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ABSTRACT Network automation has become crucial in supporting services in 6G networks. This mainly
derives from the complexity of the composition of numerous distributed virtual network functions (VNFs)
in creating highly flexible virtual network services. Therefore, a network service automation system is
a key technology enabler for 6G. However, the added complexity renders network service automation
systems particularly sensitive to faults, some of which cause network outages that harm the smooth
operation of basic societal services. Current state-of-the-art (SotA) solutions for fault detection can barely
detect hidden faults. Herein, we propose a mechanism for automated network service analysis (ANSA),
which constructs and analyzes a digital twin of a network service. The digital twin represents the available
information about the network service based on category theory. It uses the properties of category theory to
perform an analysis through which the faults of the network service are identified. We evaluate a prototype
of a network service automation system that incorporates ANSA to demonstrate 1) the benefits of using
digital twins for analyzing network services, 2) the benefits of using category theory for constructing
digital twins of the network services, and 3) the resulting improvements in fault detection. Overall, ANSA
can detect an average of 94% of the faults present in a network service. In comparison, previous SotA
solutions can detect only 30%–50% of all faults.

INDEX TERMS Network automation, fault detection, category theory.

I. INTRODUCTION

SOCIETAL improvements are tightly interlinked with
technological advances. To achieve these improvements,

new applications and services are required that rely on
complex and dynamic interactions between each other and
that are based on collaborative and distributed schemes. New
network services are required to realize these interactions.
These services include those promised by 6G and related
network technologies, which result in constantly increasing
management complexity, thus rendering network automation
essential.
Many initiatives have been proposed to provide key

technology enablers for 6G and network automation. A key
initiative is promoted by the European Telecommunications
Standards Institute’s zero-touch network service creation
and management industry specification group (ETSI ISG
ZSM) [1]. This initiative conceives that high-level network
automation can be realized on top of the widespread
network virtualization and softwarization paradigms [2], [3].

Of these, network function virtualization (NFV) [4] and
software-defined networking (SDN) [5] have been proposed.
Together, these support the creation of highly flexible
network services, including those that involve multiple sites
or domains, thereby achieving a high degree of resilience
and optimization.
Automating network services based on NFV and SDN

requires a network service automation system that imple-
ments ZSM specifications and ETSI’s NFV management
and orchestration (ETSI’s NFV-MANO) [6] framework
specifications. A reference implementation of ETSI’s NFV-
MANO is open-source MANO (OSM) [7]. It supports
managing network services based on approaches such as
NFV and SDN, which are instantiated on typical underlying
infrastructures based in OpenStack [8] and the OpenFlow
protocol [9]. To automate OSM operations, it has been
extended using the autonomic resource control architec-
ture (ARCA) [10]. ARCA uses artificial intelligence (AI)
and machine learning (ML) algorithms to analyze the state
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of a network service and determine whether some reactive
or preventive change is required.
Network outages represent major threats to the smooth

operation of basic societal services. Therefore, they must be
prevented when possible or promptly resolved when they
occur. Major network outages occur owing to hidden faults,
which cannot be detected by analyzing common metrics and
variables. Hidden faults differ from exposed faults, which
can be detected by analyzing common metrics and variables.
Avoiding major network outages requires detection of actual
and potential exposed and hidden faults. The effects of faults
are worse in network automation contexts because automated
systems consider only the events and actions included in their
code. Therefore, network service automation systems must
detect faults present in running or planned network services,
exploiting the large amount of monitoring information and
configuration information that they can obtain from network
services.
We examined fault detection mechanisms used in state-of-

the-art (SotA) network service automation systems as well
as general SotA solutions for fault detection [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25]. In general, we found that they do not particularly
consider hidden faults in their processes and do not represent
qualitative information in the system models they analyze.
We aim to resolve these shortcomings in the present study.
Network service automation systems must be enabled

using hidden fault detection, where a formal definition of
hidden faults would be highly beneficial for these systems.
We propose to address the aforementioned issues through
a newly developed mechanism called automated network
service analysis (ANSA). ANSA collects and analyzes all
available information about a network service to construct a
network digital twin (NDT) that represents the network ser-
vice. ANSA follows the constraints of category theory [26]
to build the NDT and utilizes category theory properties
to perform the analysis. This ensures that the computation
yields the desired results, i.e., ANSA can ensure that the
network service state is valid or that faults have been
detected. Application of category theory enables ANSA to
produce computation results that are verifiable via proofs.
With ANSA, SotA network service automation systems
can detect hidden faults, which represents a considerable
improvement over previous SotA network service automation
systems.
The major contributions of this study are as follows. First,

the formal definition of the NDT is provided using category
theory along with the definitions required for populating and
typing the NDT objects. Thus, the NDT we propose is an
evolutionary mathematical structure armed with constraints
and computational morphisms (i.e., functions) that ensure
its consistency. The NDT enhances the application of AI
methods by providing a consistent and formal structure
as well as constraints that can be studied and/or used in
simulations based on AI methods. Second, the study formally
defines a knowledge object (KO) as a set of knowledge

items. This set is used by 1) management solutions to
provide configuration information about network services,
2) monitoring sources to provide information about network
services, and 3) ANSA to build an external representation
of the NDT as a large KO.
Third, the study formulates new theorems for charac-

terizing and identifying hidden faults by analyzing the
configuration and state information of a network service
structured in a knowledge graph. The hidden fault raising
theorem relates exposed and hidden faults and relies on
the application of the Yoneda lemma [27], which is a
key aspect of category theory. The strong emergent typing
theorem allows for implicitly obtaining strong relations
between KOs and types, thereby avoiding the need to
explicitly declare the type of each KO. The fault qualification
theorem refers to the definitions of particular monitoring and
data collection strategies that maximize the probability of
fault detection. The fault polymorphism theorem states that
under the influence of faults, KOs expose multiple types
simultaneously. This theorem is used to find a set of elements
that must be particularly observed in compliance with the
fault qualification theorem because they would most likely
be related to a future fault.
Finally, the key contribution of this study is the exploita-

tion of the previous definitions and formulations for formally
defining the algorithm that ANSA uses for fault detection.
It tackles the huge space of network service states, which
cannot be fully investigated using SotA techniques for
fault detection, by selecting states with some type of fault
and extending them using the aforementioned theorems.
Therefore, ANSA can explore network service states not
considered by SotA solutions, particularly those related to
hidden faults.

In particular, ANSA resolves the aforementioned issues
as follows. On the one hand, the hidden fault raising and
fault qualification theorems provide two views to identify
hidden faults. On the other hand, application of the hidden
fault raising and strong emergent typing theorems enables
the identification of multiaspect faults. The benefits of these
theorems are delivered through the construction of a knowl-
edge graph governed by semantics and with it an NDT that
permits simultaneously analyzing qualitative and quantitative
data as well as conveying multiparameter simulations. In
addition, through semantic techniques combined with the
application of the aforementioned theorems, the generation
of simulation parameter values is guided so that parameter
values are maintained within plausible boundaries.
We implemented a proof-of-concept of ANSA within

a network service automation system and evaluated it to
demonstrate that ANSA can detect exposed and hidden faults
and show the cases in which it performs better than SotA
techniques in fault detection. We conducted our experiments
on a real deployment based on OpenStack [8] and Open-
Source MANO (OSM) [7]. Our results confirmed that the
fault detection ratio obtained by ANSA is considerably
higher than that obtained by previous SotA solutions. By
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comparing the number of knowledge items associated with
faults introduced in the experiment and the number identified
by ANSA and other SotA solutions, we found that ANSA
could detect an average of 94% of the faults present in a
network service, whereas previous SotA solutions detected
only 30%–50% of the faults.
The remainder of this paper is organized as follows.

In Section II, we present the background for this study,
introduce related studies, and formulate the target problem.
In Section III, we introduce our theorems and ANSA as
our solution to the target problem, while in Section IV, we
describe the network service automation system into which
we integrate ANSA for evaluation. In Section V, we discuss
our validation of ANSA through a real implementation
to obtain experimental results. Finally, in Section VI, we
provide our concluding remarks and present directions for
future research.

II. BACKGROUND
In this section, we describe studies related to our proposal
and prior knowledge we use to construct our solution.
Fig. 1 shows the environment and context of the present

study as well as the position of the ANSA component,
which is detailed in Section III. It depicts a typical network
service comprising several virtual network functions (VNFs)
interconnected through virtual links. The network service
is embedded in a multidomain underlying infrastructure,
which is constructed from physical or logical platforms
deployed on multiple sites interconnected through a virtual
private network (VPN). The platforms are usually man-
aged by virtual infrastructure managers (VIMs), such as
OpenStack and SDN controllers, which can provide a large
amount of monitoring data (i.e., telemetry) and configuration
information related to the overlying network services. This
information is essential for detecting exposed and hidden
faults.

A. RELATED STUDIES
1) FAULT DETECTION

We next discuss the most outstanding proposals for fault
detection identified in the literature.
The work in [11] examined the application of adversarial

inference, which relies on analyzing states stochastically
selected based on a particular random distribution and
evaluated by a sequential Monte Carlo algorithm. It has
relatively high potential for fault detection owing to its
stochastic nature. However, it does not consider qualitative
states and does not focus on arbitrary or hidden faults.
A similar stochastic sampling of posterior states of a

system (in this case applied to a robot), is discussed in [12].
It proposes to obtain the samples from a provided transition
kernel and transition probabilities; therefore, the evolution
of the simulation was somewhat guided. This proposal also
lacked support for qualitative aspects and arbitrary or hidden
faults.

FIGURE 1. Target context: network service embedded over a multidomain
infrastructure consisting of two separate sites.

Fault detection has been also studied in the context of
vehicular systems, whose network structure has similarities
to our target. Particularly, researchers in [13] propose to
use an adaptive importance-sampling method to evaluate the
probability of event occurrence. This allowed its algorithm to
project certain behaviors, a feature that is particularly useful
in case of vehicular systems, and incorporate learning using
imitation techniques.
There are many works that propose to use ML algorithms

to detect faults. A survey of ML algorithms used to detect
faults in wireless sensor networks is presented in [14].
Although the paper showed that several ML methods can
detect exposed faults, these methods function poorly in case
of hidden faults owing to the limited amount of learning
data regarding hidden faults available for building learning
models, which are essential for ML methods.
Aiming the improvement of the application of ML

methods to fault detection, researchers in [15] proposed to
transform the fault detection problem into a classification
problem using ML to learn the classes linked to faults
and later detect them in new data. Although the proposal
improves fault detection, it still has many drawbacks and
is comparable only with other ML-based solutions. On the
other hand, researchers in [28] targeted fault detection for the
Internet of Things (IoT), with particular focus on industrial
scenarios. Similar to the proposal in [15], this study proposed
using an algorithm based on neural networks to define the
problem as a classification problem. This solution still lacks
a suitable definition of faults for modeling neural networks.
Therefore, it is comparable only to other ML-based solutions
and has the same drawbacks.
From a different perspective, the work in [16] investigated

the application of trust evaluation for fault detection in
wireless sensor networks and built a trust-based formal
model to detect faults without requiring a simulation.
Although this method is suitable for detecting exposed faults,
it is unsuitable for use in detecting hidden faults because
the formal model defines the fault shape individually. This
is the case even though hidden faults cannot be defined by
themselves alone; otherwise, they would be exposed faults.
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In the same line, researchers in [17] proposed a distributed
method for fault detection in wireless sensor networks that
exploits the knowledge provided by node neighborhoods
to determine if a node is faulty. The extrapolation of
information from a certain point to identify the state of
another point is interesting. However, it is considerably
limited with respect to hidden fault detection. Nevertheless,
the processing and transmission overhead is substantially
reduced because the application of extrapolation, inference,
and in-place computation reduces the amount of data that
must be transmitted.
Researchers in [18] targeted 5G systems, which are

particularly based on virtualization, and proposed that virtual
elements can collaborate to construct a model of their
own network system. Although the solution tackles the
inability of underlying control and data elements to know the
particularities of the virtual system, its application to fault
detection is limited to the faults supported by the model.
Studying fault detection in wireless sensor networks at

the node level, the work in [19], proposed classifying
vertices and considering faulty vertices from the outset. This
approach has the benefit of incorporating the notion of faults
into the normal lifecycle of the network elements such that all
elements have some type of faulty state linked even though
it can be zero-fault. The approach is used to distribute jobs
among network vertices using vertices that are faulty but not
completely broken for the tasks they are able to perform, such
as fault detection. Although this technique is considerably
lightweight and has potential for detecting faults, it cannot
perform deep analysis on faults with all available information
when searching for more complex exposed and hidden faults.
Fault detection also has been approached by applying

ML together with time-series analysis. Researchers in [20]
proposed the application of long- and short-term time-series
analyses, which are suitable for finding outliers from systems
with marginal training. Although this mechanism is based
on ML, it can detect some faults that other methods cannot.
However, this method does not provide either the required
accuracy or reliability because the model it creates does not
have a sufficiently complete view of the target system, i.e.,
it focuses on single values and cannot tackle systems of
complex values and their relations.
The application of blockchain mechanisms to fault detec-

tion has also been studied. The work in [21] proposed to
manage data obtained from IoT scenarios in a blockchain,
which is used by random forest algorithms based on
particle swarm optimization to determine faults in a network.
The outstanding feature of this solution is the use of
blockchain to safely decouple the objects of study, namely,
the vertices of the IoT network, from the elements that
execute the somewhat power-hungry analytical methods (i.e.,
edge computing vertices). However, the algorithms used to
perform the analysis are unsuitable for detecting hidden
faults despite the fact that using particle swarm optimization
endows the algorithms with the ability to detect some faults
not detected by other algorithms based on neural networks.

In line with classification methods for fault detection,
researchers in [22] proposed using Kalman filters to define
fault patterns and build a classifier. Although the method is
extremely fast compared with other algorithms, its ability
to detect arbitrary and hidden faults is questionable because
it is completely bound to the patterns and cannot infer
beyond them (e.g., via simulation and/or regression), which
is required for detecting hidden faults.
The work in [23] targeted fault detection in wireless sensor

networks using a deep learning mechanism that analyzes the
variables associated with the soft state of nodes and using
a three-tier mechanism to detect hardware faults. Although
this method is outstanding in terms of its low rate of false
positives and low energy consumption, its construction binds
it to the detection of faults after they have already affected
the operations of the network. Moreover, the method does
not detect hidden faults and cannot be modified to do so
without a drastic change in its functions.
Some works studied fault detection through the application

of ML to events occurring outside a network that affect
the operation of a network [10], [24]. Although considering
external events is somewhat unique, its plain use of ML,
which does not focus on system modeling, makes those
works unsuitable for detecting complex or hidden faults.
Another recent trend is the application of in-band network

telemetry for network management tasks. Researchers in [25]
targeted fault detection using in-band network telemetry
to retrieve data and metadata and a generative adversarial
network to recover lost telemetry. Although in terms of its
accuracy, the use of in-band network telemetry is promising,
the proposal is focused on detecting faults in the form of
packet losses, thereby ignoring other faults, including hidden
faults.
Overall, many techniques have been proposed that target

wireless sensor networks because these networks are sen-
sitive to small faults. However, as summarized in Table 1,
these proposed techniques do not consider the existence
and detection of hidden faults. Moreover, nearly every
fault detection method in the related studies relies on the
quantification of system states as direct representations of
performance metrics and state parameters, and they lack
support for non-quantifiable items or item relations (e.g.,
links connected to switches or encryption algorithm types
supported by server software) to promote qualitative system
modeling.
Furthermore, because the actions they take during each

step of the analysis are selected randomly, fault paths will
arise that will not be analyzed. These can include paths
that are later taken and result in undetected system faults.
Only a few solutions have considered a type of guided state
exploration, although they also are deficient in other respects,
such as supporting arbitrary faults. Finally, the constraints
and cost functions handled by the aforementioned studies
are overly coupled with particular features of the systems
they analyze. A different set of definitions is required for
each type of what-if exploration, making these proposed
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TABLE 1. Summary of related studies.

techniques unfeasible for application to the detection of faults
in systems with many variables, such as network service
automation systems.

2) APPLIED DIGITAL TWINS

A digital twin is a digital representation of a system intended
to be highly synchronized for investigating the behavior of
the system in certain scenarios without altering the system
itself. It accomplishes this by applying different mechanisms,
such as running simulations to answer what-if questions.
Thus, an NDT is a digital representation of a network that
is used as a type of regression structure that can carry over
several parameters at a time (i.e., simulate what-if scenarios)
and provide a concise view of the analyzed network service.
Digital twins have been proposed in previous research for
fault detection [29]. Although the nature and final purpose
of these solutions are considerably different from ours,
their results set a baseline for the accuracy to be obtained
through a comparison of real measurements with simulated
predictions.
As shown in [30], NDTs are effectively used to improve

predictions of some network performance metrics, such as
traffic, by performing analysis using multiple data; hence,
a proper structure as with that of an NDT is essential. The
application of ML in predicting some valuates of NDTs has
been studied earlier [31]. We incorporate similar predictions
in our NDT, particularly in step 5 of our algorithm.
The work in [32] constructs a quality-of-transmission

model to represent a set of devices and their traffic, the
parameters for which are tuned for the model output to fit
the data. Although very simple, this method resembles the
construction of a digital twin and is a step forward from
the simple application of ML, which is partly affected by
the modeled system. However, this digital twin (i.e., quality

of transmission) cannot be applied to higher-order network
systems with multiple elements, parameters to study, etc.
The work in [33] proposed to build a digital twin for

assessing the proper operation of optical networks. Although
it does not target fault detection specifically, its abilities to
accurately model a network and forecast future states are
powerful for the implementation of fault detection. However,
because it lacks this implementation, it is unable to detect
hidden faults.

3) CATEGORY THEORY

A key aspect of our proposal is the application of category
theory to the construction of the NDT. Category theory
is a branch of mathematics that provides mechanisms
for describing, formulating, and formalizing mathematical
structures using particular objects and relations between
them [26], [34]. The fundamental concepts of category
theory enable the structures to be analyzed through these
relations without having to assess the objects.
By definition [34], a category C has the following

constituents:
• A collection Ob(C) of objects that are arbitrary elements
such as sets or semantic atoms.

• For every two objects c, d ∈ Ob(C), a set C(c, d) of
morphisms from c to d exists that are also defined as
f : c→ d, which are relations, maps, etc. from c to d.

• For every object c ∈ Ob(C), we have an identity
morphism on c defined as idc ∈ C(c, c).

• For every three objects c, d, e ∈ Ob(C) as well as
morphisms f ∈ C(c, d) and g ∈ C(d, e), we have the
morphism g ◦ f ∈ C(c, e), which is a composite of f
and g.

Furthermore, the aforementioned constituents must satisfy
the following conditions:
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• Unitality: Composing any morphism f : c→ d with the
identity on c from the left or the identity on d from the
right does nothing. Thus, f ◦ idc = f and idd ◦ f = f .

• Associativity: For every three morphisms f : a → b,
g : b→ c, and h : c→ d, we have that (h ◦ g) ◦ f =
h ◦ (g ◦ f ).

Another important concept of category theory is the
functor. A functor is a mapping between categories, wherein
objects are sent to objects and morphisms to morphisms.
Formally, considering categories C and D, the functor from
C to D is denoted as F : C → D and has the following
conditions:

• For every object c ∈ Ob(C), we have the object F(c) ∈
Ob(D).

• For every morphism f : c → d in C, we have the
morphism F(f ) : F(c)→ F(d) in D.

Similar to the aforementioned constituents, the functor
constituents must satisfy the following conditions:

• For every object c ∈ Ob(C), we have F(idc) = idF(c).
• For every three objects c, d, e ∈ Ob(C) as well as
morphisms f ∈ C(c, d) and g ∈ C(d, e), we have that
F(g ◦ f ) = F(g) ◦ F(f ) holds in D.

A concept of category theory that is particularly important
for our study is the monad. A monad on the category
C is an endofunctor, a functor from a category to itself,
and is defined as T : C → C. It is accompanied by two
natural transformations that are morphisms on the category
of functors that map one functor to another. The natural
transformations are as follows:

• First, we have η : 1C → T , where 1C is the identity
functor on C.

• Second, we have μ : T2 → T , where T2 is the functor
T ◦ T : C → C.

The following conditions must hold for a monad to be
correctly defined:

• First, it must hold that μ ◦ Tμ = μ ◦ μT , where Tμ

and μT are obtained using horizontal composition [26].
Here, both sides are T3 → T .

• Second, it must hold that μ◦Tη = μ◦ηT = 1T , where
1T is the identity T → T , and the other expressions are
also from T to T .

In summary, the simple but powerful concepts defined
by category theory allow reasoning on considerably more
complex concepts, as we discuss throughout this paper.
Recently, category theory has been applied to resolve
research problems in computer networks, particularly in
network management. For instance, researchers in [35]
investigated the application of category theory to support
the implementation of an intent-based networking solution.
In this study, we propose to apply category theory to the
formulation of theorems that give way to our algorithm and
later to our implementation. Thus, our proposal uses category
theory extensively in both defining and implementing our
theorems and algorithm.

4) TYPE AND INFORMATION THEORIES

To complement the concepts and conditions defined by
category theory toward improving fault detection, we apply
type theory [36] and information theory [37] in our study.
Through propositions, type theory supports the definitions

of rules and axioms that determine the types of objects.
Propositions are statements that can be tested on structures
and objects to determine whether they pertain to certain
types. The fact that an object is of a certain type is the proof
of these propositions. We use this property to determine that
objects associated with faults prove the existence of fault
types in semantic structures. This enables us to formulate
our theorems and algorithm.
Information theory mainly focuses on the quantification

of information contained in media or transmitted through a
channel. Entropy represents the major result derived from
information theory, which is information quantity measured
as the amount of uncertainty of an event.
Entropy is estimated by studying the probability that a

symbol is used among all symbols that form a language.
The entropy H in bits per symbol is given by

H = −
∑

i

pi log2 pi (1)

where pi represents the probability of occurrence of symbol
i. Here, the base two in log ensures the result is in bits.
In this study, we use this definition in our theorems to

study the amount of information contained in all knowledge
items and compare it to the amount of information in
knowledge items associated with faults.

5) SPECTRAL GRAPH THEORY

As discussed in [38], knowledge graphs are the best data
structures to use in representing NDTs and knowledge bases.
The knowledge graphs can be helpful in gaining insights
about the knowledge they represent. Spectral graph theory is
excellent for studying the properties of graphs [39]. It can be
used to analyze the structure of a knowledge graph, such as
NDTs produced by ANSA, as described later in detail. This
analysis relies on the normalized Laplacian graph spectrum
and computes its eigenvalues and the number of eigenvectors
linked to each. Although this method has a considerably
complex run time and relatively high computational burden,
it is convenient because the Laplacian matrix can be obtained
from individual graphs and thus does not require that all
possible pairs be evaluated as with graph editing methods.
Moreover, the method enables a comparison of graphs of
different sizes [40].

Researchers in [41] proposed the use of a neural network
to extract low-dimensional features from original data using
the eigen-decomposition technique, which preserves most
of the graph structure of the data as required in the
application of spectral graph theory [39]. Researchers in [42]
proposed using the same technique as that used in [41] while
considering global information; this approach increases the
number of detected faults. However, the construction of a
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neural network, as proposed in both alternatives, limits the
number of faults detected to only that of exposed faults.
In addition, as these techniques are ML-based techniques,
they considerably depend on the input data vectors togged
as faults to learn how faults behave.

B. PROBLEM STATEMENT
Considering the previous overview of related studies and
promising techniques, we next formulate the problem we
attempt to solve in this study as follows.
Given a set of state data from a network service, detect

basic faults and faults related to multiple network service
configurations and operational parameters. The detection
includes the present and predicted values of the operational
parameters, which originate from several what-if scenarios
obtained after investigating the most probable combinations
of parameters that change simultaneously.
Finally, the state data used as input comprises monitoring

information, configurations of network services and/or their
status, and the relations among them. The configuration
data typically take the form of a network service defini-
tion (NSD) provided to OSM. Moreover, the monitoring
information is provided by OpenStack and/or OSM. The
input data must be either quantitative or qualitative, where
the latter will be either quantifiable or non-quantifiable data
items.

C. RESEARCH CHALLENGES
Solving the aforementioned problem has many challenges.
The network service model must be constructed to consider
quantifiable and non-quantifiable data items and the relations
among them. The model and associated functions must
be able to assess changes in multiple parameters either
simultaneously or independently, where some parameters
change and others do not, when used by the network service.
In addition to randomly generated changes, the investigation
of network service changes must assess changes in network
service configurations, states, and knowledge relations.
A fault detection algorithm must have two key features.

First, it must be able to identify the information and/or
knowledge items from network services that are directly
linked to fault or quasi-fault states. Second, it must be
able to infer the information and/or knowledge items that
are indirectly linked to other information and/or knowledge
items that are directly linked to fault or quasi-fault states.
The network service element representation in relation to its
real network service element counterparts must have high
fidelity (i.e., high precision and low delay) and must not
contain incoherent information to avoid fault detection errors.
Moreover, it must be able to identify the relationships among
heterogeneous information and support complex information
items and complex relations. Finally, the solution must
be able to process a large amount of information in a
considerably short time.

III. AUTOMATED NETWORK SERVICE ANALYSIS
We have thus far introduced the problem we aim to solve
using ANSA and discussed related studies and our proposed
theorems as part of our solution. We next discuss these
theorems and how ANSA uses them for fault detection.
Moreover, we present and discuss our results and discuss its
key aspects and benefits.
We propose to solve the problem through ANSA, a

mechanism that uses the network service configuration and
state information to construct an NDT representing the
network service. The NDT enables the investigation of what-
if scenarios while considering relations among input data
items multiple parameters that change simultaneously, and
changes to some parameters linked to changes to other
parameters. We construct the NDT as a knowledge graph.
The vertices of the knowledge graph are network elements
(e.g., switches), components (e.g., interfaces), metrics (e.g.,
bandwidth), values (e.g., measurements), etc. The edges of
the knowledge graph are the predicates that relate the vertices
(e.g., the predicates shown in Table 8).

The information provided by the network service is
contained in an NSD that is then combined with monitoring
and state reports as well as external common vulnerabilities
and exposures (CVEs) reports. For its proper representation
in the NDT, it must first be structured based on an ontology
that applies knowledge and semantic methods for ensuring
coherence among input data items. The ontology contains
the definitions of data-item-type relations and supports
the guided selection of parameters that change and that
of their allowable values. We then apply category, type,
and information theories to add additional structure to
the information and knowledge retrieved from the network
service monitoring elements and later contained in the NDT.
Our aim is to exploit the properties of this information to
derive long-chained connections between all information and
knowledge items, thereby guiding the selection of parameters
to change. In addition, we propose to use these theories to
ensure coherence among input data items.
The results obtained with category, type, and information

theories are complemented using AI methods to analyze
the NDT and potential what-if scenarios. In particular, we
propose the use of ML and other regression methods to
project several historic measurements on time and apply the
NDT to the what-if scenarios, which are analyzed to obtain
conditional predictions. We also use polynomial fit (PolyFit)
and autoregressive integrated moving average (ARIMA) as
regression methods and multilayer perceptron (MLP) as an
ML method.
A major aspect of our solution is the identification of NDT

as a monad of the KO category. It allows formal definitions
of theorems to be used in a verifiable implementation.
This ensures that the results obtained with our NDT and
algorithm are predictable and verifiable and include what-
if computations. This means that identified faults will have
formal justifications and validated configurations either for
new network services or previous network services that have
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changed. These are associated with formal constructions that
represent strong evidence of their correctness and support
their deployment with confidence.
The results of ANSA can be exploited by service providers

to improve network services through their management
systems. ANSA reports contain information that can be used
to modify network service configurations. Particularly, the
reports indicate the identifiers used by management systems
to identify the elements affected by detected faults, such as
a network element (e.g., a link) or a metric (e.g., bandwidth
use), as shown in Fig. 2 and Table 8.

A. THEOREMS
Before formulating the algorithm proposed to solve the
problem defined earlier, we must first formulate the follow-
ing definitions and theorems. All equations are presented
using the common notation of category theory [26]. In brief,
stylized uppercase letters denote categories, other uppercase
letters denote objects from a category, lowercase letters
denote morphism names, and arrows denote morphisms. All
other symbols have their common mathematical meanings.
Definition 1: The NDT is based on a monad in the

category of KOs with some additional relations—constraints.
We begin in detail with the categories of knowledge items

C and KOs D. We first use the monad definition introduced
earlier to identify the state-like monad (T, η, μ) ∈ D, which
is a proto-NDT, as follows:

T : D→ D
η : 1D → T

μ : T2 → T (2)

For our purposes, we want the monad T to follow the same
behavior as that of the well-known state-like monad [26].
For this, we define the endofunctor T as follows:

T : a→ (s⇒ a′ × s′) (3)

where s and s′ represent states, the relation ⇒ represents
the state change, and the objects a and a′ represent
arbitrary objects associated with the states and state change,
respectively.
Obtaining an NDT in D requires considering additional

relations in the form of two slightly more complex mor-
phisms in D. On the one hand, these morphisms express
the property that the NDT is updated with additional
information; on the other hand, they express the property that
the NDT is stabilized after incorporating new information.
Thus, we formulate the stabilization morphism fsta, the
update morphism fupd, and the resulting NDT as follows:

fsta : s→ s′

fupd : a→ (s→ (a′, s′))
T fupd : T a→ T (s⇒ a′ × fsta s′)

N ≡ (T, η, μ)

NDT ≡ (N, fsta, fupd) (4)

Both morphisms fupd and fsta are meant to be particularized
and linked to functions when the NDT is implemented. In
particular, ANSA enhances the stabilization morphism by
formulating two separate properties wherein the hidden faults
are raised and that the objects are typed. Thus, the hidden
fault raising morphism fHFR, the typing morphism ftyp, and
the ANSA-NDT structure are formulated as follows:

fHFR : s→ s′

ftyp : s→ s′

fsta = ftyp ◦ fHFR
ANSA-NDT ≡ (N, ftyp ◦ fHFR, fupd) (5)

Notably, fupd, fsta, fHFR, and ftyp are mappings related to
the properties of category theory, but their implementation
involves inspecting the contents of objects to determine
the destination object for each source object. This is
totally compliant with category theory constraints. Thus, the
implementation of the NDT is guided by computability and
verifiability constraints, as provided by the monadic structure
of the NDT. It is obtained by delving within abstraction
layers until obtaining the final functional-style code with
highly verifiable correctness.
Furthermore, because the structure of T follows the so-

called state monad, the implementation of the NDT can
reuse that of the state monad such that issues can be
properly distinguished and the quality of produced code
can be improved. Therefore, implementation logic relies on
functions that handle data, such as implementing the logic
for applying the hidden fault raising theorem as straight
functions, and they avoid needing to manage the complexity
of container data structures and prevents the occurrence of
any side effects of complex functions.
Definition 2: An NDT is populated by mapping objects

and predicates from a knowledge graph.
Given that K is the collection of unprocessed and

uncategorized knowledge items, based on the tuples con-
taining subject, predicate, object—named triples in semantic
methods—as {si, pj, ok} ∈ K, we formulate the population
and predicate mapping to the category of knowledge items
C as follows.
Beginning with three objects x, y, p ∈ Ob(C) and associ-

ating x with the subject si, p with the predicate pj and y with
the object ok, we obtain the morphisms in C that correspond
to {si, pj, ok} ∈ K as:

fP : x→ y
fpprod : p→ x× y . (6)

Although fpprod does not need to be unique because it
relates the three elements x, y, p, we must check the relation
between x, y, and the resulting categorical product x × y.
Thus, we formulate:

fP : x→ y ∀{si, pk, oj} ∈ K,

∃(x→ y) ∈ Hom(C), ∃(p→ x× y) ∈ Hom(C),
(7)
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which verifies the following commutative diagram:

x y
fP

x x× y y

p

πleft πright

fpleft

fpprod

fpright

. (8)

We next formulate the additional property of fupd that
connects C with D through the functor F : C → D as follows:

fupd : a→ (s→ (a′, s′)), a, s, a′, s′ ∈ Ob(D)

⇐⇒
∃x ∈ Ob(C),F : x→ s′,F : x �→ s

. (9)

Verifying that an empty NDT is given by F s = ∅ when
no object in C is incorporated into the NDT is trivial. The
NDT is then populated by subsequent verification of as many
fupd as needed. Therefore, we can state, for instance, that
sD = (f 3

upd f 2
upd f 1

upd F sC) has some population regardless
of the initial s.
Definition 3: Items forming an NDT are typed, and the

typing follows the monad and category theory constraints.
Given the category of knowledge items C, which is the

basis for formulating the category of KOs D, we formulate
the category of KO types T as a subcategory of C, a functor
that maps objects from C to T , and the equations that ensure
their consistency as follows.
We begin with a type s ∈ T , which is the typing functor

that associates the type with an object. This is formulated as:

FCT : C → T
FCT : (x→ y) → (sx→ sy)

FCT : idx → ids
: (x→ x) → (sx→ sx)

FCT : x→ s (10)

This means that an object exists in C and T , which is
known as the typing predicate pT ∈ Ob(T ). This typing
predicate is related to s ∈ Ob(C) such that it meets the
following relations:

fpprod : pT → x× s
fpprod : pT → x× (FCT x)

. (11)

Our NDT formulation requires a means of identifying the
object type. Because our NDT is based on a knowledge
graph, we must formulate an approach to specify and identify
the predicates that must be linked to an object for it to be
a certain type s. Thus, we formulate the morphism hp and
its implication on fp as follows:

hp : s→ p
hpk : si→ pk
∀k ∈ {1 . . . n}

fpprod : pk → si × sj
fpk : si→ sj

. (12)

The last morphism relates a type object Si to another type
object Sj. This indicates that even a type has a type. The
top-level type would be known as the one that references
itself.
Ensuring the consistency of types requires applying the

reasoning from our categories to the trivial Boolean category
B, the objects of which are false and true and which
have only identity morphisms. Additionally, typing requires
two types of morphisms: one to indicate that all predicates of
a set must hold and another to indicate that some predicates
of a set must hold. We call them hp ∀ and hp∃, respectively.
For simplicity, we consider that b ∈ Ob(C) ∀b ∈ B. Thus,
given x, p, y, b ∈ Ob(C) and b ∈ B, we have:

hp ∀:s→ (x× p× y⇒ b)

hP∃:s→ (x× p× y⇒ b) (13)

∃(x→ s, pT → x× s)
⇐⇒

∃(pk → x× y) ∈ Hom(C)

∀(s→ pk) ∈ Hom(T )

∧
hp∀j s (x× p× y) = true

∀(x→ y) ∈ Hom(C)

(p→ x× y) ∈ Hom(C)

∀(hp∀j : s→ (x× p× y⇒ b)) ∈ Hom(T )

∧
∃hp∃j s (x× p× y) = true

| (x→ y) ∈ Hom(C)

(p→ x× y) ∈ Hom(C)

| (hp∃j : s→ (x× p× y⇒ b)) ∈ Hom(T ) (14)

∀pk ∈ Ob(C)

∃(pk → (FCT x) × (FCT y)) ∈ Hom(C)

=⇒
∃(pk → x× y) ∈ Hom(C) (15)

∀x, y ∈ Ob(C)

∃(pk → (FCT x) × (FCT y)) ∈ Hom(C)

=⇒
∃(fpk : FCT x→ FCT y) ∈ Hom(C) (16)

∀x, y ∈ Ob(C),

∃(pk → x× y) ∈ Hom(C)

=⇒
∃(fpk : x→ y) ∈ Hom(C)

. (17)

A major contribution of this study is the elaboration of
structures required to detect hidden faults. It is based on
the existence of at least one semantic path that connects the
knowledge items that evidence a hidden fault and those that
evidence one or more exposed faults. This theorem makes
ANSA particularly beneficial for network service providers
in preventing potential faults by knowing the indirect impact
that their decisions can have on their network services.
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For instance, in terms of intent-based networking, which is
an additional scenario for the application of ANSA, this
theorem informs network service tenants that their intentions
produce an invisible faulty state (i.e., a hidden fault). We
will investigate this in future research.
The theorem is formulated as follows.
Theorem 1 (Hidden Fault Raising): Hidden faults can be

raised because an isomorphism exists between an object
collection taken from the presumably bigger collection of
objects linked to exposed faults of a network service as well
as the collection of objects linked to hidden faults.
Proof: A KO Ki is a collection of knowledge items that are

semantically structured according to a particular ontology.
Many equivalent methods exist for representing items. We
represent each item as a triple, which is the common name in
semantic methods for a tuple whose components are subject,
predicate, and object (i.e., {s, p, o} ∈ Ki).

The category C is derived from K. Subjects, predicates,
and objects in K provide objects in C; triples in K also
yield morphisms in C. Hence, if a triple {s, _, _} exists in
K, an object xs exists in Ob(C) corresponding to s; if a
triple {_, p, _} exists in K, an object xp exists in Ob(C)

corresponding to p; if a triple {_, _, o} exists in K, an object
xo exists in Ob(C) corresponding to o; and, finally, if a
triple {s, p, o} exists in K, a morphism fp : xs → xo exists
in Hom(C) corresponding to the relation existing between
s and o, which is defined as being through p. Although xp
would be compounded to either the source or destination
of the morphism fp, we chose to represent this as defining
different morphisms fp for each p.
KOs Ki ⊂ K have a triple {s, id, s} ∈ Ki, where id

is the identity predicate that relates Ki to itself using s
as a self-reference. These triples are translated to identity
morphisms in C. The mapping of K → C considers that
identity triples exist for every object inK without incurring in
any information degradation. Therefore, all objects in C have
an identity morphism. This verifies the identity property and
unitality condition introduced earlier, which are necessary
for properly defining category C.
Semantic relations in K are transitive. A semantic tran-

sition between {s, p, o}, {s′, p′, o′}, and {s′′, p′′, o′′} exists if
s′ = o and s′′ = o′. Therefore, the mapping from predicates
to morphisms results in f : s → s′ ∈ C, g : s′ → s′′ ∈ C,
and h : s′′ → o′′ ∈ C. These morphisms can be composed;
therefore, it holds that h ◦ g ◦ f : s→ o′′. The composition
is associative; therefore (h ◦ g) ◦ f : h ◦ (g ◦ f ). Associativity
means that in K, the order in which predicates are followed
in a path is irrelevant to the resulting trace. This holds by
definition of the predicate and trace in K and verifies the
composition property and associativity condition introduced
earlier, which are also necessary for defining category C.

With the properties defined earlier, the derivation of cat-
egory C from K is straightforward and consistent. However,
the properties that ensure this consistency must be checked
by the applications that use the concepts of this theorem

and proof while they construct these structures. We next
elaborate this base to find faults.
The set z ∈ Ob(Set) is an object of the category Set whose

elements (∀zi ∈ z) are linked to some fault, where we use
lowercase for z to mark it is an object of the category Set and
as not just a set. Elements not linked to any fault are ∀wj ∈ ∅
considering ∅ ∈ Ob(Set). This indicates that some ∅ → wj
exists, which is absurd. Therefore, no element can be linked
to any fault in z.
The functor F : C → Set maps; on the one hand, each

object x ∈ Ob(C) to (F x) ⊂ z if x is linked to a
fault. Otherwise, it collapses the element to the empty set
F x = ∅. We assume that ∅ ∈ z. Thus, we have F : x →
F x ∀x ∈ Ob(C). On the other hand, the functor F maps
each morphism f : x → y ∈ Hom(C) to F f : F x →
F y ∈ Hom(Set), which obviously can be F f : F x→ ∅ or
F f : ∅ → F y.
The functor C(a,−) maps each element x ∈ Ob(C) to

the set of morphisms C(a, x), which represent the set of
bound predicates {aK, _, xK} ∈ K. If no morphism a → y
exists, meaning no predicate in K links aK to yK, the functor
C(a,−) maps y to the empty set ∅.

A natural transformation α ∈ Nat(−,−) maps the functor
C(a,−) to F. The component of α at x, namely, αx, maps
the set of morphisms C(a, x) = {(a→ x) ∀x ∈ Ob(C)} to
the set F x or ∅. Thus, we have:

α ∈ Nat(C(a,−),F)

α : C(a,−)→ F
αx = α x
αx : C(a, x) → F x
αx : Set→ Set

. (18)

From Yoneda’s lemma [26], [27], we know that if we find
an element v ∈ F x, αx : C(a, x) → F x exists. To show
how it holds, we solve the following problem:

Given:v ∈ F x

Get:αx ∈ Nat(C(a,−),F) (19)

The solution is obtained as follows:

∃v ∈ F x =⇒ ∃x ∈ Ob(C) | x→ F x
C(a,−) : x→ C(a, x)

∃x ∈ Ob(C) =⇒ ∃C(a, x)
∃C(a, x), ∃F x =⇒ ∃αx : C(a, x) → F x

αX : C(a, x) → F x
f ∈ C(a, x)
f : a→ x

αx f = v

. (20)
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The solution is easily proven as valid by checking that
the following diagram commutes:

C(a, a) C(a, x)

F a F x

αa

C(a,f )

αx

F f

a x
f

. (21)

From this we know that αx f = F f αa ida holds and that
the natural transformation α is completely determined by αa,
which is a key consideration in proving Yoneda’s lemma.
We show in the following that the twin of the problem is
also formulated and solved in this manner.
Consequently, if we find v ∈ F x, we obtain αx, which,

by definition, relates a and x and which is αx : C(a, x) →
F x. We notice that F y = ∅ ⇐⇒ �v ∈ F y, and thus
�αy ∈ Nat(C(a,−),F).

Given the definition of the functor F, the set F x exists if
(and only if) a fault exists in the element that originates x
through K and C. Therefore, a→ x ∈ Hom(C) =⇒ F a �=
∅. Therefore, clearly, a is also linked to a fault. This is
verified by replacing x by a in the aforementioned problem,
which provides the solution αa : C(a, a) → F a We then
observe that f = ida.
Once a is linked to a fault (F a ⊂ z), we know that

any other object mapped from a is linked to a fault. Thus,
F y ⊂ z ∀y | a→ y ∈ Hom(C). This is verified by solving
the following problem:

Given:αa ∈ Nat(C(a,−),F)

Get:y ∈ F y (22)

A solution is obtained as follows:

αa : C(a, a) → F a
f : a→ y

F f : F a→ F y
F f αa : C(a, a) → F y

F f αa ida = y ∈ F y
y = F f αa

. (23)

The solution is easily proven as valid by checking that
the following diagram commutes:

C(a, a) C(a, y)

F a F y

αa

C(a,f )

αy

F f

a y
f

. (24)

In summary, for a given a triple {s, p, o} ∈ K, we have that
the subject is an element a ∈ Ob(C), the object is another
element x ∈ Ob(C), and their relation through the predicate

TABLE 2. K-C relations.

forms their mapping, namely, (a→ x) ∈ Hom(C). We know
that if (F x) ⊂ z, all other objects to which a is connected
are also in z; that is:

(F x) ⊂ z =⇒ (F y) ⊂ z
∀y ∈ Ob(C), y �= x, (a→ y) ∈ Hom(C)

. (25)

Therefore, hidden faults exist in all other objects to which
a is connected. On the other hand, if we find some αz ∈
Nat(C(a,−),F), we will also find an object a′ ∈ F a that
allows us to follow the procedures described earlier to find
new elements of z by hidden fault raising.

A critical aspect that supports the stability of our NDT is
the recognition that, although typing is strong, an object type
emerges from the object context. This yields the following
theorem.
Theorem 2 (Strong Emergent Typing): KO types are

dynamic but unequivocal.
Proof: From the previous theorems, we recall that a

KO K is a collection of knowledge atoms (subset) from a
knowledge base K, and thus K ⊂ K. We also recall that a
knowledge atom is an element of knowledge defined in the
knowledge base K as a triple: {subject, predicate, object} ∈
K, or simply {s, p, o}.

Every KO is initially untyped. Its type is determined by the
atoms constituting it. To assign types to KOs consistently, we
define the category C. Every knowledge atom is translated to
C by defining objects for the ends s and o and a morphism
for the predicate p. Thus, we have the relations listed in
Table 2.

As the s component of an atom fully identifies the KO to
which the atom pertains, only a single s will be contained
in each KO. The o component is an independent element or
one that corresponds to the s component of another atom. If
an element x is independent, it can reside in the right half
of some morphisms but cannot be in the left half of other
morphisms. Thus, (a→ x) ∈ Hom(C), (x→ _) /∈ Hom(C),
or equivalently C(x,−) = ∅.
Second, we define the category T that has an object for

each type that can be assigned to a KO and thus identified
in K. We then use T to assign types to the objects from C.
The type assignation is defined by the functor G as follows:

G : C → T
G : ∅ → v

G : x→ wP+C (26)

We define v ∈ Ob(T ) as the void type and wP×C ∈ Ob(T )

as a type of x ∈ Ob(D). Types are can be network elements,
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machines, etc. The type is determined by the predicates and
conditions defined in {P+ C}. Thus, we have:

∀ x ∈ Ob(C),

(x→ wP+C) ⇐⇒ (fp : x→ y) ∈ Hom(C) ∀p ∈ P

∧ (fc y) = true ∀c ∈ C

. (27)

This results in a bidirectional typing system. A type will
be associated with an object if its definition in K has some
particular predicates and the objects to which it is connected
accomplish a particular condition. In addition, a type will
exist if a set of predicates and conditions is fulfilled by an
object.
Any change to the predicates or objects linked to a subject

will result in a change in the type of KO identified with
that subject. Thus, the type emerges from the knowledge
items associated with an object and not vice versa. However,
as shown in the categorical definition, which refers only to
straight or collapsing functors, each KO has an unequivocal
path from K to T (i.e., K ⊃ K → C → T ). Therefore, as
stated by the strong emergent typing theorem, the type of
each KO has a strong type that emerges unequivocally from
its knowledge items.
One of the major findings of this study is the relation

between the quantity of monitoring data obtained and
processed for each type and the ability to identify faults.
This led to the following theorem.
Theorem 3 (Fault Qualification): Knowledge elements

provided to a fault-detection NDT must equally target system
faults and normal system operations.
Proof: From the definition of category C, we identify two

meta-elements, X = Ob(C) and Y = Hom(C), where the
latter is a meta-morphism that takes the form Y : Ob(C)→
Ob(C). Therefore, it is Y : X → X , and thus Y = idX .

We then translate X and Y to symbols in alphabet A.
Therefore, we have AX ∈ A and AY ∈ A. This enables
us to compose messages in the form AXAYAYAXAX . . . ,
which is homomorphic to the underlying semantic relations
in K (as defined in the context of the hidden fault raising
theorem). The result preserves in A the multiplicity of both
objects and morphisms present in C.
Studying the structure of A, we find some qualities that

C must have to characterize the detection of hidden faults.
First, we recall the definition of entropy from information
theory as follows:

H = −
∑

i

pi log2 pi (28)

This allows us to study different scenarios, each with a
particular probability pi for each symbol z = P(AX ) and
(1− z) = P(AY ). As each morphism involves two objects,
namely, P(AX ) ≥ P(AY ), we only study the cases that keep
this relation. Thus, we obtain the entropies listed in Table 3.
The results in this table reveal that the greater the

difference between the number of morphisms and objects
in C, the less information is obtained from new knowledge
added to K. Thus, the construction of C must be tuned to

TABLE 3. Fault entropies.

TABLE 4. Symbol map.

include as many predicates from K as possible, which is
congruent with the fact that the relations between category
objects (i.e., morphisms) are critical in qualifying the
properties of any object collection, which is one of the
essentials of category theory [26].
Extending these results to differentiate between faults and

normal operations provides greater insight into the working
space for fault detection. Thus, we proceed to define a new
category D, which has two objects, z and ∅, and an identity
morphism associated with each object, namely, idz and id∅,
respectively.
We also define the functor G : C → D, which maps

each object x ∈ Ob(C) to z if the object is related to a
fault; otherwise, it maps it to ∅; and it maps each morphism
(f : x → y) ∈ Hom(C) to idz if it is related to a fault;
otherwise, it maps it to id∅.
The object z ∈ Ob(D) is the categorical conception of the

set with the same name defined for the hidden fault raising
theorem. Thus, the functor G has some commonalities with
the functor F of this theorem. Although G collapses all
elements from C into z, allowing z to be a set, we obtain
z ∼= F x ∀x ∈ Ob(C).

Although we use set semantics to define the functor F, we
use category semantics to define the functor G. Thus, the set
F x exists only if x is a fault, and is absent otherwise. The
absence is represented by ∅, the empty set. In addition, G
maps both faults and normal operations to objects z ∈ Ob(D)

and ∅ ∈ Ob(D), respectively. For consistence, we use ∅ as
the object to which normally operating objects are mapped.
To study the implications of the structure of D in fault

detection, we map each of its elements to a symbol of the
alphabet A to derive the map shown in Table 4:
We obtain Table 5 by studying the new structure of A

for different scenarios and using the same procedure we
previously used to ensure that more symbols are associated
with objects than with morphisms
For the new A, this table confirms that maximizing the use

of predicates still produces higher entropy. It also confirms
that, although a priori, a trend of adding elements that could
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TABLE 5. Symbol probabilities.

raise faults naturally will reduce the information and thus
the quality of the system.
From these results emerges the first major conclusion of

the fault quantification theorem, which states that knowledge
elements provided to a fault-detection NDT through K must
equally target system faults and normal system operations.
A direct result from this conclusion is that the actual

information provided by a system that appears to have no
fault is initially lower and it is increased by adding new
elements that include some faults (while carefully avoiding
any type of replacement) so that the final elements in AZ ,
AY , AV , and AW are as balanced as possible.
As the precursor of D and later A, the specification of G

should also be tuned to enlarge its focus on faults.
Both the NDT typing and strong emergent typing both

support and conform to the links between objects and their
types. This means that fault-related objects will have many
types simultaneously. This yields the following theorem.
Theorem 4 (Fault Polymorphism): Each element of a

system becomes inherently polymorphic when it is involved
in or exposed to a fault, where it can play the roles of a
normally operating element and a fault-related element.
Proof: Common to hidden fault raising and fault qualifi-

cation theorems, we first define the knowledge structure K.
However, we also consider the precursors of K, which are the
actual physical or logical elements and their relations, which
we call P. Thus, the structure K has the knowledge available
regarding the elements, qualities, relations, and states from P.
We next translate the structures P and K to their category

counterparts. Therefore, we have P and C.
The category P collects the physical and virtual elements

of a system as well as their relations, which are closely
connected (e.g., machine A is located in laboratory B, or
virtual machine V is hosted by physical machine W) or
remotely connected (e.g., a link exists between machines A
and C).
For example, the morphism fP : aP → bP represents that

the machine aP is located in laboratory bP . Similarly, the
morphism gP : aP → CP represents that the machine aP
has a network link with the machine CP .

The category C collects the knowledge structures that
describe the physical or virtual elements collected in P as
well as their states and relations.
The functor FPC : P → C maps physical or virtual objects

and their relations to their counterparts in the knowledge
structure. Applying it to the previous example, we have:

FPC : aP → aC
FPC : bP → bC
FPC : cP → cC
FPC : fP → fC
FPC : gP → gC (29)

such that:

fC : aC → bC
gC : aC → cC

. (30)

To further improve the formalization of the system, we
use the definitions of the strong emergent typing theorem to
define the category T that represents the object types from
C. The category T has its own morphisms, which have no
direct counterpart in C. These are used to define relations
among types, such as inheritance and composition.
The functor FCT : C → T maps each object with its

type (typing). Some morphisms from C are mapped to
morphisms between types, particularly those representing
compositions in C, which are meaningful in the category of
types. The remaining morphisms are mapped to the object
that represents the “morphism” type.
Considering the previous example, we define aT and bT

as the objects representing the host and room types, respec-
tively, and fT , gT , and hT as the morphisms representing
their composition type, network link type, and sub-typing,
respectively. With them, we have:

FCT : aC → aT
FCT : bC → bT
FCT : cC → aT
FCT : fC → fT
FCT : gC → gT

. (31)

Adding the objects wT and oT to represent the type and
object types, respectively. Moreover, adding the morphism
jT : T → T that maps the type of inner objects (i.e.,
jT : x→ y indicates that the type x is of type y) similar to
the functor FCT , we have:

fT : aT → bT
gT : aT → aT
hT : aT → oT
hT : bT → oT
jT : oT → wT

. (32)

This forms the foundation of strong typing for the
categories used in fault detection. The morphism aT → bT
indicates that a machine somehow contains the room in
which it is located. The morphism gT : aT → aT indicates
that a link connects two machines (aT ). The morphisms
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aT → oT and bT → oT indicate that both aT and bT are
subtypes of oT . Finally, the morphism oT → wT indicates
that oT (object) is a type.
At this point, we propose to extend T with the object

zT that represents a failed element and the object ∅T that
indicates an element is operating normally. We also define
the new functor GCT : C → T , which maps objects from C
to zT if they are linked to some fault or, otherwise, to ∅T .
The result of this definition is that every object of C

is potentially polymorphic, with the capability of being of
different types simultaneously. The discrimination will be
the functor used to “watch” the object and find its type. If
an object of type aT is considered to be linked to a fault,
it will also be of type zT . This is a major result from the
fault polymorphism theorem.
Once it is established that elements linked to faults

are inherently polymorphic, we can choose any pair of
elements xC ∈ Ob(C) and yC ∈ Ob(C) of type zT ∈
Ob(T ) (hence, GCT xC = zT and GCT yC = zT ) and
trace them back to category P , identifying xP ∈ Ob(P)

and yP ∈ Ob(P). We can then study them to determine
their common features. This is because, based on the fault
polymorphism theorem, they are interchangeable in some
contexts.
Controllers that refrain from sending some information

will be provided with the relations found in C and T for a
pair of objects xP ∈ Ob(P) and yP ∈ Ob(P). This enables
the controllers to provide the additional knowledge necessary
by the fault detection system to identify the aforementioned
commonalities.
Thus, the polymorphic nature of faults justifies the need

for adding new operations to controller interfaces to enable
management solutions to retrieve additional information from
particular elements under specific circumstances. The fault
polymorphism theorem enables system controllers to ensure
that data remain undisclosed unless a management solution
provides evidence demonstrating that the elements about
which it is requesting information are related to each other
and to a fault. This condition minimizes the amount of
data that is shared, reducing resource usage and potential
leakage of metadata that could put the managed system at
risk.

B. ALGORITHM
Using the definitions and theorems previously discussed, we
define ANSA algorithm processes as shown in Algorithm 1
and Algorithm 2. Overall, Em_ACTIVE retrieves configura-
tion and monitoring information from the managed systems,
Em_PASSIVE receives requests for KOs and provides them,
Am_ACTIVE informs the monitoring processes of the metrics
to measure, and Am_PASSIVE constructs the NDT, analyzes
it, and sends reports. Table 7 shows the relationships between
the theorems and these algorithms.
The theorems reveal the processes executed by Em,

which is a monitoring element of the network service
that the NDT represents—e.g., SDN controller, VIM. The

Algorithm 1 ANSA Em processes—See Symbols in Table 6
1: loop: Em_ACTIVE

2: Kt ← INIT_KNOWLEDGE_OBJECT

3: for all Sk ∈ S do
4: Kt ← Kt ∪ GET_CONF(Sk)
5: Kt ← Kt ∪ GET_MON_DATA(Sk)
6: end for
7: Send Kt to Am
8: end loop:
9:

10: loop: Em_PASSIVE

11: Em receives Dj from Am
12: Kt ← INIT_KNOWLEDGE_OBJECT

13: for all Dconf
j ∈ Dj do

14: Kt ← Kt ∪ GET_CONF(Dconf
j )

15: end for
16: for all Dmon

j ∈ Dj do
17: Kt ← Kt ∪ GET_MON_DATA(Dmon

j )

18: end for
19: Send Kt to Am
20: end loop:

TABLE 6. Algorithm symbols.

algorithms reveal the processes executed by Am, which is
the management component that instantiates ANSA.
Thus, ANSA is formed by four processes: Em active, Em

passive, Am active, and Am passive. On the one hand, the
active process of Em continuously runs a loop that initializes
a KO, obtains the configuration and monitoring data of each
element Sk of the network service it monitors S, links the
KOs to the initialized KO, and sends the resulting KO to
Am. The passive process of Em waits for requests of KOs.
When it receives a description Dj of a KO to provide, a
new KO is initialized. Then, for each element of S indicated
by Dj, its configuration and/or monitoring data are obtained
and joined to the KO. Finally, the KO is sent to Am.
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Algorithm 2 ANSA Am Processes—See Symbols in Table 6
1: loop: Am_ACTIVE

2: L← N ◦ fply
3: for all Dj ∈ L do
4: Em← GET_MON_ELE(Dj)
5: Send Dj to Em
6: end for
7: end loop:
8:

9: loop: Am_PASSIVE

10: Am receives Kt from Em
11: N ← N ◦ fupd(Kt) ◦ fsta
12: GET_WHAT_IF(N, (PolyFit|ARIMA|MLP))

13: N ← N ◦ fHFR
14: N ← N ◦ ftyp
15: GF ← SELECT_FAULT_TYPED_OBJS(N)

16: REPORT_FAULTS(GF)

17: end loop:

TABLE 7. Theorem and algorithm map.

On the other hand, the active process of Am continuously
applies Theorem 4 (fault polymorphism) to derive a list
of descriptions of the minimum number of KOs that must
be requested to update the NDT. For each description, its
corresponding element Em is obtained and the request Dj is
sent to it. The response is then processed by Am.
The passive process of Am waits for a KO to be received,

which is used to update the NDT and is stabilized following
the incorporation of new knowledge. The updated NDT is
then analyzed to obtain what-if scenarios via the projection
method, which incorporates additional knowledge into the
NDT; an update and stabilization procedure is inherently
conducted. As mentioned earlier, the projection methods are
PolyFit, ARIMA, and MLP, all of which have been tuned
for the particular objects of projection, such as time-series.
Then, a function that applies Theorem 1 (hidden fault raising)
is used to identify all hidden faults in the NDT, and a
function that applies Definition 3 and Theorem 2 (strong
emergent typing) is used to assign the types to all objects.
This allows the next function to select the objects considered
fault-related and generate and send a report with the faults
to other management system components.
A key invariant of all ANSA processes is that the NDT

follows the monad laws and Definitions 1 and 2, which
ensures the validity of results. The execution of the ANSA
processes and the final report issued are essentially the proofs
that verify the fault definition. This is a major result in our
solution with the application of category theory. Moreover,

FIGURE 2. Knowledge graph contained by the NDT of the network service shown in
Figs. 1 and 4. The vertices show element identifiers and the edges show the
predicates that connect elements, as listed in Table 8.

by minimizing the KOs requested, ANSA minimizes the
traffic in the control plane and the information disclosed by
Em, which is critical for remote sites.
Notably, because the ANSA algorithm is consistent with

Theorem 3 (fault qualification), the stability of the results
it obtains is uncoupled from the measurement procedure.
In particular, it supports the methods used for retrieving
information and knowledge while focusing on all types and
not just faults. By contrast, when monitoring processes that
target only data linked to faults will significantly reduce the
quality of the information. This is supported by AI methods
that are related to the results of this theorem.

C. PICTURE OF AN NDT
Next, we discuss how the proposed NDT operates. The NDT
functions as a knowledge graph that evolves as a categorical
object according to the monad laws and other constraints
from Definitions 1, 2, and 3. We can query a state of the
NDT to obtain a knowledge graph or, more specifically, to
obtain a knowledge item collection from the monad structure.
A portion of this type of graph is shown in Fig. 2. It shows
some vertices and edges of the knowledge graph related to
the same object, as extracted from the evaluation discussed
in the following section. The vertices have the identifiers
of the subject or object of knowledge item triples, and the
edges show the predicate part, as indicated in Table 8.

D. KEY INNOVATIONS
The proposed solution has the following key innovations:
• It applies semantic techniques to define the KO
structure, which incorporates all configuration and mon-
itoring information made available to the monitoring
element.

• It builds an NDT by applying semantic methods to avail-
able network service information (i.e., configuration and
monitoring information) and maps the resulting struc-
ture to a computation structure by applying category,
type, and information theories.
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TABLE 8. Definitions of terms used in the edges of the NDT shown in Fig. 2. Each
edge is labeled with a predicate name in the knowledge graph.

• It formalizes a fault in terms of semantic relations
and attributes found in configurations and monitoring
information, supporting the notion of the NDT structure
as a proof of fault existence or absence.

• It applies category, type, and information theories to
raise hidden relations between knowledge items and
facilitate their study to detect faults, thereby supporting
the hidden fault raising theorem.

• It applies category, type, and information theories,
together with regression and ML-based prediction meth-
ods, to study what-if states of the NDT through feasible
computations.

• It applies category, type, and information theories to
ensure the analysis operations maintain high coherence
and consistency; software theories are also applied to
the analysis, which is a form of meta-softwarization.

• It defines a strong and consistent typing system for
the KO category that, together with the monad laws,
supports the ability to formally verify the resulting fault
detection report; the NDT structure is the mathematical
proof of the provided report and either validates a state
change or exposes a fault.

• It adds information from a CVE report to the NDT.
These innovations strengthen current research trends in

network management by assisting the application of semantic
techniques and reasoning-focused mathematical theories,
such as category, type, and information theories. These will
support further innovations in solving network management
problems.

E. SOTA ADVANCES
This study also contributes key advances to the SotA. These
are summarized as follows:
• It defines the required elements for applying NDT
methods to NA.

• It provides KO formalization, mathematization, concep-
tualization, and implementation.

• It proves that KOs constructed from monitored element
states form categories, thereby demonstrating that KOs
are categorical.

• It formulates and proves the hidden fault raising
theorem.

• It proves that NDT computations can be restricted to
operating a state monad instance. Therefore, they are
comprehensive, complete, and deterministic computa-
tions and are appropriate for discrete decision processes
such as MDP.

• It identifies strong and polymorphic types in the
knowledge representation of network element states.

• It implements an ANSA prototype, which constructs
an NDT of a real network service and applies the
formulated theorems to detect the actual and potential
exposed or hidden faults present in a real network
service.

Existing SotA solutions for fault detection mainly lacks
support for qualitative analysis and do not consider hidden
faults, as is shown in Table 1 and discussed in Section II-A.
The use of semantic techniques and NDT overcomes the lack
of qualitative support, while our theorems and algorithm can
be applied to enable hidden faults to be detected. This new
SotA solution more adequately covers the requirements for
fault detection.

IV. NETWORK SERVICE AUTOMATION SYSTEM
In this section, we discuss the components, interfaces,
protocols, and data formats required to implement a SotA
network service automation system, as defined by ETSI’s
NFV-MANO [6] and OSM [7]. We extend it to add a
component that implements ANSA to enable the system to
have fault detection functions. The architecture is shown in
Fig. 3.
We first discuss the implementation of ANSA, which is

as follows. First, the regression process applies regression
and ML methods to historic values to obtain predictions of
future values. Second, functions required by category, type,
and information theories are processed. The +CVE process
then incorporates CVE report information into the NDT, and
the ontology/semantics process enforces semantic constraints
(from ontology).
The output of these processes are sent to the NDT process,

which computes fHFR, ftyp, and what-if scenarios, with the
input it receives. Finally, the fault reporting process produces
reports about faults and posts them to the network service
automation system for delivery to other interested parties or
services.
Integrating ANSA into a network service automation

system endows it with the ability to analyze network service
configurations and state to detect faults. This ability is
derived from the following internal processes in the ANSA
component.
The other components of the network service automation

system, as shown in Fig. 3, are as follows. First, we
describe several OSM components because we propose to
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FIGURE 3. Overview of the network service automation system architecture.

interconnect with them directly. Second, we include remote
OSM instances because administrative domain boundaries
do not permit their underlying infrastructure to be controlled
directly by local OSM. Third, we include other components
needed to interconnect and control the managed system.
These are described as follows.
iCPN [43] is a control plane network implemented as

a service bus through a pub/sub protocol on information-
centric networking (ICN) [44] to enable the seamless
composition of management mechanisms, such as ANSA,
to support their separation of concerns and achieve efficient
many-to-many communications through name-based data
transmissions, multi-destination delivery, and caching. iCPN
qualities are particularly favorable for ANSA to receive
required information and publish its reports without needing
to specify their destinations one-by-one. ARCA [10] is a
network control architecture that uses AI and ML algorithms
to analyze the network service state and determine if some
reactive or preventive change is required. ARCA and ANSA
complement each other. ARCA decisions are communicated
to ANSA in the form of KOs containing configuration
and/or state knowledge. ANSA uses these decisions to
validate ARCA decisions. ARCA receives ANSA reports
and considers them together with other data to determine if
corrective actions for the network service are needed.
OSM GUI/CLI represents both the Web-based graphical

user interface and command line interface for administrative

access. OSM Service* represents other OSM services: north-
bound interface (NBI), life-cycle management, monitoring,
policy management, and resource orchestration. OpenStack
is the VIM that manages the local underlying infrastructure.
Remote OSM is the system that manages the remote
infrastructure. The adapters enable transparent connection
of existing components to iCPN. Telemetry knowledge
distributed processing (TKDP) [45] is a component that
enables delegating computing operations to data sources so
that components can focus on their main concerns. Telemetry
lossy/lossless compression (TLC) [46] is a component that
enables lossy and lossless decompression/compression of
monitoring data, information, and knowledge items. Lossy
compression exploits the structure of information to achieve
high compression rates with low degradation in fidelity.
Finally, we have the following infrastructure components.

The control plane VPN enables interaction between local
and remote management components. The data plane VPN
enables interaction between local and remote VNFs and other
data elements. The local infrastructure, namely, the com-
puters, switches, and links are components managed by the
local VIM. The remote VIM and associated infrastructure,
namely, the OpenStack platform of the remote site and the
computers, switches, and links it manages are additional
components.
Telemetry operation in a network service automation

system first monitors adapters that retrieve raw state and
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FIGURE 4. Experimentation scenario and topology of the overlying network service
and underlying infrastructures. NSAS architecture, shown in Fig. 3 is located in the
middle.

monitoring data from OpenStack and OSM. Then, data are
processed with TKDP and/or TLC and transmitted to the
control components. The monitoring plug-ins transform the
raw state and monitoring data into KOs, potentially applying
a processing function as requested by the control components
and deliver the result to the network service automation
system. The control plugins gather KOs and deliver them
to ANSA and to other control components requesting them.
In Section V-B, we discuss the interfaces, protocols, and
data formats necessary to implement the network service
automation system.

V. EVALUATION
To showcase and evaluate ANSA, we implemented a
prototype of a network service automation system enabled
with ANSA in a real platform. The prototype has all
components shown in Fig. 3 and is instantiated with the
required underlying infrastructures and services to construct
the platform shown in Fig. 4. We use this platform to
characterize ANSA.
We obtain evidence to showcase the overall operation of

ANSA’s algorithm and then characterize the following: 1)
ANSA’s suitability for fault detection using both qualita-
tive and quantitative information, 2) the knowledge graph
associated with the NDT that ANSA constructs, 3) ANSA
performance, 4) ANSA effectiveness, 5) ANSA efficiency,
6) ANSA features compared to related studies, and 7) ANSA
effectiveness as compared with other techniques.

A. APPLICATION SCENARIO
The scenario shown in Fig. 4 targets the automatic operation
of a network service, which is deployed in multiple sites.
The network service is constructed to support a Web service
and endow it with caching and load balancing functions. A
Web server is connected to one endpoint and four clients are
connected to another point. The network service automation
system adapts the number of caches to the requirements
of the network service. The clients make requests to the
server at a predefined rate, with the exception of one client

that behaves differently to stress the network service. In
this scenario, ANSA retrieves configuration and monitoring
information about the managed network service from both
sites through the network service automation system. It then
analyzes the information and sends back the fault report to
the network service automation system.

B. IMPLEMENTATION
The experimentation platform we constructed for the evalu-
ation consists of a network service automation system and
infrastructures from two sites interconnected by VPNs, each
having a set of underlying physical machines, an OpenStack
instance to manage them, and the required gateways (GWs)
to implement the VPN. The local infrastructure also includes
an OpenStack adapter connected to the network service
automation system, allowing it to manage the local infras-
tructure directly.
The remote infrastructure has all components presented in

Figure 3. However, ANSA is excluded, and the north-bound
interface (NBI) is separated and connected to the network
service automation system through the control plane VPN.
This means that the network service automation system also
manages the remote infrastructure, although not directly or
exclusively. This is achieved by informing OSM services that
some resources from the remote infrastructure are managed
by the network service automation system through the NBI.
iCPN is used by all components to communicate with

each other, regardless of whether they are reside the local or
remote infrastructures. Elements then request iCPN to obtain
required information by providing the information name (i.e.,
identifier). iCPN then provides it, caching and replicating
the information if needed at the closest forwarding point
to its destination. In particular, ANSA is enabled to obtain
the KOs required at precise times. Each KO is identified by
its name, derived from its definition and is given in Dj in
Algorithm 1, Algorithm 2, and Table 6.

To implement ANSA algorithms, we define a strategy that
applies category theory to each step required to transform the
theoretical definition of the algorithm to the implementation
code. This ensures that the resulting implementation has
improved correction and determinism, regardless of the
programming language used or programming skills of the
programmer. We follow our implementation strategy to
obtain an application coded in Python. Considering the
trade-offs between using a purely functional programming
language such as Haskell or a hybrid functional-object such
as Python, we chose the latter because of the large number
of libraries available for many tasks. Of these, we use some
of the most common AI and ML libraries in our solution.
To implement our solution, we first formulate all compu-

tations, abstractions, and functions required by our algorithm
using formal category theory constructions, which will
eventually become Python expressions, structures, classes,
and functions. We obtain functions to read configuration and
monitoring data, to load the data in the NDT monad, to
compute what-if scenarios and graph transformations, and
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to derive graph representations. Finally, we compose the
functions according to our algorithm to obtain the application
for ANSA. It is worth mentioning that the adherence to
category theory constructions is an implementation constraint
that must be ensured—as we do in our implementation.
ANSA code is encapsulated in a microservice container—

Docker style—and includes the elements needed to support
all functions provided by iCPN. These include functions
for TLC, TKDP, and KO handling. These functions enable
ANSA to be seamlessly integrated into the network service
automation system. Each component of the network service
automation system shown in Fig. 3 is implemented in its own
Docker-based container image. Both local and remote VNF
instances and the network services they form are managed
by ARCA and supervised by ANSA. Most components
of ARCA are implemented in Python, although ARCA’s
reasoning engine is implemented in Java. OpenStack and
other OSM services have their own separate platforms, which
are accessed by their corresponding APIs.
The remaining elements of the network service automation

system are defined as follows. ICN::PSI is the pub/sub
interface to access iCPN. OSM NBI is a REST interface to
access OSM. OpenStack API is a REST interface to access
OpenStack. Hardware interfaces are used to access native
hardware, local (e.g., running operating system interface) or
remote (e.g., IPMI). These interfaces rely on the following
protocols and data formats. The iCPN pub/sub interfaces
work with the ICN protocol (i.e., CCNx protocol [47])
over TCP/IP. The REST/HTTP interfaces work over TCP/IP
for remote connections and over loopback same-machine
connections. The VPN uses SSL over TCP/IP to connect the
local data and control planes with their remote counterparts.
REST interfaces use JSON. CVE reports use the national
vulnerability database (NVD) structure serialized in JSON.
OpenStack state and monitoring data schemas are serialized
in JSON. Finally, OSM state and monitoring data schemas
are serialized in JSON.
Configuration and monitoring information is retrieved by

OpenStack and OSM services and sent through iCPN to
ANSA and ARCA, which analyze the information separately.
The data collection procedure for ANSA is implemented as
part of the local VIM and OSM adapters (i.e., microservice
containers). The former uses the VIM API (i.e., OpenStack
Python library) to retrieve configuration and state data from
the VIM. The latter uses the OSM API (i.e., osmclient Python
library) to retrieve configuration and state data from the
OSM registry database. Both microservices use the library
that manages the data model. Their outputs are lists of string
triples that take the form: id, parameter-name, parameter-
value.

C. EXPERIMENTS
We defined an experiment controller (EC) for executing the
application scenario. It was used to construct the network
service and to start or stop the clients following a defined
pattern that invoked the participation of ARCA and altered

the configuration of the network service. The EC induced
both faulty and potential faulty states—i.e., induced an event
that would eventually produce a faulty state if maintained
over time.
During the experiment, approximately 1800 faults were

induced. In general, each fault is directly and indirectly
linked to several knowledge items. For instance, detecting
an erroneous value on a metric of a switch port marks
the knowledge items that describe the port as faulty.
These include the port identifier, the parent equipment to
which it is connected, the metric associated with the port,
and the measurement that yielded the erroneous value.
In addition, as the knowledge items associated with the
parent equipment are considered fault-related knowledge
items, all other knowledge items associated with the parent
equipment are considered fault-related knowledge items.
Accordingly, our experiment produced more than 5000 fault-
related knowledge items.
In our experiment, the EC collected the measurements

required to achieve the evaluation targets. We recorded all
the knowledge items and their relations that form the NDT
obtained after each ANSA algorithmic step for the different
simulation alternatives supported by the algorithm.
To evaluate ANSA’s suitability for fault detection, the EC

recorded the knowledge graph linked to the NDT in different
stages of the experiment. To showcase the overall operation
of the ANSA algorithm, the EC followed the evolution of
a piece of knowledge related to an element affected by the
induced fault (i.e., specifically, a virtual machine related to
the network service) by identifying the edges connected to
this piece of knowledge in the graphs representing each
version of the NDT.
We applied spectral graph theory [39] to analyze and

characterize the structure of the NDTs produced by ANSA
methods, namely, the specialized knowledge graph enlarged
with information from the what-if analyses. We characterized
the knowledge graph of each version of the NDT by comput-
ing its normalized Laplacian graph spectrum. Although this
method has a considerably complex run time and relatively
high computational time, it is convenient for our purpose
because the Laplacian matrix can be obtained from individual
graphs; evaluating all possible pairs is not necessary, as
with graph editing methods. Moreover, it allows graphs of
different sizes to be compared ([40]).

To evaluate ANSA performance, the EC measured the
size of the base NDT, the time needed to construct it,
the size of the NDT resulting from each ANSA operation,
and the time necessary for each operation. To evaluate
ANSA effectiveness, the EC measured the number of fault-
related items present in each version of the NDT, which
are proportional to the faults discovered by each method.
To evaluate ANSA efficiency, we computed the number of
fault-related items obtained by each method per unit of
time. To evaluate the overall ANSA features, we compared
ANSA features with those in related studies [11], [12], [13].
To evaluate ANSA relative effectiveness in detecting faults
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FIGURE 5. Knowledge graphs and eigenvalues of the base NDT and the NDT obtained using PolyFit.

(i.e., in comparison to related studies), we compared ANSA
and [11] in terms of the size of the fault detection and
solutions they obtained.
The experiment implemented the scenario shown in Fig. 4.

Every component had its own dedicated server-type machine,
and each machine had 12 cores, 24 threads, and ran at a
peak speed of 2.93 GHz with 48 GiB of RAM and four
1-GE network interfaces. For independent results for ANSA,
we executed ANSA on a separate machine with four cores,
eight threads, running at a peak speed of 2.8 GHz with 16
GiB of RAM and a single 1-GE network interface. Because
ANSA implementation uses totally parallelized underlying
functions, all threads were used.

D. RESULTS
The knowledge graphs of each NDT are shown in
Figs. 5 and 6. We include these graphs to assist in under-
standing the density of the graph that the NDT is managing
and how it changes after each big what-if intervention. In
particular, Figs. 5(a), 5(c), 6(a), and 6(c) capture the high
degree of graph vertices representing fault-related knowledge
items, which are either quantitative or qualitative. Thus, we
observe that the number of edges changes following each
operation of the ANSA algorithm, which corresponds to the
simultaneous variation of many parameters of the NDT. The

new edges are directly added as what-if simulation results as
well as by the hidden fault raising procedure of the ANSA
algorithm.
Following the highlighted edges on the resulting graphs

representing the different versions of the NDT, which
are connected to knowledge items related to single ele-
ments affected by the induced faults—in particular, virtual
machines that are part of the network service—, we show that
the number of edges increases with the additional knowledge
provided by the what-if explorations. In addition, we show
that some edges have been captured in the fault-only graph of
ARIMA, which confirms the detection of the potential faults
that would occur on time, as induced in our experiment.
Centrality is a means of analyzing complex graphs and

is measured by watching the frequency of its eigenvalues.
The manner in which a semantic graph representing an
NDT is constructed results in a graph with few eigenvalues
showing a high centrality, indicating that few paths are
intertwined with each other. As new faults are detected, the
centrality of other eigenvalues increases, meaning other paths
become intertwined. Thus, analyzing the centrality is a way
of knowing the number of faults identified in an NDT.
We conduct graph spectrum analysis to determine the

centrality of each state of the NDT. This analysis yields a
histogram for the graph representing each state of the NDT.

4436 VOLUME 5, 2024



FIGURE 6. Knowledge graphs and eigenvalues of NDTs obtained using ARIMA and MLP.

Knowledge graphs are composed of semantic objects in the
vertices and their relations in the edges. The amount of
information contained in an NDT makes these graphs quite
complex, but they are still standard graphs.
The distribution of the eigenvalues obtained from the

knowledge graph spectrum of the base NDT is shown in
Fig. 5(b). As there are few vertices with higher frequency, the
centrality of the graph is considerably higher. In particular,
the centrality of the vertices linked to the Laplacian
eigenvalue (see Section II-A5) in the interval [0.9, 1.1] is
more than 10 times higher than the centrality of the vertices
linked to the Laplacian eigenvalues in the interval [0.4, 0.7]
or [1.3, 1.6]. This is clearly shown in the concentration of
the edges connected to the vertices on the left side of the
graph illustrated in Fig. 5(a).

As Fig. 5(d) shows, the distribution of the eigenvalues
obtained from the knowledge graph spectrum of the NDT
with PolyFit predictions has many vertices whose centrality
is relatively high. This is evidenced in the very high concen-
tration of Laplacian eigenvalues in the interval [0.7, 1.1] and
by the existence of some spikes in the intervals [0.4, 0.5]
and [1.4, 1.6]. This behavior is reflected in the slight edge
sparsity of the graph illustrated in Fig. 5(c).

Similarly, Fig. 6(b) shows that the distribution of the
eigenvalues obtained from the knowledge graph spectrum
of the NDT with ARIMA predictions also has many
vertices whose centrality is relatively high. The same values
obtained for PolyFit apply to the concentration of Laplacian
eigenvalues. Thus, the same level of sparsity is seen in the
graph illustrated in Fig. 6(a).

Deviating from the previous distributions, the distribution
of the eigenvalues obtained from the knowledge graph
spectrum of the NDT with MLP predictions shown in
Fig. 6(d) reveals that more vertices have high centrality. The
highly concentrated Laplacian eigenvalues are in the interval
[0.7, 1.1], and some spikes exist in the intervals [0.4, 0.5] and
[1.4, 1.6]. This behavior is reflected in the level of sparsity
shown in Fig. 6(c).

Comparing the knowledge graphs and spectra of the
base NDT and the NDT with PolyFit, ARIMA, and MLP
predictions, as shown in Fig. 8(a), we find that the centrality
of the NDT with predictions is higher than that of the base
NDT. This shows that, following predictions, more vertices
have been identified as sensitive, thus demonstrating and
validating the operation of the what-if predictions and the
ulterior application of the hidden fault raising theorem.
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FIGURE 7. Knowledge graphs and eigenvalues of the fault-related items obtained using PolyFit and ARIMA.

Comparing the knowledge graphs and spectra of the
different NDTs produced after adding PolyFit, ARIMA,
and MLP predictions, we see that, except for the interval
[0.9, 1.1], they are nearly equal. For this interval, we see that
the subintervals [0.9, 1.0] and [1.0, 1.1] are reversed from
PolyFit to ARIMA and vice versa. These subintervals have
similar shape in ARIMA and MLP, although in MLP we
see that these subintervals are similar and so they express
a similar centrality. In summary, these results mean that the
methods are similar with only slight differences.
Regarding the structure of the knowledge graphs, shown

in Figs. 5(a), 5(c), 6(a), and 6(c), we confirm that, although
the graphs are very similar, their differences are still
noticeable by focused sight. Particularly, comparing the
graph that represents the NDT obtained after ARIMA and
MLP processing, shown respectively in Figs. 6(a) and 6(c),
we can see that the edges of the upper half are similar but
the edges of the lower half are different. Such differences
are emphasized when we extract the key edges, as shown in
Figs. 7(a) and 7(c), which also show in different color the
edges of the knowledge graph depicted Fig. 2.

We also analized the knowledge graphs containing
only fault-related edges of all edges representing the
NDTs. Particularly, Fig. 7(b) shows the distribution of the

eigenvalues obtained from the knowledge graph spectrum
representing the isolated fault-related vertices and edges
obtained after applying PolyFit to the base NDT, shown
in Fig. 7(a). The graph shows that a vertex with very
high centrality, where its eigenvalue interval is [1.0, 1.1].
This corresponds to one of the subintervals showing higher
centrality in the NDT with PolyFit predictions, confirming
the importance of this fault even though it was not present
in the base NDT and thus was a hidden fault found by our
algorithm.
Fig. 7(d) shows the distribution of the eigenvalues

obtained from the knowledge graph spectrum that represents
the isolated fault-related vertices and edges obtained after
ARIMA is applied to the base NDT. The graph shows that
a couple of vertices have very high centralities, where their
eigenvalues fall in the interval [0.9, 1.1]. This corresponds
to one of the subintervals showing higher centrality in the
NDT with ARIMA predictions, confirming the importance
of this fault even though it was not present in the base NDT
and thus was a hidden fault found by our algorithm.
Comparing the knowledge graphs and spectra of the

isolated fault-related NDT subgraphs, as shown in Fig. 8(b),
we find that the ARIMA method detects the same faults
detected by the PolyFit method as well as additional faults
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FIGURE 8. Eigenvalues of the whole NDT and fault-related graphs for all methods evaluated.

that have higher centrality, with their eigenvalues in the
interval [0.9, 1.0]. This means that ARIMA is better at
identifying fault-related vertices in similar circumstances.
Although our solution identified many faults in the base
NDT and in the NDT with MLP predictions, they did not
have edges and thus were mostly isolated faults. This shows
that our algorithm can detect faults with non-trivial paths in
the NDT knowledge graph.
In terms of performance, as shown in Fig. 9(a), ANSA

was able to construct a base NDT with state knowledge
using no more than 104 knowledge items—of approximately
1 MiB—and could construct a complete NDT with history
and endowed with different prediction structures using no
more than 105 knowledge items—of approximately 10
MiB. On the other hand, as shown in Fig. 9(b), ANSA
required approximately 5 s to construct a full NDT,
including all history knowledge items. ANSA then required
approximately 0.5 s and 1 s to execute the algorithm
and to detect faults, respectively, in both the base NDT
and prediction-enriched NDT; the fault detection process
in the MLP-enriched NDT required slightly more than 1
s. The most time-hungry operations were those needed
to obtain results for what-if simulations. The simplest of
these operations, by means of PolyFit, required approxi-
mately 10 s, whereas the most complex operation required
nearly 100.

We define ANSA’s fault detection ability as the ratio of
fault-related knowledge items that ANSA can identify when
analyzing the NDT and the total fault-related knowledge
items present in the system. A fault-related vertex represents
a single parameter that is out of range, suspicious, or refers
to an object that may not exist. During the experiment,
as shown in Fig. 9(c), ANSA identified approximately 2
and 8 knowledge items that were linked to exposed or
hidden faults, respectively, in the base NDT. After executing
what-if exploration processes, ANSA identified considerably
more fault-related knowledge items. In particular, for PolyFit
and ARIMA, ANSA detected approximately 3500 fault-
related knowledge items, whereas for MLP, it detected
approximately 5000. This result showned that, during the
execution of the experiment, ANSA detected a network
congestion situation that ARCA could not detect, because
it was due to a hidden fault that required the analysis of
what-if situations to be detected.
We validated the efficiency of ANSA’s internal mech-

anisms used in what-if simulations as functions of the
relationships between their computation time and the number
of identified fault-related knowledge items. As shown in
Fig. 9(d), we found that the efficiency of ANSA when
using MLP was somewhat balanced, consistent with a base
of 60 fault-related knowledge items detected per second.
When using PolyFit, ANSA requires considerably less time.
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FIGURE 9. NDT and fault detection performance and effectiveness results.

However, 30% of the fault-related knowledge items were not
identified. The worst case involved ARIMA, which obtained
similar results to those of PolyFit but required nearly the
same amount of computation time as MLP.
ANSA features as compared with those in related studies

are shown in Table 9, which shows that the major features of
ANSA is its support of qualitative features through seman-
tics and knowledge graphs and associated categorization,
although it uses more memory than the other solutions. Other
features of ANSA are somewhat adaptable, such as using an
optimization targets. The main benefits of the comparative
methods are their use of stochastic simulation methods and
more advanced ML methods. We explore them in a future
work.
Fig. 10 compares the related studies in terms of

performance qualities. The units are within 0–4 and they
are related to the specifications of the machine required
to achieve feasible performance results. For instance, 0
means that a very-high-spec machine is required to achieve

claimed performance whereas 4 means that a very-low-
spec machine is enough. The figure shows that, although
all solutions exhibited good performance, ANSA offer the
highest performance, achieving the best results based on its
low computational complexity. It achieves the best results
in terms fidelity because the NDT mimics perfectly real
environments and their states through continuous monitoring
and incorporation of the NDT. It also achieves the best
flexibility results because the NDT and its application of
category theory enable ANSA to incorporate new metrics,
configuration parameters, and other information into the
analysis without having to re-implement the solution. The
major drawback is that ANSA uses more memory to maintain
the NDT structures. We intend to improve this in future
work.
Fig. 11 compares the methods proposed in [11] (RMH

and MALA) with ANSA. Although RMH and MALA show
that the number of faults for different structures follows
a long-tail distribution, the number of faults obtained by
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TABLE 9. Qualitative comparison between related studies and ANSA.

FIGURE 10. Qualitative comparison of studied solutions, where M = memory;
C = CPU; F = fidelity ( similarity of analyzed samples to reality); SP = support for
different types of scenario predictions; IF = flexibility in specifying iteration goals.
Higher values are better.

ANSA follows a thick-tail distribution (i.e., has a pyramid-
type shape), with much higher concentration in lower zones
of the spectrum. The distribution of structures of faulty
vertices denotes the same distribution. In general, this shows
that our solution detects many more faults. For instance, for
size 5, RMH found no fault, MALA detected approximately
500 faults, and ANSA detected more than 1500 faults. For
size 13, RMH detected approximately 500 faults, MALA
approximately 1000 faults, and ANSA approximately 1600
faults. Overall, dividing the number of faults each solution
finds by the total of 1600 faults induced in the experiment,
we get that ANSA detected an average of 94% of the
faults present in a network service, whereas previous SotA
solutions only detected 30% to 50% of faults.

FIGURE 11. Comparison of the number of faults detected by the two strategies
proposed by [11] and the four ANSA NDTs. The plot width in the horizontal axis
corresponds with the number of faults for each solution size. Solution size in the
vertical axis is measured as the number of changes required to implement a solution.
The fault plot considers only the substructures with direct faulty vertices, ignoring
indirect faulty vertices.

VI. CONCLUSION AND FUTURE WORK
In this study, we showcased the benefits of 1) using
an NDT for analyzing the states of a network service,
2) using category theory for constructing the NDT, and
3) applying our theorems to fault detection, particularly
hidden fault detection. We demonstrated that ANSA can
consider network states not considered by other analytical
techniques, detecting an average of 94% of faults present in a
network service. In comparison, previous SotA solutions can
detect only 30%–50% of faults. Furthermore, ANSA allows
for new possibilities for analyzing network services and
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TABLE 10. Summary of ANSA outcomes evaluation.

constructing NDTs. In particular, ANSA can support intent-
based networking scenarios, in which fault detection and
exploration of what-if scenarios are particularly important.
In a future research, we will use ANSA to validate the

outputs of an intent translation engine. The procedure is
mostly the same, although it requires support in constructing
an NDT with minimal or no telemetry. Therefore, the
simulations must be based solely on projecting rules, an
aspect to be thoroughly examined. We will provide input
to standardization initiatives, which will be accompanied by
an open-source solution that will include ANSA connected
to OSM. Furthermore, we will add support for using rules
when projecting NDT properties to explore what-if scenarios.
The additional rules will be linked to the semantics of
each property. We will also study the use of a complex
event processor to achieve efficient detection of complex
patterns of knowledge introduced into the NDT. Finally,
we will integrate additional AI methods into ANSA, such
as reinforcement learning and planning algorithms that
exploit the structure of knowledge and its categories, as
constructed and maintained by ANSA. We will also explore
the application of collaborative, multidomain AI models that
analyze local and global aspects of network services.
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