is repeated Q̄ times in each episodes and a total
of Q episodes are executed for training and learning of the
agent.

V. SIMULATION RESULTS
In this section, we analyze the EHSR’s performance using the
key performance metrics, i.e., EE, sum rate, and EH through
extensive simulations. These metrics are assessed for both the
proposed MDDPG and the baseline DDPG algorithms, while
simultaneously comparing their performance for the non-
linear and baseline linear EH models. We then describe the
outcomes of the simulations, provide an in-depth discussion,
and highlight critical observations from the simulation
results.
To optimize the EE of the EHSR, we train an RL agent

consisting of an actor-critic network pair, where neural
network architectures of both the actor and critic networks
employ two hidden layers, each employing Mk = 64 nodes.
The hidden layers use rectified linear activation (ReLU) to
avoid vanishing gradient concerns, while the output layer
exploits the capabilities of the hyperbolic tangent function.
The actor and critic networks’ learning rates are, respectively,
set to 0.002 and 0.004. We incorporate a reward discount
coefficient, β = 0.9, and a network update factor, ξ = 0.01.
A batch size of S = 64 is designated for replay experience.
As for network setup according to the system model

(c.f., Section II), BS is deployed at the intersection of the
x − y plane, and the EHSR is placed at a point (1 m,
1 m). Fig. 3 shows the overall network setup, including the
different deployment configurations of the primary devices.
The system, having a bandwidth of 1 MHz, operates at
a center frequency of 914 MHz. We assume a Rayleigh
fading environment for our simulations, and we have
integrated dynamic channels to more accurately simulate
real-world conditions. The noise profile involves an additive
white Gaussian noise with a power spectral density of
−170 dBm/Hz. Lastly, we consider the path loss model
from [33], with a path loss exponent of 3. We assume non-
linear EH model parameters as, α1 = 150, α2 = 0.014, and
α3 = 13.8 dBm [34], [35]. For the linear EH model, we set
an efficiency rate, η = 0.8. The initial energy reserve within
the battery is fixed at �max = 0.2 J. We assume a time slot
of length, T = 1s, and the maximum transmit power of the
EHSR is set to �max = 0.1W.

A. COMPLEXITY ANALYSIS NOTE
Using DRL algorithms results in higher computational
complexity compared to non-DRL methods. For instance,
the greedy scheme, which uses all available energy for
data transmission, is computationally efficient. In contrast,
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FIGURE 3. Network setup used for performance analysis, with different deployment
scenarios of the primary devices.

assuming a fully trained actor network, DRL algorithms
have a complexity of O(M2

k ), with O(·) presenting the
computational complexity operator. The training phase’s
complexity is difficult to analyze due to dependencies on
gradient iterations and the structure of the critic network.
Detailed complexity analysis and mitigation strategies are
important future research directions. Leveraging mobile
edge computing (MEC) for offloading computations to the
base station is a promising approach to address the high
complexity of DRL algorithm training.

B. STABILITY AND CONVERGENCE OF THE MDDPG
To ensure the stability and convergence of the MDDPG
framework in dynamic environments, we employ several
strategies: (i) Experience replay and mini-batch training,
which break correlations between experiences and reduce
gradient variance; (ii) target networks for both the actor
and critic, providing consistent updates by smoothing abrupt
changes; (iii) parameter noise, enhancing exploration and
avoiding local optima; and (iv) careful tuning of hyperpa-
rameters and robust training, including early stopping and
periodic evaluation to prevent overfitting. These measures
collectively enhance the stability, reliability, and effective-
ness of our MDDPG framework.

C. LEARNING EFFICIENCY ANALYSIS OF DRL MODELS
In the learning efficiency analysis, we compare the
performance of the proposed MDDPG algorithm with the
baseline DDPG algorithm along with non-DRL algorithms
including the random method and greedy method in terms
of episodic reward (or EE) and sum rate. In the greedy
algorithm, the EHSR uses all available energy for data
transmission before it starts EH. Specifically, it sets its
transmission power at �max and calculates γk as γk =
min{1, �k

T�max
}. In the random scheme, the transmit power of

the EHSR is set to �max, whereas the value of γk is chosen
randomly from a uniform distribution ranging between 0
and min{1, �k

T�max
}. The analysis focuses on evaluating the

convergence performance of the algorithms when exposed
to non-linear and linear EH dynamics. In Fig. 4, when
comparing the EHSR’s episodic reward for the proposed
MDDPG with the baseline schemes, we can make the
following observations.

FIGURE 4. Comparison of the episodic rewards of EHSR for the proposed MDDPG
and baseline algorithms under linear and non-linear EH models, given J = 2,
λ = 0 dBm, and �k = 30 dBm.

TABLE 1. Statistical comparison of the EE performance between the proposed
MDDPG algorithm and the baseline algorithms for both linear and non-linear cases.

• Episodic reward reduces by approximately 30% for
the non-linear EH model, irrespective of the learning
approach, demonstrating the complexity of learning in
practical EH settings with inherent non-linearities.

• Still, the proposed MDDPG outperforms the DDPG and
the non-DRL methods for the non-linear EH model by
converging to higher episodic reward.

• Meanwhile, the proposed MDDPG converges faster than
the DDPG, especially for linear EH.

Table 1 presents a statistical comparison of the episodic
reward performance between the proposed MDDPG algo-
rithm and baseline algorithms under both linear and
non-linear EH models. The MDDPG algorithm outperforms
the DDPG and other baseline algorithms in terms of average
reward for both linear and non-linear EH models, showing
more consistency (lower standard deviation) in the non-linear
case compared to DDPG. The random and greedy methods
perform significantly worse in both models. In the following
analysis, we will omit discussions on non-DRL methods
due to their significantly inferior performance compared to
DRL algorithms. Therefore, our focus will be on comparing
the proposed MDDPG algorithm with the baseline DDPG
algorithm.
Fig. 5 compares the EHSR’s sum rate for the proposed

MDDPG and the baseline algorithms, with two different
locations of the primary devices. In both scenarios, the
MDDPG algorithm exhibits superior performance in terms of
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FIGURE 5. Comparison of the sum rate of EHSR for the proposed MDDPG and
baseline algorithms under linear and non-linear EH models, given J = 2, λ = 0 dBm,
and �k = 30 dBm, (a) for M1 located at (0 m, 1 m), and M2 located at (0 m, 1000 m),
(b) for M1 located at (0 m, 1 m), and M2 located at (0 m, 100 m).

convergence rate. This pattern occurs because the MDDPG
algorithm assembles an optimal collection of experience
tuples, facilitating the agent to learn more efficiently and
achieve convergence before the DDPG algorithm. Moreover,
the reduction in the sum rate when the EHSR operates
under the influence of a non-linear EH model is evident.
With linear EH models offering an optimistic perspective,
the proposed MDDPG offers an efficient solution for the
transmission and harvesting cycle optimization of an EHSR
in practical settings. It can be observed that, In scenarios
where primary users are in closer proximity to the EHSR, it
becomes apparent that the EHSR experiences a diminished
sum rate. This effect arises from the increased interference
generated by both primary devices.

D. ENERGY EFFICIENCY (EE) ANALYSIS
After showing the suitability of the proposed MDDPG for
efficient learning in the presence of EH non-linearities, we
analyze the EE of EHSR with respect to various parameters,

FIGURE 6. EE evaluation of the EHSR in relation to total RF power under linear and
non-linear EH models, with MDDPG algorithm and parameters J = 2, and �k = 30
dBm.

including RF circuit power (λ), primary devices (J), and the
power of primary devices (�k). This analysis considers both
the linear and non-linear EH models.

1) VARYING RF POWER

Fig. 6 examines the EE of EHSR with respect to total RF
power for selected episodes, where the EE tends to decrease
with the increase in total RF power. Importantly, EE for the
non-linear EH model is approximately 30% lower than the
linear model, with the trend maintaining for increasing RF
power. Further, the EE of the RL agent converges after 30
episodes for the linear model, whereas the non-linear model
exhibits dynamic variations even at 60 episodes, highlighting
the intricate complexities and nuances of learning in practical
EH conditions.

2) DIFFERENT NUMBERS OF PRIMARY DEVICES

In Fig. 7, we present the EHSR’s EE for different numbers
of primary devices (J) in the environment. It can be observed
that by increasing the number of primary devices in the
network, the EE of the EHSR is reduced. Further, the
algorithm convergence for the linear EH model is faster
than the non-linear model. This arises due to two primary
factors. Firstly, the state space that the DRL agent must
navigate becomes exponentially complex as the number of
devices increases. Secondly, the primary users tend to be
situated farther away from the BS, consequently impacting
the overall EE. As a result, the learning process of the DRL
agent struggles to optimize its policy over a varied and
dynamic environment, consequently reducing the EE of the
EHSR. Still, capturing this interplay is vital for determining
the optimal operational state and energy performance of the
EHSR.

3) IMPACT OF PRIMARY DEVICE’S POWER

Fig. 8 presents the EE performance of the EHSR for the
MDPPG algorithm when subjected to different power levels
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FIGURE 7. EE evaluation of the EHSR under linear and non-linear EH models for
different number of primary devices (J), with MDDPG algorithm and parameters
λ = 0 dBm and �k = 30 dBm.

FIGURE 8. EE performance of the EHSR under linear and non-linear EH models for
different power settings of the primary device, with MDDPG algorithm and parameters
J = 2, and λ = 0 dBm.

of the primary device (�k) with parameters J = 2 and
λ = 0 dBm. The EHSR’s EE performance is observed to
be adversely affected by the increase in �k because the
EHSR experiences increased interference from the primary
device (see (7) for the EE of EHSR). For instance, under
any EH model, the EE is reduced by 41% when the �k

increases from 30 dBm to 35 dBm. It implies that although
the amount of energy harvested is expected to increase with
the increase in primary devices’ power level (as shown in
the next section), the EHSR needs more transmit power for
CR-NOMA transmissions. Meanwhile, the non-linear EH
model leads to a significant reduction in EE compared to the
linear model, while the DRL agents’ convergence rate is also
affected by the non-linear dynamics of the EH. This analysis
highlights the significance of the appropriate EH model for

FIGURE 9. Analysis of the energy harvested by the EHSR for linear and non-linear
EH models for different number of primary devices, with the MDDPG algorithm and
parameters λ = 0 dBm and �k = 30 dBm.

optimizing the performance of EHSR when exposed to the
different dynamics of the primary system.

E. ENERGY HARVESTING (EH) ANALYSIS
In the following, we turn to the EH analysis of EHSR with
respect to the behavior of the primary network/devices.

1) DIFFERENT NUMBER OF PRIMARY DEVICES

We evaluate the EHSR’s EH performance under the MDDPG
algorithm while exposing it to different numbers of primary
devices in Fig. 9. It can be observed that the agent’s EH
performance at initial episodes is higher due to policy
exploration before converging at around 30 episodes. After
convergence, there is a significant performance gap between
the ideal and practical EH models, where the non-linear
model captures the diverse dynamics of practical EH
mechanisms. Further, the harvested energy appears to be
influenced by the density and placements, emphasizing the
primary devices’ role in influencing the overall EH efficiency
of EHSR.

2) IMPACT OF PRIMARY DEVICE’S POWER

Fig. 10 shows the energy captured by the EHSR with respect
to the transmit power of the primary devices, with J = 2 and
λ = 0 dBm. It is evident that the power level of the primary
devices significantly impacts the EH efficiency. By increas-
ing the transmit power of the primary device, the agent is able
to harvest more energy from the RF transmission; however,
the impact is prominent for the linear EH model compared to
the non-linear EH model. The relationship between primary
device power and harvested energy, especially under the non-
linear model, provides insight into potential saturation points
and the practical limitations of EH. In conclusion, Fig. 10
illustrates the significance of comprehending the intricacies
of EH behaviors, especially in relation to primary device
power levels, and highlights the trade-offs and considerations
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FIGURE 10. Analysis of the energy captured by the EHSR using both linear and
non-linear EH paradigms for different power levels of primary devices, with the
MDDPG algorithm and parameters J = 2 and λ = 0 dBm.

FIGURE 11. Joint influence of transmit power of primary devices (�k ) on both EE
and EH of the EHSR, evaluated under linear and non-linear EH models. The simulation
results consider two different episode counts of the MDDPG algorithm, and J = 2.

essential for optimizing the transmission and harvest-
ing parameters of a symbiotic radio under practical EH
models.

F. JOINT EE AND EH ANALYSIS
To provide a cohesive understanding/visualization of EE
and EH metrics of EHSR, Fig. 11 shows a y-y plot that
simultaneously contrasts the impact of the transmit power
of primary devices (�k) on the two metrics. Evidently,
the �k impacts both EE and EH; EE decreases while
EH increases linearly with the increase in �k. This result
can be interpreted as the agent receiving more interference
(power) by increasing �k; hence it can harvest more but
needs to spend more energy in CR-NOMA. In conclusion,
Fig. 11 symbolizes the complex influences of transmit
power on the operational effectiveness and energy-harvesting

capacities of the EHSR. These two metrics, when compared
for different EH models, highlight challenges associated
with energy management and transmission optimization in
realistic settings.

VI. CONCLUSION
To integrate RF energy-harvesting symbiotic radios (EHSRs)
with scheduled primary devices in the network, this arti-
cle employed the cognitive radio-inspired non-orthogonal
multiple access (CR-NOMA) framework. We designed an
energy efficiency (EE) metric while including a non-linear
practical EH model and also considered the effect of
RF circuitry and RF signal processing power consumption
inherent to the EHSR. To maximize the EE of the EHSR, the
study proposed a novel deep reinforcement learning (DRL)–
engineered transmission approach that coordinates the uplink
transmissions of EHSR. The two-layer optimization problem
is solved by adopting convex optimization in the first layer,
where closed-form expressions are derived for the optimal
parameters, and using the derived parameters, DRL, in spe-
cific, modified deep deterministic policy gradient (MDDPG)
is deployed in the subsequent layer to solve a high dimen-
sional continuous space optimization problem. Simulation
results showed that the EE performance under a non-linear
model is mostly lower than the ideal linear EH model,
which overestimates the potential of EH. Nevertheless, the
EE optimization strategy proposed in this study is more
practical, encompassing the complexities and non-linearities
induced by the non-linear model, thereby leading to the
realistic design of transmission and harvesting policy. In the
future, the proposed model can be extended to accommodate
multiple EHSRs in the network, which could be addressed
as a multiagent DRL problem. Additionally, backscatter
communication can be considered a promising research
direction for ultra-low power communication scenarios.

APPENDIX
PROOF FOR LEMMA-1
Recall that the practical non-linear EH model is defined as

�Prac(�k) = P̄− α3S

1 − S
, (34)

where,

P̄ = α3

1 + e(−α1(�k−α2))
,

and

S = 1

1 + e(α1α2)
.

Putting the values of P̄ and S in (34) gives

�Prac(�k) =
α3

1+e−α1(�k−α2)
− α3

1
1+eα1α2

1 − 1
1+eα1α2

. (35)
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Factoring out common terms and taking LCM in the
denominator of (35), we get

�Prac(�k) =
α3

[
1

1+e−α1(�k−α2)
− 1

1+eα1α2

]

1+eα1α2 −1
1+eα1α2

. (36)

After performing some algebraic manipulation, we get

�Prac(�k) = α3

[
1

1 + e−α1(�k−α2)
− 1

1 + eα1α2

]
e−α1α2

(
eα1α2 + 1

)

= α3 −
[
e−α1α2(eα1α2 + 1)

]
α3

eα1(�k−α2) + 1
. (37)

Further simplifying (37) completes the proof.

PROOF FOR LEMMA-2
In this lemma, we show the proof of constraints (P8a), (P8b),
and (P8c).

PROOF FOR (p8a)
Recall from (9) that

�̃k =
[
(1 − γk)Tα3

[
eα1�k − 1

]|hk,o|2(
eα1�k + eα1α2

)
γkT

]
− �̄k

γkT
− λ, (38)

While from (P1d), we have

�̃k ≥ 0. (39)

To simplify, let Tα3[eα1�k−1]|hk,o|2 = B, and we recast (38)
and (39) as follows

(1 − γk)B− (
eα1�k + eα1α2

)
�̄k − (

eα1�k + eα1α2
)
λγkT(

eα1�k + eα1α2
)
γkT

≥ 0, (40)

B− (
eα1�k + eα1α2

)
�̄k ≥ Bγk + (

eα1�k + eα1α2
)
λγkT, (41)

After performing some algebraic manipulations and
simplifications, (41) is transformed to

γk ≤ B− (
eα1�k + eα1α2

)
�̄k(

B+ (eα1�k + eα1α2)Tλ
) , (42)

which completes the proof.

PROOF FOR (p8b)
From (10), we know that

�̃k ≤ �k

γkT
− λ. (43)

Using (40), we have

(1 − γk)B− (
eα1�k + eα1α2

)
�̄k − (

eα1�k + eα1α2
)
λγkT(

eα1�k + eα1α2
)
γkT

≤ �k − λγkT

γkT
. (44)

After performing some algebraic manipulations to (44) we
get

(1 − γk)B− (
eα1�k + eα1α2

)
�̄k ≤ (

eα1�k + eα1α2
)
γk, (45)

Solving (45) for γk gives

γk ≥ 1 −
[
�̄k + �k

](
eα1�k + eα1α2

)

B
, (46)

which completes the proof.

PROOF FOR (p8c)
From (P1d), we have

�̃k ≤ �max (47)

Using (44), we have

(1 − γk)B− (
eα1�k + eα1α2

)
�̄k − (

eα1�k + eα1α2
)
λγkT(

eα1�k + eα1α2
)
γkT

≤ �max. (48)

Performing some algebraic manipulations on (48), we get

B− (
eα1�k + eα1α2

)
�̄k ≤ �max

(
eα1�k + eα1α2

)
γkT

+ Bγk + (
eα1�k + eα1α2

)
λγkT.

(49)

Simplifying (49) further, we get

γk ≥ B− (
eα1�k + eα1α2

)
�̄k

B+ T
[
λ + �max

](
eα1�k + eα1α2

) , (50)

which concludes the proof.
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