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ABSTRACT The continuous development of virtual reality technology allows the metaverse to create
more immersive and highly interactive experiences for users. Metaverse users upload personal information
through virtual reality devices, causing data security and communication security issues. Moreover, the
diversity of data sources within the metaverse exacerbates issues of data heterogeneity. To address
these issues, we propose a generative learning-based federated learning algorithm to secure and process
heterogeneous data from users in the metaverse, called FedCPD. It consists of three main modules: a
privacy protection module for data security, a correction module to correct the bias of the classifier, and
an aggregation module to improve model performance. To protect the data security of metaverse users,
we design a privacy-preserving method based on conditional Generative Adversarial Networks (cGAN)
in the privacy protection module. The method replaces the feature extractor with a generator in cGAN to
engage in server-side aggregation to avoid data exposure. The correction module is proposed to enhance
the classifier’s ability to classify unknown data by using the constructed pseudo dataset for classification
model training. To alleviate the negative impact of data heterogeneity on the global model, the aggregation
module utilizes local discrepancy-based aggregation weights for server-side aggregation. It assigns higher
aggregation weights to the client models that perform better than other models. Extensive experiments
on multiple datasets show that FedCPD exhibits the highest classification accuracy compared to existing
algorithms, demonstrating its effectiveness in processing heterogeneous data.

INDEX TERMS Metaverse, federated learning, generative learning, data security, data heterogeneity.

I. INTRODUCTION

METAVERSE signifies a digitized world beyond
reality, encompassing various technologies and appli-

cations [1]. It can be regarded as a carrier of big data
and information technology. In the metaverse, users interact
through local extended reality devices, leading to inevitable
communication security concerns [2]. Additionally, if user
data is uploaded to the server for processing, it will result
in significant communication overhead and server computa-
tional pressure [3]. Edge Intelligence is a new computing
paradigm that pushes intelligent computing capabilities
toward the network edge [13]. In the context of computing

edge-cloud continuum, this method enables local processing
and analysis of data, significantly reducing the time taken
to transmit data from edge devices to the cloud, thereby
reducing latency and enhancing real-time responsiveness. It
also effectively conserves bandwidth resources and strength-
ens data security and privacy protection. Furthermore,
recent research has focused on utilizing Edge Artificial
Intelligence (AI) techniques to handle and analyze data on
edge devices [40]. This paradigm involves not only running
artificial intelligence models on edge devices but also
encompasses collaborative computing and data processing
between edge devices and the cloud. Federated Learning
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(FL) is a distributed machine learning paradigm that can
provide strong support for Edge AI, effectively addressing
these two issues [4].

Within the framework of FL, users in the metaverse
engage in collaborative training of a global model without
necessitating the direct upload of their individual datasets [5].
They can leverage the private data residing within their
virtual reality devices to conduct local model updates.
These updated model parameters are then transmitted to
a cloud server for aggregation, thereby facilitating the
enhancement of the global model’s performance. Although
this decentralized training method prevents servers from
directly accessing private data, the extractor based on private
data still poses a risk of exposure to the server. Recent
research has shown that such a method is vulnerable to
privacy attacks, such as Property Inference Attacks and
Reconstruction Attacks [6], [7]. These attacks engender the
compromise of user privacy, thereby posing a substantive
peril to the data security of metaverse participants [38]. To
address this issue, we utilize generators from conditional
generative adversarial networks (cGAN) instead of feature
extractors for aggregation. We employ a local optimization
strategy to minimize the discrepancy between the output
distributions of the feature extractor and the generator. It
serves to safeguard the privacy of local data while facilitating
the acquisition of shared knowledge by the feature extractor.
In the metaverse, data from different clients often

exhibit non-independent and identically distributed (non-
IID) characteristics [8]. This phenomenon arises from the
heterogeneity in feature and category distributions of virtual
data and user information across distinct virtual reality
devices utilized by various users [17]. The imbalance in
datasets across clients leads to imbalanced model training
and poorer performance of the aggregated model, thereby
reducing the effectiveness of processing non-IID data in the
metaverse through FL [9]. The research suggests that in
FL, clients whose local data distribution closely matches the
global data distribution tend to generate better-performing
local models [10]. Therefore, we employ discrepancy-based
aggregation weights (DBAW) to aggregate local models to
enhance users’ access to more accurate classification results.
It allocates larger aggregation weights to local models with
better performance during aggregation, thereby endowing the
aggregated model with superior performance.
Furthermore, the future data of users in the metaverse

is unknown. Pre-trained local models may exhibit lower
classification accuracy when confronted with new, unseen
data [11]. This phenomenon emerges due to the inherent
bias introduced within the classifiers of local classification
models, which is a consequence of their adaptation to
local data sets [12]. Therefore, we generate a globally
shared, label-independent pseudo dataset from a subset of
data within local devices in the metaverse. We utilize the
generated pseudo dataset for training local classification
models, thereby enhancing the classifiers’ ability to classify
unknown data. This enables users’ local models in the

metaverse environment to better handle unseen data and be
more robust.
This paper proposes FedCPD, a generative learning-based

FL algorithm to secure and process heterogeneous data
from users in the metaverse. In contrast to alternative FL
frameworks, FedCPD utilizes generators in cGAN instead of
extractors to participate in server-side aggregation to secure
metaverse user data. Moreover, our algorithm calculates
the discrepancy between the distributions of client data
and the global distribution. Leveraging this discrepancy, we
introduce DBAW, wherein better-performing local classi-
fication models are accorded greater aggregation weights.
Additionally, we design a correction module. Specifically, it
utilizes a globally shared, label-independent pseudo dataset
to mitigate biases within local classifiers, thereby enhancing
their classification efficacy on previously unseen data. Our
contributions can be summarized as follows:
• We propose FedCPD, a secure and high-performance
generative learning-based FL algorithm. It secures
metaverse user data through a cGAN-based privacy-
preserving module.

• We design a correction module to correct the classi-
fier with a globally shared, label-independent pseudo
dataset. It enhances the ability of the local classifier to
classify unknown data in the metaverse.

• To mitigate the impact of data heterogeneity on model
performance, we design an aggregation module to
assign higher aggregation weights to the client models
that perform better than other models.

• Extensive experiments on six datasets validate the effec-
tiveness of FedCPD. Our proposed algorithm achieves
the highest classification accuracy across all datasets.

The rest of the paper is structured as follows: Section II
introduces related work. Section III provides a detailed
description of the FedCPD. Section IV presents comprehen-
sive experiments and results. Section V summarizes all the
work.

II. RELATED WORK
A. DATA SECURITY IN THE METAVERSE
Metaverse is a parallel digital space that coexists with the
real world, integrating social, immersive interaction, and
scalability. However, alongside its advantages, the metaverse
also poses risks to security and privacy, such as personal
information leakage, eavesdropping, and data theft [2]. In
recent years, ensuring data security in the metaverse has
attracted widespread attention from researchers.
Thakur et al. [14] proposed a secure mutual authen-

tication scheme utilizing elliptic curve cryptography and
fuzzy extractors to address security attacks like replay
and impersonation in the metaverse. Yang et al. [15]
utilized a decentralized authentication protocol based on
avatar identity models and chameleon collision signatures
to achieve real-time authentication of avatar identities. It
ensures virtual-physical traceability within the metaverse,
enabling the tracking of malicious actors in the physical
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TABLE 1. Comparison with the related works.

world through avatars in virtual space. Therefore, this
approach somewhat reduces the number of attackers who
jeopardize the data privacy of metaverse users. Li et al. [16]
introduced a secure communication model based on semantic
blocks, semantic variable encoding, and hybrid channels with
concealed tasks to enhance the security of semantic commu-
nication in the metaverse. This method not only increases the
communication density in the metaverse but also mitigates
the challenge of black-box attacks on metaverse users during
communication.

B. FEDERATED LEARNING FOR NON-IID DATA IN THE
METAVERSE
Data imbalance and heterogeneity are widely present in
the metaverse, encompassing differences in features and
distribution of categories across different virtual reality
devices [8]. In recent years, FL has shown tremendous
potential in handling non-IID data [39]. It can facilitate
collaboration among different clients to train unique local
models while preserving the privacy of metaverse user data.
Zhou et al. [18] proposed a personalized FL framework

incorporating model contrastive learning. This framework
achieves effective fusion of non-IID data in the metaverse
by constructing a personalized multimodal fusion network.
Chen et al. [19] designed a trustworthy semantic communi-
cation system for the metaverse based on the FL architecture,
which enables effective distributed decision-making and
privacy protection. Additionally, the system utilizes low-
speed semantic communication to support the metaverse,
thus circumventing the bottleneck of limited communication
and computational resources in the metaverse. Zeng et al. [8]
leveraged FL within the industrial metaverse, mitigating
data heterogeneity through dynamic grouping and training
mode transformation. This methodology tackles challenges
including learning degradation due to non-IID data and
constraints posed by limited communication bandwidth.
Guo et al. [11] addressed the challenges arising from
local updates in supervised FL by reducing local learning
biases in features and classifiers. However, these methods
overlook the impact of local category discrepancy (LCD) on
aggregation weights during server-side aggregation, resulting
in suboptimal performance of the aggregated global model.
In addition, since these methods involve uploading the
entire model parameters, especially the feature extractors

that are in direct contact with the data, to the server during
communication, local user data becomes highly susceptible
to exposure.
The comparison between FedCPD and related works is

summarized in Table 1. Our proposed framework employs
DBAW and a method of correcting local classifiers using a
globally shared, label-independent pseudo dataset. Compared
to the aforementioned methods, FedCPD takes into account
the impact of local class distribution on aggregation weights
and the bias introduced by local classifiers adapting to local
datasets. Therefore, FedCPD can more effectively address
the impact of data heterogeneity on model accuracy in the
metaverse. Additionally, FedCPD utilizes cGAN to retain
the feature extractor that directly interacts with user data
locally, which can prevent user data from being exposed to
the server and leaks during communication

III. METHODOLOGY
A. FRAMEWORK OVERVIEW
We propose a generative-learning based FL algorithm called
FedCPD to secure and process heterogeneous data in the
metaverse. Each virtual reality apparatus within the meta-
verse is regarded as a client. To simulate data heterogeneity
in the metaverse scenario, we use both naturally imbalanced
datasets and datasets partitioned by Dirichlet distribution.
Detailed implementation and analysis of these methods will
be elucidated in Section IV.
As shown in Fig. 1, FedCPD consists of five key steps.

1) We construct a globally shared, label-independent pseudo
dataset using a subset of the local data. Each client receives
global model parameters from the server and initializes
its local model. 2) The local model is trained using local
data and our correction module uses the constructed pseudo
dataset to correct the classifier. 3) Each client computes
the local category discrepancy by comparing the local
data distribution with the global distribution. 4) The server
collects the locally computed LCD and dataset sizes from the
clients to calculate aggregation weights. 5) Utilizing DBAW,
the server aggregates the models uploaded by each client and
updates the global model through knowledge distillation. The
specific implementation process is given in the following
five subsections of the section.
Assuming there are n clients in the metaverse scenario.

Each client has its own local dataset {X1,X2, . . . ,Xn}, as
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FIGURE 1. The overview of FedCPD.

well as a local classification model and a cGAN. On client
i, the classification model consists of a feature extractor Ei
and a classifier Ci, while the cGAN consists of a generator
Gi and a discriminator Di. During local training, we use
noise z and labels y to train the cGAN, so that the output
distribution of the cGAN’s generator is similar to the output
distribution of the feature extractor when the input is real
data x.
Throughout the communication rounds of FL, client i

utilizes its local data and pseudo dataset to locally train both
the classification model and the cGAN. It also computes
the discrepancy between its local class distribution and the
global distribution. Subsequently, client i uploads Ci from
the classification model and Gi from the cGAN, along with
LCDi, to the server. In contrast, Ei from the classification
model and Di from the cGAN are retained locally to preserve
privacy. Upon receiving the locally uploaded information,
the server computes an aggregation weight pi for each
client. Utilizing these aggregation weights and knowledge
distillation, the server proceeds to perform aggregation,
thereby constructing the global classifier Cg and the global
generator Gg.

B. PSEUDO DATASET CONSTRUCTION
In this paper, we use two methods to construct pseudo
dataset. Firstly, we utilize a subset of the local dataset
to construct the pseudo dataset, Algorithm 1 presents the
method for generating pseudo dataset. Specifically, we
randomly draw M samples on client i and locally compute
its mean as a pseudo dataset sample, denoted as x̃L, and set
its label to ỹL (Alg. 1, lines 4-6). We call this method Local
Data Mean (LDM). Equation (1) demonstrates the samples
and labels constructed through LDM.

x̃L = 1

M

M
∑

m=1

xm, ỹL = 1

C
∗ 1 (1)

Algorithm 1 Pseudo Data Construction by LDM
Input: datasets {X1,X2, . . . ,XN}; sample size M; number
of pseudo data for each client P;

1: Initialize DL = ∅.
2: for i = 1, . . . ,N do
3: for p = 1, . . . ,P do
4: Randomly sample x1, . . . , xM from Xi.
5: x̃L = 1

M

∑M
m=1 xm, ỹL = 1

C ∗ 1
6: DL = DL ∪ x̃L
7: end for
8: end for

where C represents the number of classes in the local dataset
of each client. The constructed pseudo dataset we denote
as DL.

Secondly, to protect user data privacy, we utilize a
globally dataset Dg to construct pseudo dataset locally on
the client-side. We call this method Global Data Mean
(GDM). This method prevents the exposure of clients’ private
local data while minimizing the divergence between the
distribution of the constructed pseudo dataset and that of
the local dataset. The samples x̃Gi and corresponding labels
ỹGi in the pseudo dataset DGi at client i are given by
Equation (2).

x̃Gi =
1

T + 1

(

xL +
T
∑

t=1

xt

)

,

ỹGi =
1

T + 1

(

1

C
∗ 1+

T
∑

t=1

yt

)

(2)

where T is a constant used to control the similarity between
the pseudo dataset and the local data. xt and yt are the sample
and label of the client’s local data, respectively. xL denotes
an LDM sample from the global dataset Dg.
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Algorithm 2 Local Update of FedCPD
Input: datasets {X1,X2, . . . ,XN}; Pseudo dataset DL;
learning rate ηc, ηg; local training epoch E1.

1: Initialize θEi , θDi , θGg , and θCg at random.
2: for i = 1, . . . ,N do
3: Client i receives θGg and θCg from the server.
4: θGi ← θGg , θCi ← θCg
5: Classification Network Update:
6: for t ∈ {1, . . . ,E1} do
7: for all x, y ∈ Xi ∪ DL do
8: sample z from N(0, 1)

9: θEi ← θEi − ηc∇θEi
LI(x, y, z)

10: θCi ← θCi − ηc∇θCi
LI(x, y, z)

11: end for
12: end for
13: Generative Network Update:
14: for t ∈ {1, . . . ,E1} do
15: for x, y ∈ Xi do
16: sample z from N(0, 1)

17: θGi ← θGi − ηg∇θGi
LG(z, y)

18: θDi ← θDi − ηg∇θDi
LD(x, z, y)

19: end for
20: end for
21: sends θGi and θCi to the server.
22: end for

C. UPDATE OF LOCAL CLASSIFICATION MODEL AND
CGAN
Alg. 2 outlines the entire process of the local update.
In the phase of updating the local classification model,
client i optimizes the classification model by minimizing
the classification loss over both its local data and the
pseudo dataset (Alg. 2, lines 6-12). Equation (3) presents the
classification loss function for the local data at each client i.

Lc = Ex,y∼XiCEL
(

ŷ, y
)

(3)

where CEL represents the cross-entropy loss function, and
ŷ is a probability vector obtained by inputting data x into
the local classification model. Due to label distribution skew
or the absence of certain samples from majority/minority
classes, the classifier of the locally trained model often
overfits the categories present locally. To address this, we use
the pseudo dataset constructed in Section III-B to emulate
the global data distribution, eliminating classifier bias by
enforcing an even output distribution for the pseudo dataset.
The loss function for the pseudo dataset on the classification
model is given by Equation (4).

Lpdc = Ex,y∼DLCEL
(

ŷ, y
)

(4)

Furthermore, during local training, client i incorporates the
shared knowledge from the previous round’s global generator
Gg into its local feature extractor Ei. To achieve this, we keep
the parameters of the global generator fixed and optimize
its feature extractor by minimizing the mean squared error

loss. We denote the output of the feature extractor Ei and
the global generator Gg as Fi = Ei(x|y) and Fg = Gg(z, y),
respectively, with the loss function for the feature extractor
being presented in Equation (5).

Ld = Ex,y∼XiEz∼N
∣

∣Fi − Fg
∣

∣

2 (5)

where N denotes the distribution of random noise. Having
established the loss functions for the local data classification,
pseudo dataset classification, and feature extractor, we
employ Equation (6) as the overall loss function for the local
classification model update phase.

LI = Lc + λLpdc + μLd (6)

where λ and μ are non-negative hyperparameters used to
balance the three loss functions. Since in the early stages
of training, the global generator Gg is unable to accurately
generate features, we set μ to 0. As the training iterations
progress and the generator becomes more adept at fitting the
feature extractor, μ is increased from 0 to 1.

During the local cGAN update phase (Alg. 2, lines 14-20),
the objective for each client i is to make the output of its local
generator Gi as close as possible to the output of its local
feature extractor Ei. To achieve this goal, Ei’s parameters
are first kept fixed, and then the cGAN’s generator Gi is
trained. Specifically, we randomly select a mini-batch of
data containing samples x and corresponding labels y. The
samples are input into the feature extractor to obtain the
actual output e. Next, we generate noise z of the same batch
size and feed it, along with the labels y, into the generator Gi
to produce the approximate output ê. Using both the actual
feature output e and the approximate feature output ê, we
calculate the discriminator loss Ld and generator loss Lg by
feeding them into the discriminator Di. We update Gi and
Di by minimizing these two losses.
We denote the discriminator’s prediction for the gen-

erator’s output as Dgen = Di(Gi(z, y; θGi); θDi), and its
prediction for the feature extractor’s output as Dext =
Di(Ei(x|y; θEi); θDi). Equations (7) and (8) present the
discriminator loss LD and generator loss LG, respectively.

LD = Ex,y∼XiEz∼N
(

log(1− Dext)+ logDgen
)

(7)

LG = Ex,y∼XiEz∼N log
(

1− Dgen
)

(8)

Through these two loss functions, we can effectuate the
updates of the generator Gi and discriminator Di at each
client i. Upon completion of local training, each client i
uploads their respective local generator Gi and classifier Ci
to the server for aggregation.

D. LOCAL DISCREPANCY COMPUTATION
Each client is required to locally compute the discrepancy
between their local class distribution and the global class
distribution. However, directly transmitting the local class
distribution to the server raises privacy concerns due to
potential exposure. To address this issue, we employ secure
aggregation [20], enabling clients to send their respective
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class distributions Ti to the server without revealing indi-
vidual distributions. The server can then compute the actual
global class distribution Tg without knowledge of each
client’s specific distribution.
In more detail, for any two clients Ci and Cj, a mutually

determined random vector Vi,j is generated between them.
The relative size of the dataset, denoted as ni is given by
Equation (9).

ni = |Xi|
∑N

j=1

∣

∣Xj
∣

∣

(9)

where |Xi| represents the total number of samples contained
in client i. For client i, its local class distribution can be trans-
formed into the following form as shown in Equation (10).

˜Ti = niTi +
i−1
∑

j=1

Vi,j −
n
∑

j=i+1

Vi,j (10)

After each client i uploads their local ˜Ti to the server
as per Equation (11), the server can perform aggregation to
obtain the global class distribution ˜Tg.

Tg =
n
∑

i=1

˜Ti

=
n
∑

i=1

⎛

⎝niTi +
i−1
∑

j=1

Vi,j −
n
∑

j=i+1

Vi,j

⎞

⎠

=
n
∑

i=1

niTi (11)

Moreover, since the distribution discrepancies are com-
puted solely on the client-side, this significantly reduces the
risk of local class distribution leakage. We denote the local
class distribution discrepancy at client i as LCDi. Given the
global distribution Tg and the local distribution Ti, each client
i can compute its local difference level by assessing the
discrepancy between these two distributions, as expressed in
Equation (12).

LCDi = d
(

Ti,Tg
)

(12)

where d(, ) represents a predefined distance metric (such as
the Kullback-Leibler (KL) divergence or the L2 norm). Upon
calculating the local difference level, client i uploads LCDi
to the server.

E. GLOBAL MODEL AGGREGATION WEIGHT
CALCULATION
In traditional FL, when aggregating local models, weights
are often assigned based on the size of each client’s dataset.
Inspired by FedDisco [10], however, we argue that such
weight calculation methods overlook the impact of local class
distributions on model classification accuracy. By leveraging
the relative dataset size ni and the local difference level LCDi,
we can assign more discriminative aggregation weights to

Algorithm 3 Server Aggregation of FedCPD
Input: size of dataset {|X1|, |X2|, . . . , |Xn|};
learning rate ηs; server training epoch E2 for
knowledge distillation; local category discrepancy:
{|LCD1|, |LCD2|, . . . , |LCDN |}; sample batch size B.

1: Receives {|LCDi|}Ni=1, {θGi}Ni=1, and {θCi}Ni=1 from each
client.

2: for i = 1, . . . , N do
3: computes pi by Equation (11)
4: end for
5: θGg =

∑N
i=1 piθGi , θCg =

∑N
i=1 piθCi

6: for t ∈ {1, . . . , E2} do
7: Sample (z, y)
8: θGg, Cg ← θGg, Cg − ηs∇θGg, Cg

LKL(z, y)
9: end for

10: Sends θGg, Cg to each client.

each client i. The aggregation weight pi thus determined is
given by Equation (13).

pi = φ(ni − w ∗ LCDi + v)
∑N

j=1 φ
(

nj − w ∗ LCDj + v
) (13)

where φ denotes the ReLU activation function, which
handles negative values. Parameters w and v are hyperpa-
rameters; the former balances the contributions of ni and
LCDi, while the latter adjusts the overall magnitude of the
weights. This approach assigns larger aggregation weights to
clients with larger dataset sizes and smaller local difference
levels.

F. SERVER-SIDE AGGREGATION OF LOCAL MODELS
Alg. 3 outlines the entire process on the server side for com-
puting global model aggregation weights and constructing
the global generator and classifier through knowledge dis-
tillation. The server computes the global model aggregation
weights based on the local discrepancies uploaded by users
(Alg. 3, lines 2-4). Subsequently, the server employs these
weights to perform a weighted aggregation of the Gi and Ci
models uploaded by clients, thereby initializing the global
generator Gg and classifier Cg.

Regarding the distillation process (Alg. 3, lines 6-9),
the server first generates a small batch of training data
(z, y), where the labels y are sampled from a uniform
distribution U(0, c), and the noise z is sampled from a
Gaussian distribution N(0, 1), with c denoting the number
of sample categories. The server then feeds (z, y) into all
generators Gi and computes the class probability distributions
Pc(y, z) and Ps(y, z). The former is derived by passing the
data through the local client-side classifiers Ci, while the
latter is obtained via the global classifier Cg.
Having obtained both probability distributions, the server

updates Gg and Cg by minimizing the KL divergence
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between them. The probability distributions are given by
equations (14) and (15), respectively.

Pc(y, z) = softmax

(

n
∑

i=1

piCi
(

Gg(y, z)
)

)

(14)

Ps(y, z) = softmax
(

Cg
(

Gg(y, z)
))

(15)

Equation (16) presents the KL divergence between two
distributions.

LKL = Ey∼UEz∼NKL(Pc(y, z),Ps(y, z)) (16)

In KL, the server does not require access to any client
data, which to some extent ensures data security. Upon
completion of aggregation, the server dispatches both the
global generator and the global classifier to all clients.

IV. EXPERIMENTS
Our experiments are conducted on a computer with an Intel
Core i9-11900K CPU, 32.00 GB of memory, and an NVIDIA
GeForce RTX 3090 GPU. The experimental environment
includes Python 3.9, PyTorch 1.13.1, and Windows 10.

A. EXPERIMENT SETTING
1) DATASETS

We conduct experiments with all FL algorithms across six
datasets: Real-world dermoscopic FL dataset (Dermoscopic)
[21], [22], Office-Caltech10 (Office) [23], Digit5 [24],
DomainNet [24], Fmnist, and Cifar10. Notably, these
datasets are of significant value as they can be treated as
medical images, office supplies, handwritten digits, etc. from
different domains in the metaverse. They are important for
evaluating the applicability of FedCPD in the metaverse
environment.
Specifically, a total of 8,940 samples are collected from

the HAM10K [22] dataset, along with 2,000 samples from
the Memorial Sloan-Kettering Cancer Center (MSK) [21]
dataset, to form the skin lesion dataset. These samples can
be categorized into three classes: nevi (nv), benign keratosis
(bkl), and melanoma (mel). The Dermoscopic encompasses
four domains: ViDIR Current, ViDIR MoleMax, Rosendahl,
and MSK. Office consists of ten office object classes
drawn from four distinct domains: Amazon,1 DSLR [25],
Webcam [25], and Caltech [26]. Digit5 comprises five
digit image datasets: MNIST [27], SynthDigits (Syn) [28],
MNIST-M [28], Street-View House Number (SVHN) [29],
and USPS [30]. DomainNet includes data from six diverse
domains: Clipart, Infograph, Painting, Quickdraw, Real,
and Sketch. Data in these four datasets originates from
different sources, collected via varying methods, inherently
conforming to a non-IID setting.
For the IID datasets Fmnist and Cifar10, we partition the

datasets according to a dirichlet distribution Dir(α), where
α is a parameter controlling the level of heterogeneity in the
data division. Under this setting, we allocate 8,000 images

1www.amazon.com

FIGURE 2. Cifar10 and Fmnist’s data distribution after partitioning based on Dir(α).
(a) Cifar10. (b) Fmnist.

TABLE 2. Time and Space complexities.

among four clients for the training set, with each client’s
data distribution depicted in Fig. 2.

2) IMPLEMENTATION DETAILS AND HYPERPARAMETERS

In our experiments, we employ LeNet-5 [27] as the
classification model, with the cGAN architecture based
on DCGAN [31]. Table 2 shows the time and space
complexities of FedCPD.
All experiments utilize the Adam optimizer, with a

learning rate of 0.0003 and weight decay set to 0.0001. For
each experiment, the global communication rounds are fixed
at 150, while local training epoch and server training epoch
are set to 20. The batch size is configured to be 16. Training
is terminated early if the validation accuracy on the model
does not increase after 20 global communication rounds. In
Dermoscopic, Office, DomainNet, and Digit5, each domain
is treated as a client’s dataset. For Dermoscopic, Office, and
DomainNet, half of the original data from each domain is
designated as the local training set. For Digit5, we randomly
select 2,000 images per client for the local training set. For
Cifar10 and Fmnist, a total of 8,000 images are allocated
to 4 clients for training. Each dataset is experimented upon
using five different random seeds, and accuracy is calculated
using both the client’s validation and test sets.
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TABLE 3. Comparison of classification accuracy between FedCPD and baselines on six datasets.

TABLE 4. Comparison of classification accuracy of FedCPD under different pseudo dataset construction algorithms.

Throughout all experiments, the hyperparameters w and v
in the global model weight aggregation are set to 0.3 and
0.5, respectively. For the two non-negative hyperparameters
balancing the loss functions, μ is initially set to 0 and λ is
set to 0.5. μ gradually increases from 0 to 1 based on the
number of rounds already trained locally. For the non-IID
setting, the dirichlet distribution parameter α is set to 0.5.
The default method for constructing pseudo dataset is LDM.
The calculation of LCD employs the L2 norm.

3) BASELINES

We select seven baseline methods to compare with our
framework. These baselines contain two types, one that
shares all client model parameters with the server, such as
FedAvg [37], FedProx [32], FedDF [33], and FedDisco [10].
Among them, FedAvg is a single-model FL approach that
obtains a global model by weighted averaging the local
models. FedProx introduces a proximal term in the local
objective to standardize the local model training. FedDF
uses knowledge distillation to aggregate local models on the
server using unlabeled public data. FedDisco, on the other
hand, improves on FedAvg by introducing local differences
in the aggregation weights.
The other is to share only some of the model parameters

with the server, and we pick FedSplit [34], FedGen [35],
and FedCG [36] as the baseline methods. FedSplit shares
only the public classifiers of the local network to protect
privacy. FedGen uses knowledge distillation to train the
global generator, which in turn helps clients train their local
networks. FedCG uploads only the public classifiers and uses
knowledge distillation for server-side aggregation.

B. EXPERIMENT RESULTS
1) PERFORMANCE EVALUATION ON SIX DATASETS

Table 3 shows a comparison of the classification accuracies
of FedCPD and other FL baseline methods on all six datasets.

The first four datasets contain data from multiple domains, so
they naturally conform to the non-independent homogeneous
distribution setting. For Cifar10 and Fmnist, we partitioned
them via the Dirichlet distribution.
On all six datasets, FedCPD achieves the highest clas-

sification accuracy. The experiments demonstrate that our
proposed FedCPD outperforms other baseline methods when
dealing with non-IID datasets, showing its effectiveness. In
contrast, FedAvg exhibits poorer performance on almost all
datasets, indicating that the global model based on weighted
average cannot effectively handle non-IID data.
FedCPD utilizes DBAW and a globally shared pseudo

dataset to address the impact of local data imbalance across
clients on model training. As a result, FedCPD has a
greater advantage over other baseline methods in dealing
with non-IID data. For the first four datasets, on Office,
FedCPD improves the classification accuracy by at least
3.87% compared to other baseline methods. Whereas, on
Digit5, FedCPD has a relatively small advantage in classi-
fication accuracy over the other baseline methods. This is
because Office has more severe heterogeneity and imbalance
compared to Digit5. For Cifar10 and Fmnist, which are parti-
tioned using the Dirichlet distribution, FedCPD improves by
2.34% and 3.9%, respectively, over the suboptimal methods.
For the baseline methods, the imbalance of the datasets
leads to poorer classification results for unknown data by
the classifiers of its local model. In addition, the baseline
methods use the dataset size as the aggregation weight. This
leads to the fact that client models with higher performance
but less data size cannot be assigned larger aggregation
weights, which seriously affects the performance of the
aggregated model.

2) IMPACT OF DIFFERENT METHODS FOR GENERATING
PSEUDO DATASET

Table 4 shows the performance of FedCPD on different
types of pseudo dataset. The experimental results show

VOLUME 5, 2024 5547



Sun et al.: FedCPD: A FL ALGORITHM FOR PROCESSING AND SECURING DISTRIBUTED HETEROGENEOUS DATA

FIGURE 3. Classification accuracy of FedCPD on Office and Cifar10 under different values of hyperparameters w and v . (a) Office. (b) Cifar10.

TABLE 5. Comparison of classification accuracy of FedCPD at different discrepancy measurement scales.

that FedCPD outperforms other baseline methods regardless
of the pseudo dataset construction method adopted. From
Table 2, we are also able to see that FedCPD achieves
the highest accuracy on four datasets using LDM. It uses
GDM on the remaining two datasets and achieves the highest
accuracy at k = 1 and k = 2, respectively. This shows
that both pseudo dataset construction methods are effective.
And by using GDM, it is possible to achieve comparable
classification accuracy to LDM while protecting user data
privacy.

3) IMPACT OF DIFFERENT HYPERPARAMETER VALUES

Fig. 3 shows the impact of different values of hyper-
parameters w and v on classification accuracy on both
Office and Cifar10. The numbers in the figure indicate the
change in classification accuracy of FedCPD compared to
FedCG for different values of w and v. The experiments
demonstrate that FedCPD consistently improves performance
when w is between 0.2 and 0.5 and v is between 0.3
and 0.6. Specifically, for Office, FedCPD shows relatively
stable performance improvement when w is between 0.3
and 0.4. For Cifar10, FedCPD exhibits superior and stable
performance in classification accuracy when v is between
0.5 and 0.6. Therefore, choosing w=0.3 and v=0.5 is
undoubtedly a better option. This experiment also proves
the effectiveness and robustness of the aggregation weights
based on discrepancies.

4) IMPACT OF DIFFERENT DISCREPANCY METRICS

In our experiments, we default to using L2 norm to
compute local discrepancies. Table 5 shows the impact of
local discrepancies on classification accuracy under different

measurement scales. We can see that across all six datasets,
using L2 norm to compute local discrepancies achieves
the highest classification accuracy on Dermoscopic, Office,
and Fmnist. On the other hand, using KL divergence to
compute local differences achieves the best performance on
the remaining three datasets. Table 5 indicates that FedCPD
achieves similar performance across different local difference
measurement scales. This demonstrates the robustness of
FedCPD to different difference measurement scales and
its ability to effectively utilize local differences for more
efficient weight aggregation.

5) CONVERGENCE ANALYSIS

To validate the convergence of FedCPD, we conducted
experiments on Office and Cifar10 with 100 and 50 iterations
respectively for convergence analysis. From Fig. 4, it can
be observed that FedCPD consistently outperforms all FL
baseline methods. In terms of convergence speed, FedCPD
exhibits comparable performance on both datasets. FedAvg
and FedProx show lower accuracy and slower convergence
speed on Office and Cifar10, likely due to the negative
transfer effects caused by data imbalances.

6) ABLATION STUDY

To further demonstrate the effectiveness of global shared
pseudo dataset and DBAW, we conduct a simple ablation
experiment. FedCPD is based on FedCG, which corrects
classifiers using a globally shared pseudo dataset and calcu-
lates aggregation weights based on discrepancies. Therefore,
we denote FedCG with a globally shared pseudo dataset as
FedCG(p), and FedCG with DBAW as FedCG(d). We con-
ducted experiments on six datasets using FedCG, FedCG(p),
FedCG(d), and FedCPD, respectively.
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FIGURE 4. Convergence curves of FedCPD and baselines on Office and Cifar10. (a) Office. (b) Cifar10.

TABLE 6. Impact of DBAW and pseudo dataset on classification accuracy.

FIGURE 5. Application of FedCPD in the metaverse.

As shown in Table 6, the experiments demonstrate that
both global shared pseudo dataset and DBAW effectively
improve classification accuracy. FedCPD achieves the high-
est accuracy among the four methods on all six datasets.
Particularly, on Office, both FedCG(p) and FedCG(d) show
at least a 2.56% improvement in classification accuracy
compared to FedCG. However, on Digit5, FedCG(p) is
the only method that leads to a performance drop, with
a decrease of 0.04% in classification accuracy. This may
be due to the small inherent differences in Digit5, where
the introduced pseudo dataset incorrectly influences the
classifier.
By comparing the classification accuracies of the four

methods, we can draw the following conclusions: 1) Using
DBAW significantly improves the model’s classification
accuracy compared to traditional aggregation weights based
on dataset sizes; 2) Utilizing synthetic global shared pseudo

dataset can correct local classifiers, but it may lead to
performance degradation on datasets with mild imbalances
and heterogeneity.

C. APPLICATION OF FEDCPD IN THE METAVERSE
In the metaverse, a plethora of virtual reality devices such as
head-mounted displays and full-body tracking systems are
prevalent. Integration of FedCPD into these virtual reality
devices facilitates the acquisition of precise classification
outcomes while ensuring user data security. As depicted in
Fig. 5, FedCPD tailors local classification models for indi-
vidual metaverse users by leveraging locally distributed data
across virtual reality devices. Throughout the training pro-
cess, the user’s local data remains confined to their respective
devices, thereby safeguarding data integrity. Furthermore,
due to the heterogeneity inherent in the data collected from
diverse virtual reality devices used by metaverse users, the
performance of classification models may be compromised.
FedCPD addresses this challenge by employing DBAW and a
globally shared, label-independent pseudo dataset to enhance
the performance of both global and local models, thus
aligning classification outcomes more closely with local data
characteristics.
In comparison to previous methods, the incorporation of

FedCPD offers metaverse users enhanced security in their
participation and yields more precise classification outcomes.

V. CONCLUSION
In this paper, we proposed FedCPD, an FL algorithm to
secure and process heterogeneous data in the metaverse. It
used a cGAN-based privacy-preserving method to secure
user data. Specifically, FedCPD utilized generators in cGAN
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instead of extractors to participate in server-side aggre-
gation to avoid the exposure of feature extractors to the
server. Moreover, FedCPD employed a novel aggregation
mechanism that assigned greater aggregation weights to
better-performing local models by utilizing DBAW to per-
form aggregation operations. It mitigated the impact of data
heterogeneity on the global model. Finally, we designed
a correction module in FedCPD to correct the classifier
with a globally shared, label-independent pseudo dataset.
It improved the classifier’s ability to classify unknown
data in the metaverse. Extensive experiments across various
datasets indicated that FedCPD achieved the highest classi-
fication accuracy, showcasing its effectiveness in addressing
heterogeneous data. Therefore, FedCPD could be applied
in the metaverse to achieve secure and accurate image
classification. In the future, we plan to enhance FedCPD
by integrating more effective personalized FL methods and
novel privacy protection technologies. Given that FL is
highly susceptible to attacks during the communication
process, we will focus on improving FedCG’s privacy
protection capabilities in communication, paving the way for
more advanced FL applications in the metaverse.
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