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ABSTRACT The growth of the number of connected devices and network densification is driving an
increasing demand for radio network resources, particularly Radio Frequency (RF) spectrum. Given the
dynamic and complex nature of contemporary wireless environments, characterized by a wide variety of
devices and multiple RATs, spectrum sensing is envisioned to become a building component of future
6G, including as a components within O-RAN or digital twins. However, the current SotA research
for RAT classification predominantly revolves around supervised Convolutional Neural Network (CNN)-
based approach that require extensive labeled dataset. Due to this, it is unclear how existing models
behave in environments for which training data is unavailable thus leaving open questions regarding their
generalization capabilities. In this paper, we propose a new spectrum sensing workflow in which the model
training does not require any prior knowledge of the RATs transmitting in that area (i.e., no labelled
data) and the class assignment can be easily done through manual mapping. Furthermore, we adaptat a
SSL deep clustering architecture capable of autonomously extracting spectrum features from raw 1D Fast
Fourier Transform (FFT) data. We evaluate the proposed architecture on three real-world datasets from
three European cities, in the 868 MHz, 2.4 GHz and 5.9 GHz bands containing over 10 RATs and show
that the developed model achieves superior performance by up to 35 percentage points with 22% fewer
trainable parameters and 50% less floating-point operations per second (FLOPS) compared to an SotA
AE-based reference architecture.

INDEX TERMS Analysis, clustering, machine learning, monitoring, self-supervised, radio frequency
spectrum.

I. INTRODUCTION

THE EXPONENTIAL growth of the number of con-
nected devices [1] and network densification is driving

an increasing demand for radio network resources, par-
ticularly Radio Frequency (RF) spectrum. The allocation
of new operational frequency bands, such as the 6.425-
7.125 GHz range designated by the ITU for licensed mobile
communications [2], only partially alleviates the growing
demand for RF spectrum resources. Thus, it is crucial to
enhance the utilization of the occupied bands through inno-
vative spectrum-sharing strategies that go beyond the existing
licensed [3] and license-exempt access schemes [4], meeting

the complexity of the fast-evolving wireless networks. Such
approaches will increasingly rely on accurate monitoring and
understanding of the RF spectrum environment, achieved
through spectrum sensing techniques. The process of spec-
trum sensing involves analyzing radio data for a variety of
tasks [5], each playing an important role in the broader
context of radio awareness, impacting the efficiency and
effectiveness of wireless radio networks. Such tasks and
corresponding purposes include Radio Access Technology
(RAT) classification [6] for optimizing resources allocation
and spectrum utilization, modulation classification [7] for
improving data throughput and reducing error rates, anomaly
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detection [8] enhancing network security and resilience,
interference recognition [9] for identification of sources of
interference, and Specific Emitter Identification (SEI) [10]
ensuring secure and efficient spectrum sharing by preventing
unauthorized access.
Given the dynamic and complex nature of contemporary

wireless environments, characterized by a wide variety of
devices and multiple RATs, spectrum sensing is envisioned
to become a building component of future 6G networks [11].
As such, it will support the progress of Integrated Sensing
and Communication (ISAC)-related systems and technolo-
gies [12], [13], facilitating their development and integration
into the next generation of wireless communication systems.
Consequently, spectrum sensing is anticipated to be a key
component in the evolution of emerging wireless commu-
nication frameworks such as Open Radio Access Network
(O-RAN) and Digital Spectrum Twin (DST) [14].

In the emerging O-RAN in which a large proportion of
the radio functions are realized in software [15], [16], RAT
monitoring plays an important role in optimizing radio and
network parameters and spectrum utilization, largely through
the employment of AI algorithms encapsulated as xApps
and rApps [17]. By continuously assessing the usage and
availability of different RATs, O-RAN can utilize intelligent
applications to dynamically fine tune network settings and
allocate spectrum resources or manage beam forming [18]
in real time. Thus, it can enhance the overall efficiency
and performance of the network and accommodate growing
traffic demands, while better preserving privacy and being
less data intensive [19] compared to SEI.
DSTs are digital representations of the real-world charac-

teristics of the RF spectrum in a region based on historical
data and measurement updates [20]. They are envisioned as
tools to inform, forecast, and enhance spectrum utilization
and interference management in wireless networks in a
given geographical area. Spectrum sensing is a building
component of DST, as outlined in [14]. It provides the
measurement input necessary to refine the DST, which is
initially developed based on empirical, theoretical, and/or
ray-tracing models. Incorporating RAT monitoring into DST
could further enhance its capabilities by adding detailed data
on the various transmission technologies that are present
in the area, such as RAT-specific activity patterns for a
given time interval within the operational landscape. This
integration could significantly improve the DST‘s awareness,
accuracy and functionality, facilitating more effective spec-
trum management and optimization strategies.
The current SotA research for RAT classification pre-

dominantly revolves around supervised Convolutional Neural
Network (CNN)-based approaches [21], [22], [23], [24],
which have shown promising results, particularly in diverse
signal-to-noise ratio (SNR) settings and various environ-
mental conditions [25]. However, these methods have a
number of shortcomings as follows. First, they heavily
depend on extensive labeled datasets acquired in controlled
settings where the transmission parameters need to be

recorded in addition to the received signals requiring a
more complex set-up for collection compared to unlabelled
data. Second, it is unclear how they transfer to other
environments characterized by (i) additional RATs compared
to the original training data and (ii) different physical
obstructions and noise variations. Third, the majority of
the models have been developed and evaluated on a single
dataset leaving open questions regarding their generalization
capabilities.
Self-Supervised Learning (SSL) approaches, extensively

explored in other application domains [26], are able to
address the first two challenges mentioned above, because
they do not require labels for training. As long as a
spectrum sensor collecting data is available, that data can be
directly used to train such models without requiring recorded
transmission parameters. By analogy, this approach should be
able to adapt the model in regular retraining periods to new
types of RATs that may appear in the area. However, to be
able to realize the classification functionality similar to their
supervised counterparts, a manual cluster-to-label assignment
step is required. Nevertheless, this process is rather efficient
as the learnt clusters, together with additional insights, can be
presented to a human decision maker for label assignment.
The decision maker is also presented with a new cluster
including a new technology that emerged from the learning
process and can immediately identify it. The adoption of
Self-Supervised Learning (SSL) in wireless communications
research remains limited. Existing state-of-the-art (SotA)
works primarily rely on variations of Autoencoder (AE)
architectures [23], [27]. These methods emphasize instance
learning, where the CNN part is trained solely or partially
on reconstruction loss, focusing on distinguishing individual
samples.
Recognizing the need for a more adaptable solution,

particularly in scenarios where class information is unknown,
we propose1 the use of a domain-adapted DeepCluster [28]
architecture. This approach diverges from the existing
methods by basing the learning process of the CNN
part on features shared among groups of samples rather
than individual instances. This distinction could make the
proposed architecture more general and effective in realistic
environments, thus addressing the third challenge.
The main contributions of our work are:

• New spectrum sensing workflow: We propose a new
spectrum sensing workflow in which the model training
does not require any prior knowledge of the RATs
transmitting in that area (i.e., no labelled data) and the
class assignment can be easily done through manual
mapping.

• Development of an SSL Deep Clustering (DC)
Architecture: We introduce an adaptation of SSL
deep clustering architecture capable of autonomously
extracting spectrum features from raw 1D Fast Fourier
Transform (FFT) data. Notably, this architecture is

1https://github.com/sensorlab/spire
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inherently environment-agnostic and adaptable to vary-
ing numbers of operating transmission technologies.

• Generic Unsupervised Model: We go beyond the SotA
in model development for RAT feature learning and
subsequent classification by developing a more generic
model on three real-world datasets from three European
cities, in the 868 MHz, 2.4 GHz and 5.9 GHz bands
containing over 10 RATs.

• Efficiency and Performance Optimization: The
developed model boasts 22% fewer trainable parameters
and requires 50% less floating-point operations per
second (FLOPS) compared to an identical AE-based
reference architecture. Besides the efficiency gains,
our model achieves superior performance in label-
based clustering evaluations by up to 35 percentage
points (ppt) on TCD-L dataset (data of each technology
acquired in six different sites), up to 4 ppt on ITS-L
dataset (samples of each technology acquired at single
site) and better separation of the feature space of the
unlabeled UNB-U dataset (continuously sensed data in
uncontrolled environment).

The structure of this paper is as follows: Section II
reviews related work in the field. Section III describes the
reference scenario and related assumption. The problem
formulation is detailed in Section IV. The proposed and
baseline architectures are presented in Section V. Section VI
outlines the evaluation methodology, while Section VII
discusses the outcomes of this evaluation. The paper con-
cludes with Section VIII, summarizing the key findings and
contributions.

II. RELATED WORK
Considering the disadvantages of the supervised learning
approaches for spectrum sensing-related tasks, such as the
necessity of labels and expert intervention in the setup of
models in specific environments, research work towards
employing unsupervised models has attempted to advance
alternative approaches that do not necessitate labels.
The performance of pure unsupervised clustering mod-

els applied to spectrum data is studied in [29]. Authors
evaluate classical unsupervised (clustering) approaches on
data transformed by t-distributed Stochastic Neighbor
Embedding (t-SNE) and Uniform Manifold Approximation
and Projection (UMAP). Three clustering algorithms
are subjected to comparison: K-means, Agglomerative
Hierarchical Clustering, and Hierarchical Density-Based
Spatial Clustering. Although such an approach benefits from
being general and simple for high-level spectrum analysis,
feature extraction is based on t-SNE and UMAP, which
is disadvantageous compared to CNN-based, deep feature
learning.
A study of another lightweight and general approach for

RAT classification is proposed in [30] as an alternative
to models based on CNN. It introduces Dynamic Mode
Decomposition (DMD) as a feature extraction technique
capable of distinguishing RATs based on their bandwidth.

The classification process involves a straightforward thresh-
old method, demonstrating superior performance compared
to a baseline CNN-based solution that operates on Gramian
Angular Summation Field (GASF) images derived from time
series data. Although the solution benefits from its simplicity,
it faces the problem of manual adjustment of thresholds.
AEs are neural networks trained to encode input data into

a compressed representation and then decode that represen-
tation back to an approximation of the original input. They
are primarily used for dimensionality reduction or feature
learning. However, in their original form, where learning
is based on reconstruction loss only, they do not provide
clustering-friendly embedded space. This led to research
on modifications of this architecture by adding different
loss functions, as discussed in [31]. AE with an additional
clustering loss ([32], [33], [34]) in the embedded space is
an SSL model designed for both dimensionality reduction
and clustering tasks. Such a model combines the feature-
learning capabilities of AEs with the grouping intuition of
clustering algorithms by optimizing for a representation that
serves both purposes. In general, the clustering loss in the
embedded space could be calculated based on distances
between samples or based on their distribution.
In [33], a deep learning, AE-based solution is employed

for unsupervised feature learning and clustering of embedded
features on radio data for the task of modulation recognition.
Alongside the AE-specific reconstruction loss, the authors
introduce a “Deep Clustering” loss in the embedded space.
The total loss function aims to simultaneously improve
reconstruction and clustering in the embedded space. The
authors provide a detailed evaluation of their proposed
model, considering that the number of clusters is the same as
the number of different modulations, which is an optimistic
setup because it requires knowledge of the exact number
of modulations that exist in the data. In a real-world RAT
monitoring scenario, it is much more realistic to assume
an unknown number of classes/RATs (modulations in their
case).
Deep Convolutional Embedded Clustering (DCEC) is

another modification of AE for deep feature learning, initially
dedicated to image processing proposed in [34]. In this
work, the total loss function is a combination of the
typical reconstruction loss and Kullback-Leibler divergence
loss in the embedded space. While similar learning CNN
modules could be used in both approaches, the different loss
calculations may optimize the convolution filters to focus on
different features in the input data.
Our previous work [35] involves a high complex-

ity self-supervised model as it operates on waterfall
plots/spectrograms (2D image-like matrices) employing
off-the-shelf ResNet18 model, initially developed for Red-
Green-Blue (RGB) images. This approach provides valuable
information about the time-frequency occupancy of the
spectrum with different RATs that operate in the observed
band. Although a substantial reduction of complexity of
the feature vectors is achieved by augmenting the feature
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FIGURE 1. SSL enabled spectrum sensing workflow.

processing, the model itself keeps the same (high) complexity
as its original implementation for feature learning of RGB
images. While this could be advantageous, considering it is
off-the-shelf, proven architecture, the high complexity could
prevent application in the lower control layers of the O-
RAN, for example, as xApp in the Near-real-time (Near-RT)
Radio Intelligent Controller (RIC) due to the short control
loop times.
In this manuscript, we propose a 1D-CNN-based adap-

tation of the DeepCluster architecture for feature learning
and unsupervised classification of RATs by processing 1D
FFT data instead of 2D spectrograms. While the loss of
time-frequency dependency is a drawback, this issue can
be mitigated through post-processing of the classified 1D
swipes.

III. REFERENCE SCENARIO AND PROPOSED
SPECTRUM SENSING WORKFLOW
In this paper, we assume a realistic scenario in which
terminals, equipped with various RATs as depicted at the
top of Figure 1, operate in a given area, possibly also in the
same frequency band. For instance, a spectrum sensor may

operate in ITS 5.9 GHz band where LTE, Wi-Fi, 5G NR,
C-V2X PC5, and ITS-G5 technologies may co-exist [24].
Other examples may refer to monitoring the U.S. 6 GHz
band, where Wi-Fi 6E and 5G New Radio Unlicensed (NR-
U) share the unlicenseds spectrum, or the LTE/5G and
military radar that are sharing the 150 MHz CBRS band at
3.5 GHz [36].

Furthermore, we work under the assumption that we have
no prior information on what kind of RATs exist in the area
under observation. Without having any prior knowledge on
the transmitters in the sensed spectrum, we aim to identify
them and recognize them in the future. In order to reach
our aim, we propose a four-step workflow as depicted in
Figure 1 and elaborated below.

A. PHASE 1: DATA ACQUISITION
The Phase 1, marked with the green area in Figure 1,
represents the data acquisition process. In this phase, the
Radio Unit collects data from the operating environment in
the form of the FFT transformation of the captured radio
signals.

B. PHASE 2: SSL MODEL TRAINING
The model training, marked with red in Figure 1, uses the
data collected in Phase 1 and learns to group similar FFT
shapes together. As a result of the grouping, clusters of
similar shapes emerge with each cluster ideally containing
samples from a single RAT. As the output of this phase,
we obtain the trained model for feature extraction from FFT
data and formed clusters.

C. PHASE 3: CLUSTER LABELLING
In this phase, a human expert is able to recognize the existing
RATs by looking at the clusters and manually assign a label,
i.e., specific RAT such as LTE, WiFi, etc., to each cluster.
In this step, hours, days or weeks of spectrum sensing are
summarized for the expert end-user to quickly glance at and
understand what is happening in the monitored environment.
The summary can be presented as an average per cluster
sweep such as depicted in Figure 1 or as lower dimensional
projections such as T-SNE.

D. PHASE 4: INFERENCE
The model trained on real-world samples in Phase 2 together
with the per cluster labels provided in Phase 3 can be
packaged as a classification service where the human-
assigned labels represent the class of the sample assigned
to a cluster. Therefore, the classifier can be encapsulated
as a containerized application with an API endpoint, and
deployed as a containerized application in a production level
system where incoming sweeps would get labels assigned.
Furthermore, the trained model could also be exposed as an
embedding model, where a compact and low-dimensional
representation of the input data is provided to the requester
as illustrated in Phase 4 of Figure 1.
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FIGURE 2. Proposed SSDC architecture.

IV. PROBLEM STATEMENT
In this paper, we formulate the spectrum sensing problem as
a clustering problem in machine learning that partitions the
set of electromagnetic energy measurements collected during
individual sweeps into groups (i.e., clusters) that contain
sweeps with similar shapes (i.e., energy level envelope).
These are later identified and labeled by an expert. This
corresponds to Phases 1-3 described in Section III and
depicted in Figure 1. We represent a set of electromagnetic
energy measurements corresponding to a sweep as X =
{x1, x2, . . . , xn} and the set of identified RATs as L =
{L1,L2, . . . ,Lk}. To account for realistic environments where
the number of types of transmissions is not known apriori,
the number of clusters k is assumed to be unknown. This
assumption uniquely distinguishes this work from the SotA
where the number of classes or clusters are assumed apriori.
The objective is to learn a composite function � : X → Y
that maps raw data points to their identified classes in the
clustered space.

L = �(X) (1)

This function can be realized by decomposition into three
sub-functions, the embedding function φ, the clustering
function ψ , and the mapping function M and can be
expressed as:

L =M(ψ(φ(X))) (2)

A. 1. EMBEDDING FUNCTION
Denoting the φ as the embedding function that transforms
raw data X into an embedded space and Z = {z1, z2, . . . , zn}
as the set of embedded representations of the data points,
formally it is defined as:

φ : X→ R
d (3)

where φ(xi) = zi and d is the dimensionality of the
embedded space.

B. 2. CLUSTERING FUNCTION
Considering C = {C1,C2, . . . ,CK} as the set of clusters and
K as the number of clusters where K ≤ n, the clustering

function ψ that assigns each embedded data point from Z
to a cluster can be defined as:

ψ : Rd → {1, 2, . . . ,K} (4)

where ψ(zi) = k indicates that the embedded point zi is
assigned to cluster Ck.

C. 3. MAPPING FUNCTION
Considering L = {l1, l2, . . . , lK} as the set of expert identified
labels, the mapping function denoted as M, can be defined
as:

M : {1, 2, . . . ,K} → L (5)

where M(k) = lj means that cluster Ck is mapped to the
label lj.

D. CONSTRAINTS
The constraint lies in the unknown number of clusters, K, for
which the clustering function ψ should be modeled. This is
due to the uncontrolled nature of the monitored environment,
where there is no prior information about the number of
operating RATs. This scenario is general and mirrors a real-
world deployment where, regardless of the operating band,
new types of signals could appear during the operation of the
system, either coming from unauthorized/unknown RATs in
the licensed bands or from unknown RATs in the unlicensed
bands.

V. PROPOSED SSL ARCHITECTURE
To solve the problem formalized in Section IV, we propose
a SSL deep clustering architecture depicted in Figure 2.
The architecture iteratively combines deep learning with
clustering to learn meaningful data representations without
labeled samples. The embedding function from Eq. (3) is
realized by the CNN module, part of the representation
learning module, while the clustering function from Eq. (4)
is realized by the clustering module.
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A. DESCRIPTION OF ARCHITECTURAL MODULES
1) CLUSTERING MODULE

The clustering module groups similar data points in the
embedded space. To realize the clustering module, which
in turn realizes the clustering function ψ , we chose the
well-known K-means algorithm with the Euclidean distance
metric. K-means has been shown to perform very well with
embedded spaces [37], is easy to understand, and has low
computational complexity. The Euclidean metric used as a
loss function for the clustering is also computationally effi-
cient, making it appropriate for large datasets, and it is also
effective for lower-dimensionality embedded spaces [38].
It measures the straight-line distance between data points,
which allows for a clear interpretation of how data points are
assigned to clusters based on their proximity in the feature
space.

2) REPRESENTATION LEARNING MODULE

The role of the representation learning module is to learn
the mapping from the input raw data to the pseudo-labels
generated by the clustering process. The CNN part of the
module, together with the flattening and PCA transformation,
realizes the embedding function φ, which transforms each
input data point into a low-dimensional representation in the
embedded space.
The CNN module of the SSDC architecture consists of

four 1D convolutional layers, each followed by batch normal-
ization, max-pooling, and ReLU activation layers, visualized
in Figure 2. Batch normalization typically improves conver-
gence speed [39], max-pooling reduces the dimensionality
of the data through the layers while focusing on the most
prominent features, and ReLU is important for catching
the nonlinear dependencies in the data. Regarding the
number and size of CNN filters, we followed the design
principles discussed in [40] and [41], consisting of a stack
of convolution layers followed by fully connected layers.
Each consequent convolutional layer consists of double the
number of filters of the previous layer and a vector size
that is four times smaller than that of its predecessor. We
increase the filter size to 7 (compared to 3 in [40]) so its size
is large enough to neglect noise influence but small enough
to be sensitive to the changes induced by the RAT-specific
content in the FFT amplitudes.
Such an architecture totals 128, 406 parameters and 0.2

GFLOPS, which is significantly lower (up to approx. 100
times, i.e., two orders of magnitude) compared to the 11.7
million parameters and (9 times) 1.81 GFLOPS of a model
dedicated for spectrograms processing in [35].

B. WORKFLOW OF THE SSDC ARCHITECTURE.
The SSDC follows an iterative workflow consisting of two
branches executed successively, mutually optimizing the
clustering module and the weights of the representation
learning module. The working of the clustering branch
(marked with orange color in Figure 2) consists of:

1) The 1D CNN module, which is part of the embedding
function φ, and is set to evaluation mode, having
randomly initialized weights. This module extracts
features from the input data, processing the raw
FFT through the convolutional layers and providing
embedded 512×1 vector representations of the samples
at its output. The embedded representation is further
transformed to an even lower dimensionality of 1×10
using PCA transformation [42]. The goal is to preserve
only the high-variety features of the embedded space
before passing it to the clustering module. The CNN
module, the flattening layer, and the PCA realize the
embedding function defined in Eq. (3).

2) The feature vectors serve as an input to the clustering
module, realizing the clustering function ψ in our
architecture. The K-means assigns pseudo-labels to the
processed samples according to:

g(zi) = arg min
j
‖zi − μj‖, (6)

where g represents the cluster assignment function, zi
stands for the feature vector, and μj is the centroid of
cluster Cj. The centroid μj is defined as:

μj = 1

|Cj|
∑

zi∈Cj
zi. (7)

The K-means clustering forms clusters by minimizing
the within-cluster sum of squares, which is given by:

min
C,k

k∑

j=1

∑

zi∈Cj
‖zi − μj‖2. (8)

The output of the K-means algorithm is the partitioned
set of feature vectors Z = {z1, z2, . . . , zn} into k
clusters. Ideally, each cluster Cj ⊆ Z would represent
a single RAT. The provisioning of the pseudo-labels
ends the clustering module optimization as part of a
single iteration.

The representation learning module is set to the train mode
in the second branch of the iteration, with the corresponding
flow in Figure 2 marked with blue. Considering the pseudo-
labels provided by the clustering branch described above, the
weights of the representation learning module (including the
CNN and the FC part) are trained in a classical supervised
learning procedure.
1) The representation learning [42] module maps each

of the input raw FFT samples to a single class at
the output of the classifier, minimizing the difference
between the pseudo-labels and the predicted labels
using the Cross-entropy loss function defined as:

LCE = −
n∑

i=1

K∑

k=1

1[g(zi)=k] log pi,k. (9)

2) Parameters θ are updated using gradient descent and
backpropagation according to

θ ← θ − η∇θLCE, (10)
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FIGURE 3. SotA autoencoder-based architecture [33].

where η is the learning rate, and ∇θLCE represents
the gradient of the loss function with respect to the
network parameters θ .

The two separate procedures for optimizing the clustering
and the representation learning module complete one full
learning iteration. In summary, the clustering algorithm
groups input data based on their distances in the embedded
domain, providing pseudo-labels. The CNN and classifi-
cation modules learn this distribution by enhancing the
extracted features and predicting the pseudo-labels with
each iteration. This iterative process between the CNN-
based classification and clustering modules continues for a
predefined number of training epochs, starting with randomly
initialized CNN weights.

C. REFERENCE AUTOENCODER-BASED
ARCHITECTURES
We compare our proposed SSDC architecture with two vari-
ants of Autoencoder (AE)-based SSL architecture, depicted
in Figure 3. The AE-based architecture is composed of
three main modules: encoder, embedding layer, and decoder.
Regarding the problem formulation in Section IV, in this
architecture, the encoder module represents the embedding
function, and the clustering function works on the embedded
space representations. Input for the encoder module is the
raw data, which is processed by the sequential convolutional
layer filters and converted into low-dimensional represen-
tation. This low-dimensional representation is flattened and
transformed into a 1D vector representation in the embedding
layer, which is in the middle of the architecture. The
decoder block, which follows the embedding layer, has
the same number of layers as the encoder and works
in the opposite direction, increasing the dimensionality of
the feature vector to the original size of the raw data.
Providing the same dimensionality of the data at the output
enables reconstruction loss in the learning process. In our
work, we purposely use the same CNN module that was
used in the SSDC architecture for building the AE-based
architectures. This provides equal ground for comparison
that will highlight the performance differences which arise
from the architecture itself, and not from the variation in the
trainable parameters in the representation learning module.
However, the AE-based architectures, which are used as
baselines, have different loss functions in the embedded
space:

• Autoencoder with Modified Loss (AEML) has a custom
loss function in the embedded domain based on the
relative distances between the samples, as proposed
in [33].

• Deep Convolutional Embedded Clustering (DCEC)
utilizes the Kullback-Leibler divergence loss in the
embedded domain concerning the distribution of the
samples instead of their relative distances. DCEC was
designed for image processing in [34].

1) WORKFLOW OF THE AE-BASED ARCHITECTURES

The training workflow of the reference AE-based models,
AEML and DCEC, consists of two phases, pretraining and
joint training.

1) Pre-training: The pretraining phase is the same as
for the regular autoencoder. The encoder part takes
high-dimensional input data and compresses it into a lower-
dimensional embedded space (latent space), and the decoder
part aims to reconstruct the original input data from the com-
pressed form obtained by the encoder without considering
the clustering loss. The goal is to produce a reconstruction
as close as possible to the original input, thereby ensuring
that the embedded space captures the essential features of
the data.
During the pre-training phase, the autoencoder is trained

to minimize the reconstruction error without considering
the clustering loss. Thus, the weights update is performed
using the reconstruction loss, which is the mean squared
error (MSE) between the input x and its reconstruction x̂,
expressed as:

Lrecon = 1

n

n∑

i=1

‖xi − x̂i‖2 (11)

where xi is the input data point, and x̂i is the reconstructed
data point.

2) Joint Training: In this second phase, the model is
trained with a combined objective function that includes
both the reconstruction loss, calculated as the mean squared
error between the input and its reconstruction, and the
clustering loss, i.e., a loss that measures how well the
clustering assignments match the distribution of the data in
the embedded space. This phase further refines the encoder
weights to optimize both reconstruction and clusterability
based on the combined loss function, expressed as:
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L = αLrecon + βLcluster (12)

where α and β are hyperparameters that control the weight
of the reconstruction and clustering losses, respectively.
The clustering loss for AEML consists of multiple steps

and is detailed in [33]. Here we introduce its general form,
defined as:

LAEML
cluster = CustomLoss(Z) (13)

where Z is the set of embedded representations of the data
points and CustomLoss is a function that measures clustering
quality based on the relative distances between the samples.
The clustering loss for DCEC, which utilizes the Kullback-

Leibler divergence, is detailed in [34]. However, we also
briefly introduce it here for completeness. It is calculated
as:

LDCEC
cluster = KL(P‖Q) =

n∑

i=1

K∑

k=1

pik log
pik
qik

(14)

where P is the target distribution, Q is the predicted distri-
bution of the clusters, and pik and qik are the probabilities
that point xi belongs to cluster k.

VI. EVALUATION METHODOLOGY
In this section, we elaborate on the methodological details
of the experiments carried out to assess the performance of
the proposed architecture. First, we elaborate on the training
data for model development, followed by a summary of the
evaluation metrics used, and we end with considerations of
the evaluation approach.

A. TRAINING DATA
To evaluate the performance of the proposed architecture we
selected three real-world datasets, collected from research
testbeds, in particular (i) the Technology Classification
Dataset - Labeled (TCD-L) [25] containing DVB-T, LTE and
WiFi transmissions, (ii) the ITS-L dataset [24] containing
signals from 5 different RAT, i.e., LTE, 5G, WiFi, ITS-G5
and C-V2X, and (iii) the LOG-a-TEC dataset [43] comprised
of LoRa, IEEE 802.15.4, SIGFOX and some proprietary
technologies. This selection of three very diverse real-world
datasets from the 868 MHz, 2.4 GHz and 5.9 GHz frequency
bands enables the most extensive evaluation of unsupervised
methods to date.

1) TECHNOLOGY CLASSIFICATION LABELED DATASET

We purposely selected the labeled Technology Classification
Dataset - Labeled (TCD-L) [25], collected from different
neighborhoods located in Ghent, Belgium. During the data
collection process, the transmission times and settings were
also recorded, therefore this is a real-world labelled dataset.
However, we only use the labels for evaluation and not for
training. The data captures the influence of the different
environments on the different wireless technologies that are
operating in the 2.4 GHz band, namely LTE, WiFi, and

FIGURE 4. Samples for each signal type in the TCD-L dataset.

DVB-T. In the original dataset, samples are collected in
different bands specific to each technology, while here, we
normalize them in common 1024 FFT bins as if they were
coexisting in the same channel. Samples of the captured
transmissions by each SSDC are depicted in Figure 4,
showing that each of the RATs has its own characteristic
shape in the FFT domain.

2) INTELLIGENT TRANSPORTATION SYSTEMS LABELED
DATASET

The Intelligent Transportation Systems - Labeled (ITS-L)
dataset [24] was collected in the region of Antwerp, Belgium.
It contains signals from 5 different RATs (LTE, 5G, WiFi,
ITS-G5 and C-V2X). The RAT technologies in the dataset
are expected to coexist in the Intelligent Transportation
Systems (ITS) 5.9 GHz band. By including the ITS-L, we
expect to provide insights about the performance of the
models when more types of RAT co-exist (i.e., 5 + noise
compared to the 3 in the TCD-L), from which some are
significantly different regarding their shape (e.g., WiFi in
blue and C-V2X in red in Figure 5), and some are very
similar (e.g., LTE in green and 5G in orange in Figure 5).

3) ULTRA NARROW BAND UNLABELED DATASET

Finally, we also included one unlabeled, continuously sensed
dataset collected from the LOG-a-TEC testbed [43] in
Ljubljana, Slovenia. This dataset consists of real-world
spectrum traces in an ultra-narrow bandwidth of 192 kHz
inside the European 868 MHz SRD band, which were sensed
with a frequency of 5 PSD measurements per second, using
1024 FFT bins. According to an inspection of parts of
the data, there are at least 4 technologies appearing in
the recordings: LoRa, IEEE 802.15.4, SIGFOX, and some
proprietary technology. The goal of employing such data is to
check the performance of the evaluated architectures in real-
world scenarios, which exposes them to a significantly wider
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FIGURE 5. Samples for each signal type in the ITS dataset (ITS-L).

variety in the data that is being used, with all the artifacts and
interference that occur during the acquisition. This makes
the problem of SSDC monitoring much more challenging
and closer to the potential deployment environment.

B. TRAINING CONFIGURATIONS
In this subsection, we provide the training configurations
of the three architectures used in subsequent performance
evaluation, the proposed SSDC architecture and the two AE-
based architectures, AEML and DCEC.

1) CONFIGURATION OF THE CLUSTERING MODULE

Evaluations are performed by measuring the K-means
clustering performance on the embedded vectors provided by
the models created with the proposed architecture SSDC and
two reference architectures, i.e., AEML and DCEC, based
on multiple metrics described in the following Section VI-C.
We approached the experimental evaluation assuming no
information about the exact types and quantity of existing
RATs in each of the datasets. Thus, for all three datasets,
we set the upper number of possible RATs to 10, which
is higher compared to the actual number of classes 3 and
6 in the respective labeled datasets TCD-L and ITS-L, and
approximately 5 according to [43] in the unlabeled dataset
UNB-U. Selection of an approximate number of classes (i.e.,
operating RATs) is also viable in real-world deployment
based on the monitored frequency band, urban/rural area, etc.
While such an approach closely imitates the real-world envi-
ronment, following the problem formulation in Section IV, it
also sets fair ground for comparison of the evaluated models.
In this way, we avoid potential bias induced by training and
evaluation with the actual number of classes, considering
that the SSDC employs a clustering algorithm in its training
pipeline, as detailed in Section V-A.1, while the AE-based
models work without clustering feedback. Furthermore, a
higher number of clusters may capture more details and

variance within the data, potentially leading to more accurate
representations of smaller, nuanced groups. However, this
number (10 in our case) should not be too big since too many
clusters might also mean overfitting to noise and outliers,
making some clusters less meaningful.

2) CONFIGURATION OF THE CNN MODULES

To ensure fair comparisons across the three architectures, all
models were constructed with the identical CNN module, as
proposed and detailed in Section V-A.2. The implementation
was written in Python programming language, using the
Pytorch library. The training of the SSDC model was
performed with the Adam optimizer with learning rate set to
10−3, and weight decay set to 10−5. The training iterations
for the SSDC were set to 250 epochs. The AE-based
models AEML and DCEC were configured following the
description in Section V-C regarding the loss functions. The
weight parameters α and β were set to 1, which gives
the same importance for both components of the combined
loss function, expressed with Eq. (12). The training was
performed with the same configuration of the optimizer
as for the SSDC model. Regarding the training iterations,
considering the AE-based architectures work in two stages
as described in Section V-C, the pre-training ran for 200
epochs, and the second stage of joint-training ran for 50
epochs, totaling 250 epochs, same as for the SSDC model.
The embedded space dimensionality for all three models was
set to 10.

C. CLUSTER QUALITY EVALUATION METRICS
For better understanding and analyzing the embedded space,
we provide three different types of visualizations of the clus-
tering in the embedded space, namely t-distributed Stochastic
Neighbor Embedding (t-SNE) [44] of the embedded space,
average of samples per cluster, and distribution of ground-
truth classes per cluster.
Regarding the quantitative evaluation, we employ multiple

existing metrics that are specific to the clustering approaches.
According to the way the used metrics are calculated, they
can be divided into two groups. The first group is based on
labels, mainly evaluating the content/purity of the clusters
regarding the different RATs. The second group of metrics
is based on the distances in the embedded space, mainly
considering the inter-cluster and intra-cluster distances.

1) VISUAL EVALUATION

t-SNE is useful for transforming high-dimensional data
into a two-dimensional or three-dimensional space for
visualization, thus revealing the structure and patterns in
complex datasets. It is particularly suitable for examining the
outcomes of the clustering algorithm and visualizing how
various data classes are distributed. However, it is important
to note that t-SNE visualizations should be taken cautiously
due to their nonlinear transformation and dimensionality
reduction. They may not necessarily reflect the same data
structure that exists in the higher-dimensional embedded

4754 VOLUME 5, 2024



space. Thus, the t-SNE visualizations will be considered as
informative and complementary views, supporting the cross-
interpretation of multiple metrics when drawing conclusions
for the performance of such self-supervised models. Due
to the large size of the data, the t-SNE embedded space
visualization is performed with a randomly sampled subset
of 10, 000 points instead of the entire dataset. These
visualizations aim to showcase the approximate structure of
the clusters created by each model within the feature space.
Calculation and visualization of an average of the samples

per cluster will show what the dominant type of RAT for each
cluster is and enable the expert mapping of the identified
clusters to actual RAT, as described in Section III-D. The
averaging will suppress the less common types of RATs
and highlight the representative shape for each cluster. This
visualization is particularly useful when unlabeled data is
considered, which cannot be analyzed by the label-based
metrics.
For the evaluation with labeled datasets, we also show

the distribution of samples in each cluster regarding the
ground-truth labels, providing one additional perspective of
the clustering directly related to the label-based metrics
described in the following section.

2) LABELS-BASED METRICS

Regarding the labels-based evaluation, we utilize 4 different
metrics, namely Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI), Clustering homogeneity score
(CHS) and Clustering completeness score (CCS).
Normalized Mutual Information is a clustering metric that

quantifies the mutual information between true class labels
and cluster assignments while accounting for the scale of
each. It ranges from 0 to 1, with higher values indicating
better agreement between true classes and clusters. Given
two cluster assignments U and V , NMI is defined as:

NMI(U,V) = 2 · I(U;V)
H(U)+ H(V) , (15)

where: I(U;V) is the mutual information between U and
V and H(U) and H(V) are the entropies of U and V ,
respectively.
Adjusted Rand Index [45] metric compares the pairwise

decisions (whether pairs of elements are in the same or
different clusters) in the clustering outcome to the true labels,
adjusting for chance grouping. Formally, it is expressed as:

ARI = RI− E[RI]

max(RI)− E[RI]
, (16)

where RI is the Rand Index and E[RI] is the expected
value of the Rand Index. It can range from −1 (indicating
completely independent labeling) to 1 (perfectly matching
labeling).
The Clustering homogeneity score [46], as a clustering

metric, evaluates the quality of a clustering operation,

assessing whether each cluster contains only members of a
single class. It is defined as:

Homogeneity = 1− H(C|K)
H(C)

, (17)

where H(C|K) is the conditional entropy of the classes
given the cluster assignments, and H(C) is the entropy of
the classes. The CHS has a range of values between 0
and 1. A score of 0 is achieved when the clusters are
completely mixed, meaning that each cluster contains an
equal proportion of members from different classes. A score
of 1 is achieved when each cluster contains members from
only one class and no class is spread across multiple clusters,
representing perfect homogeneity.
The Clustering completeness score [46] is a metric

evaluating the quality of clustering results in terms of
how well it groups together elements of the same class.
Completeness is computed based on the conditional entropy
of the clusters given the class labels. It essentially measures
whether all members of a given class are assigned to the
same cluster, regardless of how many other classes are also
present in that cluster, defined as:

Completeness = 1− H(K|C)
H(K)

, (18)

where H(K|C) is the conditional entropy of the cluster
assignments given the classes and H(K) is the entropy of the
cluster assignments. CCS score ranges from 0 to 1. A score
of 0 indicates that the algorithm has dispersed members of
a single class across multiple clusters, failing to group them
together, and a score of 1 signifies that all members of each
class are perfectly grouped within a single cluster.
All four labels-based metrics provide quantitative mea-

sures to evaluate the performance of clustering algorithms
when true labels are known, which is the case for the
TCD-L and ITS-L datasets. Each metric provides a different
perspective of the clustering performance, considering the
distribution of samples across the clusters relative to the
ground-truth labels.

3) DISTANCE-BASED METRICS

For measuring the clustering performance based on the state
in the embedded space, we combined metrics used in [35]
and [29], i.e., silhouette score, Davies-Bouldin score, and
Calinski-Harabasz index.
The silhouette score [47] is a metric used to measure the

goodness of a clustering technique. It quantifies how well-
separated clusters are in a dataset, ranging from −1 to 1. A
higher silhouette score indicates better-defined clusters, with
scores closer to 1 indicating more cohesive and separated
clusters, while scores near 0 suggest overlapping clusters. A
silhouette score that trends toward −1 suggests that many
points in the dataset have been placed in inappropriate
clusters. Considering a sample i, the average distance
between i and all other points in the same cluster a(i), and
the minimum average distance between i and points in a
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different cluster b(i), minimized over clusters, the silhouette
score s(i) is given by:

s(i) = b(i)− a(i)
max(a(i), b(i))

. (19)

The overall silhouette score for the dataset is the mean
silhouette score of all samples.
The Davies-Bouldin [48] score is a clustering evaluation

metric that measures the compactness and separation of
clusters. Theoretically, this score ranges from 0 upwards,
with no fixed upper limit. Formal definition is as follows:
considering k clusters, with Ci being the centroid of cluster i
and Si being the average distance of all points in cluster i to
the centroid Ci, and similarity measure Rij between clusters
i and j defined as:

Rij = Si + Sj
‖Ci − Cj‖ , (20)

the Davies-Bouldin score DB is the average of the maximum
Rij for each cluster:

DB = 1

k

k∑

i=1

max
j 
=i Rij. (21)

Low scores indicate good clustering quality, where clusters
are compact (data points within clusters are close to each
other) and well-separated (clusters are far apart from each
other).
The Calinski-Harabasz [49] index is a clustering evalu-

ation metric that quantifies the ratio of variance between
clusters to variance within clusters. The score can the-
oretically be as low as zero, indicating extremely poor
clustering where the within-cluster variance is as high as
the total variance. However, in practice, any non-trivial
clustering will result in a score greater than zero. There
is no theoretical upper limit to the score. Higher scores
indicate better clustering performance, with more significant
separation between clusters compared to the variance within
clusters. Formal definition is as follows: given k clusters and
n data points, Bk as between-group dispersion matrix and Wk

the within-group dispersion matrix, the Calinski-Harabasz
index CH is defined as:

CH = trace(Bk)/(k − 1)

trace(Wk)/(n− k) , (22)

where trace(Bk) is the trace of the between-group dispersion
matrix and trace(Wk) is the trace of the within-group
dispersion matrix.
The Davies-Bouldin, silhouette, and Calinski-Harabasz

scores work based on the clustering result and inter-sample
distances. Such metrics are crucial to provide a quality
assessment of the clustering result when labels are absent,
which is the case with the unlabeled dataset UNB-U.
Furthermore, evaluation with Davies-Bouldin, silhouette, and
Calinski-Harabasz can also provide valuable insights when
working with labeled data because, in general, they quantify
the quality of the clustering result based on the inter-cluster

and intra-cluster distances, independent of the ground-truth
labels.

D. TRANSMISSION DETECTION EVALUATION METRIC
Based on the mapping of the clusters to specific RAT classes,
performed as described in Section III-C, we can evaluate
the monitoring by calculating the standard multiclass clas-
sification evaluation metrics precision, recall and F1 score.
Since the problem of monitoring at this stage could be
interpreted as multiclass classification, the evaluation with
the aforementioned metrics is performed per class.
Thus, considering C = {1, 2, . . . ,K} is the set of classes,

for each class k ∈ C:
• Precision Pk is the ratio of true positives to the sum of
true positives and false positives for class k:

Pk = TPk
TPk + FPk

. (23)

• Recall Rk is the ratio of true positives to the sum of
true positives and false negatives for class k:

Rk = TPk
TPk + FNk

. (24)

• F1 score for class k is the harmonic mean of precision
and recall for class k:

F1k = 2 · Pk · Rk
Pk + Rk . (25)

This evaluation is performed using the models trained
with the two labeled datasets, TCD-L and ITS, since these
metrics necessitate ground-truth labels. For predicted labels,
we use the identified labels for each formed cluster based
on the visual evaluation. In the case of having clusters that
contain multiple classes, we identify them based on the most
dominant type of samples.

E. COMPUTATIONAL PERFORMANCE METRICS
As part of the evaluation, we also assess the potential deploy-
ment challenges of the models regarding their structure and
size based on the number of trainable parameters and compu-
tational requirements based on the calculation of one billion
floating-point operations per second (GFLOPS). GFLOPS
is a measure of computational performance required or
achieved by the model during the training and inference
phases. It quantifies the number of floating-point operations
(FLOPs) a model needs to execute per second in the billions
(giga-). The calculations of the GFLOPS were carried out
using the fvcore2 library.

VII. RESULTS
The following results show the evaluation of models obtained
from each of the three architectures, the proposed SSDC and
the AEML and DCEC reference SotA architectures, with
three different datasets, each of them addressing a specific
challenge, as described in Section VI-A.

2https://github.com/facebookresearch/fvcore
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FIGURE 6. Evaluation of the model learnt with the SSDC architecture and TCD-L dataset.

FIGURE 7. Evaluation of the model learnt with the AEML architecture and TCD-L dataset.

A. EVALUATION RESULTS WITH TCD-L
1) VISUAL ANALYSIS

Figures 6(a), 7(a) and 8(a) depict the two-dimensional t-
SNE projected features learnt by each of the three models
developed. The number of depicted clusters is 10, as selected
in Section VI-A, while the colors represent the three types
of RAT, namely DVB-T (blue), LTE (orange), and WiFi
(green). From Figure 6(a), it can be seen that while the
model learns to create 10 clusters due to the clustering
parameter selection, these clusters are well separated and
homogeneous, with several of them containing the same
technology. For instance, there are several blue clusters, all
containing DVB-T, one large orange cluster containing LTE,

and two large and one small green clusters containing WiFi.
Although each model provides the same number of clusters,
their shapes vary significantly. As can be seen in Figure 6(a),
the SSDC model shows more tendency towards the creation
of clusters with elliptic shapes, while the other two, the
AEML in Figure 7(a) and DCEC in Figure 8(a) have more
variety in the cluster shapes. The distribution of the data
input into the clustering methods, i.e., the distribution of
the learnt embeddings in our case, is less suitable for well-
shaped spheric clusters for the AEML and DCEC models
compared to the SSDC. These two characteristics could be
considered important advantages for the SSDC model since
it provides more “clustering-friendly” feature space.
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FIGURE 8. Evaluation of the model learnt with the DCEC architecture and TCD-L dataset.

In Figures 6(b), 7(b) and 8(b), we show the same
feature space embedding, but this time colored with the
10 labels corresponding to the 10 clusters that were learnt
by each model. As can be seen in the figures, each of
the formed clusters is largely homogeneous, consisting of
samples mostly of a single RAT technology. Looking at the
largest cluster in Figure 6(b), we know from the ground-
truth depiction in Figure 6(a) that it contains only LTE
transmissions. It can be seen that it learnt to separate it into
three different subclusters (0-blue, 2-green, and 3-red), where
each of them contains samples from the same technology.
This is also depicted by the clusters’ distribution plot in
Figure 6(d), with the same coloring as for the K-means
result in Figure 6(b). Thus, the averaged clusters’ samples
in Figure 6(c), also colored with the corresponding colors of
the 10 clusters provided by the K-means, are aligned with
this, showing the specific shapes for each of the technologies.
The additional insight provided by the average plot is that the
K-means groups the samples based on the RAT technology,
where signal strength has a significant impact on the features,
thus leading to the creation of separate clusters of the same
technology.
Looking at the results of the reference autoencoder-based

models depicted in Figures 7 and 8 for the AEML and
DCEC respectively, they seem to have more condensed
clusters in the feature space compared to the proposed SSDC
model, which means that the samples of each technology in
Figures 7(a) and 8(a) are less dispersed in the feature space.
However, the fragmented and free forms of the clusters lead
to greater confusion/misclassification when performing the
K-means clustering. Thus, the resulting K-means clusters,
according to Figures 7(b) and 8(b), contain samples from
different technologies. For example, cluster 3-red and cluster
9-cyan in Figure 7, which are part of the elongated groups

of samples, contain both DVB-T and LTE transmissions. A
similar effect of clusters containing a mix of RATs is even
more prominent in the visualizations for the DCEC model
instance, as can be seen in Figure 8. Clusters learnt by the
K-means algorithm in the DCEC provided feature space,
visualized in Figure 8(b) with assigned labels 2-green, 5-
brown, and 6-pink, contain samples of DVB-T and LTE,
and cluster 3-red contains LTE and WiFi, as can also be
seen on the per cluster distribution of ground-truth labels
in Figure 8(d). This phenomenon is also leading to less
distinguishable average samples in Figure 8(c). For example,
the shape of cluster 3-red, which has a dominant group of
WiFi samples, does not have a smooth characteristic shape,
which can be noticed for the average of cluster 4-purple,
which has WiFi samples only.

2) QUANTITATIVE ANALYSIS

1) Evaluation with labels-based metrics: As it was described
in Section VI, besides the analysis based on visual evaluation
of the clustering results, we also performed a quantitative
evaluation based on multiple clustering-specific metrics. The
results are summarized in Table 1, which lists the evaluation
metrics in the first column, followed by the models obtained
with the proposed architecture in column two and the
reference autoencoder-based architectures in columns three
and four, respectively. From the first row of Table 1, it can
be seen that NMI of the proposed SSDC is almost double the
value of the reference AE-based models indicating stronger
mutual dependence between the clustering results and the
true labels, considering that 0 NMI means no dependence.
The clustering assignments produced by K-means on the
SSDC-provided feature-space more successfully identified
the inherent groupings within the data that align closely
with the ground truth categories, compared to the K-means
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TABLE 1. Evaluation of clustering by K-means on the different embedded spaces
with TCD-L.

assignments on the feature-space of the reference AE-based
models AEML and DCEC.
Considering the ARI metric values in Table 1, all three

models have values above 0, meaning that their developed
clusters are better than random clustering. Looking at each
model’s score separately, SSDC leads by a margin of 0.14
to the second DCEC. This indicates that SSDC has the
greatest similarity between the clustering assignments and
the ground-truth labels. The CHS scores show very high
values for SSDC, meaning that the formed clusters contain
mostly samples from a single class (RAT), while in the
embedded spaces of the reference AE-based models, there is
much more variety in the clusters, supporting the conclusions
made from the visual analysis. Based on the CCS metric, the
proposed SSDC is again much better (by a factor of 1.5 to
1.8). However, the values of all three models are in general
low (the highest 0.4578 for SSDC) due to a large number
of clusters (10) compared to the number of existing RATs
(3) in this dataset.

In general, SSDC is superior according to the labels-based
evaluation, DCEC is second, and the worst performance is
achieved with the AEML model.
2) Evaluation with distance-based metrics: While all the
labels-based metrics have shown a significant advantage
for the proposed SSDC model, the distance-based metrics
silhouette, Davies-Bouldin and Calinski-Harabasz (last three
rows in Table 1) show a clear advantage of AEML. The
higher silhouette score of the AEML model indicates better-
separated clusters, meaning that there is better cohesion
of the inter-cluster samples and better separation between
clusters, compared to SSDC and DCEC. The advantage of
better separation between the clusters and compactness of
each cluster is already seen in Figures 6-8. The reference
AE-based models provide more dense clusters, with larger
distances between them, while SSDC has more dispersed
clusters. Davies-Bouldin and Calinski-Harabasz scores (last
two rows in Table 1), which relate to the within-cluster
dispersion and between-cluster separation, again indicate the
more compact and better-separated clusters of the AEML
model compared to SSDC and DCEC.

TABLE 2. Performance of different models on multiclass classification.

In general, both the labels-based and distance-based
metrics are in line with the observations in the visual
analysis of the embedded space (Figures 6, 7 and 8) where
better-separated feature space was provided by the AEML.
However, the clusters were much cleaner with the proposed
SSDC model mostly having single RAT per cluster. This
means that the SSDC model successfully learns more
representative features for the different RATs compared to
the reference AEML and DCEC models, and also exhibits
better generalization capabilities, considering that the TCD-L
dataset is acquired across multiple environments.

3) Spectrum Monitoring Evaluation: As described in
Section VI-D, we evaluate the spectrum monitoring with
the different models based on the identified classes, using
the standard classification metrics, precision, accuracy, and
F1-score. The results are summarized in Table 2. Precision,
recall, and F1-score are calculated per class for the three
existing classes in the TCD-L dataset. The SSDC model
outperforms the AE-based models by a significant margin, up
to 40 ppt, in all but one case. There is a negligible difference
in the Recall of the WiFi class, where the AEML model has 1
ppt better performance over the other two, SSDC and DCEC.
This evaluation again confirms the superior generalization
capabilities of the SSDC model compared to the AE-based
models, considering that the TCD-L dataset contains data
from different environments, as described in Section VI-A,
and the potential to use it for training a classifier without
labeled data.

B. EVALUATION RESULTS WITH ITS-L
Following the methodology detailed in Section VI, in this
paragraph, we analyze the results of the evaluation with the
second labeled dataset ITS-L. The evaluation is performed
in the same order as for the previous TCD-L dataset, with
a focus on the quantitative analysis.

1) EVALUATION WITH LABELS-BASED AND
DISTANCE-BASED METRICS

The performance of the models is depicted in Table 3, where
again, the first four rows with blue background show the
performance measured with the labels-based matrices, and
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TABLE 3. Evaluation of clustering by K-means on different embedded spaces, ITS-L.

the last three rows with orange background show the values
of the three distance-based metrics.
Regardless of the larger number (6) of different types of

signals (5 RATs + noise) in this dataset, the performance
of all three models follows a similar pattern as in the
evaluation with the TCD-L dataset with 3 RATs. Regarding
the labels-based metrics, the SSDC model outperforms the
other two across all four metrics. DCEC is very close to the
SSDC on the labels-based metrics, whereas AEML performs
quite badly, which was not the case for the evaluation with
the TCD-L dataset. The relatively high performance of the
DCEC means that the AE structure is capable of capturing
the different shapes of the signals. However, different loss
functions used in the two AE-based architectures have led
to the creation of different structures in the embedded
domain. The deep clustering component of the loss function
of the AEML model is more dominant compared to the
reconstruction loss, leading to very compact clusters in
the embedded domain while minimizing the influence of
the shape of the samples in the learning process. This is
confirmed by the high performance on the distance-based
metrics of the AEML model, providing compact and well-
distanced clusters containing samples from different RATs.
The SSDC model shows the most balanced performance,
with comparably distinguishable clusters as the AE-based
models, which are also homogeneous, containing mostly
single RAT samples. Overall, the SSDC successfully captures
the RAT-specific features when there is a larger number of
RATs, outperforming the AE-based models.
1) Spectrum Monitoring Evaluation: Spectrum monitoring
performance of the three models on the ITS dataset,
regarding the precision, recall, and F1-score, is summarized
in Table 4. The highest scores are bolded in the table.
While the SSDC model achieves the highest score in
most cases across the evaluation with the three metrics
across the six classes, it is evident that it has a very
similar performance with the DCEC model. In general,
we can notice a similar performance pattern as in the
previous labels-based evaluation, demonstrated in Table 3.
This means that the SSDC and DCEC can provide high-
performance classifiers using completely unlabeled data,

TABLE 4. Performance of different models on multiclass classification.

with only providing identification of the clusters, as part of
the Phase 3, described in Section III-C.

C. EVALUATION RESULTS WITH UNB-U
1) VISUAL EVALUATION

Figure 9 depicts the visual evaluation of the three models
with the unlabeled dataset. In this case, since the ground-truth
labels are not available, we can only analyze as part of the
visual evaluation the t-SNE projections (Figures 9(a), 9(b)
and 9(c)) and the cluster averages (Figures 9(d), 9(e)
and 9(f)). Considering that this dataset is acquired by
continuous sensing, we expect it to have many noisy samples
without clear distinction boundaries between them. Also, if
there are significant amounts of samples with specific shapes,
which would result from some specific RAT operating in the
monitored band, we expect them to be grouped together in
a separate cluster in the feature space.
Comparing the t-SNE visualizations, the feature space of

the SSDC model appears to be separated into more dis-
tinctive and better-rounded clusters as shown in Figure 9(a)
compared to AE-based models shown in Figures 9(b)
and 9(c). This makes the SSDC-provided feature space
advantageous for further analysis since it is easier to isolate
each specific type of RAT, regardless of the type of clustering
algorithm being used. Besides, the AE-based models contain
some well-separated clusters, such as the cluster 9-cyan in
Figure 9(b). There are also the elongated shapes that result
in merged clusters that contain different RATs, such as the
clusters 3-red and 0-blue in Figure 9(b) and clusters 2-
green and 8-yellow in Figure 9(c). The same effect was also
noticed in the evaluation with the TCD-L labeled dataset in
Section VII-A.
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FIGURE 9. Feature-space and average clusters of the different models.

These observations are also confirmed with the per-cluster
averages depicted in Figures 9(d), 9(e) and 9(f). The well-
distinguished clusters are easily recognizable shapes that are
specific for different RATs. This allows for further fine-grain
analysis of the smaller clusters, which would not be possible
for the other two, AEML and DCEC, which show only 3-
5 distinguishable clusters. Looking at the averages of the
clusters of each model, all of them appear to have formed
clusters for mostly similar transmission types. However, the
merged clusters which were notable in the feature space
visualization in Figures 9(b) and 9(c) are also influencing
the per-cluster averages in Figures 9(e) (e.g., cluster 0-blue
and cluster 3-red) and 9(f) (e.g., cluster 6-pink and cluster
9-cyan).
Based on analysis of the same dataset (UNB-U) in [43],

we can tell which RATs represent some of the formed
clusters based on the shape of the per-cluster average. In
Figure 9(d), cluster 6-pink are IEEE 802.15.4 transmissions,
clusters 7-gray and 9-cyan are two different proprietary
transmissions, and cluster 4-purple are LoRA transmissions.

2) QUANTITATIVE EVALUATION

Quantitative evaluation of the three models with UNB-U
dataset with the distance-based metrics is summarized in
Table 5. Results support the previous conclusions based on
the visual analysis of the feature space and the per-cluster
averages. The existence of some well-separated clusters has
led the SSDC model to significantly outperform the other
two AE-based reference models according to the silhouette
score, i.e., AEML by almost 40% and DCEC by 150%,
which was not the case in the labeled datasets. It also shows

TABLE 5. Evaluation of clustering by K-means on the different embedded spaces
with UNB-U.

comparable performance based on the Davies-Bouldin score
by ranking second. The relatively good performance of AE-
based models results from the larger density of the formed
clusters, which was also noticed in the evaluations with the
labeled datasets. It is interesting to notice how the DCEC
model performs significantly better on the Calinski-Harabasz
score, which results from the good separation and density
of some of the clusters on the margins of the feature space
(i.e., cluster 1-orange, 9(c)).
Overall, judging by the distance-based metrics, all three

models show comparable performance with the UNB-U
unlabeled dataset. However, based on the visual evaluation,
the clusters of the SSDC model appear to form a larger
number of recognizable transmission types; thus, the SSDC
model has more potential for further analysis because of the
better segmentation of the feature space.

D. POTENTIAL DEPLOYMENT CHALLENGES
Regarding the architectural specifics, the SSDC model could
be considered easier to configure (number of training epochs
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TABLE 6. Computational complexity of the models.

and stopping criteria) compared to the reference AE-based
models because of the following main characteristics.

1) SINGLE LOSS FUNCTION

Having two separate components that build the global loss
function for the AEML and DCEC could lead to conflicting
situations in the learning process. For example, lowering the
deep clustering part of the loss in the embedded domain
(increasing the distance between samples) could lead to
worsening the reconstruction loss. Additionally, in AE-
based models, there is no direct feedback from the actual
classification process, such as the K-means for the SSDC
model, which means that actual classification performance
could be even degraded by creating unnecessary clusters
and fragmenting the feature space while improving the deep
clustering and reconstruction loss.

2) INHERENTLY DEVELOPED CLASSIFIER

The training of the SSDC inherently develops a classifier
in parallel with the feature learning, which follows the
assignments of the K-means algorithm. On the contrary, the
AE-based models require another classification algorithm
to work on the extracted features since they only provide
encoding of the input data without class information.

3) LOWER COMPUTATIONAL COMPLEXITY

As we described in Section VI, the reference AE-based
and the proposed SSDC architectures utilize the same
CNN module. Consequently, during the inference mode
(deployment scenario), all of the models will have a similar
number of parameters. However, in the training mode,
the SSDC models have around 22% fewer parameters
than AE-based models because of the encoder-decoder
structure, which requires symmetrical CNN module for
decoding. Considering the GFLOPS calculation, as specified
in Section VI, the proposed SSDC architecture requires
approximately half of the amount of GFLOPS compared
to the AE-based architecture. This means that tuning or
retraining of the SSDC model will require significantly
less computational resources, as summarized in Table 6.
Smaller model sizes and lower computational requirements
of the proposed SSDC model could significantly benefit the
potential deployment in more restricted devices closer to the
edge of the network, thus extending the range of potential
applications.

VIII. CONCLUSION
In this paper, we investigated label-free RAT classification
for spectrum sensing. We proposed a new spectrum sensing

workflow, adequate for realistic set-ups that do not collect
labels, based on a novel deep Self-Supervised Learning
(SSL), that can be easily ported to various environments.
This workflow enables the development of RAT classification
models while avoiding the necessity of large labeled datasets.
The SSL architecture is capable of autonomously learning
low-dimensional features from raw FFT and enables the
identification of different RATs without prior knowledge of
the specific RATs in the monitored environment. The model
is trained in a self-supervised manner, followed by manual
cluster labeling by a human expert.
We evaluated the proposed architecture against state-of-

the-art Autoencoder (AE)-based architectures using three
real-world datasets acquired from three different frequency
bands, 2.4 GHz, 5.9 GHz, and 868 MHz, containing signals
from over ten different RATs. The trained model using
the proposed architecture consistently outperformed the AE-
based models by up to 31 ppt F1 score according to spectrum
monitoring evaluation, while at the same time requiring 22%
fewer trainable parameters and 50% fewer floating-point
operations per second (FLOPS).
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