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ABSTRACT The increasing prevalence of latency-critical applications such as Ultra Reliable Low Latency
Communications (URLLC), factory automation, and Artificial Intelligence (AI) for image classification
demands efficient computational task offloading strategies to meet stringent latency requirements for users.
Traditional Wireless-Fidelity (WiFi) networks often fall short due to limitations such as interference and
limited bandwidth, necessitating alternative technologies like Light-Fidelity (LiFi), which offer higher data
rates and reduced latency. Current single-path offloading approaches do not fully utilize network resources,
leading to suboptimal performance. This paper introduces ComputiFi, a task offloading framework
that utilizes a multipath, multihop LiFi-WiFi network architecture to minimize latency effectively.
By dynamically deciding the offloading destination, splitting data among available technologies, and
managing resources across multiple computational entities, ComputiFi addresses the complexities of
heterogeneous networks. By capitalizing on multipath transmissions and various potential destinations for
offloading, ComputiFi offers a robust solution for scenarios requiring low latency. Employing a variety
of optimization tools, including Mixed Integer Nonlinear Programming (MINLP) solvers, meta-heuristics,
Deep Reinforcement Learning (DRL), and black-box optimization techniques, ComputiFi processes tasks
optimally. Performance evaluations show that ComputiFi consistently reduces user average latency up to
69.3%. Furthermore, for real-time implementation, it offers a DRL solution with prediction time in the
order of milliseconds, offering 40.23% improvement in latency over baseline methods.

INDEX TERMS Edge computing, LiFi (light fidelity), multihop, multipath, WiFi (wireless fidelity).

I. INTRODUCTION

IN THE era of rapidly evolving wireless communica-
tions, latency-sensitive applications like Ultra Reliable

Low Latency Communications (URLLC), factory automa-
tion, and Artificial Intelligence (AI) image classification
require efficient computational task offloading [1], [2].
These applications demand strict latency and seamless
data processing that traditional single-technology networks,
particularly Wireless-Fidelity (WiFi), struggle to meet due
to interference and limited bandwidth [3]. This creates a
need for frameworks that can utilize heterogeneous network
resources.

Light-Fidelity (LiFi), a complementary technology to
WiFi, is an advantageous solution in indoor environments
such as factories where high data rate transmission and
low latency are crucial. LiFi operates on the visible light
and infrared spectrum, offering inherently safe and Radio
Frequency (RF)-interference-free communication, making it
ideal for high-density settings where WiFi struggles with
bandwidth saturation and security concerns [4]. Additionally,
LiFi’s capability to provide localized connectivity aligns with
the needs of factory automation systems that require precise,
reliable, and rapid communication between machinery and
control systems.
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The integration of LiFi and WiFi ensures that users can
offload tasks through an optimal combination of paths,
balancing speed, coverage, and reliability [5]. Existing
single-path offloading solutions [6], [7] only partially exploit
network resources, often increasing latency. This limitation
highlights the need for multipath transmission strategies
that can leverage multiple concurrent channels to enhance
data throughput and reliability [8]. Thus, designing a
task offloading solution in multipath, multihop LiFi-WiFi
networks presents an opportunity to reduce latency.
Traditional single fixed offloading destinations [9] con-

tribute significantly to network congestion and latency
spikes. To address this, multiple levels of Multi-access Edge
Computing (MEC) destinations are proposed, including local
processing at the user, a nearby LiFi Access Point (AP), a
WiFi AP, routers interconnecting these APs, or cloud servers
accessible via the network backbone.
This enables a more distributed computation model that

brings processing capacity closer to the source of traf-
fic [6], [10], resulting in a multihop infrastructure. The
multihop design requires continuous evaluation of routing
strategies [11] and allocating resources based on current
network conditions, traffic congestion, and the computing
load of each destination.
While many existing solutions propose multihop network

architectures to extend coverage and enhance connectivity,
they often oversimplify latency calculations by merely
aggregating latencies across hops, ignoring the complexities
of multi-packet data flows and intermediate forwarding
hops [6], [12], [13]. Such approaches are inadequate for
scenarios where the task’s data traffic is composed of
multiple data packets.
In response to these challenges, we propose a task

offloading framework called ComputiFi, which uses multiple
optimization techniques to minimize latency in multipath,
multihop LiFi-WiFi networks. Our framework decides the
offloading destination, dynamically splits data among avail-
able technologies, and allocates computational resources
efficiently across the potential compute server destinations.
The framework employs a variety of solvers, including

Mixed Integer Nonlinear Programming (MINLP) solvers,
meta-heuristics, Deep Reinforcement Learning (DRL), and
black-box optimization techniques. This diverse set of tools
enables ComputiFi to handle the unique challenges of hetero-
geneous networks, meeting specific network requirements.

A. CONTRIBUTION
In this paper, we present the architecture and methodology
of ComputiFi, demonstrating its potential to significantly
reduce the latency of tasks in LiFi-WiFi networks. This paper
makes the following contributions:
1) Task Offloading Framework: We introduce ComputiFi,

a novel framework that offloads latency-critical tasks
across multipath, multihop LiFi-WiFi networks. It
identifies the optimal offloading destination and effec-
tively splits data flows between LiFi and WiFi, using

a multihop latency formulation suited for tasks with
multiple packets.

2) Advanced Optimization Solvers: We implement
multiple optimization tools within ComputiFi, includ-
ing MINLP solvers (e.g., Gurobi), meta-heuristics,
DRL, and black-box optimization techniques. These
techniques are designed to adapt to the network’s
changing conditions and traffic demands, providing
robust offloading.

3) Resource Allocation Strategy across varied Devices:
Our framework implements a dynamic, varied destina-
tion strategy that optimally routes tasks across different
network devices, including local devices, LiFi APs,
WiFi APs, routers, and cloud servers, that change over
time.

4) Benchmarking and Performance Validation:We bench-
mark ComputiFi against various baseline solvers,
demonstrating its superior performance in latency
optimization. The benchmarking results validate the
effectiveness of our framework in handling latency-
critical applications, making it suitable for emerging
use cases in heterogeneous network environments.

B. ORGANIZATION
The structure of this paper is outlined as follows. Section
II discusses related research. Section III elaborates on the
system models for LiFi and WiFi, task models, MEC
processor models, and mobility models for indoor networks.
The optimization problem is developed into a mathematical
model in Section IV. Section V outlines the solution
approaches, including meta-heuristic and DRL-based algo-
rithms. The simulation setup and results are presented in
Section VI. The paper concludes with a summary of findings
in Section VII and explores future research avenues in
Section VIII.

II. RELATED WORK
This section reviews the current literature related to task
offloading and resource allocation within mobile and edge
computing networks, highlighting key contributions and
identifying existing limitations.
A comprehensive survey on computation offloading in

edge computing networks is presented in [14]. This work
reviews various offloading objectives and methodologies to
enhance computational efficiency, identifying key trends,
challenges, and open questions. However, it neglects the
unique challenges of LiFi-WiFi heterogeneous networks,
such as blockages and AP density. While it does mention a
few papers that explore multipath routing of tasks, it does
not examine this aspect in detail.
Similarly, [15] introduces a mobility-aware framework that

coordinates task scheduling and resource allocation in a
cooperative device-to-device computing network. While they
do not evaluate a multipath network, they do account for
user mobility, which makes it relevant for our work where
the users are also mobile.
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Another work, [16], presents a deep learning-assisted
method for online task offloading aimed at minimizing
latency in heterogeneous mobile edge settings. Their real-
time adaptive technique responds to changing network
conditions and user demands, focusing on reducing system
latency. While they do not consider a multipath network,
their approach to using DRL for real-time implementation
and comparing it to the Gurobi solver for optimality is similar
to our research process.
Moving towards heterogeneous wireless networks, [6]

discusses a framework for task offloading and service
caching within WiFi-cellular heterogeneous networks. Their
strategy optimizes resource and channel allocation while
reducing latency and energy consumption. While they do
consider technologies that are diverse in their properties, they
do not evaluate multipath transmissions in this scenario.
Reference [8] proposes a novel approach using Genetic

Algorithm (GA) and DRL to manage task offloading
and resource allocation across multiple Radio Access
Technologies (RATs) for URLLC and enhanced Mobile
Broadband (eMBB). The model is designed to adapt dynam-
ically to fluctuating network conditions, optimizing for the
offloading success rate and maximizing spectral efficiency.
Although the authors explore multipath transmission for
eMBB tasks, the specifics of using two diverse technologies
like LiFi and WiFi warrants new research. Moreover, they do
not consider the choice of multiple offloading destinations,
which adds a new degree of freedom to the optimization
and can reduce the latency further by distributing the tasks
through the network.
Taking a step in the direction of multiple offloading

destinations, [17] allows for adjacent MEC servers to
collaborate to process the tasks. This is not truly a multihop
architecture since the task is first sent to the associated server
and only forwarded to the adjacent server due to a lack of
computational resources, and it does not support multipath
transmissions.
Further extending the computing destinations to multiple

edge and cloud servers, [10] utilizes multi-agent deep
reinforcement learning for cooperative computing offloading
and route optimization. They also evaluate the possibility of
multiple transmission paths but do not consider users that
are mobile and change their wireless associations.
Combining both multipath and multihop aspects in mobile

ad-hoc networks, [12] explores task offloading strategies to
balance communication delay and energy efficiency through
an adaptive path selection algorithm that takes into account
the mobility of drones in their network. Their communication
model, however, is not entirely suitable for the multi-packet
tasks that are relayed across multiple hops.
In summary, unlike existing models that often focus on

single-hop or single-path offloading strategies, ComputiFi
employs a set of optimization tools, including MINLP
solvers, meta-heuristics, DRL, and black-box techniques
to dynamically adjust offloading destinations and resource
allocations across multiple network layers and wireless

technologies. These tools are compared and evaluated for
their suitability in task offloading problems. Additionally,
while many studies explore reinforcement learning in edge
computing, they typically do not address the specific
latency and resource allocation challenges in LiFi-WiFi
configurations.

III. SYSTEM MODELS
The system model for latency-optimized task offloading in
multipath multihop LiFi-WiFi networks is described in the
following sub-sections, each targeting a specific aspect of the
network model and its operational dynamics. These include
the network architecture, the computing server model, the
task model, the LiFi and WiFi channel models, and the
user mobility model. The notation used in this paper is
summarized in Table 1.

A. NETWORK MODEL
This work develops a network model for a LiFi-WiFi
network, consisting ofML LiFi APs andMW WiFi APs. Each
LiFi AP is equipped with Light Emitting Diodes (LEDs) and
mounted at a ceiling height of 3 m. Due to operating on
the same frequency, these LiFi APs experience co-channel
interference within overlapping zones. In contrast, WiFi
APs are also positioned at the same height but operate
on non-overlapping frequency channels, mitigating inter-cell
interference.
The system supports MU users, each equipped with

both LiFi and WiFi transmitters and receivers for uplink
and downlink traffic, denoted by u ∈ {1, 2, . . . ,MU}.
Connectivity management allows each user to be simultane-
ously served by one AP of each technology (LiFi and WiFi).
However, they do not associate with more than one AP of
the same technology. Users are pre-associated with one AP
per technology based on Signal to Interference and Noise
Ratio (SINR). Therefore, each user has MN = 2 wireless
technologies.
APs are interconnected via a router, with one router allo-

cated for every five APs. Each router is directly connected to
a cloud server, with backhaul connectivity facilitated through
wired links. The network architecture is visually represented
in Fig. 1.
The capacity of each link ij in the network is denoted as

BWij and is assumed to be sufficient so that the capacity of
backhaul links matches or exceeds the fronthaul bandwidth.
Furthermore, the capacity of each router is designed to at
least equal the sum of all its links. These capacities are
summarized in Table 2, with wireless capacities derived from
the respective channel models. Although the propagation
delay for most links is negligible due to their proximity in
indoor environments, the delay to the cloud server is set to
7.5 ms, as mentioned in existing research [18].
A central network controller links all nodes and man-

ages communication within the network. This controller is
critical for collecting Channel State Information (CSI) from
users and monitoring server load, facilitating a centralized
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TABLE 1. List of notations used in latency-optimized task offloading.

resource allocation algorithm. This algorithm leverages
global network information to optimize MEC server destina-
tions, packet split ratios, and computing resource allocation
to minimize overall network latency.

B. COMPUTING SERVER MODEL
In the proposed ComputiFi framework, the MEC architecture
plays a critical role in reducing latency by providing com-
putational resources closer to the end-users. The processing
server destination m ∈ M includes cloud servers, routers,
and both LiFi and WiFi APs. The user device is also
capable of processing but is not equipped with a server. Each
component’s computational capacity is crucial for optimizing
the overall performance of the network. Below, we detail
each server component’s properties, including the processor’s
capacity in instructions per second and the number of
processing cores. The total processing capacity over all cores

FIGURE 1. Network architecture showing various task applications generated by
users associated to LiFi and WiFi APs with other potential offloading destinations
equipped with MEC servers.

TABLE 2. Properties of links between network nodes.

TABLE 3. Computational properties of processing servers.

combined is Fm. The local user device’s capacity is denoted
by Fu.
Table 3 presents the computation properties for each type

of server entity in the network. The processing capacity of
a user device is modeled after the Qualcomm Snapdragon
720G processor. APs for both LiFi and WiFi are equipped
with processing capacities as in [19]. Routers use the Ampere
Altra Max M128-30 processors, which provide processing
capabilities suitable for heavy computational tasks, and a
cloud server is modeled by five such processors.

C. TASK MODEL
This section details the model used for tasks that must
be processed by the system. Tasks arriving at users can
be processed locally or offloaded to a server and then
processed. Each user has multiple tasks dependent on each
other, which are processed at the same destination. Each
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TABLE 4. Task properties for various applications.

task is assumed to have a delay requirement less than the
optimization interval. Users can employ both LiFi and WiFi
links to transmit these tasks to the servers, with the choice
of technology potentially varying based on current network
conditions and task urgency.
The characteristics of these tasks, including the task

arrival rate, delay requirements, and task sizes, can vary
significantly across the different applications considered,
such as eMBB like Video Streaming, URLLC, Factory
Automation, and AI or Image Classification. The arrival rate
follows a Poisson distribution with a mean arrival rate in
tasks/s as mentioned in Table 4. Other properties of the
tasks, such as task size, required latency bound, and required
processing instructions for different application scenarios,
are also outlined in Table 4. The properties of the eMBB
and URLLC tasks are taken from [8], while the Factory
Automation properties are from [20] and the AI/Image
Classification application is derived from [21]. Furthermore,
the delay requirement for a user’s task is denoted by τ

req
u ,

the number of instructions required to process the task by
Cu, the size of the task in bits by Su, and the size of one
packet of the task in bits by Spktu .

D. LIFI CHANNEL MODEL
Our LiFi channel model leverages the three-dimensional
positioning of APs and users as well as the orientation of
user devices, based on the model in [22]. This spatial config-
uration is important to determine the channel characteristics,
particularly the Line-of-Sight (LoS) channel gain as follows

HLoSu,l =

⎧
⎪⎪⎨

⎪⎪⎩

(m+1)Apχ2Ts
2πd2

u,l
cos φmu,l cos θu,l if θu,l ≤ �f

& φu,l ≤ �f

0 elsewhere

(1)

Here, m denotes the Lambertian order of the LED, Ap
represents the area of the receiver photodiode, χ is the
refractive index, Ts the optical filter’s gain, du,l measures the
three-dimensional distance between user u and AP l, φu,l is
the angle of irradiance, and θu,l is the angle of incidence.
The gain is nonzero only when the irradiance and incidence
angles fall within the Field of View (FoV) of both the
transmitter (�f ) and receiver (�f ).
The SINR at the receiver is computed using

SINRu,l =
(
HLoSu,lPlk

)2

∑
l′ �=l
(
HLoSu,l′Pl′k

)2 + noise
(2)

TABLE 5. LiFi channel parameters.

Here, Pl is the optical transmission power of the transmitter
in watts, and k represents the optical to electrical conversion
efficiency.
To calculate the link rate, Ru,l, for a user u to a LiFi AP l,

we employ a modified Shannon formula, as outlined in [23]

Ru,l = min
(
BL log2

(
1 + e

2π
SINRu,l

)
,RLmax

)
(3)

In this formula, BL is the modulation bandwidth of an
LED, and RLmax indicates the maximum data rate, capped at
250 Mb/s for a LiFi AP.
The parameters for simulating the LiFi channel are

detailed in Table 5.

E. BLOCKAGE MODEL FOR LIFI CONNECTIONS
In LiFi networks, users’ mobility and device orientation
can lead to interruptions in LoS signal transmission due
to blockages. To address this, our work incorporates a
geometric blockage model, drawing parallels from research
on obstructions in mmWave systems [24].

This model considers users as cylindrical barriers, which
disrupt the direct LoS paths between ceiling-mounted APs
and user devices. The cylindrical model, chosen for its
ability to accurately reflect the height and width of a typical
user, effectively evaluates signal blockage. This approach
applies to any user, including robots or other machines,
not just humans. We model users as blockages because
their mobile nature presents a more complex challenge
for maintaining reliable connections. In contrast, stationary
obstacles are not modeled as they can be strategically
positioned or removed through careful environment planning,
thereby minimizing their impact on signal transmissions.
Each cylindrical obstruction is specified with a height of
h = 1.8 m and a radius of r = 0.2 m. Blockage occurs
when the direct line between an AP and a user’s device
intersects with this cylindrical volume. In such cases, the
data transmission rate from the affected AP to the user drops
to zero.
The blockage model is integral to the channel model,

simulating blockages in the LoS of LiFi links. It influences
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TABLE 6. WiFi channel parameters.

channel quality and, consequently, the wireless LiFi data rate
experienced by the user during uplink task transmission. By
incorporating the blockage model, we aim to simulate a real-
istic channel for users, ensuring an accurate representation
of the impact on data rates.

F. WIFI CHANNEL MODEL
Our WiFi network operates under the IEEE 802.11n standard,
utilizing a channel bandwidth of 40 MHz. Within this
configuration, the maximum throughput (RWmax) achievable
by a WiFi AP is 160 Mb/s. Under the assumption of
frequency reuse with no interference between WiFi APs, the
Signal to Noise Ratio (SNR) at the receiver is modeled as
per [22]

SNRu,w =

(
1

d2
u,w

1
f 2
W

1014.45hrPw

)2

noise
(4)

Here, du,w represents the three-dimensional distance between
the user u and the AP w, hr denotes the small scale fading
gain (with an average power of 2.46 dB as detailed in [22]),
fW is the carrier frequency, and Pw is the power output of
the transmitter in watts.
The link rate for a user u to a WiFi AP w is derived using

the Shannon formula

Ru,w = min
(
BW log2

(
1 + SNRu,w

)
,RWmax

)
(5)

In this equation, BW represents the transmission bandwidth.
The parameters for simulating the WiFi channel are detailed
in Table 6.

G. MOBILITY MODEL
To assess the effectiveness of our task offloading strategy
in environments with mobile users, we incorporate the
Random Waypoint (RWP) mobility model, which addition-
ally accounts for the changing orientation of user devices.
This model applies to any user, including robots, automated
systems, or other machines, not just humans.
The height of the user devices over time is modeled using

a Gaussian distribution. The mean height is 1.4 m for mobile
users when moving and 0.8 m for stationary users. The
standard deviation for both scenarios is maintained at 5 cm
to accommodate slight variations in device height.
After determining the x and y positions of the user devices

through the chosen mobility model, these coordinates are

utilized to compute the movement direction. This direction
is then used to find the Yaw angle of the device’s orientation
as detailed in [25]. The Pitch angle is characterized by a
truncated Laplace distribution, with an average of 28◦ for
mobile users and 0◦ for those who are stationary. Similarly,
the Roll angle follows a truncated Laplace distribution with
a mean of -1.35◦. Overall, changes in user orientation over
time are modeled as a correlated random process, further
elaborated in [25].

IV. TASK OFFLOADING PROBLEM FORMULATION
The ComputiFi framework aims to minimize latency for
task offloading in a multipath, multihop LiFi-WiFi network
environment.

A. COMMUNICATION MODEL
Once the optimization process selects a destination m for a
user u, there are n possible paths to the destination. Here, n
represents the wireless technology used, which determines
the first hop of the transmission. After deciding on the first
hop, no further routing is necessary because the network
follows a tree topology rather than a mesh. Consequently,
the route to the destination becomes fixed. The links used
for transmission in the network, denoted as λ

u,n,m
ij , are binary

indicators that determine if link ij is used for offloading user
u’s task over technology n to destination m. The bandwidth
allocated to user u on link ij is dependent on the traffic size
of the user’s tasks and the number of users sharing the link.
The capacity of the link is split among the users sharing the
link according to their data sizes as given by,

BWu,n
ij = BWijknuSu

∑
u′
∑

m′ xu′,m′
∑

n′ λn
′,u′,m′
ij kn

′
u′Su′

(6)

where BWij is the total capacity of the link, knu is the
optimization decision variable that indicates the proportion
of the data size of the user u that is transmitted over the
technology n, Su is the total data size of the user. The
denominator of this equation represents the sum of the
data sizes of all users’ traffic on that link, where xu′,m′
is the binary optimization decision variable that indicates
if the user u′ offloads to destination m′. In this way,
the wireless resource itself is not directly an optimization
variable; however, the data split proportion is a decision
variable that influences the wireless resources allocated to
the user.

1) MULTIHOP TRANSMISSION LATENCY OVER ONE
TECHNOLOGY

The latency to transmit the user’s task τTx,nu through one
technology n from the user u to the destination of offloading
m is given by

τTx,nu =
∑

m

xu,m

⎡

⎣
∑

ij

λ
n,u,m
ij

(
Spktu

BWu,n
ij

)
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+max
ij

⎛

⎝
λ
n,u,m
ij

(
knuSu − Spktu

)

BWu,n
ij

⎞

⎠

+
∑

ij

λ
n,u,m
ij τ

prop
ij

⎤

⎦ (7)

In this equation, the total latency τTx,nu is composed of three
main components:

1) Packet Transmission Latency: The first summation

term,
∑

ij λ
n,u,m
ij (

Spktu
BWu,n

ij
), represents the latency incurred

by transmitting a single packet over all hops from the
user to the destination. Each hop contributes to the
total latency based on the packet size Spktu and the
bandwidth BWu,n

ij of the link.
2) Bottleneck Link Latency: The second term,

maxij(
λ
n,u,m
ij (knuSu−Spktu )

BWu,n
ij

), captures the effect of the

bottleneck link. The bottleneck link is the link with the
lowest bandwidth among all links in the transmission
path. This link determines the maximum transmission
time for the remaining data packets because it restricts
the flow rate of data through the network. Specifically,
if the total task size is knuSu and the size of one packet is
Spktu , the term knuSu−Spktu represents the remaining data
to be transmitted after the first packet. The division
by the bandwidth BWu,n

ij of the bottleneck link then
gives the transmission time for this remaining data.
Since the bottleneck link is the slowest, the entire
transmission process must wait for this link to clear
its queue, thereby dictating the overall latency.

3) Propagation Latency: The last term,
∑

ij λ
n,u,m
ij τ

prop
ij ,

accounts for the propagation delay across all links used
in the transmission.

In our framework, we reserve both bandwidth and comput-
ing resources for users, thereby eliminating queuing latency
at the task level. At the packet level, queuing can occur
at the destination computing server, where the packets wait
until all packets of the task have been transmitted before the
processing can start. Queuing latency can also be incurred at
relay nodes where packets may need to wait for transmission,
as considered in the Bottleneck Link Latency. These relay
nodes are intermediate points in the network where packets
are temporarily stored before being forwarded to the next
hop or final destination. At these relay points, we assume
a sufficient buffer to handle the incoming traffic, thereby
effectively managing the queuing latency. Our approach
to queuing is simplified because each user is tied to a
single application, allowing us to consider a First Come
First Serve (FCFS) queue at the user level rather than
at the application level. These considerations are included
in the latency formulation wherein the transmission and
computing latencies are added together to denote that the
processing starts only after the complete transmission, and

the Bottleneck Link Latency handles the queuing at relay
nodes.

2) TOTAL MULTIPATH TRANSMISSION LATENCY

Once the latency over each technology (or path) is calculated,
the total transmission latency τTxu is calculated by the slower
of the two paths

τTxu = max
n

(
τTx,nu , n ∈ {LiFi,WiFi}). (8)

In this work, we only consider managing resources for uplink
traffic since we assume that this data traffic size would be
much larger than the result of the processing, which has to
be communicated back to the user in the downlink.

B. TASK PROCESSING MODEL
When the task is processed on the user device, the local
processing latency τLu is given by

τLu = Cu
Fu

(9)

where Cu is the instructions required to process the task and
Fu is the processing capability of the user’s processor in
instructions per second.
When the task is processed at the server m, the processing

latency τ
compute
u is given by

τ
compute
u = Cu

∑
m xu,mcu,mFm

(10)

where Cu is the instructions required to process the task
and Fm is the total processing capability of the server in
instructions per second, and cu,m is the decision variable that
represents the proportion of the total computing resources
that is assigned to the user u at the server m.

C. TASK COMPLETION LATENCY
Combining the task transmission and processing latency
gives the total task completion latency. If the task is
processed locally, then this is directly given by τLu . If the
task is processed at the edge (i.e., it is offloaded), the task
completion latency at the edge τEu is given by,

τEu = τTxu + τ
compute
u (11)

Finally, the total task completion latency τu is given by

τu = puτ
L
u + (1 − pu)τ

E
u (12)

where the local latency τLu is selected if the binary decision
variable pu = 1 or the edge latency τEu is selected if pu = 0.

D. OPTIMIZATION PROBLEM
The optimization problem for minimizing latency in
multipath, multihop networks is given by,

min
pu,xu,m,knu,cu,m

∑

u

τu (13)

subject to τu <= τ
req
u ∀u (14)
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∑

m

xu,m = 1 ∀u (15)

∑

n

knu = 1 ∀u (16)

∑

u

(1 − pu)xu,mcu,m <= 1 ∀m (17)

pu ∈ {0, 1} ∀u (18)

xu,m ∈ {0, 1} ∀u,m (19)

0 < knu ≤ 1 ∀u, n (20)

0 < cu,m ≤ 1 ∀u,m (21)

where the objective is to minimize the sum of the users’
task completion latency. The decision variable pu is a binary
variable with value 1 if local computing and 0 if edge
computing. xu,m is also a binary variable with a value of
1 if the user u’s task is offloaded to destination m. The
data split proportion is denoted by knu ∈ [0, 1] and the
compute resource proportion is denoted by cu,m ∈ [0, 1].
The constraint (14) denotes the latency upper bound for a
task, (15) constrains a user’s task to be processed at only one
destination, (16) says that the data split proportion over all
technologies must sum up to one if offloaded (i.e., all parts
of task are transmitted), and (17) is included to not exceed
the computation capacity at a compute server destination.
Given the complexity of the MINLP problem, espe-

cially with the non-linear nature of the objective and
some constraints, and the large network size, sophisticated
optimization methods are required.

V. METHODS TO SOLVE THE TASK OFFLOADING
PROBLEM
A. BASELINES
In order to benchmark and validate the effectiveness of the
ComputiFi framework, several baseline strategies are used to
solve the task offloading problem. Each baseline embodies
a different approach to task allocation in heterogeneous
LiFi-WiFi networks and offers a comparative perspective to
evaluate the performance gains achieved by ComputiFi.

1) Local-Only: All tasks are processed on the local
device, minimizing data transfer latency but potentially
causing delays and higher user energy consumption
due to limited local resources.

2) AP-Only (Singlepath): Tasks are sent to a single AP
(LiFi or WiFi) for processing, prioritizing LiFi when
available due to lower user density associated to one
AP.

3) AP-Only (Multipath): Utilizes both LiFi and WiFi by
splitting data packets between them, reducing delays
and congestion, but requires the entire task to reach
the same destination for processing.

4) Local-First: Initially processes tasks locally, offloading
to an external AP (following AP-Only Singlepath) if
local processing would exceed latency limits, balancing
local resources and external offloading for optimal
latency and reliability.

5) URLLC-Local (Singlepath): Prioritizes URLLC tasks
for local processing to meet latency requirements,
routing other tasks to a single AP as in AP-Only
(Singlepath).

6) URLLC-Local (Multipath): Processes URLLC tasks
locally, while splitting other tasks’ transmission
between LiFi and WiFi to optimize resource use and
meet URLLC latency needs.

B. MINLP OPTIMIZER
MINLP solvers, like Gurobi [26], are key for solving task
offloading by using branch-and-bound techniques for discrete
and continuous variables. However, for larger networks,
MINLP becomes computationally expensive. The branching
process grows exponentially with the problem size, which
makes MINLP solvers less practical in large, real-world
networks. Gurobi is thus used for small scenarios to
benchmark learning-based and meta-heuristic approaches in
larger cases, ensuring proposed solutions are near-optimal.
The complete optimization formulation is too complex to

solve directly, so we simplify the problem by transforming
functions to make them as linear or convex as possible. This
makes the solution process more manageable and efficient.
Recalling (7) and (8), we need to perform max operations. To
linearize the max function in (7), we introduce an auxiliary
variable τ flowu,n,m representing the maximum of the data flow
latency out of all hops. Additionally, we add a constraint
that this variable should be greater than or equal to the flow
latency at every hop. Hence, for a specific (u, n,m) index
the constraint is given as

τ flowu,n,m ≥
⎛

⎝
λ
n,u,m
ij

(
knuSu − Spktu

)

BWu,n
ij

⎞

⎠ ∀ij (22)

This simplification works due to the minimization objective
function, which attempts to decrease the value of τ flowu,n,m as
much as possible. In contrast, this constraint (22) forces it
to be greater than or equal to every hop flow latency value.
A similar transformation is applied on (8). Applying these
transformations allows us to simplify the problem with exact
transformations. Henceforth, the solution using this MINLP
solver is called the “Expert” model.

C. META-HEURISTICS
Meta-heuristic algorithms provide efficient task offloading
solutions in large networks, balancing quality and compu-
tational efficiency. The following meta-heuristic techniques
are employed:

1) Genetic Algorithm (GA): GA [27] is motivated by
the principles of natural selection. It evolves solutions
through selection, crossover, and mutation.

2) Differential Evolution (DE): DE [28] uses vector
differences to improve candidate solutions iteratively.

3) Pattern Search: This derivative-free optimization tech-
nique [29] iteratively explores the solution space by
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evaluating neighboring points and adjusting pattern
size dynamically.

4) Particle Swarm Optimization (PSO): PSO [30] is a
swarm-based algorithm where particles move based on
their and neighbors’ best positions.

5) Stochastic Ranking Evolutionary Strategy (SRES):
SRES [31] combines evolutionary principles with
a ranking mechanism for constrained optimization
problems.

All the meta-heuristics implemented have an initial pop-
ulation size of 100 and are run for a maximum of
100 generations. They can be terminated earlier if they have
achieved convergence.

D. BLACK-BOX OPTIMIZERS
In addition to meta-heuristic methods, we also employ black-
box optimization techniques, particularly useful for problems
with highly complex or unknown internal structures. These
methods treat the optimization function as a black box,
using statistical learning techniques to model the input-output
relationships. Our framework incorporates the following
black-box techniques:
1) Random Forest: Random Forest [32] is an ensemble

learning method that uses multiple decision trees
trained on random subsets to improve generalization.

2) Extra Trees: Extra Trees [33], short for Extremely
Randomized Trees, is another ensemble learning
technique similar to Random Forest but uses the
entire dataset and randomized split points for greater
diversity.

In addition, a simple Greedy approach that samples uni-
formly within the bounds of the variables and repeats this
random selection process for multiple iterations is also
proposed.

E. DEEP REINFORCEMENT LEARNING
The task offloading problem, with multiple decision vari-
ables and constraints, needs a flexible solution adaptable
to network dynamics and varied task requirements. By
training an agent through repeated network interactions, DRL
learns robust policies that maximize network efficiency and
minimize latency violations, balancing optimality with real-
time feasibility.
Among DRL algorithms, Proximal Policy Optimization

(PPO) [34] stands out for its reliability and stability. PPO
limits policy updates to a small range, avoiding large
performance drops after learning iterations. Its ability to
manage high-dimensional action spaces and efficiently use
policy gradients makes it ideal for complex decision-making
in multipath, multihop networks.
This section describes the problem formulation, including

the state space, action space, and reward function used in
the DRL model.
State space S is a set of features representing the current

network status and task characteristics:

S = {lu,wu,Ru,l,Ru,w, tu,N
T
u } (23)

where, wu and lu represent the WiFi and LiFi APs to which
each user is connected, Ru,w and Ru,l denote the link rates
of WiFi and LiFi links for each user, tu represents the task
type (eMBB, URLLC, factory, AI/image classification), NTu
denotes the number of tasks for each user.
Action space A defines the possible actions:

A = {xu, kWu , cu} (24)

where xu specifies the computational destination for each
user’s task. Instead of defining one binary variable or action
for every user-destination pair (xu,m), we directly output the
destination index for each user (xu), reducing the variable
space and allowing for easier learning. This is also why the
single destination per user constraint (15) is unnecessary.
kWu is the proportion of data transmitted via the WiFi link,
with the remainder (1 − kWu ) routed through LiFi or entirely
through WiFi if LiFi is unavailable. Therefore, the sum
over technologies constraint (16) is not necessary. cu is the
proportion of computing resources allocated to each user at
the server. The compute proportion assigned to each user is
manually normalized after the action is selected, ensuring
that the sum of the proportions assigned at each server is
at most 1, thereby eliminating the need for constraint (17).
In the discrete model, the proportions are discretized to 20
values, while in the continuous model, they range from 0 to 1.
Reward function G is designed to minimize latency while

penalizing latency violations. The latency violation Vτu is
calculated as:

Vτu = max
(
0, τu − τ

req
u
)

(25)

where τu is the task completion latency for a user and τ
req
u

is the latency requirement. Each user’s reward Gu is based
on the inverse of their task completion latency:

Gu = 1

τu
(26)

Rewards are then scaled to the range [0, 10]

Gsu = Gu
max(Gu)

× 10 (27)

By scaling the reward, we ensure that the learning process
is more stable and efficient and balances exploration and
exploitation, ultimately leading to better performance and
faster convergence. If there are latency violations, the final
reward G is penalized according to the number of violating
users:

G = −NVu × 10 (28)

where NVu is the count of users violating latency require-
ments. If no violations exist, the final reward is the sum of
scaled rewards:

G =
∑

u

Gsu (29)

In summary,

Reward =
{

−NVu × 10 if latency violation
∑

u G
s
u else

(30)
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This reward function encourages the agent to minimize
latency by selecting optimal destinations and resource
allocations while adhering to constraints.
The algorithm works by collecting experiences through

the environment using the current policy and then computing
the advantages of these experiences using Generalized
Advantage Estimation (GAE). PPO updates the policy
network by maximizing the expected advantage while ensur-
ing the changes to the policy are within a specified range,
controlled by a clipping parameter of 0.2. Additionally, PPO
updates a value network to predict the expected return, which
is used to compute the advantages. The optimization of both
networks is performed using gradient descent with the Adam
optimizer. In this implementation, both the actor (policy) and
critic (value function) networks use a MultiInputPolicy with a
three-layer neural network architecture, having [64, 128, 64]
neurons, respectively. The PPO algorithm was implemented
using the stable-baselines3 [35] v2.3.0 Python package and
the environment was set up with the gymnasium v0.29.1
library. All hyperparameters used in the model training are
tuned using the Optuna framework [36]. The model was
trained for 2.34 × 105 samples with a learning rate of 0.0001.
The summary of the working of the PPO algorithm is
described in Algorithm 1.

VI. PERFORMANCE EVALUATIONS
A. EVALUATION METHODS
The proposed ComputiFi framework is assessed through
comprehensive simulations implemented in Python 3.10.12.
To evaluate the performance of our proposed algorithms,

we consider three network architectures: Small, Medium,
and Large, which reflect the size of the network topology. In
each of these architectures, a single WiFi AP is positioned
at the center of the room on the ceiling at coordinates
(0,0,3) m. All the LiFi APs are also mounted at the ceiling
height of 3 m. The data rate coverage of these network
topologies is shown in Fig. 2. The WiFi coverage area is
depicted only for the Large topology since the AP is always
positioned at the center of the room across all scenarios.
Additional parameters for these scenarios are provided in
Table 7. Moreover, each architecture includes a Cloud
server, and all network devices are equipped with processing
capabilities.
The evaluations were conducted using an 11th Gen Intel

Core i7-11700 16-Core Processor with NVIDIA GeForce
RTX 3070 GPU. All collected results are based on 20
random simulation runs, with each simulation comprising
120 time steps. To verify our claims, we perform hypothesis
testing using the Mann-Whitney U test [37], assuming
the null hypothesis that the distributions of the two com-
pared parameters are identical. Test results are displayed
on the respective figures using [38] and follow the star
notation

ns : p > .05

∗ : .01 < p <= .05

Algorithm 1 PPO Approach to Find the Optimized Policy
and Value Network
1: Initialize: Policy network πθ , value network Vφ , replay

buffer B, learning rate α = 0.0001, discount factor γ =
0.9, PPO clipping parameter ε = 0.2, Factor for trade-off
of bias vs variance for GAE λ = 0.985

2: Input: State space S , action space A, reward G
3: while not converged do
4: Reset environment, get initial state s0
5: for each episode do
6: for each time step t do
7: Select action at ∼ πθ(st)
8: Execute action at, observe reward Gt and next

state st+1
9: Store (st, at,Gt, st+1) in B

10: end for
11: end for
12: Compute advantages Ât using GAE:

Ât =
T∑

l=0

(γ λ)lδt+l

δt = Gt + γVφ(st+1) − Vφ(st)

13: Update policy network θ by maximizing:

LCLIP(θ) = Êt

[

min

(
πθ (at|st)

πθold(at|st)
Ât,

clip

(
πθ (at|st)

πθold(at|st)
, 1 − ε, 1 + ε

)

Ât

)]

14: Update value network φ by minimizing:

Lvalue(φ) = Êt

[
(Gt + γVφ(st+1) − Vφ(st))

2
]

15: Perform gradient descent on θ and φ using Adam
optimizer

16: Clear replay buffer B
17: end while
18: Return: Optimized policy network πθ and value

network Vφ

∗∗ : .001 < p <= .01

∗ ∗ ∗ : .0001 < p <= .001

∗ ∗ ∗∗ : p <= .0001

Given the multiple hypothesis tests performed on the same
dataset, the Benjamini-Hochberg false discovery rate [39]
procedure is applied for correction.
Simulation results are evaluated using various quality

metrics to provide insights into the offloading framework’s
performance. For all the latency-related metrics, we compute
the task completion latency for each user’s task as τu.
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FIGURE 2. Data rate coverage achieved for various network architectures under
evaluation.

TABLE 7. Task offloading architectures under evaluation.

Task Latency (ms):

Task Latency = 1

MU

MU
∑

u=1

τu (31)

Latency Quality of Service (QoS): The Latency QoS metric
is calculated by taking the ratio of the required latency to
the actual latency for each user and then averaging these
ratios across all users. This provides a measure of how well
the system adheres to the latency requirements of its users.

Latency QoS = 1

MU

MU
∑

u=1

τ
req
u

τu
(32)

A higher Latency QoS value indicates better performance,
as it means that the actual latencies are closer to or even
lower than the required latencies, ensuring that the tasks are
completed within the acceptable time frames. Conversely,

a lower Latency QoS value suggests that the system is
struggling to meet the latency requirements, resulting in
delays that may affect user experience.
Latency QoS per application: The QoS per task application

type is calculated by grouping the users according to their
application. For example for the URLLC application,

Latency QoSURLLC = τ
req
u′
τu′

∀u′ ∈ UURLLC (33)

Further, we present metrics that provide insights into the
workings of the solving algorithms.
MEC destination: Since we propose using varied potential

destinations for offloading, we examine the MEC server to
which each user’s task is offloaded.
Proportion of data flow: To understand the benefits of

using LiFi and WiFi combined in a multipath network, we
analyze the fraction of the data flow of each user that is
offloaded through each technology. This value ranges from
0 to 1. This only includes the data for the tasks that are
offloaded and the zeros resulting from local processing are
not part of the data.
Time to solve (s): Finally, to evaluate the solving algorithm

itself, we assess the time needed to solve the optimization
problem using the proposed solvers.

B. RESULTS AND COMPARATIVE ANALYSIS
The evaluation begins with Fig. 3(a), which compares various
baseline approaches and the proposed solution utilizing the
MINLP solver. In this small network topology, each of the 10
users is randomly assigned one of four applications: eMBB,
URLLC, Factory, and AI. Due to the random allocation
and limited user count, this scenario only involves eMBB,
Factory, and AI applications.
As seen in Fig. 3(a), the Expert optimizer achieves the

lowest latency for user tasks among all methods, showing the
efficacy of our proposed approach. It achieves 69.3% lower
average latency than the best baseline method. The inclusion
of statistical annotations highlights significant differences
between ComputiFi and other methods, proving the value of
optimization in computational task offloading.
Further analysis reveals that the Local-Only approach

exhibits high latency with considerable variance, reflecting
the limitations of processing all tasks locally. The Local-First
approach slightly reduces this latency by offloading tasks
only when local processing violates latency requirements.
Comparing the singlepath and multipath strategies for both
AP-only and URLLC-local, we notice a slight reduction
in average latency with the singlepath approach while the
upper bound is still higher than the multipath approach. This
suggests that the multipath transmission reduces the latency,
but it is not always the case since a portion of the data flow
has to pass through the backhaul back to the destination AP,
incurring an extra delay. Furthermore, in this case, both the
URLLC-local and the AP-only approaches are the same due
to the lack of URLLC application users.
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FIGURE 3. Network quality metrics for the baseline algorithms and ComputiFi’s
optimized task offloading solved with the Expert for the Small scenario with eMBB,
Factory, and AI applications showing the need for our proposed optimization.

After evaluating the overall performance of different
baseline strategies and the proposed Expert solution in
reducing task latency, we perform a per-application analysis
by examining the QoS metric. Fig. 3(b) provides detailed
insights into the latency performance for three specific
application types: eMBB, Factory, and AI. A QoS value
of 1 or higher indicates that the latency requirements are
met, and the green line across the plot represents this
threshold. For all applications, the Expert optimizer consis-
tently achieves a QoS value above 1, meaning it meets the
latency requirements. In general, the latency requirements for
eMBB application are always satisfied even with the baseline
approaches due to its relatively lenient bound of 500 ms.
For the Factory application, most baselines fail to reach the
satisfaction level of 1. For the AI application, due to its large
task size, baseline approaches often struggle to meet latency
requirements consistently. The Expert optimizer reliably
maintains a QoS value above 1 for all application types.
In order to confirm these findings for a network with the

stricter URLLC application as well, we randomly generate
tasks for users only out of URLLC, Factory, and AI, and
the results are visualized in Fig. 4. The optimized solution,
once again, achieves the lowest latency as seen in Fig. 4(a),

FIGURE 4. Network quality metrics for the baseline algorithms and ComputiFi’s
optimized task offloading solved with the Expert for the Small scenario with URLLC,
Factory, and AI applications showing the efficacy of our proposed optimization for
various application scenarios.

with 65.8% lower average latency than the best baseline
(URLLC-local multipath).
Interestingly, multipath transmission provides significant

benefits for the URLLC-local method compared to the AP-
only approach. This advantage is better explained when
analyzing the latency QoS per application. The local
processing of the strictly constrained URLLC application
alleviates the congestion on the wireless links, allowing
multipath transmission to significantly benefit the URLLC-
local method. This also results in complete user satisfaction
in almost all cases.
A detailed analysis of these algorithms’ behavior under

the URLLC-focused scenario is provided in Fig. 5. The
destinations of task processing selected by the algorithms are
visualized in Fig. 5(a). The AI application, being the largest
task, is always offloaded except in the Local-only algorithm.
The optimized solution effectively utilizes all groups of MEC
servers to process AI tasks, significantly reducing latency.
Interestingly, the optimized solution offloads URLLC tasks
further away, illustrating that multipath LiFi-WiFi networks
can reliably deliver ultra-low latency. The Factory task is
entirely processed locally by the Expert algorithm, which
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FIGURE 5. A detailed look into the working of the baseline algorithms and optimized
task offloading solved with the Expert for the Small scenario with URLLC, Factory, and
AI applications.

might seem counter-intuitive due to the URLLC tasks being
offloaded. Theoretically, both URLLC and Factory tasks can
be offloaded and still meet the latency bound. However, the
objective of the optimization problem is not just to meet the
latency requirement but to minimize it as much as possible.
The URLLC task has a 1 ms requirement, which is already
low, so further minimization is not feasible. In contrast,
the Factory task’s 100 ms requirement allows for saving
several tens of milliseconds, reducing latency to 20-30 ms
and significantly lowering the network sum delay. Hence, our
framework processes Factory tasks locally to save significant
time and offloads some URLLC tasks to keep them close to
but below the 1 ms bound. Another factor leading to this is
the size of the data stream. The URLLC tasks consist of a
single 32 byte packet, which can be offloaded fast without
congesting the link. In contrast, Factory tasks consist of 20
packets of 1500 bytes each, making them slower to offload.
This, combined with a higher packet arrival rate, necessitates
processing Factory tasks locally for optimal performance.
The usage of multiple paths for offloading is evidenced by

the proportion of data flow shown in Fig. 5(b). The baseline
multipath algorithms always split the data equally between
available technologies. Due to the possibility of blockages

FIGURE 6. Percentage of the individual components of latency per application
using ComputiFi’s optimized task offloading solved with the Expert for the Small
scenario with URLLC, Factory, and AI applications.

FIGURE 7. Task completion latency achieved by all the meta-heuristic algorithms
under test in comparison with the optimal Expert solution for the Small scenario with
URLLC, Factory, and AI applications.

in LiFi, the proportion of data flow through it is not always
exactly 0.5. The optimized solution balances the use of both
LiFi and WiFi networks. The median transmission is higher
for LiFi due to its higher data rate, but the average is higher
for WiFi due to some samples with LiFi blockages and when
the offered rate through LiFi is low. This approach ensures
stability and consistently low latency by using multipath
offloading.
Fig. 6 presents an analysis of latency components, dis-

tinguishing between transmission and computation latencies
within a URLLC, Factory, and AI context. It highlights the
variability and distribution of these latencies. Transmission
latency for URLLC ranges from extremely low percentages
indicative of local processing with the median at 0%. The
highest value is 99.7%, which indicates efficient offloading
to more distant locations with higher computing capacity. In
the Factory application, which is processed entirely locally,
computation latency accounts for the entirety of the delay.
The AI application is almost entirely offloaded, which is
evident in the lower percentage of computing latency. The
figure shows that for real-time applications, both latency
components must be minimized to achieve an optimal
balance. This balance between minimizing transmission and
computation latency is precisely what ComputiFi is able to
provide.
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FIGURE 8. Quality metrics for various network architectures using the discrete and
continuous GA showing the superiority of the model with discrete variables.

While we have established the benefits of our optimized
approach to task offloading, this method is not practical for
real-time implementation due to its run-time, which is in the
order of a few minutes. Therefore, we explore the usage of
meta-heuristics and compare their performance to the optimal
solver-based results in Fig. 7. The discrete model of the GA
and the DE solutions perform exceedingly well and close to
optimal. However, on further examination, we confirmed that
there is a small yet statistically significant difference between
the GA and DE solvers in the QoS metric. As a result, we
adopt the GA as the most effective solution method and
visualize the results of significance tests, comparing it to all
other algorithms. This analysis indicates that the difference
between the optimal solver and the GA-based solution is
statistically insignificant.
Encouraged by the superior performance of the GA algo-

rithm, we examine its effectiveness across different network
architectures, confirming that the discrete model outperforms
the continuous one, as shown in Fig. 8(a). However, both
models consistently meet all user requirements across all
network architectures. Despite the discrete model’s superior
performance, the continuous model may still be preferable
in scenarios where faster solving times are needed, given
that it requires less computation time.

FIGURE 9. Quality metrics for increasing number of users using the discrete GA in
a Medium architecture.

To validate the scalability of the proposed GA under
increasing user count, we vary the number of users while
keeping the number of offloading destinations constant
within the Medium network architecture. The results are
presented in Fig. 9. When there are just 10 users, the URLLC
application is not assigned due to a random selection of
applications. For the URLLC and Factory applications, the
QoS remains fairly constant while increasing the number of
users as seen in Fig. 9(a). This indicates that the algorithm
efficiently manages the additional load without compromis-
ing the performance of these applications. Conversely, the
eMBB and AI applications exhibit a decreasing trend in QoS
as the number of users increases. This decline reflects the
growing strain on network resources; however, even with up
to 25 users, the system still fulfills all user requirements.
Further, upon examining the solve time in Fig. 9(b), we
observe a linearly increasing trend in the mean values. The
increasing time is due to the additional variables and con-
straints added, which makes the optimization problem larger,
and the fact that the framework now has to accommodate
more user demands with the same network infrastructure.
The linear trend suggests that the GA’s performance scales
well with the number of users, displaying its potential for
deployment in demanding network environments. However,

VOLUME 5, 2024 4457



VIJAYARAGHAVAN et al.: ComputiFi: LATENCY-OPTIMIZED TASK OFFLOADING

FIGURE 10. Latency QoS per application for varying the number of compute
destinations while keeping the number of users fixed at 15 using the discrete GA.

FIGURE 11. Latency QoS per application for varying the number of WiFi APs while
keeping the number of users fixed at 15 using the discrete GA.

it also implies that very large numbers of users could lead to
significantly larger solve times, necessitating more efficient
algorithms.
To validate the findings of ComputiFi with an increasing

number of computing destinations while fixing the number
of users, we perform this evaluation with the number of users
fixed to 15 and visualize the results in Fig. 10. The results
indicate that latency increases with the number of LiFi APs,
despite the number of users and tasks remaining constant.
This increase in latency can be attributed to several factors.
In order to be able to increase the number of computing
destinations while still reducing interference to allow a
fair comparison, we also increase the size of the indoor
environment. However, this also means that the distance
between the user and a WiFi AP increases, resulting in
higher transmission latency, especially when the LiFi signal
is blocked. Additionally, more APs increases the likelihood
of a user being in the interference region of LiFi APs.
Unlike the LiFi APs, there is no interference among the

WiFi APs, so we investigate the effect of increasing the
number of WiFi APs while keeping the number of users
fixed at 15 in Fig. 11. As expected, we see that the QoS
increases with increasing number of APs. This is because
there are more potential offloading destinations, reducing
latency. Additionally, frequency re-use prevents interference

FIGURE 12. The reward obtained during the training episodes of the DRL-based
PPO algorithm with discrete and continuous action space in the Small scenario with
eMBB, Factory, and AI applications.

FIGURE 13. Latency QoS for various network architectures using the DRL-based
algorithm with discrete and continuous actions.

and therefore does not affect the users in the overlapping
regions of the APs.
While we have shown that the meta-heuristic GA is scal-

able, its run time is still in the order of a few seconds, which
remains impractical for an optimization interval of 500 ms.
This motivates us to explore using a DRL-based approach to
address the task offloading problem more efficiently. First,
we investigate the convergence of the training process and
visualize the reward in Fig. 12 plotted versus the training
episodes. Our comparative analysis between the discrete and
continuous models within the DRL framework reveals that
the discrete model converges to a higher reward value.
After confirming the convergence of the trained model, we

apply the cross-validated model on the test set and investigate
the results for all network architectures in Fig. 13. Consistent
with the reward outcomes observed during training, the
discrete model outperforms the continuous one in terms of
QoS across all network configurations. This aligns with the
GA results and confirms the efficacy of the discrete model
in managing task offloading more effectively. We also see
that the DRL-based method consistently serves the user with
the required QoS.
We also validate that the DRL-based algorithm indeed

still performs better than the baselines in Fig. 14. The
DRL-based solution, as expected, achieves the lowest latency
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FIGURE 14. Latency for the URLLC, Factory, and AI applications comparing the
DRL-based algorithm with the baseline algorithms.

with 40.23% lower average latency than the best baseline
(URLLC-local multipath).
The time to solve for a DRL-based algorithm indicates the

time taken to predict a set of offloading decisions from the
time the inputs are provided. The results ranging between
7 ms and 12 ms for the Small-Large topology indicate the
feasibility of implementing this algorithm on real hardware.
The DRL approach not only makes timely decisions but
also ensures that these decisions comply with the QoS
requirements, demonstrating its suitability for mobile and
time-sensitive network environments.
To summarize all investigated optimization algorithms

in detail, we directly compare them in Fig. 15. This
comparison includes the evaluation of Blackbox algorithms,
which have not been discussed previously. These algorithms
are particularly important as they help assess whether it is
necessary to understand the properties of the problem or
function under test.
The QoS results in Fig. 15(a) clearly reveal that treating

the optimization problem/objective function as a blackbox
does not yield near-optimal results. Moreover, except for the
simplistic greedy algorithm, Blackbox approaches generally
require a significantly longer time to solve the problem.
This insight shows the value of using tailored algorithms,
like the GA or DRL-based methods, which not only meet
QoS requirements more effectively but also operate within
acceptable time constraints.
The top three algorithms in terms of network performance,

as seen in Fig. 15(a), are the MINLP solver-based Expert
solution, the meta-heuristic GA, and the DRL-based solu-
tions. For the applications of URLLC and Factory, these three
algorithms show remarkably similar performance levels.
However, the DRL solution shows a drop of 47.03% in QoS
for the AI application compared to the other two, though it
still manages to meet user requirements in all cases.
To gain insight into the workings of the different

approaches, we visualize the proportion of data transmitted
over LiFi (if offloaded), for the URLLC, Factory, and AI
applications in Fig. 15(b). The WiFi proportion is the inverse
of the LiFi proportion. An interesting observation is that the

FIGURE 15. Quality metrics for all proposed algorithms in the Small scenario with
URLLC, Factory, and AI applications.

Blackbox optimization techniques are very similar, which
reinforces the claim that treating the objective function
as a blackbox yields similar results, which are no better
than a greedy approach. The Expert offloads URLLC tasks
mostly through WiFi since the offloading destination selected
is mostly the WiFi AP if not processed locally. The AI
tasks, on the other hand, are offloaded further away to the
Router or Cloud due to their higher processing capacity and
utilize more of the LiFi link due to its higher data rate.
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The tasks of Factory application are processed completely
locally. Similarly, the DRL-based approach processes the
URLLC and Factory tasks locally, while the AI application
is offloaded across multiple types of destinations. However,
contrary to the Expert, it does offload a majority of the AI
tasks through WiFi and this is reflected in the Latency QoS
for the AI application.
While the top three algorithms in terms of network

performance have been identified previously, it is also
necessary to compare them in terms of the time taken to
solve the optimization problem. Fig. 15(c) visualizes this
solve time metric in seconds and the time comparison is
shown in the logarithmic scale due to the wide range of
times. The Expert stands out with its longest solve time,
making it infeasible for a practical implementation. A similar
conclusion can be made about the Extra Trees and Random
Forest. The meta-heuristic, as already shown in Fig. 8(b) and
Fig. 9(b), offers a solve time of a few seconds which is much
better but is still inefficient for a real-world implementation.
While the Greedy algorithm offers a lower solve time, its
network performance is poor, as already seen in Fig. 15(a).
The DRL solution turns out to be the most efficient in
terms of prediction time, which is significantly faster than
the other approaches. This is evidenced by the results of
the statistical tests annotated on the figure comparing the
DRL approach with all others. This speed makes the DRL
solution especially attractive as the best compromise between
network performance and solve time, making it an optimal
choice for real-time implementation on actual hardware.
The energy consumption of an algorithm is another aspect

to consider before deciding on the algorithm to implement.
We exclude the MINLP solver-based algorithm and the
blackbox optimization techniques from this comparison
since the solver-based solution is too complex for a larger
scenario and the blackbox techniques have poor network
performance. Comparing the GA and DRL solutions, the
GA takes 4.244 × 10−6 kWh on average for one run of the
optimization and the DRL 0.0674 kWh. The DRL has a one-
time overhead of the training and cross-validation, which
consumes most of the energy. If this can be implemented on
a more powerful, less energy-constrained machine, then the
model that is installed during the run time of the algorithm
(on the testing data) only consumes 3.989 × 10−7 kWh
of energy for one run of the optimization. The energy is
calculated using the Running Average Power Limit interface
on Intel processors and NVIDIA-smi for the GPU.

VII. CONCLUSION
This paper presented ComputiFi, a framework designed to
enhance task offloading efficiency in LiFi-WiFi networks,
tailored specifically for reducing latency in latency-
critical applications. Through a combination of advanced
optimization tools, a dynamic resource allocation strategy
across varied computational servers, and multipath trans-
missions, ComputiFi addressed the challenges posed by
heterogeneous network environments. Additionally, we also

presented a multihop latency model that is suitable for data
flows with multiple packets. The results demonstrate that
our approach not only reduces latency but also maintains
high QoS across various network architectures, confirming its
practical viability. Our proposed approach to task offloading
achieves 69.3% lower user average latency compared to the
best-performing baseline approach in a Small scenario with
eMBB, Factory, and AI applications and 65.8% lower user
average latency with URLLC, Factory, and AI applications.
The comprehensive evaluation of various optimization

algorithms for task offloading in multipath, multihop, LiFi-
WiFi networks highlights the strengths and limitations of
each approach. The GA and DRL-based solutions emerge
as top performers, with the DRL solution performing the
best in speed with prediction times in the order of a few
milliseconds, making it ideal for real-time applications while
still achieving 40.23% lower user average latency than
the best baseline approach with URLLC, Factory, and AI
applications. These findings emphasize the importance of
selecting the right optimization strategy based on specific
network and operational requirements.

VIII. FUTURE WORK
This paper establishes a strong foundation for optimizing task
offloading in multipath, multihop LiFi-WiFi networks, open-
ing several avenues for further research. Integrating more
sophisticated machine learning techniques, particularly adap-
tive learning models that evolve based on real-time network
data, could dynamically adjust to changes in user behavior,
network congestion, and other environmental factors. An
important area for future exploration involves incorporating
energy efficiency metrics into the optimization problem to
balance latency and energy consumption, which is particu-
larly beneficial for battery-dependent mobile devices and IoT
applications. Enhancing the framework to more effectively
manage bandwidth allocation can ensure optimal use of
available network resources, addressing both throughput
needs and congestion management. Additionally, conducting
studies on real-world implementations could provide insights
into the practical challenges and performance under actual
operating conditions.
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