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ABSTRACT The efficient representation, transmission, and reconstruction of three-dimensional (3D) contents are becoming

increasingly important for sixth-generation (6G) networks that aim to merge virtual and physical worlds for offering immersive

communication experiences. Neural radiance field (NeRF) and 3D Gaussian splatting (3D-GS) have recently emerged as two

promising 3D representation techniques based on radiance field rendering, which are able to provide photorealistic rendering results

for complex scenes. Therefore, embracing NeRF and 3D-GS in 6G networks is envisioned to be a prominent solution to support

emerging 3D applications with enhanced quality of experience. This paper provides a comprehensive overview on the integration of

NeRF and 3D-GS in 6G. First, we review the basics of the radiance field rendering techniques, and highlight their applications and

implementation challenges over wireless networks. Next, we consider the over-the-air training of NeRF and 3D-GS models over

wireless networks by presenting various learning techniques. We particularly focus on the federated learning design over a hierarchical

device-edge-cloud architecture, which is suitable for exploiting distributed data and computing resources over 6G networks to train

large models representing large-scale scenes. Then, we consider the over-the-air rendering of NeRF and 3D-GS models at wireless

network edge. We present three practical rendering architectures, namely local, remote, and co-rendering, respectively, and provide

model compression approaches to facilitate the transmission of radiance field models for rendering. We also present rendering

acceleration approaches and joint computation and communication designs to enhance the rendering efficiency. In a case study, we

propose a new semantic communication enabled 3D content transmission design, in which the radiance field models are exploited as

the semantic knowledge base to reduce the communication overhead for distributed inference. In addition, we discuss the utilization

of radiance field rendering in wireless applications like radio mapping and radio imaging, in which radiance field models are used

to effectively represent complex radio environments to facilitate wireless network designs. It is our hope that this paper can provide

new insights on the interesting wireless integration with radiance field rendering for future 6G networks with 3D contents.

INDEX TERMS 6G, immersive communications, 3D Gaussian splatting (3D-GS), neural radiance field
(NeRF), federated learning, inference.

I. INTRODUCTION

SIXTH-GENERATION (6G) networks are experiencing
a paradigm shift from the connected everything in fifth-

generation (5G) to the new vision of connected intelligence,

bridging the virtual and physical worlds. On the one
hand, 6G networks are envisioned to utilize new wireless
technologies such as millimeter wave (mmWave)/terahertz
(THz) and extremely large-scale antenna arrays, which
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can provide ultra-high-data-rate, hyper-reliable, and ultra-
low-latency communications to handle the massive data
transmission demands. On the other hand, 6G networks are
expected to evolve towards new multi-functional networks
by integrating various functionalities such as wireless sens-
ing, communication, mobile edge computation (MEC), and
artificial intelligence (AI) [2], [3], [4]. The multi-functional
operation facilitates the fusion of emerging AI technologies
and wireless networks, and thus helps meet the diverse
requirements of emerging applications such as extended
reality (XR), metaverse, autonomous driving, and intelligent
robotics.
In this paper, we focus on a particular usage scenario

of 6G, namely immersive communications, which aim at
creating a highly engaging and interactive environment for
communication users, with typical applications including
XR, telepresence, immersive gaming, and metaverse [5].
Different from the enhanced mobile broadband (eMBB)
applications in 5G that focus on the transmission of
two-dimensional (2D) contents, the realization of the new
immersive communications applications in 6G highly relies
on the transmission and processing of three-dimensional
(3D) contents. In particular, the 3D contents can represent
the spatial environment and object information, accurately
depict real physical scenes, and effectively model real
physical worlds for, e.g., telepresence and immersive gaming.
Due to the rich spatial information contained, 3D contents
can also be used for more efficient object detection and
localization in 3D environments, facilitating the navigation
and decision-making of auto-driving vehicles and intelligent
robots. Therefore, to fully exploit the benefits, how to
efficiently represent, transmit, and reconstruct 3D contents
over wireless networks is becoming an important research
topic in the 6G era, which requires new interdisciplinary
design approaches, by employing techniques from various
areas including wireless communications and networks,
computer vision, computer graphics, and AI.
Proper representation of 3D contents is the foundation

for their efficient transmission and reconstruction over 6G
networks. Different from 2D contents that are normally
represented via pixels, there are various different approaches
for 3D representation. Conventionally, 3D representation
approaches can be categorized into explicit and implicit
ones [6], [7]. In general, explicit representations are charac-
terized by well-defined formats such as mesh [8], voxel [9],
and point cloud [10] to intuitively present the shape and
surface of 3D objects to viewers, while implicit representa-
tions typically employ implicit functions to express contents
in an implicit manner such as occupancy functions [11].
For instance, point cloud [10] is a widely adopted explicit
3D representation approach, which represents 3D objects
by organizing numerous data points to depict the geometry
without complex data processing. These discrete points,
however, fall short in depicting the details of 3D objects
such as textures. Different from conventional representation
approaches, neural radiance field (NeRF) [12] and 3D

Gaussian splatting (3D-GS) [13] have recently emerged as
new transformative 3D representation approaches based on
radiance field rendering. These approaches represent the
distribution of light and depict the interactions between light
and surfaces, materials, and surroundings, thus effectively
representing the details of 3D contents and rendering
photorealistic images from novel views.
NeRF and 3D-GS have their respective pros and cons.

On the one hand, NeRF innovatively represents 3D contents
by employing neural networks, which have exceptional
capabilities in visual reconstruction. In particular, NeRF
only needs to utilize multi-view images of a scene as
training data to generate novel viewing images via volume
rendering, which is able to represent the detail of 3D contents
in high visual quality with only lightweight models [14].
Nevertheless, NeRF involves dense sampling of light rays
and volume rendering, which require substantial computation
resources and are time-consuming in general. On the other
hand, 3D-GS [13] is a promising explicit radiance field
representation approach, which extends the point-based
rendering by utilizing Gaussian functions to effectively
represent the scene, thus avoiding dense ray sampling.
As compared to NeRF, 3D-GS explicitly represents 3D
contents with a well-structured data format, which can be
edited easily and is able to show the content geometry and
properties more intuitively. Furthermore, the training process
of 3D-GS only requires to optimize Gaussian functions and
the rendering process allows for parallel computation without
querying neural networks and dense ray sampling, which
are generally more computationally efficient. However, the
explicit representation of 3D-GS requires a large amount of
data and may pose challenges for storage and transmission,
especially for the representation of large-scale scenes. As
a result, NeRF models are lightweight but computationally
heavy, while 3D-GS is efficient in computation but less
efficient in storage and transmission.
Due to the rapid advancements of NeRF and 3D-GS for 3D

representation in the computer society, it is envisioned that
these radiance field rendering approaches will play an impor-
tant role in immersive communications applications over 6G
networks. Therefore, it is becoming necessary and urgent
to embrace the radiance field rendering in 6G networks.
However, such integration is still in its infancy, which
introduces various new technical challenges to be tackled. In
particular, the radiance field models (especially the explicit
3D-GS models) are represented by a large amount of data
and require excessive resources for storage and transmission,
and the training and inference (or rendering) of radiance field
models (especially the implicit NeRF models) require inten-
sive computation. While conventional radiance field training
and rendering are implemented in a centralized manner at
remote cloud or at local devices, 6G wireless (edge) networks
have distributed communication, computation, and storage
resources at networked base stations (BSs) and mobile
devices. Therefore, it is demanding to investigate new dis-
tributed training and inference methods for the training and
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rendering of radiance fields by taking into account the practi-
cal constraints on communication, computation, and storage
resources at distributed nodes. Along this direction, new
joint computation and communication designs are crucial.
Furthermore, immersive communications applications such
as telepresence normally have stringent end-to-end latency
requirements on the transmission, reconstruction, and display
of 3D contents to ensure the quality of experience (QoE) [5].
This thus calls for a unified design of the whole sensing-
communication-computation processing pipeline over the 6G
wireless networks to minimize the end-to-end latency while
preserving the QoE requirements. In addition, due to the
complicated wireless environment, user mobility, and the
broadcast nature of wireless signals, the transmission of
radiance field models for distributed training and inference
may experience significantly fluctuated wireless channels
over time and space, and face severe multi-path channel
fading and co-channel interference. The unreliable and
dynamically changing wireless communication channels thus
make the distributed training and inference more difficult.
As such, new training-and-inference-task-oriented wireless
design approaches need to be devised jointly with the
radiance field optimization.
To address the above challenges, this paper provides

a comprehensive investigation on the integration of the
two representative radiance field rendering methods (i.e.,
NeRF and 3D-GS) in 6G wireless networks. Specifically,
in Section II we present an overview on the basics of
radiance field rendering, NeRF, and 3D-GS, and accordingly
point out their potential applications and implementation
challenges over wireless networks. In Section III, we discuss
the over-the-air training for NeRF and 3D-GS models.
In particular, we present the federated learning design
over hierarchical device-edge-cloud architectures, in which
various important issues such as joint computation and
communication resources management and camera (device)
placement are discussed in detail. We also discuss potential
extensions by considering the issues such as synchronization,
generalization, vertical federated learning, and over-the-air
federated learning. In Section IV, we discuss rendering
architectures for the over-the-air rendering or inference of
radiance fields by utilizing distributed computation and
communication resources. We discuss the model compres-
sion to improve the transmission efficiency, and present
acceleration approaches and joint computation and commu-
nication designs to enhance the rendering efficiency. More
specifically, we propose a novel semantic communication
enabled inference design by using the radiance field models
as the semantic knowledge base to reduce the communication
overhead for distributed inference, which is validated via a
case study of 3D human face transmission in Section V.
In Section VI, we show that radiance field models can
also be employed to benefit wireless network design in
return, in which radiance field models are employed for radio
mapping, radar imaging, and multi-modal-sensing-assisted
communications. Finally, Section VII concludes this paper.

II. RADIANCE FIELD RENDERING OVER WIRELESS
NETWORKS
This section introduces the exploitation of radiance field
rendering over wireless networks to support applications with
3D contents. First, we review the basics of radiance fields
and introduce NeRF and 3D-GS. Then, we discuss potential
3D-content-based applications by using NeRF and 3D-GS
in wireless networks. Finally, we present new technical
challenges faced by the integration of NeRF/3D-GS over
wireless networks.

A. BASICS OF RADIANCE FIELD RENDERING
The concept of radiance fields originates from the physical
properties of light. Based on how light interacts with
surfaces, materials, and surroundings along its propagation
path, we can create 3D spatial radiance fields with distinct
light distribution. Radiance fields can be used to describe
scenes in 3D space via a five-dimensional function fradiance,
which maps a 3D location x̂ = (x, y, z) and a viewing
direction in sphere d = (θ, φ) to the RGB color space c =
(R,G,B) and the opacity/volume density value σ , i.e.,

fradiance(x, y, z, θ, φ) = (R,G,B, σ ). (1)

In general, the representations of radiance fields can be
divided into explicit and implicit ones, respectively. The
implicit radiance field representation uses neural networks
to represent radiance information, based on which the
color information and opacity/volume density are derived
by querying the neural networks. In contrast, the explicit
radiance fields intuitively present the radiance information
with discrete spatial data, in which each spatial data element
stores color information and opacity. Among various design
approaches, NeRF [12] and 3D-GS [13] are becoming the
most prominent implicit and explicit radiance field represen-
tations, respectively, which are detailed in the following.

1) NERF

As shown in Fig. 1(a), NeRF utilizes multilayer percep-
tron (MLP) neural networks to approximate the radiance
information in 3D space, which implicitly characterizes
the RGB color and volume density of every volume
point within the 3D scene. In particular, the NeRF model
takes the coordinates of volume point x̂ = (x, y, z) and
viewing direction unit vector d = (θ, φ) as input, and
outputs the corresponding RGB color c = (R,G,B) and
volume density σ of every volume point. These volume
points are virtually generated by mapping the pixels to
camera rays along the given viewing direction d. After
querying the MLP, the colors and densities of volume
points are accumulated based on volume rendering, thereby
determining the pixels of 2D images from given viewing
directions one by one. It is worth noting that the process
of volume rendering is differentiable and thus the MLP
network can be trained by using the mean square error (MSE)
between the sampled images and the rendered results as
the loss function. As the MLP networks implicitly store the
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FIGURE 1. Basics of NeRF and 3D-GS based on radiance field rendering.

color and density information of each sampled volume point,
lightweight models are sufficient for NeRF-based represen-
tation, which only require a relatively small amount of data.
However, due to the implicit representation, NeRF rendering
requires frequent querying of neural networks to obtain the
color and density information for different volume points,
and also needs complex integral calculations during the
volume rendering process, thus resulting in high computation
loads.

2) 3D-GS

As shown in Fig. 1(b), 3D-GS is an explicit representation
approach that utilizes a set of Gaussian functions to represent
the 3D scenes. In 3D-GS, each Gaussian G contains
coordinate parameter x̂ = (x, y, z), 3D covariance � ∈ R

3×3,
opacity α, and color c, i.e., G = {x̂, �, α, c}. Here, the
color and opacity information are explicitly stored in the
Gaussian function G, without relying on the querying of
neural networks. As such, to synthesize an image from a
specified viewing direction (θ, φ), we first need to project
the set of Gaussians into the 2D imaging space determined
by the viewing direction, in which each pixel in the 2D
space can be covered by multiple projected Gaussians. Next,
we segment the image plane into tiles and identify the
projected Gaussians that cover each tile. Finally, we perform
rendering, in which the color of each tile is calculated
through alpha blending. As the rendering process of 3D-GS
is differentiable, backpropagation based on gradient descent
methods can be utilized to optimize the parameters of
Gaussian functions for training 3D-GS models, similarly
as for NeRF. The benefits of 3D-GS are the improved
rendering efficiency and the reduced computation overheads.

In particular, the explicit representation of 3D-GS allows for
easy access to the color and opacity information without
relying on querying neural networks, and each independent
tile allows for parallel rendering. However, the use of explicit
color and opacity data in 3D-GS requires a large amount of
data for representation, introducing new challenges in storage
and communication overloads.
In summary, the implicit representation of NeRF is able

to represent 3D contents by a lightweight model and render
realistic images without deteriorating details of 3D contents,
but it requires the frequent querying of neural networks for
volume rendering and thus is computationally inefficient. By
contrast, the explicit representation of 3D-GS is intuitive
and easy to edit and can render high-quality images without
relying on neural networks or volume rendering and enables
parallel rendering processes, but it requires a large amount of
data for representation, transmission, and storage. Therefore,
there generally exists a tradeoff between the communication,
computation, and storage in selecting the 3D representation
approaches when implementing radiance field rendering in
diver scenarios over wireless networks.

B. APPLICATIONS IN WIRELESS NETWORKS
NeRF and 3D-GS have made great impacts in the
areas of computer vision and computer graphics. Their
excellent capability to represent 3D contents has also
attracted growing interests from the communications
society for supporting various 3D-content-enabled applica-
tions. This subsection provides three typical applications
of NeRF and 3D-GS in 6G networks, as shown in
Fig. 2.
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FIGURE 2. Typical wireless applications of radiance field rendering.

1) WIRELESS IMMERSIVE VIDEO STREAMING

3D video technologies such as 360◦ video [15] and volu-
metric video [16] have emerged as new paradigms in the
multimedia field, which are crucial to enable immersive
communications. Unlike conventional 2D video, 360◦ video
and volumetric video can provide immersive visual expe-
riences. In particular, 360◦ video can provide users with
three degrees of freedom (3DoF) view (i.e., pitch, yaw,
and roll), and volumetric video explores more immersive
virtual scenes with 6DoF (including pitch, yaw, roll, and
additional x-, y-, and z-axis). Recently, the emergence of
NeRF and 3D-GS are expected to find promising applications
for wireless 3D video streaming, providing immersive vision
experiences to large-scale mobile users. This is due to
the fact that NeRF and 3D-GS can outperform traditional
point cloud and mesh representations in rendering photo-
realistic video frames [16], [17]. In particular, 3D-GS is
advantageous in real-time radiance field rendering, which
makes it particularly suitable for wireless 3D video streaming
when the computation resources are limited at devices.
By contrast, NeRF models are lightweight in general and
can be transmitted efficiently with less communication
overhead, which makes it particularly useful for the sce-
nario when the communication rates among different nodes
are constrained [18]. One prominent application of NeRF
and 3D-GS is telepresence [16], [19], which captures and
transmits a more realistic representation of the human body,
shape, and facial expressions, thereby significantly enhancing
the immersive communication experience. Other applications
include XR, immersive gaming, and digital avatars, in which
the content provider can represent the 3D content with high-
quality NeRF or 3D-GS models, and then transmit these
models to the edge networks (e.g., remote edge servers or
devices) for rendering and display 3D videos to a large
number of end users.

2) 3D-BASED AUTOMATION AND VISION TASKS

Radiance field rendering also holds significant potential
to enhance 3D-based vision intelligence tasks such as
video analytics [20], simultaneous localization and mapping
(SLAM) [21], and robot navigation [22]. This is primarily
attributed to the role of spatial information provided by 3D
contents, which significantly enhances the inference capa-
bilities required for these tasks. For instance, NeRF/3D-GS
models can reconstruct high-quality scenes containing terrain
information to facilitate video object detection and robot
navigation. In the 6G era, these tasks are implemented
at wirelessly connected agent/robots and remote servers in
a distributed manner [23], [24], by fully leveraging their
distributed computation and communication resources. For
example, in a robot navigation task, the robots can transmit
their captured multi-view images to the edge server for
training NeRF/3D-GS models, based on which, the edge
server can subsequently render images of novel viewing
regions by leveraging the rich computation resource. Next,
the server can transmit these novel-viewing images back
to the robots to assist their global path planning and
decision making. In these applications, the training and
inference of radiance fields at the network edge need to be
designed by properly exploiting the distributed computation
and communication resources.

3) WIRELESS SENSING AND ENVIRONMENT-AWARE
COMMUNICATIONS

Motivated by the great success in the field of optical
imagery, radiance field rendering is expected to be applicable
in the wireless field, especially for the representation of
wirelessly generated 3D information by effectively modeling
the physical process of wireless signal propagation. This
application is becoming increasingly important for 6G
networks, as radio sensing and imaging are seamlessly
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integrated as a new function of wireless networks with
the advancement of integrated sensing and communication
(ISAC) [4], [25], [26]. Radiance field rendering can benefit
the fusion of sensing and communication functionalities
by enhancing the sensing performance with 3D spatial
information and provides multi-modal information to facil-
itate the communication designs. In particular, radiance
field rendering such as NeRF can be used to model the
radio frequency (RF) signal attenuation process including
signal reflection, scattering, and refraction, and accordingly
represent radio maps that store the channel information at
different transceiver locations [27]. In addition, radiance field
rendering is also useful for radar imaging (e.g., via synthetic
aperture radar (SAR)) [28], in which the radio imaging
process can be modeled by using NeRF, such that the SAR
imaging information can be obtained from different views.
Furthermore, radiance field rendering can benefit sensing-
assisted environment-aware communications [29], in which
radiance field models can be used to represent the 3D
environment with considerable visual quality and multi-view
vision information, such that the environmental obstacles and
scatterers can be detected to infer and predict the channel
knowledge information [30], [31].

C. TECHNICAL CHALLENGES
Due to the effectiveness in 3D content representation, NeRF
and 3D-GS have emerged as promising techniques for the
efficient transmission and reconstruction of 3D contents
over wireless networks. Nevertheless, the integration of
these radiance field rendering approaches in 6G networks
introduces several new technical challenges that need to be
addressed.

1) INTENSIVE COMPUTATION DEMANDS IN RADIANCE
FIELD TRAINING AND RENDERING

The training and rendering of radiance fields are generally
computationally intensive. On the one hand, the training of
neural networks and volume rendering processes in NeRF are
computationally heavy and time-consuming. For example,
the vanilla NeRF model [12] needs a convergence time of
1-2 days when training on a single graphics processing unit
(GPU), which is impractical for many real-time applications.
On the other hand, though not relying on neural networks
querying or volume rendering, 3D-GS still needs to deal
with a large number of Gaussian functions that can be
computationally intensive, especially in the case with large-
scale scenes. In the literature, there have been various
works [32], [33], [34] focusing on improving the training
and rendering efficiency for NeRF and 3D-GS from the algo-
rithmic perspectives, which, however, do not consider their
implementation over wireless networks. Different from con-
ventional centralized cloud, wireless edge networks consist
of a large number of distributed BSs and mobile devices with
heterogeneous and highly distributed computation resources.
As such, it is essential but challenging to design distributed

training and rendering approaches for radiance fields over
such heterogeneous wireless networks.

2) COMMUNICATION OVERHEADS FOR TRANSMISSION
OF RADIANCE FIELDS

The distributed training, distributed inference, and deploy-
ment of radiance fields at wireless edge networks need
frequent exchange of NeRF and 3D-GS models across
different nodes. This may lead to significant communication
overheads. First, from the training perspective, substantial
observation views are required to construct a fine radiance
field. This massive data delivery introduces great challenges
in bandwidth-constrained wireless networks. Next, from
the model transmission perspective, radiance field models
representing large-scale scenes may require a large model
size for transmission, especially for 3D-GS that utilizes
millions of Gaussians [13]. Therefore, it is important to
explore the model compression methods for reducing the
overhead of transmission. In addition, considering executing
inference over the air, only a portion of the entire 3D
scene associated with the viewport of user is needed for
visualization, as the user normally only sees a portion of a
3D object/scene from a specific viewing direction. In this
case, we need to develop task-specific designs to only render
interested regions for reducing the communication overhead
while preserving the QoE, instead of rendering the full scene
that may incur substantial communication overhead. Last
but not least, wireless transmission experiences significantly
fluctuating wireless channels and faces channel multi-path
fading and interference, which may significantly degrade the
communication data rate. In this case, the rendering process
needs to be devised jointly with the wireless transmission by
considering the bandwidth limitations and wireless channel
fading.

3) CRITICAL END-TO-END LATENCY REQUIREMENTS

Intelligent applications like telepresence and XR have
stringent requirements on end-to-end information processing
latency for real-time transmission and rendering [5]. In
practice, the radiance field models can be deployed at cloud
center, end devices, edge servers, or distributed at both end
users and edge servers. In the rendering process, end users or
viewers need to determine the viewing directions, such that
the rendering task can be performed to obtain the images
under the viewing directions, which are then transmitted and
displayed to the viewers. The above process involves both
computation and communication in general, which jointly
determine the end-to-end rendering latency. Depending on
the deployment locations of the radiance field models, there
generally exists a trade-off between the communication
and computation latency. For instance, the communication
latency becomes significant when the radiance field models
are deployed at far-apart cloud with huge computation power,
and the computation latency is essential when the models are
deployed at local devices with limited computation power.
By contrast, deploying these models at edge servers of BSs
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or deploying them at both edge servers and end devices may
achieve balanced communication and computation latencies,
as the edge servers have high computation power and are
close to end users or viewers. To optimize the efficiency of
radiance field rendering in these scenarios, it is important but
challenging to pursue joint computation and communication
designs.

III. TRAINING OF RADIANCE FIELD MODELS OVER
WIRELESS NETWORKS
This section considers the training of radiance field models
over wireless networks, in which the NeRF or 3D-GS models
are trained to represent the 3D scenes, by using pre-stored
or real-time collected dataset with multi-view images at a
number of distributed mobile devices. First, we briefly intro-
duce two general training architectures, namely centralized
learning and distributed (federated) learning, respectively.
Next, we consider a particular hierarchical device-edge-cloud
federated radiance field learning architecture to support the
training of radiance field models for large-scale scenes.
Furthermore, we discuss critical design issues for federated
radiance field learning. Finally, we discuss some important
extensions along this direction.

A. CENTRALIZED VERSUS DISTRIBUTED LEARNING
The training of radiance field models can be implemented
via centralized and distributed learning in general, which are
detailed in the following, respectively.

1) CENTRALIZED RADIANCE FIELD LEARNING

In centralized radiance filed learning, there exists a central-
ized server (e.g., a cloud center or a powerful edge server)
that collects the multi-view dataset from mobile devices over
the wireless network, and then trains the NeRF or 3D-GS
models via using the collected dataset by leveraging its
rich computation capabilities. This centralized learning is
suitable for scenarios when the computation resources are
rich at the server but severely limited at end devices. This
may correspond to a scenario with distributed urban-block
Internet-of-Things (IoT) cameras with limited computation
power, which can collect multi-view image data and then
send them back to the monitoring center for training the
radiance field models of the concerned block. However,
this leads to increased communication overhead due to the
massive raw data transmission, and also introduces privacy
issue for distributed devices.

2) DISTRIBUTED (FEDERATED) RADIANCE FIELD
LEARNING

In distributed radiance field learning, a number of separate
nodes use their distributed computation resources to collab-
oratively train radiance field models in a distributed manner,
by keeping the multi-view data distributed instead of sharing
them to a central node. Among various approaches, federated
learning [35] is particularly appealing for distributed radiance
field learning. The federated radiance field learning is

normally coordinated by a central node that can be the
central cloud or an edge server at BS, and is implemented in
an iterative manner. In each iteration, participating devices
independently train their local models by using their own
observed multi-view data and only need to transmit model
parameters to the central node. After collecting the radiance
field model parameters from devices, the central node
aggregates them to obtain an updated global model and then
distributes it back to the participating devices. The above
iterations will terminate until convergence. The federated
radiance field learning design utilizes distributed computa-
tion resources at participating devices without sharing the
local multi-view raw data, thus avoiding the data leakage and
preserving the data privacy. Due to the frequent NeRF/3D-
GS model exchange between participating devices and the
central node, the communication overheads are becoming
the performance bottleneck.
In summary, the centralized radiance field learning is

able to process the multi-view data and train the radiance
field model in a central network node without coordinating
distributed devices, but it may incur large communication
overheads and privacy leakage issues. By contrast, the feder-
ated radiance field learning aims at exploiting the distributed
computation resources among separate devices to train the
models without sharing raw data, which, however, generally
requires large iterations of model exchange between devices
and servers.

B. HIERARCHICAL FEDERATED RADIANCE FIELD
LEARNING
Due to the benefits in exploiting distributed computation
power and preserving data privacy, federated radiance field
learning is particularly appealing for training over wireless
networks. Nevertheless, prior works on federated radiance
field learning focused on designing the learning algorithm,
without considering specific wireless network architectures.
In this paper, we present a new device-edge-cloud hier-
archical federated learning architecture for the training of
radiance field models for a large-scale scene.1 Specifically,
this architecture consists of one cloud server, L > 1 edge
servers, and a large number of K > L end devices, as shown
in Fig. 3. At the lower level of the hierarchical architecture,
the end devices are each installed with one or more cameras
to capture the multi-view observation data, and the edge
servers each cover a certain area to coordinate multiple
associated end devices. At the higher level, the cloud center
coordinates the training operation of these edge servers.
The device-edge-cloud hierarchical federated radiance field
learning approach is appealing for the efficient training
of large-scale scene radiance fields (e.g., at a city level).
In particular, the hierarchical architecture allows the cloud

1Generating 3D contents for large-scale scenes may have abundant
applications in various 6G applications like low-altitude economy [36],
smart city [37], and intelligent transportation [24]. The design principles
for large-scale scenes are also applicable to the case with small-scale
scenes [38].

VOLUME 5, 2024 4281



WU et al.: EMBRACING RADIANCE FIELD RENDERING IN 6G

FIGURE 3. Hierarchical federated radiance field learning over 6G networks with end devices, edge servers, and cloud center.

center to coordinate massive end devices through a limited
number of edge servers, thus significantly reducing the traffic
loads over the whole network. Next, each end devices only
need to send their local model information to nearby edge
servers for aggregating edge models of a relatively smaller-
scale sub-scene, thus enhancing the training efficiency.
Furthermore, the cloud center can aggregate the edge models
from edge servers to update the global models for the large-
scale scene. In addition, the cloud center can also adjust
the learning parameters (e.g., frequencies of edge and global
aggregations) and coordinate the network-level resource
management, by fully exploiting the diverse communication,
computation, and storage powers over the whole network.
To begin with, we briefly introduce the dataset for training

the radiance field models. Let Dk = {(Ik,i, pk,i)} denote
the local dataset at device k ∈ {1, . . . ,K}, where Ik,i ∈
R
H×W×3 denotes the i-th observed image by device k that

serves as the ground truth during the training process. Here,
H and W denote the height and width of the observed
image, respectively. Furthermore, pk,i denotes the corre-
sponding viewing information, which contains the extrinsic
matrix and intrinsic matrix of the cameras. The extrinsic
matrix exploits the rotation and translation information to
transform world coordinates into camera coordinates, while
its inverse matrix can convert camera coordinates back
to world coordinates. The intrinsic matrix uses the focal
information to project camera coordinates onto the 2D
image plane. In computer vision society, there are two

methods to obtain the dataset. The first method is to directly
extract images and the corresponding viewing information
from synthetic datasets [12]. The second method is to
utilize the COLMAP structure-from-motion package [39] to
estimate the extrinsic and intrinsic matrices for real observed
images [40].
Then, the hierarchical federated radiance field learning

is implemented as follows by particularly considering the
use of 3D-GS models. Due to the inherent limitations in
camera views, each device can only access the multi-view
observation data from a subsection of the entire scene. Under
this setup, the training of 3D-GS models is implemented
over nested two rounds of iterations. Specifically, we denote
the local 3D-GS model at device k as Gklocal = {G(i)} =
{x̂(i)

, �(i), α(i), c(i)}i, which is a set of 3D Gaussians.
Similarly, we denote the edge 3D-GS model at edge server
l as Gledge = {x̂(i)

, �(i), α(i), c(i)}i and the global model at
cloud center as Gglobal. In each lower-level or inner iteration,
the end devices each perform local training (via multiple
rounds of stochastic gradient descent (SGD) calculations)
based on the captured data and then upload their local
models and the 3D location information to their associated
edge servers. After receiving the local models and local
location information, each edge server aligns the pose of
its associated devices in a common coordinate, and then
aggregates the received local models to obtain updated
edge models. In particular, each edge server l obtain the
edge model via merging the local models as Gledge =
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G1
local ∪ G2

local∪, . . . ,∪ Gk̂local, where k̂ denotes the number
of associated end devices of edge server l. Then, in each
upper-level or outer iteration, the edge servers transmit the
updated edge models (after one or more rounds of inner
iterations) and the corresponding coordinate information to
the cloud center, such that the cloud center can align the
coordinates and then aggregate the edge models to obtain the
global models. Similarly, the cloud center obtains the global
model via merging the edge models as Gglobal = G1

edge ∪
G2
edge∪, . . . ,∪ GLedge. In general, the frequencies of inner and

outer iterations (i.e., the number of local SGD calculations
within each inner iterations and the number of inner iterations
or edge aggregations within each outer iteration) may affect
the consumed computation and communication resources
towards convergence, and thus are key decision variables for
performance optimization.
Notice that the pose alignment presents a unique challenge

in federated radiance field learning for large-scale scenarios,
where end devices (such as UAVs) are dispersed across
various locations, each observing the scene from unique
viewing directions and thus obtaining the multi-view dataset
with different pose information pk,i [41], [42]. In this case,
the local models obtained at different end devices have
distinct poses, which cannot be directly aggregated at the
edge server. As such, the edge server needs to first use
proper pose alignment to revise these poses towards the
common coordinate, and then perform the edge aggregation.
As such, it is critical for the end devices (and edge servers) to
upload their pose information (and coordinate information)
to facilitate the edge (and cloud) aggregation. Some useful
device pose alignment methods can be referred to in,
e.g., [41], [42].

C. JOINT RESOURCE MANAGEMENT AND DEVICE
(CAMERA) PLACEMENT
For the hierarchical federated radiance field learning over
wireless networks, it is important to pursue joint computation
and communication resource management to improve the
convergence speed for training. Towards this end, it is desir-
able to first analyze the convergence behavior for training
radiance field models. Various prior works provided analytic
results on the convergence behaviors of general federated
edge learning systems in terms of optimality gap [43], aver-
aged gradient norm bound [44], and generalization gap [45],
as a function of computation and communication resources
as well as the federated learning parameters. These results
may be tailored for the federated radiance field learning
of our interest. Next, based on the convergence results,
we can perform joint resource management to enhance the
convergence performance under constrained resources, by
jointly optimizing communication (e.g., transmit power and
bandwidth) and computation (e.g., computation frequency
and learning rounds) resources over the network together
with the federated learning parameters (like the number of
SGD rounds within each inner iteration and the number of
inner iteration rounds within each outer iteration). There

are some very interesting tradeoffs between communication
and computation that can be exploited for performance
optimization. For instance, allowing more SGD rounds in
each inner iteration may lead to increased computation at end
devices but less lower-level communication between the end
devices and edge server (due to the fast convergence with
less rounds of iterations needed). Similarly, employing more
inner iteration rounds may increase the computation and
communication overheads in the low-level network, but may
reduce those in the upper level. There are many interesting
problems worth future investigation.
Another important factor affecting the learning

performance is the camera/device placement. On the one
hand, placing cameras at proper locations with proper
poses helps acquire high-quality multi-view raw data [46],
thus reducing the amount of data required for training
radiance field models and the associated computation
overheads. On the other hand, due to the randomness
of wireless environment, a good placement location for
observing multi-view data may not have good channel
conditions for wireless transmission, and thus may lead
to increased communication latency. Therefore, optimizing
the camera placement locations is an interesting direction
to enhance the training efficiency by properly balancing
the underlying tradeoff between computation (due to data
quality) versus communication (due to channel quality). In
the literature, ActiveNeRF [46] is an efficient method to
construct high-quality multi-view training data under limited
observation views. Specifically, ActiveNeRF introduces an
uncertainty parameter into the original NeRF architecture as
the additional output to identify and select novel views that
can most significantly benefit model performance. It will be
interesting to combine ActiveNeRF for camera deployment
with joint resource management to further enhance the
training performance over wireless networks.

D. EXTENSIONS
Besides the above federated radiance field learning design,
there are also some interesting extensions by considering the
asynchronous model aggregation, generalization issue, ver-
tical federated learning, and novel over-the-air computation
(AirComp) for highly-efficient aggregation. We discuss these
extensions to motivate future work.

1) ASYNCHRONOUS FEDERATED RADIANCE FIELD
LEARNING

The above federated radiance field learning design requires
synchronous learning among different end devices and edge
servers, which, however, can be challenging due to the
heterogeneity of different nodes. From the perspective of
end devices, the local training process varies due to the
heterogeneity of their computation capabilities, and thus
it is difficult to synchronize the local model training and
aggregation across diverse end devices. From the perspective
of data, local multi-view data have different distributions
across different end devices, thus frequent uploading of
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models on particular end devices may incur divergence
to the global radiance field model, resulting in overfitting
to specific datasets (i.e., specific observation views). A
promising solution is to execute the asynchronous learning,
in which the aggregation and construction of radiance field
models are conducted upon receiving local models from a
subset of devices, rather than postponing it until the entire
local models have been uploaded from all devices [47].
In such an asynchronous learning paradigm, proper device
selection becomes important. For instance, we need to
evaluate the contributions of different devices on the learning
of radiance field models over wireless environments, such
that those devices that significantly contribute to the overall
model convergence have higher priorities to be activated in
the learning process [48], [49].

2) GENERALIZABLE FEDERATED RADIANCE FIELD
LEARNING

Generalization is another crucial issue for evaluating 3D
representations. First, limited by inadequate training views,
NeRF and 3D-GS overfit to these sparse training views,
resulting in poor visualization performance from novel views.
Next, a well-trained radiance field model may be scene-
specific and struggle to represent different or dynamic
scenes. In the computer vision community, researchers spend
much effort to enhance the generalization ability [50], [51].
One promising solution is to first train a global model based
on training data from different scenes and then fine-tune this
model into a personalized one based on the private local
data [50]. When these pre-training and fine-tuning processes
of radiance field models are implemented distributedly at
edge servers and end devices, it is important to explore
the computation and communication resources management
designs to balance the training accuracy and latency [52].

3) VERTICAL FEDERATED RADIANCE FIELD LEARNING

Vertical federated radiance field learning is another
interesting issue, where datasets from different devices share
the same sample space but differ in feature spaces [53].
This is the case when depth cameras are practically involved
in generating depth maps (reflecting spatial information of
scenes), in addition to the conventional cameras generating
multi-view RGB images. To leverage the overall data
collected from RGB and depth cameras for efficient radiance
field model learning, we should consider vertical federated
learning paradigm together with depth images based radiance
field construction algorithms (see, e.g., [54]).

4) OVER-THE-AIR RADIANCE FIELD FEDERATED
LEARNING

In radiance field federated learning, a large number of
devices from different views may participate for high-quality
and large-scale 3D model training, where communication
delay becomes the performance bottleneck due to the
frequent exchange of model parameters. To alleviate such
challenges, AirComp [55] has emerged as a promising

solution to enable the so-called over-the-air learning (see,
e.g., [43]), where devices concurrently transmit their radiance
field models/gradients for simultaneous aggregation at the
server. By exploiting the superposition property of wire-
less multiple-access channels, AirComp could dramatically
improve the communication efficiency for aggregating radi-
ance field models, but may introduce a new type of AirComp
errors that may degrade the training convergence [43].
How to invoke AirComp into federated radiance field
learning, and accordingly perform learning performance
analysis (especially by taking into account the effect of
AirComp errors) and overall system resource management
are interesting directions. The synchronization of hierarchical
and heterogeneous devices in over-the-air radiance field
federated learning is a critical problem, especially for the
training of large-scale radiance field models.

5) RADIANCE FIELD FEDERATED LEARNING FOR
DYNAMIC SCENES

Dynamic scene representation is an important issue in
radiance field rendering, which has been investigated in prior
works [56], [57], [58]. In general, there are two methods to
represent the dynamic scenes. Firstly, for NeRF, deformable
neural networks are widely adopted to represent dynamic
scenes. For instance, the work [56] embeds an additional
time dimension into the model to control the color and
density for time-varying scenes. This allows the model
to account for dynamic changes over time. For 3D-GS,
deformable fields are exploited to dynamically control the
position and 3D covariance of Gaussians over time [57]. This
approach enables the 3D-GS model to adjust dynamically
as the scene changes, providing accurate representations of
dynamic scenes. Inspired by these methods, we can employ
federated learning to train deformable radiance field models
to represent dynamic scenes. Furthermore, another promising
method for dynamic scene representation is to first train a
generalized radiance field model to predict coarse color and
density information and then fine-tune it to predict finer
details for accurately rendering dynamic scenes [58].

IV. DEPLOYMENT AND RENDERING OF RADIANCE
FIELD OVER WIRELESS NETWORKS
Once the radiance field models are well-trained, we need to
deploy them over wireless networks for efficient rendering.
In this section, we first discuss three basic architectures for
radiance field rendering. Next, we discuss the techniques
of model compression and acceleration for enhancing the
efficiency of model transmission and rendering. Furthermore,
we provide various joint computation and communication
designs for radiance field rendering.

A. ARCHITECTURES FOR RADIANCE FIELD
RENDERING
Based on the locations deploying radiance field models,
the architectures for rendering are generally categorized as
three types, namely, edge rendering, local rendering, and
co-rendering, respectively, as illustrated in Fig. 4.
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FIGURE 4. Deployment and rendering of radiance fields over 6G networks.

1) LOCAL RENDERING

For local rendering, radiance field models are deployed at
end devices such as computers, mobile devices, and virtual
reality (VR) headsets, and accordingly the rendering process
is conducted locally at these devices. To implement local
rendering, the trained radiance field models are transmitted
to be deployed at local devices, such that local devices can
execute rendering instantly by using its local computation
power, and display the content based on the viewing
information of end users. The local rendering can generally
reduce the rendering latency due to the local processing,
which, however, may only work well when the radiance
models are lightweight, due to the limited computation and
storage capabilities at end devices.

2) EDGE RENDERING

For edge rendering, radiance field models are deployed at
edge servers close to end devices. In the edge rendering
process, the end devices first send viewing information to
edge servers, and then the servers can render images on the
viewing information and send back the rendering results to
the end devices. By leveraging the cloud-like computation
and storage capabilities at edge servers, edge rendering
can support the rendering of large radiance field models
in a swift manner. Nevertheless, the two-way round-trip
communication between the edge servers and end devices
becomes an important issue limiting the rendering efficiency.
Another design issue for enhancing the efficiency of

edge rendering is to select proper edge servers for model
deployment and accordingly determine the server-device
associations. On the one hand, the deployment of radi-
ance field models needs to not only consider the channel
conditions between the end devices and the associated
edge servers, but also the traffic load balancing among
multiple device-server pairs. On the other hand, the end

devices may move randomly over time, and the associated
edge servers need to change dynamically, thus further
complicating the deployment and migration issues. The
edge server selection and server-device association need to
comprehensively consider issues like edge traffic conditions,
wireless channel conditions, as well as user mobility for
efficient edge rendering.

3) CO-RENDERING

To fully utilize the computation resources at edges and
devices as well as exploit both benefits of local and edge
rendering, device-edge co-inference or co-rendering has
emerged as a promising solution, which has been widely
adopted in various AI applications nowadays [59]. In the
device-edge co-inference or local-remote co-rendering, the
radiance field models (e.g., the MLP neural network for
NeRF) are split into two parts to be deployed at end
devices and edge servers, respectively, such that the rendering
is implemented distributedly at the two types of nodes.
In the co-rendering process, the end devices first obtain
the opacities and colors of sampled points along the rays
based on the deployed partial radiance field models (e.g.,
MLPs). These colors and opacities serve as the intermediate
parameters, which are then sent to the server for volume
rendering. Finally, the server sends the rendering results
back to the devices. The co-rendering design is expected to
enhance the rendering performance via properly designing
the task allocation between the devices and servers, for which
the joint communication and computation designs become
essential.
In summary, the local rendering, edge rendering, and co-

rendering have their pros and cons in terms of rendering
latency and computation/storage resource requirements. First,
local rendering deploys trained radiance field models on local
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devices, enabling instant rendering by leveraging local com-
putational resources and avoiding long-distance transmission.
This approach minimizes latency but demands lightweight
models due to limited local computational and storage
capacities. Next, edge rendering allows the end devices to
send viewing information to edge servers, which render
images and then send the rendering results back. This may
result in substantial latency due to two-way communication,
but can handle larger models due to the richer computational
resources at edge servers. Furthermore, co-rendering com-
bines the strengths of local and edge rendering by utilizing
distributed resources of end devices while offloading heavy
tasks to edge servers, thus improving the overall rendering
performance. Despite its efficiency, co-rendering may still
encounter latency issues from the intermediate parameter
exchange between devices and servers. Therefore, the choice
of proper rendering architecture should consider specific
latency requirements and available computational/storage
resources.

B. MODEL COMPRESSION AND ACCELERATION
The compression of radiance field models and the algorith-
mic rendering acceleration designs are important to enhance
the efficiency for the transmission/deployment and rendering
of radiance fields.2

1) MODEL COMPRESSION

Compressing the radiance field models is essential for model
deployment, especially when the training nodes generating
the models are far-apart from the end users and the size of
trained models becomes large, e.g., for representing large-
scale scenes. The model compression can reduce the model
size, ensuring faster and more reliable transmission, which is
particularly important in scenarios with limited bandwidth or
under stringent latency requirements. Efficient radiance field
model compression approaches generally include network
pruning, quantization, low-rank approximation, and knowl-
edge distillation [16], [17]. For NeRF, network pruning and
weight quantization are efficient to remove the redundant
network layers and transform the full-precision floating-
point numbers into lower-bit representations, respectively.
Furthermore, low-rank approximation is applicable to replace
the high-rank matrices with low-rank ones, while knowledge
distillation extracts knowledge from a large model and
condenses it into a smaller one. Different from NeRF, the
size of 3D-GS models depends on the volume of explicit
data, i.e., the number of Gaussian functions. To efficiently
compress 3D-GS models, pruning [60] and quantization [61]
are promising to reduce the number of Gaussian functions
for decreasing the amount of explicit data, while maintaining
the rendering quality.

2Note that network routing and load balancing are also important for
the transmission of radiance field models over large-scale communications
networks when there are a large number of edge servers and end devices
demanding various different radiance field models. These issues, however,
are out of the scope of this paper on wireless edge networks in 6G, which
are interesting topics for future work.

2) ALGORITHMIC MODEL ACCELERATION

The acceleration of rendering from an algorithmic perspec-
tive is also useful to reduce rendering latency. This is
especially crucial for NeRF, where synthesizing new views
based on a well-trained model requires frequent queries to
MLPs for generating density and color at each sampling
point. This may incur significant time costs in the rendering
stage, and thus influence the overall latency of inference.
There are generally two approaches from the computer vision
community [32], [33], [34]. One approach is to pre-compute
and store the neural networks [32], transforming the original
NeRF model into more easily accessible data structures to
significantly reduce the rendering time. The other approach
is to learn the scene features by additionally utilizing other
representations like voxel grids [34], allowing for reducing
the size of neural networks and leading to less rendering
time.

C. JOINT COMPUTATION AND COMMUNICATION
DESIGN
Edge rendering and co-rendering require intensive compu-
tation at edge servers and end devices as well as frequent
information transmission between them. Therefore, it is
becoming necessary to jointly design the computation and
communication for enhancing the efficiency. In the follow-
ing, we first discuss joint computation and communication
resource management, and then introduce new semantic
communications for facilitating radiance field rendering.

1) JOINT RESOURCE MANAGEMENT

Joint communication, computation, and storage resources
optimization has been investigated in the MEC literature
for enhancing the service performance. For example, the
authors in [62] considered the immersive VR video trans-
mission design with MEC in THz communication scenarios,
where the rendering task offloading and transmission power
allocation are jointly designed to minimize total energy
consumption. The authors in [63] proposed a joint com-
munication, caching, and computing design to optimize the
mobile VR delivery strategy, providing profound insights into
the communication-storage-computing tradeoff. The authors
in [64] proposed an edge-device collaborative rendering VR
framework, in which the rendering tasks are split to be
executed at edge servers and end devices by taking into
account the practical constraints on bandwidth resources and
latency. While these joint resource management designs are
promising, they have not considered the specific properties
of radiance field rendering for 3D contents. With NeRF and
3D-GS based representations, we can design the rendering
resolutions as a new design degree of freedom for NeRF
or 3D-GS, together with the joint resource management,
for enhancing rendering efficiency. For 3D-GS, we can also
design the number of Gaussian functions together with the
resource management optimization.
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FIGURE 5. Illustration of proposed semantic communications framework for 3D human face transmission with NeRF.

2) SEMANTIC COMMUNICATIONS ENABLED RADIANCE
FIELD RENDERING

Under the local-remote co-rendering architecture, both the
server and the device collaboratively execute rendering
tasks, where frequent data exchanges may incur significant
communication overhead. To tackle this issue, semantic
communications, a novel communication system design
paradigm beyond the conventional bit-level transmission, is
becoming an interesting new solution that can be applied to
enhance the end-to-end rendering performance. The effective
transmission and rendering of 3D contents with semantic
communications rely on the semantic knowledge base
construction and semantic feature extraction. Specifically,
semantic knowledge base provides rich knowledge for
semantic information processing (i.e., feature extraction and
data recovery) [65], which can be exploited as the side
information at both the transmitter and the receiver to
reduce the transmitted bits while preserving the QoE. In
particular, radiance field models can be exploited as high-
quality semantic knowledge base storing fruitful radiance
information of 3D scenes [1]. With such knowledge base,
the transmitter only needs to extract and transmit essential
semantic features to the receiver for real-time 3D recon-
struction. Furthermore, to accommodate the dynamic channel
conditions especially in the wireless environment, channel
condition-aware semantic feature selection and transmis-
sion policies should be further designed. The semantic
communications-based co-inference is appealing for not only
reconstructing 3D contents, but also for further performing
downstream intelligent tasks such as 3D video analysis. A
case study on using semantic communications for 3D human
face transmission is presented in the next section to show
the value of semantic communications in this direction.

V. CASE STUDY: SEMANTIC COMMUNICATION FOR 3D
CONTENT TRANSMISSION
This section presents a novel semantic communications
framework for the transmission and reconstruction of a

particular type of 3D content, i.e., 3D human face, by con-
sidering the presentation via NeRF [1]. In the literature, there
have been extensive prior works investigating the semantic
transmission of 2D content (see, e.g., [65], [66], [67]).
However, there are only a few studies exploiting 3D content
transmission via semantic communications [19], [68]. The
work [19] proposed to use keypoints, 2D images, and text
as the semantics to transmit the 3D content by using the
mesh representation. The work [68] explored the 3D point
cloud wireless transmission by using the keypoints of human
avatars as the semantic features. Despite these advancements,
3D content semantic communication with radiance fields,
especially NeRF and 3D-GS, has not been studied yet.
The semantic communications framework with NeRF

(NeRF-SeCom) for 3D human face transmission is shown
in Fig. 5, which includes face semantic feature extraction,
feature selection, feature chunk packing, learning-based fea-
ture prediction, and face rendering. Semantic knowledge base
aims to provide rich knowledge for semantic information
processing (i.e., feature extraction and data recovery), which
is essential in semantic communication systems [65]. We
exploit the NeRFBlendShape [69] face NeRF model, which
employs a multi-level hash table [33] to associate expression
coefficients for accelerating the rendering process. This
model serves as the semantic knowledge base, assisting in
both face semantic feature extraction and face rendering. The
NeRFBlendShape face model is expressed as

R̂β(C, e) → (σ, c), (2)

where R̂ represents the querying of hash table and MLP
networks, β represents the learnable weight parameters
of the MLP network, and C and e = {e1, e2, . . . , eM}
∈ R

M denote the camera parameters and the expression
feature coefficients, respectively. Here, M denotes the total
dimension of the expression features. NeRFBlendShape
adopts the facial expression as the semantic feature to
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represent 3D faces. Accordingly, the human face based on
NeRFBlendShape is rendered by

Î = V
(Rβ(C, e)

)
, (3)

where V(·) represents the volume rendering. In our imple-
mentation, we first pre-train the NeRFBlendShape-based
facial knowledge base with a segment of monocular video
of human faces as the training dataset in an offline manner.
Next, the pre-trained semantic knowledge base is shared at
the transmitter and receiver before 3D face transmission. The
semantic knowledge base corresponds to the facial identity,3

and as a result only needs to be trained and transmitted
once for the same person over a long time period consisting
of a large number of video chunks. It is worth noting
that the NeRFBlendShape model is lightweight and thus it
can be transmitted without influencing the communication
latency in real time. In the following, we provide the detailed
workflow of our proposed NeRF-SeCom framework.
First, semantic feature extraction is performed on the input

video at the transmitter. The face feature extraction follows
from the facial blendshape method [70], in which each
expression coefficient has a corresponding specified semantic
meaning. Then we obtain the expression coefficients and the
face pose parameters as e = {e1, . . . , eM} of each frame,
where M represents the dimension of expression coefficients.
Next, features are packed into a video chunk. Unlike

traditional video streaming, which encodes a batch of video
frames into video chunks for each transmission, our frame-
work packs the extracted features into chunks. To efficiently
reduce the communication overhead for transmission, we
classify the expression features into static and dynamic types.
Accordingly, for each chunk, we allow the transmitter to
send the average value of static expression coefficients only
once for the whole video chunk with N frames, and transmit
the dynamic expression coefficients for a number of Nf ≤ N
frames to adhere to the rate constraint. In particular, suppose
that the total number of dynamic expression features is Mdyn,
and each expression coefficient in one frame is quantized
to a size of Q bits. Therefore, the transmitted bits in the
first frame are QM, and the transmitted bits in the remaining
frames are Q(Nf −1)Mdyn. Then we have the total bits to be
transmitted as QM+Q(Nf−1)Mdyn, which should not exceed
τR, with τ , R denoting the latency and communication rate,
respectively. Accordingly, we have QM + Q(Nf − 1)Mdyn
≤ τR.

After receiving the expression features in the whole chunk,
the receiver renders the 3D human face by utilizing the
NeRF models in the shared facial knowledge base. Here,
the users can freely change their viewing directions to
render the viewpoints of the 3D content. However, the
face rendering needs the complete expression features over
all frames, but only dynamic expressions in the first Nf

3The research on generalizable face models applicable to different
identities is indeed an interesting direction and holds significant potential.
How to generate such models is beyond the scope of the current work and
can be considered for future research.

FIGURE 6. Performance comparison between our proposed NeRF-SeCom
framework versus benchmark schemes in terms of average PSNR under variational
communication rates.

frames are transmitted. Therefore, we need to develop
proper feature prediction methods for estimating the dynamic
expressions in the remaining N − Nf frames based on the
received features. In particular, we develop a long short-term
memory (LSTM) network for prediction. Specifically, we
utilize the expression parameters from previous frames in the
sequence to predict the expression parameters of subsequent
frames. On the receiver side, the received expression features
{e1, e2, . . . , eNf } of each chunk are fed into the LSTM
network to generate the predicted expression coefficients
{eNf+1, eNf+2, . . . , eN}.
To demonstrate the effectiveness of our proposed frame-

work, we conduct the following experiments under the
communication rate constraints. First, we compare the
quality of facial reconstruction of our proposed NeRF-
SeCom framework with the benchmarks that deactivate
feature selection scheme or deactivate both feature selection
and prediction schemes. We evaluate the performance via
the average peak signal-to-noise ratio (PSNR) in one chunk
(i.e., 100 frames). Second, we compare the visual rendering
results on different frames by our proposed framework,
versus those by NeRFBlendShape (without communication),
and the source images.
Fig. 6 shows the performance of our proposed NeRF-

SeCom framework and the benchmark schemes under
variational communication rate. It is observed from Fig. 6
that our proposed framework maintains satisfied recon-
struction performance under different data rates, and the
performance increases as the communication rate increases.
Moreover, in high rate regime, the performance of our
proposed framework converges to the upper bound since the
communication rate can ensure the full transmission of total
video frames in one chunk. Next, it is also observed that the
proposed framework outperforms the benchmark schemes
significantly, which demonstrates the effectiveness of our
proposed framework with feature selection and prediction.
However, in high and low rate regimes, the performance gaps
between the proposed framework and benchmark schemes
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FIGURE 7. Rendering results comparison sampled from frame 61, 80, and 100 with
NeRFBlendShape and ground truth by setting Nf = 60.

are limited. This is due to the fact that, on the one hand,
in low rate regimes, long time-step predictions lead to
accumulated errors. On the other hand, in high rate regimes,
the need for feature selection and prediction significantly
reduces due to the sufficiently high communication rate for
feature transmission.
Fig. 7 shows the comparison of visual rendering results

among our proposed framework, NeRFBlendShape, and the
source images under Nf = 60. We provide the rendering
results of the 61-st frame (the first frame to start prediction),
the 80-th, and the 100-th frame (the last frame) for compar-
ison. It is observed that our proposed framework can render
high-quality facial images compared to the NeRFBlendShape
scheme. It is also observed that as the amount of predicted
frames increases, the error of the rendered face rises. This
is due to the fact that each shift of the sliding window
incorporates the current predicted results as true values for
subsequent predictions. In such a case, the accumulation of
prediction errors from the previous sequence deteriorates the
system performance.
It is worth emphasizing that although this case study

focuses on 3D human face transmission by exploiting the
NeRF face model as the semantic knowledge base, our
proposed semantic framework can be well generalized to
other 3D contents. First, this framework can be implemented
in the 3D human avatar transmission by exploiting avatar
radiance field models such as [71] as the semantic knowledge
base to facilitate semantic information processing. The
effectiveness of this paradigm has been demonstrated by the
prior works that exploit conventional 3D representations as
the semantic knowledge base in human avatar transmission.
For example, the work [68] proposed a point cloud semantic
communication framework, in which an avatar model storing
skeleton and appearance information is exploited as the
knowledge base to help semantic information extraction and
avatar pose recovery, but this work did not consider radiance
field model. Besides, our framework can be implemented
in the transmission of complex scenes. We can exploit a
radiance field model to store the features of scenes like [50]
as the semantic knowledge base, which is a generic model

pre-trained on large scene datasets. By leveraging this model
at both transmitter and receiver, we only need to transmit
features extracted from the images of target scenes at the
transmitter and fine-tune the pre-trained scene model based
on the received features at the receiver. Accordingly, we can
reconstruct the scene following the volume rendering. This
is an interesting direction worth investigating in future work.

VI. RADIANCE FIELD RENDERING FOR WIRELESS
APPLICATIONS
The previous sections focused on how to use distributed
computation and communication resources to support the
training and rendering of radiance fields over 6G networks.
Motivated by the success of radiance field in representing
the distribution of light, it is envisioned that radiance field
rendering is promising for the representation of wirelessly
generated 3D information based on the physical process
modeling of wireless transmission. This is becoming increas-
ingly vital for the development of 6G networks with sensing
integration [4] and environment awareness [29]. In this
section, we discuss three wireless applications using radiance
field rendering. First, we discuss the utilization of radiance
field rendering to facilitate radio map construction and radar
imaging (particularly SAR imagery), respectively. Finally,
we introduce the use of radiance field rendering for multi-
modal-sensing-assisted communications.

A. RADIO MAP
Radio map is a location-specific database that stores the wire-
less environment information, providing channel knowledge
based on the locations of transmitter and receiver [29]. By
using the knowledge of RF signal propagation in radio map,
we can predict the wireless environment to enable efficient
environment-aware communications and flexible frequency
management. Motivated by the fact that neural networks
in NeRF are effective in modeling light propagation, the
work [27] proposed to use neural networks to model the
RF signal propagation, thus constructing an RF radiance
field. More specifically, the RF radiance field takes the
positions of transmit antennas and receive antennas and the
signal measuring direction as input, and outputs the received
signals and the attenuation from the measuring direction. As
such, the RF radiance field performs as an implicit radio
map. Given the position of the transmitter, we can predict
the received signals at specific positions. Compared to the
conventional approaches, the radiance field-based radio map
achieves better performance due to the excellent capability of
neural networks to simulate the extremely complex wireless
environment. It is interesting to exploit radiance field-based
radio map to enable various designs in wireless networks,
such as transceiver beamforming, channel estimation, and
wireless infrastructure deployment.

B. RADAR IMAGING
Radiance field rendering also holds potential to enhance the
performance of radar imaging. Radar imaging, especially
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SAR, has achieved great success in the field of remote
sensing due to its robust ability to sense targets and generate
images under poor light and weather conditions. However,
SAR imaging suffers from its sensitivity to viewing angles.
This property makes it difficult to exploit conventional deep
learning techniques to effectively learn the features of SAR
imagery and infer images from novel viewing angles. To
address this issue, the work [28] proposed to use neural
networks to learn the distribution of attenuation coefficients
and scattering intensities, and then render images based on
the mapping and projection algorithms. This method demon-
strates superior performance over conventional techniques
in generating high-quality images from multiple viewing
angles. Such advancements can be utilized to improve the
recognition and detection capabilities of applications in
remote sensing.

C. MULTI-MODAL-SENSING-ASSISTED
COMMUNICATIONS
Radiance field rendering can be exploited to obtain rich
environment information from multi-modal data to help
predict the wireless channel information and construct the
channel knowledge map. First, NeRF and 3D-GS have been
successfully used to effectively represent light distribution
in 3D space to render multi-view vision images and depth
images, which can be utilized to improve the performance of
detecting objects in 3D space by using spatial information.
Accordingly, the detected objects are useful to predict the
environmental blockages and scatterers for inferring the
channel state information, and accordingly construct the
channel knowledge maps. Next, radiance fields are also used
to model the wireless signal propagation and render the RF
signals, which can be exploited to assist BS deployment,
wireless sensing, beamforming, and wireless resource alloca-
tions. There are some existing works to explore the utilization
of vision information to assist communication [30], [31].
However, these works use 2D single-view images, without
considering spatial information. Therefore, exploring multi-
modal-sensing-assisted communications with radiance field
rendering is a promising research direction and requires
further investigation.

VII. CONCLUSION
This paper provided a comprehensive overview on the inno-
vative integration of radiance field rendering in 6G networks,
by particularly focusing on the over-the-air training and
inference of NeRF and 3D-GS for support various emerging
intelligent 6G applications. First, we provided a brief review
on radiance field rendering techniques, highlighting their
applications and technical challenges encountered when
implementing over wireless networks. Then, we discussed
the architectures and techniques to train NeRF and 3D-GS
models over the air, by paying particular attention to
the federated learning design over a hierarchical device-
edge-cloud architecture. Next, we discuss the practical
rendering architectures of NeRF and 3D-GS models in

wireless networks to enable over-the-air inference by using
distributed computation and communication resources. We
proposed a new semantic communication enabled inference
design, in which radiance field models act as a semantic
knowledge base, thereby reducing communication overhead
and optimizing rendering efficiency. Finally, we discussed
the application of radiance field rendering in wireless fields,
such as radio mapping, radar imaging, and multi-modal-
sensing-assisted communications, in which NeRF models are
used to effectively represent complex radio environments
for supporting environment-aware wireless network design.
Overall, this paper aims to shed light on the technical
feasibilities and advantages of embracing NeRF and 3D-GS
in 6G networks and open up new prospects for leveraging
3D contents in enhancing future wireless networks. It is our
hope that the insights presented in this paper will inspire
further research and development in the field, pushing the
boundaries of 6G networks.

REFERENCES
[1] G. Wu, Z. Lyu, J. Zhang, and J. Xu, “Semantic communications for

3D human face transmission with neural radiance fields,” in IEEE
Proc. Int. Symp. Wireless Commun. Syst. (ISWCS), to be published
used.

[2] Future Technology Trends of Terrestrial International Mobile
Telecommunications Systems Towards 2030 and Beyond, ITU-Rec.
WP5D, Int. Telecommun. Union, Geneva, Switzerland, Nov. 2022.
[Online]. Available: https://www.itu.int/pub/R-REP-M.2516

[3] G. Zhu et al., “Pushing AI to wireless network edge: An overview
on integrated sensing, communication, and computation towards 6G,”
Sci. China Inf. Sci., vol. 66, no. 3, Feb. 2023, Art. no. 130301.

[4] F. Liu et al., “Integrated sensing and communications: Toward dual-
functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas
Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.

[5] X. S. Shen et al., “Toward immersive communications in 6G,” Front.
Comput. Sci., vol. 4, Jan. 2023, Art. no. 1068478.

[6] E. Ahmed et al., “A survey on deep learning advances on different
3D data representations,” 2019, arXiv:1808.01462.

[7] X. Li et al., “Advances in 3D generation: A survey,” 2024,
arXiv:2401.17807.

[8] D. Bommes et al., “Quad-mesh generation and processing: A survey,”
Comput. Graph. Forum, vol. 32, no. 6, pp. 51–76, Mar. 2013.

[9] M. Aleksandrov, S. Zlatanova, and D. J. Heslop, “Voxelisation
algorithms and data structures: A review,” Sensors, vol. 21, no. 24,
p. 8241, Dec. 2021.

[10] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in
Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, 2011, pp. 1–4.

[11] B. R. de Araújo, D. S. Lopes, P. Jepp, J. A. Jorge, and B. Wyvill,
“A survey on implicit surface polygonization,” ACM Comput. Surv.,
vol. 47, no. 4, pp. 1–39, May 2015.

[12] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “NeRF: Representing scenes as neural
radiance fields for view synthesis,” Commun. ACM, vol. 65, no. 1,
pp. 99–106, Dec. 2021.

[13] B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis, “3D Gaussian
splatting for real-time radiance field rendering,” ACM Trans. Graph.,
vol. 42, no. 4, p. 139, Jul. 2023.

[14] K. Gao, Y. Gao, H. He, D. Lu, L. Xu, and J. Li, “NeRF:
Neural radiance field in 3D vision, a comprehensive review,” 2023,
arXiv:2210.00379.

[15] A. Yaqoob, T. Bi, and G.-M. Muntean, “A survey on adaptive
360◦ video streaming: Solutions, challenges and opportunities,” IEEE
Commun. Surveys Tuts., vol. 22, no. 4, pp. 2801–2838, 4th Quart.,
2020.

[16] Y. Jin, K. Hu, J. Liu, F. Wang, and X. Liu, “From capture to display:
A survey on volumetric video,” 2023, arXiv:2309.05658.

[17] G. Chen and W. Wang, “A survey on 3D Gaussian splatting,” 2024,
arXiv:2401.03890.

4290 VOLUME 5, 2024



[18] B. Jedari, G. Premsankar, G. Illahi, M. D. Francesco, A. Mehrabi, and
A. Ylä-Jääski, “Video caching, analytics, and delivery at the wireless
edge: A survey and future directions,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 1, pp. 431–471, 1st Quart., 2021.

[19] R. Cheng, K. Liu, N. Wu, and B. Han, “Enriching telepresence with
semantic-driven holographic communication,” in Proc. 22nd ACM
Workshop Hot Topics Netw., 2023, pp. 147–156.

[20] C. Xu et al., “NeRF-Det: Learning geometry-aware volumetric
representation for multi-view 3D object detection,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Paris, France, 2023, pp. 23320–23330.

[21] F. Tosi et al., “How NeRFs and 3D Gaussian splatting are reshaping
SLAM: A survey,” 2024, arXiv:2402.13255.

[22] M. Adamkiewicz et al., “Vision-only robot navigation in a neural radi-
ance world,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 4606–4613,
Apr. 2022.

[23] W. Wang, V. Cai, and S. Gil, “MULAN-WC: Multi-robot localization
uncertainty-aware active NeRF with wireless coordination,” 2024,
arXiv:2403.13348.

[24] E. Šlapak, M. Dopiriak, M. A. A. Faruque, J. Gazda, and M. Levorato,
“Distributed radiance fields for edge video compression and metaverse
integration in autonomous driving,” 2024, arXiv:2402.14642.

[25] Z. Lyu, G. Zhu, and J. Xu, “Joint maneuver and beamforming design
for UAV-enabled integrated sensing and communication,” IEEE Trans.
Wireless Commun., vol. 22, no. 4, pp. 2424–2440, Apr. 2023.

[26] S. Lu et al., “Integrated sensing and communications: Recent advances
and ten open challenges,” IEEE Internet Things J., vol. 11, no. 11,
pp. 19094–19120, Jun. 2024.

[27] X. Zhao, Z. An, Q. Pan, and L. Yang, “NeRF2: Neural radio-frequency
radiance fields,” in Proc. 29th Annu. Int. Conf. Mobile Comput. Netw.
(MobiCom), Madrid, Spain, 2023, p. 15.

[28] Z. Lei, F. Xu, J. Wei, F. Cai, F. Wang, and Y.-Q. Jin, “SAR-
NeRF: Neural radiance fields for synthetic aperture radar multi-view
representation,” 2023, arXiv:2307.05087.

[29] Y. Zeng et al., “A tutorial on environment-aware communications via
channel knowledge map for 6G,” IEEE Commun. Surveys Tuts., early
access, Feb. 9, 2024, doi: 10.1109/COMST.2024.3364508.

[30] G. Charan, M. Alrabeiah, and A. Alkhateeb, “Vision-aided 6G wireless
communications: Blockage prediction and proactive handoff,” IEEE
Trans. Veh. Technol., vol. 70, no. 10, pp. 10193–10208, Oct. 2021.

[31] Y. Feng, F. Gao, X. Tao, S. Ma, and H. V. Poor, “Vision-
aided ultra-reliable low-latency communications for smart factory,”
IEEE Trans. Commun., vol. 72, no. 6, pp. 3439–3453, Jun. 2024,
doi: 10.1109/TCOMM.2024.3357630.

[32] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and
P. Debevec, “Baking neural radiance fields for real-time view
synthesis,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 2021,
pp. 5875–5884.

[33] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Trans. Graph.,
vol. 41, no. 4, pp. 1–15, Jul. 2022.

[34] L. Wu, J. Y. Lee, A. Bhattad, Y.-X. Wang, and D. Forsyth, “DIVeR:
Real-time and accurate neural radiance fields with deterministic
integration for volume rendering,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2022, pp. 16200–16209.

[35] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-efficient learning of deep networks from decen-
tralized data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273–1282.

[36] G. Cheng, X. Song, Z. Lyu, and J. Xu, “Networked ISAC for low-
altitude economy: Transmit beamforming and UAV trajectory design,”
2024, arXiv:2405.07568.

[37] M. Tancik et al., “Block-NeRF: Scalable large scene neural view
synthesis,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2022, pp. 8248–8258.

[38] L. Holden, F. Dayoub, D. Harvey, and T.-J. Chin, “Federated neural
radiance fields,” 2023, arXiv:2305.01163.

[39] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016,
pp. 4104–4113.

[40] B. Mildenhall et al., “Local light field fusion: Practical view synthesis
with prescriptive sampling guidelines,” ACM Trans. Graph., vol. 38,
no. 4, pp. 1–14, Jul. 2019.

[41] T. Suzuki, “Federated learning for large-scale scene modeling with
neural radiance fields,” 2024, arXiv:2309.06030.

[42] T. Suzuki, “Fed3DGS: Scalable 3D Gaussian splatting with federated
learning,” 2024, arXiv:2403.11460.

[43] X. Cao, Z. Lyu, G. Zhu, J. Xu, L. Xu, and S. Cui, “An overview on
over-the-air federated edge learning,” IEEE Wireless Commun., vol.
31, no. 3, pp. 202–210, Jun. 2024.

[44] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for
large-scale machine learning,” SIAM Rev., vol. 60, no. 2, pp. 223–311,
2018.

[45] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize better:
Closing the generalization gap in large batch training of neural
networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 1–15.

[46] X. Pan, Z. Lai, S. Song, and G. Huang, “ActiveNeRF: Learning
where to see with uncertainty estimation,” in Proc. ECCV, 2022,
pp. 230–246.

[47] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated
optimization,” 2020, arXiv:1903.03934.

[48] X. Yu et al., “Async-HFL: Efficient and robust asynchronous federated
learning in hierarchical IoT networks,” in Proc. 8th ACM/IEEE Conf.
Internet Things Design Implement., 2023, pp. 236–248.

[49] C. Xu, Y. Qu, Y. Xiang, and L. Gao, “Asynchronous federated learning
on heterogeneous devices: A survey,” Comput. Sci. Rev., vol. 50,
Nov. 2023, Art. no. 100595.

[50] A. Chen et al., “MVSNeRF: Fast Generalizable radiance field
reconstruction from multi-view stereo,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), 2021, pp. 14124–14133.

[51] A. Yu, V. Ye, M. Tancik, and A. Kanazawa, “pixelNeRF: Neural
radiance fields from one or few images,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2021, pp. 4578–4587.

[52] Z. Lyu, Y. Li, G. Zhu, J. Xu, H. V. Poor, and S. Cui, “Rethinking
resource management in edge learning: A joint pre-training and fine-
tuning design paradigm,” 2024, arXiv:2404.00836.

[53] Y. Liu et al., “Vertical federated learning: Concepts, advances, and
challenges,” IEEE Trans. Knowl. Data Eng., early access, vol. 36, no.
7, pp. 3615–3634, Jul. 2024.

[54] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan, “Depth-supervised
NeRF: Fewer views and faster training for free,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2022, pp. 12882–12891.

[55] G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for
wireless data aggregation in massive IoT,” IEEE Wireless Commun.,
vol. 28, no. 4, pp. 57–65, Aug. 2021.

[56] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-
NeRF: Neural radiance fields for dynamic scenes,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2021, pp. 10318–10327.

[57] Z. Yang, X. Gao, W. Zhou, S. Jiao, Y. Zhang, and X. Jin,
“Deformable 3D Gaussians for high-fidelity monocular dynamic
scene reconstruction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2024, pp. 20331–20341.

[58] L. Wang et al., “Fourier PlenOctrees for dynamic radiance field
rendering in real-time,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2022, pp. 13524–13534.

[59] J. Yan, S. Bi, and Y.-J. A. Zhang, “Optimal model placement and
online model splitting for device-edge co-inference,” IEEE Trans.
Wireless Commun., vol. 21, no. 10, pp. 8354–8367, Oct. 2022.

[60] Z. Fan, K. Wang, K. Wen, Z. Zhu, D. Xu, and Z. Wang,
“LightGaussian: Unbounded 3D gaussian compression with 15x
reduction and 200+ FPS,” 2024, arXiv:2311.17245.

[61] K. Navaneet, K. P. Meibodi, S. A. Koohpayegani, and H. Pirsiavash,
“Compact3D: Compressing Gaussian splat radiance field models with
vector quantization,” 2023, arXiv:2311.18159.

[62] J. Du, F. R. Yu, G. Lu, J. Wang, J. Jiang, and X. Chu, “MEC-assisted
immersive VR video streaming over terahertz wireless networks: A
deep reinforcement learning approach,” IEEE Internet Things J., vol. 7,
no. 10, pp. 9517–9529, Oct. 2020.

[63] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Communications, caching, and
computing for mobile virtual reality: Modeling and tradeoff,” IEEE
Trans. Commun., vol. 67, no. 11, pp. 7573–7586, Nov. 2019.

[64] C. Xu, Z. Chen, M. Tao, and W. Zhang, “Edge-device col-
laborative rendering for wireless multi-user interactive virtual
reality in Metaverse,” in Proc. IEEE Glob. Commun. Conf., 2023,
pp. 3542–3547.

[65] J. Ren et al., “Knowledge base enabled semantic communication: A
generative perspective,” 2023, arXiv:2311.12443.

VOLUME 5, 2024 4291

http://dx.doi.org/10.1109/COMST.2024.3364508
http://dx.doi.org/10.1109/TCOMM.2024.3357630


WU et al.: EMBRACING RADIANCE FIELD RENDERING IN 6G

[66] Z. Lyu, G. Zhu, J. Xu, B. Ai, and S. Cui, “Semantic communications
for image recovery and classification via deep joint source and channel
coding,” IEEE Trans. Wireless Commun., early access, Jan. 10, 2024,
doi: 10.1109/TWC.2023.3349330.

[67] L. Yan, Z. Qin, R. Zhang, Y. Li, and G. Y. Li, “Resource allocation
for text semantic communications,” IEEE Wireless Commun. Lett.,
vol. 11, no. 7, pp. 1394–1398, Jul. 2022.

[68] Z. Wang, Y. Deng, and A. H. Aghvami, “Task-oriented and semantics-
aware communication framework for avatar-centric augmented reality,”
2024, arXiv:2306.15470.

[69] X. Gao, C. Zhong, J. Xiang, Y. Hong, Y. Guo, and J. Zhang,
“Reconstructing personalized semantic facial NeRF models from
monocular video,” ACM Trans. Graph., vol. 41, no. 6, pp. 1–12,
Nov. 2022.

[70] C. Cao, Y. Weng, S. Zhou, Y. Tong, and K. Zhou, “FaceWarehouse:
A 3D facial expression database for visual computing,” IEEE Trans.
Vis. Comput. Graph., vol. 20, no. 3, pp. 413–425, Mar. 2014.

[71] S.-Y. Su, F. Yu, M. Zollhoefer, and H. Rhodin, “A-NeRF: Articulated
neural radiance fields for learning human shape, appearance, and
pose,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34, 2021,
pp. 12278–12291.

GUANLIN WU received the B.E. degree from Sun
Yat-sen University, Guangzhou, China, in 2021,
and the M.S. degree from The Chinese University
of Hong Kong, Shenzhen, China, in 2023, where
he is currently pursuing the Ph.D. degree with
the School of Science and Engineering and the
Shenzhen Future Network of Intelligence Institute.
His research interests include immersive commu-
nications, integrated sensing and communication,
and edge intelligence.

ZHONGHAO LYU (Graduate Student Member,
IEEE) received the B.Eng. degree from the Dalian
University of Technology, China, in 2018, and
the M.Eng. degree from the University of Science
and Technology of China, China, in 2021. He
is currently pursuing the Ph.D. degree with the
School of Science and Engineering and the
Shenzhen Future Network of Intelligence Institute,
The Chinese University of Hong Kong, Shenzhen,
China, and a visiting student with the Shenzhen
Research Institute of Big Data, China. His research

interests include UAV communications, integrated sensing and communi-
cation, and edge intelligence.

JUYONG ZHANG (Member, IEEE) received the
B.S. degree from the University of Science
and Technology of China in 2006, and the
Ph.D. degree from Nanyang Technological
University, Singapore. He is a Professor with the
School of Mathematical Sciences, University of
Science and Technology of China. His research
interests include computer graphics, computer
vision, and numerical optimization. He is an
Associate Editor of IEEE TRANSACTIONS ON

MULTIMEDIA and IEEE COMPUTER GRAPHICS

AND APPLICATIONS.

JIE XU (Senior Member, IEEE) received the
B.E. and Ph.D. degrees from the University
of Science and Technology of China in 2007
and 2012, respectively. From 2012 to 2014, he
was a Research Fellow with the Department of
Electrical and Computer Engineering, National
University of Singapore. From 2015 to 2016,
he was a Postdoctoral Research Fellow with the
Engineering Systems and Design Pillar, Singapore
University of Technology and Design. From 2016
to 2019, he was a Professor with the School of

Information Engineering, Guangdong University of Technology, China.
He is currently an Associate Professor (Tenured) with the School of
Science and Engineering, The Chinese University of Hong Kong, Shenzhen,
China. His research interests include wireless communications, wireless
information and power transfer, UAV communications, edge computing and
intelligence, and integrated sensing and communication (ISAC). He was
a recipient of the 2017 IEEE Signal Processing Society Young Author
Best Paper Award, the IEEE/CIC ICCC 2019 Best Paper Award, the 2019
IEEE Communications Society Asia–Pacific Outstanding Young Researcher
Award, and the 2019 Wireless Communications Technical Committee
Outstanding Young Researcher Award. He is the Symposium Co-Chair of
the IEEE GLOBECOM 2019 Wireless Communications Symposium, the
Workshop Co-Chair of several IEEE ICC and GLOBECOM workshops, the
Tutorial Co-Chair of the IEEE/CIC ICCC 2019, the Vice Chair of the IEEE
Wireless Communications Technical Committee, and the Vice Co-Chair of
the IEEE Emerging Technology Initiative on ISAC. He served or is serving
as an Associate Editor-in-Chief for the IEEE TRANSACTIONS ON MOBILE

COMPUTING, an Editor for the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, IEEE TRANSACTIONS ON COMMUNICATIONS, IEEE
WIRELESS COMMUNICATIONS LETTERS, and Journal of Communications
and Information Networks, an Associate Editor for IEEE ACCESS, and a
Guest Editor for the IEEE WIRELESS COMMUNICATIONS, IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS, IEEE Internet of Things
Magazine, Science China Information Sciences, and China Communications.

4292 VOLUME 5, 2024

http://dx.doi.org/10.1109/TWC.2023.3349330


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


