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ABSTRACT The signal-to-noise ratio (SNR) is an important metric for measuring signal quality and its
estimation has received widespread attention in various application scenarios. In this paper, we propose
an SNR estimation framework based on deep learning classification. Power spectrum input is proposed
to reduce the computational complexity. We also propose an SNR estimation method based on deep
learning regression to overcome the inevitable estimation error problem of classification-based methods in
dealing with signals with SNR not within the training label set. We conduct a large number of simulation
experiments considering various scenarios. Results show that the proposed methods have better estimation
accuracy than two existing deep learning-based SNR estimation methods in different noises and multipath
channels. Furthermore, the proposed methods only need to be trained under one modulation signals to
adapt to SNR estimation of other modulation signals, with superior transfer performance. Finally, the
method using the average periodogram as input has stronger adaptability in few-shot scenario and requires
lower computational complexity compared to the method with in-phase and quadrature (IQ) input.

INDEX TERMS Signal-to-noise ratio, deep learning, convolutional neural network, classification,
regression.

I. INTRODUCTION

SIGNAL-to-noise ratio (SNR) plays a crucial role in
wireless communication systems. Compared to bit error

rate (BER) and symbol error rate (SER) [1], SNR is a
more direct parameter that reflects the signal quality or the
channel quality. Additionally, a large number of channel
decoding algorithms [2] require channel state information
such as SNR to perform soft decoding [3], thus making
the performance of SNR estimation critical for subsequent
information recovery. Accurate SNR estimation can reduce
the error rate of information recovery from the received
signals and thus improve communication reliability.
Over the past few decades, many methods for estimating

SNR have been proposed. These methods can be divided into
two types: data-assisted (DA) estimators [4] and non-data-
assisted (NDA) estimators [5]. DA estimators rely on prior
knowledge of the transmitted data while NDA estimators
obtain SNR estimates by analyzing the unknown received

signal. As noted in [6], these SNR estimation methods
possess certain limitations, such as restricted adaptability to
various modulation types, constrained range of SNR, and a
requirement for precise frequency and timing synchroniza-
tion which are not always met in practical scenarios.
With the rapid development of deep learning (DL) in

recent years, it has been widely used in the field of radio
signal processing [7], including signal detection [8], signal
recognition [9], information recovery [10], etc. Given the
strong feature learning ability of deep learning, researchers
also begin to apply deep learning to the challenging NDA
SNR estimation [6], [11], [12]. These DL-based algorithms
utilize classification methods to solve the SNR estima-
tion task under additive white Gaussian noise (AWGN).
Compared to traditional SNR estimation methods, DL-based
SNR estimation methods significantly improve estimation
performance and no longer rely on manually extracting
signal features. However, the aforementioned DL-based
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SNR estimation methods share some common limitations.
Firstly, these methods do not consider complexity issues,
and the signal input forms or network structures used
result in high complexity, which may limit the practical
implementation of these methods. For example, in [12]
converting the input signal to a constellation diagram results
in a high-dimensional input. The use of deep GoogleNet
requires a high computational burden when used for SNR
estimation. Secondly, they all use deep learning classification
to solve the SNR estimation problem in continuous spaces.
For example, in [11], the authors overlooked scenarios
where the SNR of the actual signal doesn’t align with
the SNR categories of the training data. The simulated
dataset contains fewer SNR categories, with intervals set at
2 dB or 4 dB, potentially resulting in an overestimation of
accuracy. The SNR label resolution of classification methods
will inevitably affect the estimation accuracy. Finally, the
factors considered in simulation performance analysis are not
comprehensive enough. For example, they only considered
the basic AWGN scenario [6], [11], [12], without involving
non-AWGN situations or considering adaptability to new
signals. To overcome these problems, in this paper, we
propose to use power spectrum as input to the adopted
residual network to reduce computational complexity without
compromising SNR estimation accuracy, which is especially
important to reduce the energy consumption in mobile and
remote communication systems. We also propose a solution
based on deep learning regression to overcome the drawback
of the estimation accuracy of classification based methods
being affected by label resolution. We conduct a large
number of simulation experiments considering a variety of
nonideal scenarios to verify the performance of the proposed
methods. Specifically, the main contributions of this paper
are as follows.

• We propose an SNR estimation framework based
on deep learning classification, which uses Residual
Network (ResNet) as the classification network. In
terms of network input, in addition to utilizing in-phase
and quadrature (IQ) as input, we also propose using
power spectrum as input. Compared to the IQ input
method, it can reduce computational complexity without
compromising estimation accuracy.

• We propose an SNR estimation method based on
deep learning regression. This method overcomes the
inevitable estimation error problem of classification-
based methods in dealing with signals with SNR not
within the training label set. Compared to classification-
based methods, the regression-based methods require
fewer training labels and have superior estimation
performance when faced with untrained SNRs.

• We conduct a large number of simulation experiments,
considering various scenarios such as different noise
distributions including white noise and colored noise,
multipath channels including Rayleigh and Rician
distributions, and adaptability to new signals. The

results indicate that the proposed classification-based
methods perform better in terms of average SNR and
mean squared error (MSE) compared to two existing
deep learning-based SNR estimation methods, i.e.,
CDG-GoogleNet and IQ-CNN-LSTM. In addition, the
proposed regression-based method has better estima-
tion performance for untrained SNR compared to the
classification-based method. Furthermore, in the case
of different noise distributions including AWGN and
additive general Gaussian noise (AGGN), the proposed
method based on power spectrum input has better
adaptability than the method based on IQ input. Finally,
the proposed methods only need to be trained under one
modulation signals to adapt to SNR estimation of other
modulation signals, with superior transfer performance.

• We also conduct performance analysis in few-shot
scenario, and the results show that the methods with
power spectrum input have significant advantages over
IQ input in very few sample situations, and is far
superior to existing deep learning based methods,
further demonstrating the superiority of our methods.

• We analyze the complexity of the proposed methods,
including time complexity (floating-point operations,
i.e., FLOPs) and space complexity (number of model
parameters, i.e., Params). The results show that the
FLOPs and Params of our proposed methods are much
smaller than those of the existing deep learning-based
SNR estimation methods, i.e., CDG-GoogleNet and IQ-
CNN-LSTM. Furthermore, the proposed method using
the average periodogram as input can further reduce the
computational complexity to close to 1/L of that of the
IQ input method, where L is the average number of
times.

The remainder of this paper is organized as follows. In
Section II, we introduce related work of SNR estimation. In
Section III, we discuss the mathematical models of received
signal and SNR estimation. In Section IV, the general
framework of the proposed deep learning classification-based
method is introduced in detail. In Section V the proposed
regression-based method is discussed. Performance analysis,
including simulation results and complexity analysis is given
in Section VI. Finally, conclusions are drawn in Section VII.
The abbreviations used in this paper are summarized in

Table 1.

II. RELATED WORK
A. TRADITIONAL SNR ESTIMATION METHODS
Traditional SNR estimation methods can be divided into two
types: DA estimators [4] and NDA estimators.
DA estimators rely on prior knowledge of the transmitted

data, examples of which include the minimum mean-square
error estimation (MMSE) method [13], maximum likelihood
(ML) estimation method [14], and squared signal-to-noise
variance (SNV) estimator [15]. Based on ML estimation
theory [16], the ML SNR estimator was introduced by
Gagliardi and Thomas [17]. They derived the ML SNR
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TABLE 1. Summary of abbreviations.

estimator for a binary phase shift keying (BPSK)-modulated
signal in AWGN. The original formulation of the SNV
estimator for BPSK modulation was first introduced in [18].
The authors then extended the application range of SNV
estimator from BPSK modulation to high-order modulation
in complex channel.
In contrast, NDA estimators obtain SNR estimates

by analyzing the unknown received signal. Examples
include second and fourth-order moment (M2M4) estimation
method [5], split-symbol moment estimator (SSME) [19] and
signal-to-variation ratio (SVR) estimator [20]. Specifically,
Benedict et al. [21] proposed applying M2M4 to the noise
intensity estimation of the actual AWGN channel, and
Matzner [22] gave a detailed derivation of the M2M4 SNR
estimator and obtained a similar expression to [22]. Simon
and Mileant proposed the SSME algorithm by assuming that
the BPSK signal is used in a wideband AWGN channel [23].
Brandão proposed the SVR estimator [24] which is a

moment-based method that can measure channel quality in
AWGN channels. The SVR estimator is designed to process
arbitrary phase shift keying (PSK) modulation signals, and
it is generally not suitable for other digital modulation
schemes.
As pointed out in [6], there are several limitations of

the traditional SNR estimation methods. Firstly, the types
of signal modulation that these methods can apply to are
limited. For example, the maximum likelihood estimator
is effective for its target modulation, while the M2M4
estimator only applies to multiple phase shift keying (MPSK)
signals. Secondly, the range of SNR that can be effec-
tively estimated is narrow. For instance, the subspace-based
estimation algorithm may not be optimal under low SNR
conditions, as the dimension of the signal subspace is
susceptible to overestimation in such scenarios. Finally, these
methods usually assume that the receiving system is perfectly
synchronous, that is, there is no frequency and timing offsets
between the transmitter and the receiver which are not always
met in practical scenarios.

B. DEEP LEARNING-BASED SNR ESTIMATION METHOD
Existing DL-based SNR estimation methods primarily utilize
IQ signals or signals transformed from IQ signals as inputs to
neural networks. Specifically, in [6], the authors proposed a
convolutional neural network (CNN)-based SNR estimation
method which uses the raw IQ signal as the input. Simulation
results shown that the method is more robust and has a wider
application range of modulation types than traditional SNR
estimation method. However, the CNN used in this method
is a basic CNN with several stacked convolutional layers
which may restrict its performance. Furthermore, the method
assigns the signal’s amplitude as the label, estimates this
amplitude using deep learning techniques, and subsequently
computes the estimated SNR. Since it relies on an analytical
expression to derive the SNR from the estimated amplitude,
it may struggle to adapt effectively to complex channel
environments.
In [11], the authors adopted a combination of CNN and

long short term memory (LSTM) to estimate the SNR in
long term evolution (LTE) and five-generation (5G) systems.
Raw IQ input is also considered in this method. Simulation
results shown that the CNN-LSTM based prediction of SNR
in LTE and 5G systems has better accuracy and latency
than traditional estimation methods. However, the method
addressed the SNR estimation problem using a classification
approach. It overlooked scenarios where the SNR of the
actual signal doesn’t align with the SNR categories of the
training data. The simulated dataset contains fewer SNR
categories, with intervals set at 2 dB or 4 dB, potentially
resulting in an overestimation of accuracy.
In [12], a deep learning SNR estimation algorithm with

constellation diagram (CDG) input was proposed, which
improves the SNR estimation performance. Simulations
shown that the proposed CDG-GoogleNet method is signif-
icantly better than the traditional SNR estimation algorithm
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TABLE 2. Comparison of different SNR estimation methods.

in the accuracy of SNR estimation and the adaptability
of changing noise background environment. However, it’s
important to note that the simulations were conducted
within a relatively narrow SNR range. This limitation raises
questions about the generalizability of the method across
broader SNR ranges encountered in real-world scenarios.
Furthermore, converting the input signal to a constellation
diagram and then using GoogleNet is computational expen-
sive which may pose a potential obstacle to its real-world
implementation.
For convenience we will refer to the methods proposed

in [6], [11] and [12] as IQ-CNN, IQ-CNN-LSTM and
CDG-GoogleNet respectively in the rest of the paper. We
summarize the various factors considered by these methods
in Table 2. It is evident that all of them utilize classifi-
cation techniques to tackle the SNR estimation challenge.
Furthermore, the considered scenarios are notably restricted,
predominantly focusing on AWGN conditions. Lastly, these
approaches tend to exhibit relatively high complexity levels
which may restrict their real-world deployment. The FLOPs
and Params are obtained with a signal length of 1024.

III. SYSTEM MODEL
SNR estimation is usually performed on the received signal.
In a typical communication system, the signal sent by the
transmitter is transmitted through the channel to the receiving
end, and the signal received by the receiving end can be
represented as

y(n) = h(n)⊗ b(n)ej(2π�fn+θ) + w(n), n ∈ [0,N − 1], (1)

where the transmitted signal is represented by b(n), the chan-
nel response for the transmitted signal is denoted by h(n),
the parameter �f represents the carrier frequency offset,
θ represents the random phase shift, w(n) represents the
noise, N is the signal length, and ⊗ represents convolution
operation. Traditional methods face challenges in accurately
separating the signal component from noisy signals and
precisely estimating SNR due to the impact of channel
propagation and the uncertainty regarding the noise type in
advance.
According to the received signal y(n) with additive noise,

the noise-removed part of the received signal is defined as
the effective signal x(n), which can be represented as

x(n) = h(n)⊗ b(n)ej(2π�fn+θ). (2)

The power of signal can be defined as

Px = lim
N→∞

1

N

N−1∑

n=0

|x(n)|2, (3)

and the power of the noise can be defined as

Pw = lim
N→∞

1

N

N−1∑

n=0

|w(n)|2. (4)

Thus we define SNR of y(n) as

SNR = Px
Pw

. (5)

In general, decibels (dB) is used to express the signal-to-
noise ratio:

SNRdB
�= ρ = 10log10

(
Px
Pw

)
. (6)

The SNR estimation problem is to estimate the SNR of
the received signal y(n), which can be expressed as

�
ρ = max

ρ
Pr{ρ|y(n)}, (7)

where �
ρ is the estimated result and Pr{·} represents the

probability.
Generally, AWGN is considered to model the noise

distribution. However, non-ideal noise exists in real world
systems. In this paper, we also consider another white noise,
AGGN, which can better represent the “pulse” noise. The
probability density function of AGGN [10] is

p(ω) = κ

2δ

(

1
κ

) exp{−|ω − μ

δ
|κ}, (8)

where ω is a random variable, μ is the mean, κ is the
shape parameter, δ is the standard deviation, and 
(·) is
the Gamma function. When κ = 2, (8) becomes traditional
AWGN distribution:

p(ω) = 1√
2π · δ exp

{
−

∣∣∣∣
ω − μ

δ

∣∣∣∣
2
}

. (9)
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FIGURE 1. The overall framework of deep learning classification-based SNR estimation. The dotted lines represent the selection of a preprocessing method to obtain the
network input, Conv represents the convolution layer, and Fc represents the fully connected layer. This framework includes two residual blocks, a SoftMax layer, and a
ClassOutput layer.

Beyond white noises, our consideration extends to colored
noise, specifically pink noise. This type of colored noise
is produced by subjecting uniformly distributed random
numbers to a sequence of randomly initialized second-
order sections (SOS) filters. The amplitude distribution of
the resulting pink noise is quasi-Gaussian, confined within
the range of −1 and 1. Furthermore, the power spectral
density (PSD) of this pink noise is inversely proportional to
frequency:

P(f ) ∝ 1

f
, (10)

where f is frequency.
In a wireless communication channel environment, the

signal undergoes transmission to the receiver through various
paths, such as reflection, refraction, and scattering. The total
signal intensity follows the Rayleigh distribution as a result,
leading to what is known as Rayleigh fading. If the received
signal comprises not only reflections and scattering but also
a direct transmission from the transmitter to the receiver, the
total signal intensity adheres to the Rician distribution, and
this phenomenon is termed Rician fading. The probability
density function of Rayleigh distribution [25] is

p(ω) = ω

δ2
exp

{
− ω2

2δ2

}
, (11)

where ω is a random variable, δ is the standard deviation.
The probability density function of Rician distribution [26]
is

p(ω) = ω

δ2
exp

{
−ω2 + v2

2δ2

}
I0

(wv
δ2

)
, (12)

where ω is a random variable, δ is the standard deviation
and I0 is the modified zero-order Bessel function of the first
kind. When v = 0, the Rician distribution degenerates into
the Rayleigh distribution.

IV. PROPOSED CLASSIFICATION-BASED METHOD
A. OVERALL FRAMEWORK
SNR estimation is essentially a parameter estimation problem
in continuous space. One way to solve it is to discretize
the SNR according to a specific range and convert it into a
classification problem in a finite set. This is advantageous
for training the SNR estimation model borrowing inspiration
from computer vision methods. The classification model
exerts a compelled classification influence on the SNR. The
SNR is categorized into the nearest pre-set SNR category,
facilitating convenient statistical analysis and observation.
The discretized set can be represented as

ρ = {ρmin, ρmin + ρα, . . . , ρmax − ρα, ρmax}, (13)

where ρ is the set of all possible SNRs, ρmin is the minimum
SNR, ρmax is the maximum SNR, and ρα is the resolution
of the SNR estimate. In this way, we can consider SNR
estimation as a classification problem, where the number of
categories is

C = (ρmax − ρmin)/ρα + 1. (14)

In this paper, we adopt deep learning to solve the clas-
sification problem. The overall framework of our proposed
SNR estimation method is shown in Fig. 1 where we
consider a variety of input data formats, including raw
IQ input and power spectrum input (with average and
without average). The dotted lines represent the selection
of a preprocessing method to obtain the network input,
Conv represents the convolution layer, and Fc represents the
fully connected layer. This framework includes two residual
blocks, a SoftMax layer, and a ClassOutput layer.
Selecting one of the three input preprocessing methods to

preprocess the raw signal, and use the processed signal as
the input to the CNNs. These input formats have different
sizes, which may lead to different computational complexity
in the inference phase. Therefore, we can flexibly select
the appropriate input forms according to specific application
scenarios. We build corresponding CNNs for these input
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formats. Except for the first layer, which is designed to
match the dimensions of its processed data, the rest of the
CNNs share the same architecture. For each input, The neural
network model is trained by using the constructed training
set. In the test stage, test data is fed into the model obtained
after training to obtain the estimation results of SNR.

B. INPUT FORMAT
1) RAW IQ INPUT

Firstly, the IQ components of the received signal y(n) can
be extracted as

I(n) = real(y(n)), (15)

Q(n) = imag(y(n)), (16)

where the I and Q components of the received signal are
denoted by I(n) and Q(n), respectively, and real(·) and
imag(·) represents the extraction of the real and imaginary
components from the received signal y(n). Afterwards, the
extracted I(n) and Q(n) are concatenated to form a matrix

A =
[
I(0) I(1) · · · I(N − 1)

Q(0) Q(1) · · · Q(N − 1)

]
(17)

where N is the length of the sequences. The matrix A with
size 2 ∗ N can be used as the input of the CNN.

2) POWER SPECTRUM INPUT

Since the power spectrum of white noise is often flat, and
the power spectrum of signals is often not flat due to the
influence of pulse shaping, signals with different SNR will
behave differently on the power spectrum. Based on this, we
can use the power spectrum as the input of the CNN to learn
and extract features to distinguish different SNRs. The power
spectrum of the signal can be estimated by first computing
the discrete Fourier transform (DFT) of the received signal
y(n):

Y(k) =
N−1∑

n=0

y(n)e−jk
2π
N n, k = 0, 1, . . . ,N − 1. (18)

Then the resulting sequence is shifted with the frequency
zero moved to the center of the spectrum. After that, the
amplitude is calculated and the resulting power spectrum is

R(k) = 10log10|Ŷ(k)|2, k = 0, 1, . . . ,N − 1, (19)

where Ŷ(k) denotes the shifted sequence of Y(k), | · |
means getting the absolute value. The purpose of 10log10(·)
computation is to make the calculated power spectrum more
match the SNR expressed in dB. This process follows the
procedure of PG. With R(k), we can construct the matrix as
the input of the CNN as

B = [
R(0) R(1) · · · R(N − 1)

]
, (20)

where matrix B is with size 1 ∗ N which is smaller than
that of matrix A. For simplicity, we refer to this input as
PG input.

In order to reduce the variance of periodograms in
power spectrum estimation, APG has been proposed. The
N points of the signal are divided into L segments, each
segment of data length M, and the power spectrum is
estimated respectively for each segment of data, and then
the average value is calculated. The average periodogram
changes the original variance to 1/L. When L = 1, the
average periodogram method is equal to the previously
discussed periodogram method. As the number of segments
L increases, the variance decreases, but the resolution
decreases. The average periodogram can be expressed as
follows:

Yi(k) =
i×M−1∑

ni=(i−1) ×M
y(ni)e

−jk 2π
N ni , i = 1, . . . ,L, (21)

S(k) = 10log10

(
1

L

L∑

i=1

∣∣∣Ŷi(k)
∣∣∣
2
)

, k = 0, . . . ,M − 1, (22)

where ŶM(k) represents the shifted sequence of YM(k) and
S(k) is the obtained APG. Similar as PG, the purpose of
10log10(·) computation is to make the calculated power
spectrum more match the SNR expressed in dB. With the
obtained S(k), we can construct the matrix as the input of
the CNN as

C = [
S(0) S(1) · · · S(M − 1)

]
. (23)

It can be seen that the size of C, i.e., 1∗M, obtained from the
average periodogram is further reduced. The computational
overhead associated with performing inference tends to scale
with the size of the input signals, so the computational
complexity using C as the input is reduced by L times
compared with that of using B as the input. Similarly, we
refer to this input as APG input for simplicity in the rest of
the paper.

C. ADOPTED NETWORKS
1) BASIC CNN

Basic structure of CNN includes the convolutional layer, the
pooling layer, and the fully connected layer. The convolution
kernel in the convolution layer realizes the convolution
function. It is postulated that the m-th layer in the network
corresponds to a convolutional layer, the input feature map is
am−1 ∈ R

P×Q×D, and the output feature is om ∈ R
P′×Q′×U′ ,

then the u-th element of the output feature map is

oum =
D∑

d=1

w(u,d)
m ⊗ adm−1 + bm, (24)

where w(u,d)
m is the weight of the convolution kernel, and

bm stands for bias of the convolution kernel. Convolution
is similar to the filtering function, which can eliminate the
influence of channel environment in (1) and is beneficial for
SNR estimation.
The pooling layer is used to alleviate the excessive

sensitivity of the convolution layer to the position. The
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pooling layer computes the output at a time on elements in
a fixed region (also known as the pooling window) of the
input data. The output of the maximum pooling layer used
is defined as:

MaxPool
(
Rup,q

)
= max

i∈Rup,q
ai, (25)

where Rup,q is the target area in the input feature map of the
pooling layer. There is also average pooling defined as:

AveragePool
(
Rup,q

)
= 1

|Rup,q|
∑

i∈Rup,q
ai, (26)

where |Rup,q| represents the number of neurons in region Rup,q.
There is usually a nonlinear layer between the convolution

layer and the pooling layer, which is used to increase the
nonlinear expression ability of the network. The commonly
used nonlinear function is rectified linear unit (ReLU) which
is defined as

ReLU(a) = max(a, 0). (27)

Fully connected layer is generally located at the end of
the network for mapping the extracted feature map to a fixed
number of neurons. Each neuron in the layer is connected
with all elements of the previous layer.
Classification problems require discrete predictive outputs,

and there are two problems with using outputs directly
from the output layer. On the one hand, since the range of
output values in the output layer is uncertain, it is difficult
to intuitively judge these values’ meaning. On the other
hand, since the real labels are discrete values, the error
between these discrete values and the output values of the
uncertain range is difficult to measure. Softmax operator can
effectively solve the above two problems by

SoftMax(ci) = exp(ci)∑
k exp(ck)

, (28)

where ci represents the i-th element of the output array
with C elements. It transforms the output into a probability
distribution with positive values and a sum of “1”. Via
this operation, we change from the initial observation
to the confidence of each predicted value. The higher
the confidence, the higher the probability that the signal
belonging to this category.

2) ADOPTED RESNET

With the development of DL, AlexNet [27], VGGNet [28],
GoogleNet [29] and other image recognition network models
have been proposed one after another. Upon comparing
these advanced neural networks with their predecessors,
researchers identified three key factors that influence the
performance of CNNs: convolution kernel size, network
width, and network depth. Generally, increasing the depth
of the network layers enhances overall performance. As the
network layers deepen, the accuracy of the model steadily
improves until it reaches a peak. However, there exists a
threshold for performance improvement by deepening the

FIGURE 2. The basic structure of the residual block.

layers of the network. Excessive layer depth leads to a
significant decrease in accuracy, a phenomenon known as
“degradation”.
ResNet [30] has been proposed to solve this problem by

introducing the residual block as shown in Fig. 2. On one
hand, the input x normally passes through various network
layers. On the other hand, there is also a shortcut route
that directly connects the input x to the output F(x) and
taking the resulting F(x)+ x as input to the next activation
function ReLU. The residual network enhances the efficiency
of information transmission and reduces the number of
network parameters by incorporating residual connections
into the non-linear convolutional layer. This enables the
direct transmission of low-level features from the network
to the high-level, ensuring that even if certain intermediate
layers do not contribute meaningful transformations, they can
still convey information from the preceding layer. When the
number of network layers surpasses the optimal count, the
surplus layers are transformed into identity mappings. As a
result, the network performance remains unaffected despite
the excessive deepening of the layer count.
We construct the adopted ResNet shown in Fig. 3 based

on the basic ResNet18, which consists of a convolution
layer, two residual blocks, and a fully connected layer. The
input matrix first passes through a convolution layer and a
maximum pooling layer. The size of the convolution kernel
in the convolution layer needs to be set according to different
input formats, i.e., when using IQ input, the size of the
convolutional kernel is 2 ∗ 15, while when using PG and
APG input, the size is 1 ∗ 15. Then the output of the
maximum pooling layer passes through two residual blocks.
Details of the residual blocks are shown in Table 3 without
the discussion of the normalized layer and the ReLU layer
for the sake of simplicity. It is worth mentioning that the
inclusion of the “conv5” layer is aimed at addressing the
issue of inconsistent dimensions observed before and after
the residual block. Next, the output of the second residual
block passes through the average pooling layer and the
fully connected layer. Finally, softmax is used to obtain the
confidence that the signal belongs to a specific category
of SNR. We considered both enhancing model estimation
performance and reducing computational complexity, so the
constructed network employs only two residual blocks.
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FIGURE 3. Adopted ResNet network structure. “MaxPool” represents the maximum pooling layer, “AvgPool” represents the average pooling layer and “Fc” represents the fully
connected layer.

TABLE 3. Parameter setting of residual blocks.

In practical applications, signals are often more complex,
necessitating deeper network layers to achieve satisfactory
training outcomes. Consequently, the number of residual
blocks is increased based on actual requirements. The ResNet
network effectively mitigates the ‘degradation phenomenon,’
ensuring that an excessive number of network layers does
not result in poor training results.

D. TRAINING AND INFERENCE
The parameters of the constructed network model need to be
optimized based on the training set. Assuming that there are
m pairs of data in the training set, which can be represented
as {(

x(1)
train, z

(1)
train

)
,
(
x(2)
train, z

(2)
train

)
, . . . ,

(
x(m)
train, z

(m)
train

)}
, (29)

where x(i)train represents the i-th signal sample and z(i)train is the
corresponding label. In the case of forward propagation, the
final output of the network using x(i)train as the input is

ẑ(i)train = GW
(
x(i)train

)
, (30)

where W is the set of the parameters of the network
represented by GW(•), and ẑ(i)train represents the output of
x(i)train after passing through the network. Given a mini-batch
of training samples, cross-entropy is used as the loss function
for optimizing the parameters of the network

LossCE = − 1

B

B∑

i=1

C∑

j=1

z(i)train,j log ẑ(i)train,j, (31)

where z(i)train,j is the true SNR label of the i-th signal sample
and B is the mini-batch size.

During the training of the neural network, the optimization
algorithm is used to iteratively adjust the model parameters
to minimize the value of the Loss function. To update the
set of parameter W, we use stochastic gradient descent
with momentum (SGDM) algorithm [31]. Momentum is a
method that helps accelerate SGD in the relevant direction
and dampens oscillations. This involves randomly selecting
a mini-batch of samples in each iteration, which is then used
to calculate the gradient of the Loss function with respect
to the parameters as

ϑt = γϑt−1 + η∇θ LossCE, (32)

θ ← θ − ϑt. (33)

where γ is the momentum, θ is the parameter in W to be
updated and η is the learning rate. After the model training is
completed, in the inference stage, when a new signal arrive,
it is fed into the network in the corresponding form, and
the class with the highest confidence output is used as the
SNR estimation result. The training and inference process of
classification-based SNR estimation is specifically described
in Algorithm 1.

V. PROPOSED REGRESSION-BASED METHOD
In classification-based solution, in the inference stage, when
input a signal, the trained model will output an SNR in the
predefined SNR set ρ as the estimated result. As shown in
Fig. 4, when the true SNR of the input signal is not in the
set ρ, the network will forcibly select the SNR category
with the highest output confidence from the training set ρ

as the estimated value. Obviously, if the number of SNR in
the predefined set ρ is small and the resolution of SNR is
insufficient, even if the classification performance is perfect,
there will inevitably be a large deviation in the estimation
of SNR in the reasoning stage.
To solve this problem, we propose SNR estimation

based on deep learning regression. Unlike the classification
method that mandates output within preset categories, the
regression method produces a continuous fitting curve. When
employing the regression method to train the SNR estimation
model, as the estimation performance improves, the curve
progressively converges towards the actual SNR of the signal,
which can give an estimate close to the true SNR even
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Algorithm 1 Training and Inference Algorithms of
Classification-Based SNR Estimation Methods
Training procedure
Input: Training set D = {(x(1)

train, z
(1)
train), (x

(2)
train, z

(2)
train).

., . . . , (x(m)
train, z

(m)
train)}, minibatch size B, learning rate η,

maximum iterations λ, momentum variable γ .

Prepossess the input data according to the specific input
format, i.e, IQ, PG or APG.
Initialize the parameters of the network.
for 1 ≤ t ≤ λ do

Choose B samples from the training set D;
Estimate loss using (31);
Update the parameters of the network using (32)(33).

end for
Output: The trained model GW(•).
Inference procedure
Input: Signal y(n), the trained model GW(•).

Prepossess the signal according to the specific input
format, i.e, IQ, PG or APG.
Compute GW(A), GW(B), or GW(C) according to the
specific input format.
Choose the category with the maximum confidence as the
estimated SNR.

Output: The estimated SNR ρ̂.

FIGURE 4. The inference of SNR not within the training label set with the
classification-based methods.

if the SNR of the input signal is untrained. The most
significant difference between the regression model and the
classification model is the output layer. The total number
of neurons in the last fully connected layer of classification
model is set equal to the number of SNR categories, say
C in this paper. Softmax layer is then used to obtain the
confidences. Differently from this, in the regression model,
there is only one neuron in the last fully connected layer, and
the output can be used directly as the estimated SNR, without
the need for the softmax layer. The rest of the framework
is kept unchanged, which is shown in Fig. 5. There are also
differences in the training of the model. Firstly, the label used
by the classification model is the one-hot encoded categories,
while the label used by the regression model is the SNR
value itself. Secondly, the loss function used in training the
regression model is the root mean squared error (RMSE)
which can be represented as

LossRMSE =
√√√√ 1

B

B∑

i=1

|ρi − ρ̂i|2, (34)

FIGURE 5. Transferring classification-based network to regression-based network.

Algorithm 2 Training and Inference Algorithms of
Regression-Based SNR Estimation Methods
Training procedure
Input: Training set D = {(x(1)

train, z
(1)
train), (x

(2)
train, z

(2)
train).

., . . . , (x(m)
train, z

(m)
train)}, minibatch size B, learning rate η,

maximum iterations λ, momentum variable γ .

Prepossess the input data according to the specific input
format, i.e, IQ, PG or APG.
Initialize the parameters of the network.
for 1 ≤ t ≤ λ do

Choose B samples from the training set D;
Estimate loss using (34);
Update the parameters of the network using (35)(33).

end for
Output: The trained model GW(•).
Inference procedure
Input: Signal y(n), the trained model GW(•).

Prepossess the signal according to the specific input
format, i.e, IQ, PG or APG.
Compute GW(A), GW(B), or GW(C) according to the
specific input format.
Gradually fitting curves to represent the mapping relation-
ship between input signals and SNR.

Output: The estimated SNR ρ̂.

where ρi represents the true SNR and ρ̂i represents the
predicted SNR. The regression loss function used to update
the parameters as

ϑt = γϑt−1 + η∇θ LossRMSE, (35)

The training and inference process of regression-based SNR
estimation is specifically described in Algorithm 2.

VI. PERFORMANCE ANALYSIS
A. SIMULATION SETTING
1) DATASET

We generate signals with different modulations through
simulation to construct a basic dataset for SNR estimation.
Details of the dataset simulation is shown in Table 4. Each
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TABLE 4. The dataset information.

TABLE 5. Parameter setting of Rayleigh channel.

generated signal has a length of 1024 and an oversampling
ratio of 8, implying that each signal comprises 128 symbols.
A root raised-cosine filter with a 6-symbol truncated length
is employed as the pulse-shaping filter, and the roll-off
factor is chosen randomly from the interval [0.2, 0.7].
Moreover, the normalized frequency offset of each signal
normalized is randomly selected from the range [−0.2, 0.2].
We consider three types of noise: AWGN, AGGN and
pink. In AGGN, the arbitrary position parameter is set
to 0, the shape parameter is set to 1.5 and the inverse
scale parameter is set to 1. We also consider multipath
channels. The parameter settings of Rayleigh channel and
Rician channel are shown in the Table 5 and Table 6,
respectively.

2) HYPERPARAMETER SETTING

The training of the model was conducted on a computer
system equipped with an Intel Core i7-9750H CPU oper-
ating at 2.60 GHz, 32 GB of RAM, and a GeForce
RTX 2080 GPU. All experiments were performed on
Matlab2020b. Firstly, the deep neural network is trained
using data from the training set. The training parameters
are shown in Table 7. After completion of training, the
final deep neural network is saved as the best-trained
network model, and the performance of the SNR esti-
mator based on deep learning is evaluated using test set
data.

TABLE 6. Parameter setting of Rician channel.

TABLE 7. Training parameter setting.

3) PERFORMANCE METRICS

We use mean SNR, mean absolute error (MAE) and MSE
to evaluate the performance of the methods. The mean SNR
is defined as the mean value of the predicted SNR of the
test samples

MeanSNR = 1

K

K∑

i=1

ρ̂i, (36)

where ρ̂i is the predicted SNR of the i-th sample and K is the
number of samples. MAE represents the mean of absolute
error between the predicted value and the actual value which
is defined as

MAE =
∑K

i=1 |ρi − ρ̂i|
K

. (37)

MSE represents the sample variance of the difference
between the predicted value and the actual value, which can
amplify the difference to some extent and make it easier to
observe. MSE is defined as

MSE =
∑K

i=1

(
ρi − ρ̂i

)2

K
. (38)
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FIGURE 6. Comparison of Performance between Deep Learning-Based Algorithms and Traditional Estimation Algorithms. (a) Mean SNR, (b) MAE, and (c) MSE.

FIGURE 7. Performance of different networks. (a) Mean SNR, (b) MAE, and (c) MSE.

B. COMPARISON WITH TRADITIONAL ESTIMATION
ALGORITHMS
M2M4 and SVR are two widely used traditional SNR
estimation algorithms as mentioned in [18]. As shown in
the Fig. 6, we compare the performance of our proposed
deep learning-based SNR estimation algorithm with two
traditional SNR estimation algorithms. As observed from
Fig. 6(a), the average SNR estimated by the traditional SNR
estimation algorithms M2M4 and SVR is close to the actual
SNR only within the range of [−5, 5] dB. The average SNR
estimated by these traditional methods shows a significant
deviation from the actual SNR in other regions. Specifically,
traditional SNR estimation methods tend to overestimate
SNR in the [−20,−7] dB range and underestimate SNR
in the [6, 30] dB range. In addition, it can be seen that
across the entire SNR range, the estimation error of the
IQ-ResNet-C algorithm is consistently smaller than that
of the two traditional SNR estimation algorithms from
Fig. 6(b) and Fig. 6(c). Therefore, we can conclude that
the estimation performance of our proposed IQ-ResNet-C
algorithm is superior to that of traditional SNR estimation
algorithms.

C. COMPARISON OF DIFFERENT NETWORKS
In order to validate the efficacy of the network employed
in this paper, we compare the performance of utilizing IQ

input across various networks: CNN as detailed in [6], CNN-
LSTM as discussed in [11], Transformer as outlined in [32],
and the ResNet architecture utilized in our research. As
depicted in Figures 7(b) and 7(c), it is evident that the
performance of IQ-CNN and IQ-ResNet-C methods align
closely, as does the performance of IQ-CNN-LSTM and IQ-
Transformer methods. Notably, within the SNR ranges of
[−20,−18] dB and [−12, 26] dB, the estimation error of
the IQ-ResNet-C method is lower than that of the IQ-CNN
method, whereas in other SNR ranges, the estimation error of
the IQ-ResNet-C method is marginally higher. Overall, both
the IQ-Transformer and IQ-CNN-LSTM methods exhibit
larger estimation errors within the [−18,−12] dB and
[20, 30] dB ranges compared to the other two methods. As
indicated in Table 8, our proposed IQ-ResNet demonstrates
lower computational complexity compared to IQ-CNN while
maintaining commendable estimation performance. Although
the computational complexity of IQ-ResNet exceeds that
of IQ-CNN-LSTM, it contributes to enhanced estimation
accuracy in high SNR regions. Moreover, the IQ-ResNet
method outperforms IQ-Transformer in terms of estima-
tion performance, despite both methods having similar
computational complexities. This experimental observation
underscores the effectiveness of the ResNet network we
adopted, which succeeds in maintaining a reasonable network
complexity while preserving estimation performance.
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FIGURE 8. Performance of different input formats. (a) Mean SNR, (b) MAE, and (c) MSE.

TABLE 8. FLOPs and params of different methods.

FIGURE 9. Calibration curves for different inputs.

D. COMPARISON OF DIFFERENT INPUT FORMATS
We compare the performance of our proposed DL-based
SNR estimation methods with three input formats, i.e., IQ,
PG and APG. We choose L = 4 in the computation of
APG. For simplicity, the methods based on classification
with IQ input, PG input and APG input are denoted as
IQ-ResNet-C, PG-ResNet-C and APG-ResNet-C respectively
in the rest of the paper. In this experiment, QPSK signals
and AWGN are used. The results are shown in Fig. 8. As
for the average SNR shown in Fig. 8(a), we can see that

the estimated average SNR with the three input formats in
the extremely low SNR region [−20,−13] dB is slightly
higher than the actual SNR. PG-ResNet-C and APG-ResNet-
C perform better than IQ-ResNet-C in this SNR region. In
the rest of the SNR range, the estimated average SNR is very
close to the true SNR, which verifies the superiority of the
proposed methods. As for MAE and MSE shown in Fig. 8(b)
and Fig. 8(c), we can observe that the MAE and MSE of
PG-ResNet-C and APG-ResNet-C are lower than those of
IQ-ResNet-C in the low-to-medium SNR range of [−20, 15]
dB and higher in the high SNR range of [15, 30] dB. The
input dimension of PG and APG is significantly smaller
than that of IQ, so in most cases, the latter two methods,
especially the APG-ResNet-C, can be selected to decrease
the computational complexity which will discussed later.
We also provide calibration curves for the three proposed

methods in Fig. 9, showcasing the relationship between the
model probability outputs and the actual observed categories.
We can observe that their overall trends closely approximate
the 45-degree diagonal line, indicating excellent reliability
in the models’ outputs.

E. PERFORMANCE UNDER DIFFERENT NOISE
DISTRIBUTIONS
1) PERFORMANCE IN WHITE NOISES

We now test the performance of the methods in two
white noise distributions, i.e., AWGN and AGGN. Existing
deep learning-based SNR estimation methods are used for
comparison, including CDG-GoogleNet [12] and IQ-CNN-
LSTM [11]. In addition to testing the performance of the
model against the same noise, we also test the model’s
adaptability to different types of noise. Specifically, the
model trained by the training set data under AWGN is used
to test the data with the AGGN noise, which is denoted
AWGN-AGGN, and vice versa, which is denoted as AGGN-
AWGN. The methods using the same noise distribution in
the training and testing are provided for comparison which
are denoted as AWGN-AWGN and AGGN-AGGN. QPSK
signals and classification-based methods are used. The results
are shown in Fig. 10 and Fig. 11.
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FIGURE 10. Performance under AGGN noise with AWGN/AGGN-trained models. (a) Mean SNR, (b) MAE, and (c) MSE.

FIGURE 11. Performance under AWGN noise with AWGN/AGGN-trained models. (a) Mean SNR, (b) MAE, and (c) MSE.

Obviously, we can see from Fig. 10 that for our proposed
classification-based method, the model trained under the
AWGN has good generalization, and the performance of
this model used in the prediction of SNR under the AGGN
is close to that of retrained AGGN-AGGN no matter what
input format is used. However, things are quite different for
existing methods CDG-GoogleNet and IQ-CNN-LSTM. The
estimation error of IQ-CNN-LSTM increases in the range of
[−20,−10] dB and [20, 30] dB, and the estimation error of
CDG-GoogleNet becomes larger in the range of [−20, 0] dB
and [20, 30] dB. This indicates that our proposed methods
perform far better than existing methods for transferring
models trained under AWGN to AGGN.
For AGGN trained models, the situation is not the same.

As shown from Fig. 11, we can clearly find that the
AGGN-trained model using IQ input has a high error when
used for prediction under the AWGN noise even though it
works well in AGGN. PG and APG overcome this defect,
and their performance is close to that of the retrained
models. For IQ-CNN-LSTM and CDG-GoogleNet, they both
have poor estimation performance when transferring from
AGGN to AWGN in the whole SNR range. Furthermore,
even when using AGGN trained models to test SNR
estimation under AGGN noise, the performance of the CDG-
GoogleNet method is still poor. It can infer that our proposed
PG-ResNet-C and APG-ResNet-C are superior to existing
methods in this case.

2) PERFORMANCE IN COLORED NOISE

The ideal white noise possesses infinite bandwidth, resulting
in infinite energy, a condition unattainable in the real world.
In this experiment, we utilize pink noise, a type of colored
noise characterized by a PSD inversely proportional to
frequency. Fig. 12 illustrates the estimation performance of
these SNR estimation methods based on deep learning under
pink noise. In Fig. 12(a), we analyze the experimental results
of the average SNR. The SNR estimation methods proposed
in this paper with IQ input and PG input demonstrate superior
performance in estimating signals under pink noise. In the
high SNR region of [15, 30] dB, the estimation performance
of IQ-CNN-LSTM and APG-ResNet-C is compromised. IQ-
CNN-LSTM tends to overestimate the SNR of the signal,
while APG-ResNet-C tends to underestimate it. In the
low SNR region of [−20, 5] dB, CDG-GoogleNet fails to
accurately estimate the SNR of the signal. This indicates
that IQ-ResNet-C and PG-ResNet-C methods exhibit better
performance under colored noise.

F. PERFORMANCE UNDER MULTIPATH CHANNELS
In this experiment, we assess the performance of both
our proposed methods and existing methods in multipath
channels, encompassing Rician and Rayleigh channels. The
results are presented in Fig. 13 and Fig. 14. Based on
the experimental results of the estimated average SNR, as
illustrated in Fig. 13(a) and Fig. 14(a), it is evident that

4790 VOLUME 5, 2024



FIGURE 12. Performance under pink noise. (a) Mean SNR, (b) MAE, and (c) MSE.

FIGURE 13. Performance comparison of different methods in Rician channel. (a) Mean SNR, (b) MAE, and (c) MSE.

in both the Rician channel and the Rayleigh channel, the
estimation performance of CDG-GoogleNet is worst among
these methods in both the low SNR region of [−20, 5] dB
and the high SNR region of [15, 30] dB. Furthermore, in
the Rician channel, the estimation performance of IQ-CNN-
LSTM is notably reduced within the range of [−20,−7]
dB. In the Rayleigh channel, the estimation performance
of IQ-CNN-LSTM deteriorates in the high SNR region of
[15, 30] dB. The three SNR estimation methods introduced
in this paper, namely IQ-ResNet-C, PG-ResNet-C, and APG-
ResNet-C, exhibit robust performance in both Rayleigh and
Rician channels. From Fig. 13(b), Fig. 13(c), Fig. 14(b),
and Fig. 14(c), it can be observed that, except for a slight
increase in the error of APG-ResNet-C within the SNR
range of [20, 30] dB, the estimation errors of our methods
are significantly lower than those of existing methods. This
further highlights the superiority of our proposed approaches.

G. ADAPTABILITY TO NEW SIGNALS
In order to verify the generalization of the method, we
carry out experiments where we use the model trained with
QPSK signals to estimate the SNR of BPSK signals. The
retraining method which uses the BPSK signals to train the
model and use the trained model to estimate the SNR of
BPSK signals is adopted for comparison. The results are
shown in Fig. 15, from which we can find that the proposed

method has surprisingly good adaptability to new signals
even without retraining. The estimation error of the model
under the new modulation is small and the SNR can be
predicted well. Note that we also use the trained model with
QPSK signals to estimate the SNR of 16QAM and 4PAM
signals and similar performance has been observed. We do
not repeat these results here for the sake of simplicity.

H. PERFORMANCE OF REGRESSION-BASED METHOD
SNR estimation is essentially a continuous spatial parameter
estimation problem. In this paper, we propose both classifica-
tion and regressed based deep learning methods to solve the
problem. We now compare these two solutions considering
both on-grid (the tested SNR is the same with the training
SNR) and off-grid (the tested SNR is not in the range of the
training SNRs) scenarios. For simplicity, the methods based
on regression with IQ input, PG input and APG input are
denoted as IQ-ResNet-R, PG-ResNet-R and APG-ResNet-
R respectively in the rest of the paper. The experimental
results with on-grid scenario is shown in Fig. 16. QPSK and
AWGN are used. The SNR interval is 0.5 dB. From Fig. 16,
the MSE of the regression-based method is significantly
smaller than that of the classification-based method in the
low SNR region of [−18,−12] dB. Close performance of
the two methods is observed in the medium and high SNR
region.
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FIGURE 14. Performance comparison of different methods in Rayleigh channel. (a) Mean SNR, (b) MAE, and (c) MSE.

FIGURE 15. Performance in estimating SNR of new signals. QPSK-BPSK means using QPSK-trained models to estimate SNR of BPSK signal. BPSK-BPSK means both the
training and testing signals are BPSK. (a) Mean SNR, (b) MAE, and (c) MSE.

FIGURE 16. Performance of both classification and regression-based methods under on-grid scenario. (a) Mean SNR, (b) MAE, and (c) MSE.

We next consider the off-grid scenario where the training
SNR is in the range of [−20, 30] dB with interval 2 dB
while the testing SNR is in the same range but with
interval 0.5 dB. In this case, there are a lot of SNRs to
be estimated that are not within the training set. Results
are shown in Fig. 17 and Fig. 18. It is found that when
the training SNR interval becomes larger, continuing to use
the classification-based method will lead to large prediction
error due to the insufficient coverage of the training SNR.
We can see in Fig. 17(b) and Fig. 17(c) that the prediction
curve is very “sharp” for the off-grid SNRs. This problem
can be effectively solved by using regression-based method.

Comparing Fig. 18(b) with Fig. 17(b) and Fig. 18(c) with
Fig. 17(c), it is obvious that the error curves of the
regression-based method are smooth, indicating that it still
has a good prediction effect on the SNRs that have “never
seen”.

I. PERFORMANCE IN FEW-SHOT SCENARIO
In this experiment, we assess the performance of the
methods in a few-shot scenario, meaning that we utilize a
small number of samples for training. Initially, there are
500 samples for each SNR. During the experiment, we
randomly select 2 percent, 10 percent, and 20 percent of
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FIGURE 17. Performance of classification-based method under off-grid scenario. (a) Mean SNR, (b) MAE, and (c) MSE.

FIGURE 18. Performance of regression-based method under off-grid scenario. (a) Mean SNR, (b) MAE, and (c) MSE.

these samples, equivalent to 10 samples, 50 samples, and
100 samples for each SNR. The experimental results are
depicted in Fig. 19.
The five subgraphs illustrate the average SNR estimated by

five deep learning-based methods. Upon examination of the
individual curves within each subgraph, it becomes apparent
that the estimation performance when using IQ data as the
network input is significantly influenced by the number
of samples. For instance, from Fig. 19(a) and Fig. 19(d),
it is evident that both IQ-ResNet-C and IQ-CNN-LSTM
exhibit poor estimation performance when trained with only
10 samples for each SNR. The experimental results in
Fig. 19(e) reveal that, in the few-shot scenario, even though
the performance of the CDG-GoogleNet method is not
affected by small samples, it is significantly worse compared
to other deep learning-based SNR estimation methods. It fails
to accurately estimate SNR within the ranges of [−20,−5]
dB and [15, 30] dB.

The observation from Fig. 19(b) and Fig. 19(c) indicates
that PG-ResNet-C and APG-ResNet-C exhibit commendable
estimation performance in the context of small-sample
learning. The errors are significant only within the range of
[−20,−5] dB, while accurate SNR estimation is achieved
in the remaining range. This validates the outstanding
performance of the methods with power spectrum input
proposed in this paper.

J. COMPLEXITY ANALYSIS
In this section, we conduct a comprehensive analysis of
the complexity of the methods, taking into consideration
different input formats. The analysis includes an assessment
of both time complexity and space complexity. FLOPs are
related to time complexity and the number of Params are
related to space complexity. The inputs for PG and APG
in this paper incorporate the fast Fourier transform (FFT).
In comparison to the discrete Fourier transform, the FFT
significantly reduces computational complexity. The time
complexity of FFT, as stated in [33], is as follows:

DFFT ∼ O
(
N × log2N

)
, (39)

where N is the length of the received signal. When using
FFT, the number of complex multiplications is (N/2) ×
log2N, and the number of complex addition is N × log2N.
When using the CDG method to convert the signal into a
constellation diagram, its time complexity is

DCDG ∼ O(N). (40)

As for CNNs, the FLOPs calculation of the convolution
layer of the network [34] is as follows:

ConvFLOPs = 2 · sizeout(Cin · sizekernel + 1)Cout, (41)

where sizeout is the size of the output feature map of
each convolution kernel, sizekernel is the size of each
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FIGURE 19. Performance in Few-shot learning. (a) IQ-ResNet-C, (b) PG-ResNet-C, (c) APG-ResNet-C, (d) IQ-CNN-LSTM and (e) CDG-GoogleNet.

convolution kernel, Cin is the number of channels of the
input, Cout is the number of convolution kernels, that is, the
number of output channels. The computational complexity
of the batch normalization layer and the ReLU layer are
both [10]

DReLU ∼ O(sizein), (42)

where sizein represents the size of the input feature
map. The computational complexity of the pooling layer
is [10]

DPooling ∼ O
(
sizein × Fl

/
Dl

)
, (43)

where Fl is the size of the pooling filter and Dl is the down-
sampling factor.
The FLOPs [34] calculation of the fully connected layer

is as follows:

FCFLOPs = (2T − 1)H, (44)

where T is the number of neurons in the input layer, and H
is the number of neurons in the output layer.
We can obtain the FLOPs which includes the number

of pre-processing calculations and Params values of our
proposed method as shown in Table 8. The complexity of
IQ-CNN-LSTM [11], CDG-GoogleNet [12], IQ-CNN [6]
and IQ-Transformer [32] is also provided for comparison.
The results indicate that the computational complexity of
PG-ResNet-C is marginally lower than that of IQ-ResNet-C.

The APG-ResNet-C reduces the computational complexity to
nearly a quarter of that of IQ-ResNet-C as we choose L = 4
to compute the APG-ResNet-C, demonstrating its superiority.
Comparing IQ-CNN, IQ-Transformer, IQ-CNN-LSTM and
IQ-ResNet-C, we can find that the FLOPs of IQ-ResNet-C
is near that of IQ-Transformer. Furthermore, among these
four methods, we can observe that the complexity of the IQ-
CNN method is the highest, being one order of magnitude
higher than the other three methods. As for Params, the
models with PG-ResNet-C and APG-ResNet-C input have
the same amount of parameters, both slightly smaller than
the number of parameters of the model IQ-ResNet-C. The
number of parameters of IQ-CNN-LSTM is nearly twenty
times of our proposed methods. The number of parameters of
both the IQ-Transformer and IQ-CNN methods is higher than
our proposed methods. Both the computational complexity
and the number of parameters of CDG-GoogleNet are far
more than the other six methods. These results further
demonstrate the superiority of our proposed methods in terms
of complexity.

VII. CONCLUSION
We have proposed an SNR estimation framework based on
deep learning classification. Power spectrum inputs, i.e., PG
and APG, have been introduced to reduce the computational
complexity. We have also proposed an SNR estimation
method based on deep learning regression to overcome
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the inevitable estimation error problem of classification-
based methods in dealing with signals with SNR not within
the training label set. We have conducted a large number
of simulation experiments considering various scenarios.
The experimental results demonstrate that the proposed
classification-based methods outperform in terms of average
SNR and MSE compared to two existing deep learning-
based SNR estimation methods, i.e., CDG-GoogleNet and
IQ-CNN-LSTM. In addition, the proposed regression-based
method has better estimation performance for untrained SNR
compared to the classification-based method. Furthermore,
in the cases of transferring to another noise distribution and
few-shot scenario, the proposed methods with PG and APG
input have better adaptability than the method based on IQ
input. Finally, the proposed methods only need to be trained
under one modulation signals to adapt to SNR estimation of
other modulation signals, with superior transfer performance.
Complexity analysis has shown that both time complexity
and space complexity of our proposed method with APG
input are much smaller than those of CDG-GoogleNet
and IQ-CNN. In summary, our proposed methods provide
more accurate, robust, adaptable, and efficient solutions
than the existing representative SNR estimation methods.
As part of our future research endeavors, we plan to
explore hardware implementation and conduct over-the-air
experiments in order to thoroughly assess the performance
of the proposed methods. We will also analyze the secu-
rity of the proposed method under adversarial attacks to
improve the reliability of the algorithms in non-cooperative
environments.
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