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ABSTRACT This paper proposes reliability-based decoding for complex low-density lattice codes
(CLDLC) which can be applied to both Gaussian and Eisenstein integers. Two major contributions are:
first, a decoding algorithm for CLDLC using a likelihood-based reliability function is used to determine the
number of complex Gaussian functions at the variable node. This allows each message to be approximated
by a variable number of Gaussian functions depending upon its reliability. An upper bound on the Kullback-
Leibler (KL) divergence of the approximation is formed to find selection thresholds via linear regression.
Second, a construction of CLDLC using Eisenstein integers is given. Compared to Gaussian integers, this
reduces the complexity of CLDLC decoding by exploiting the structure of the Eisenstein integers. The
proposed CLDLC decoding algorithm has higher performance and lower complexity compared to existing
algorithms. When the reliability-based algorithm is applied to Eisenstein integer CLDLC decoding, the
complexity is reduced to O(n · t · 1.35d−1) at the volume-to-noise ratio of 6 dB, for lattice dimension
n, with degree d inverse generator matrix and t decoding iterations. Decoding CLDLC using Eisenstein
integers has lower complexity than CLDLC using Gaussian integers when n ≥ 49.

INDEX TERMS Complex low-density lattice codes, low-density lattice codes, parametric decoder, lattice
decoder, Eisenstein integers, Gaussian integers.

I. INTRODUCTION
A. BACKGROUND

CODEDMODULATION increases the spectral efficiency
of wireless communication systems. Lattice codes are

elegant and powerful structures for coded modulation that not
only can achieve the capacity of the additive white Gaussian
noise (AWGN) channel but are also a key ingredient to
many multi-terminal schemes that exploit linearity properties
[1], [2], [3]. There is an always-increasing demand for
increased spectrum efficiency, massive connectivity, and
higher data rates; in post-5G or 6G wireless networks, lattice
codes are a potential candidate to achieve these goals [4],
[5], [6], [7].

Low-density lattice codes (LDLC) defined over the real
numbers were proposed by Sommer et al. [8]. These lattice
codes can be encoded and decoded efficiently in high-
dimensional Euclidean space, and error-free decoding is
possible within 0.6 dB of the unconstrained power channel
capacity [9]. LDLC lattices have a sparse inverse generator
matrix. Based on this property, LDLC can be decoded

on principles similar to low-density parity-check (LDPC)
codes using the belief propagation (BP) decoding algo-
rithm [10]. The messages in the iterative decoding process
are probability density functions for each lattice symbol,
and the algorithm has a complexity that is linear in lattice
dimension n.
These real-valued LDLC were extended to the complex

numbers by Yona and Feder [11]. Such complex low-
density lattice codes (CLDLC) provide several advantages.
For instance, CLDLC are naturally matched to complex-
valued channels, and they are a suitable construction for
the compute-and-forward (C&F) paradigm as an alternative
strategy for wireless networks [12]. Another advantage is
that CLDLC increases the coding gain compared to real
LDLC [11]. An n-dimensional CLDLC is not simply a
2n-dimensional real LDLC, but rather the CLDLC is directly
generated over the domain of complex numbers. CLDLC
outperforms 2n-dimensional real LDLC because the real-
valued parity check matrix normally suffers from short loops.
CLDLC lattices can be decoded using the belief propagation
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(BP) algorithm [10], where the messages in the iterative
processing of CLDLC are complex Gaussian functions. BP
decoding of CLDLC confronts the same issue as real-
valued LDLC, that an infinite Gaussian mixture must be
approximated for the decoder implementation.

B. RELATED WORKS
1) Infinite Gaussian mixture approximation for CLDLC:

Yona and Feder [11] used a high-complexity Gaussian
mixture reduction (GMR) algorithm to approximate
Gaussian mixture messages based on Gaussian integers
(GI). Their decoder sorts the whole list of Gaussian
mixtures and the Gaussian mixtures which satisfy a
given condition will be grouped. Each incoming mes-
sage at the variable node is approximated by 9 complex
Gaussian functions. The GMR algorithm must be per-
formed at every multiplication at the variable node, on
each iteration. Due to a large number of approximated
Gaussian functions, the complicated GMR algorithm,
and the large number of uses of the GMR algorithm at
the variable node, this proposed algorithm may not be
suitable for hardware implementation.

2) Infinite Gaussian mixture approximation for the real-
valued LDLC: There has been substantial past work on
complexity reduction of decoding for the real-valued
LDLC, such as mixture reduction [9], [13], searching
and sorting [14], using fixed two or fixed three Gaussian
functions [15], use of 2d − 2 Gaussian functions [16]
and a reliability function at the variable node [17].

3) Lattice codes based on Eisenstein and Gaussian inte-
gers: The E6 lattice and the Coxeter-Todd lattice K12
are well-known lattices based on Eisenstein integers
and have the highest known packing density among
lattices in their respective dimensions [18]. Signal con-
stellations based on Eisenstein integers were introduced
in [19] and [20]. Lattice codes based on Construction
A over Eisenstein integers for compute-and-forward
were proposed in [21], and extensions to the ring of
algebraic integers of a general imaginary quadratic field
which includes Gaussian integers have been proposed
in [22] and [23]. In addition, there are several works
that introduced Gaussian integers for CLDLC, for
example, [24].

4) Real-valued lattice codes: Polar lattices were introduced
in [25] which are formed from binary polar codes using
Construction D. The design was guided by channel
capacity. The decoding algorithm is based on successive
cancelation (SC) decoding for two or more component
codes. Afterward, a design technique for polar code
lattices of finite dimension using use the explicit finite-
length code properties was proposed in [26]. The result
based on the successive cancelation list (SCL) decoding
algorithm was also provided for small dimensions of
polar lattices. In addition, low-density construction-A
(LDA) lattices were introduced in [27]. LDA lattices are
similar to LDLC in the sense that they both have sparse

matrices and are decoded using belief propagation.
However, they are quite different in important ways
— CLDLC lattices design is based on the selection of
non-zero coefficients, whereas LDA design is based on
the design of a p-ary LDPC code. CLDLC decoding
is based on message-passing using complex Gaussian
mixtures while LDA decoding is based on message-
passing using p-ary probability vectors.

5) Other codes based on Gaussian and Eisenstein integers:
Besides lattice codes, there are several codes that also
can be constructed based on Gaussian and Eisenstein
integers. Huber introduced a construction of block codes
over Gaussian and Eisenstein integers [28] and [29].
Afterward, other works such as [30] and [19] proposed
LDPC codes over Gaussian integers, and signal constel-
lations based on Eisenstein Integers, respectively. These
codes consider finite alphabets and modulo arithmetic
over Gaussian and Eisenstein integers.

C. CONTRIBUTION
To reduce the complexity of CLDLC decoder proposed
by Yona and Feder [11], this paper proposes two major
contributions. The first is reliability-based CLDLC decoding.
In reliability-based decoding, the number of Gaussian func-
tions in the check-to-variable message is adaptively selected
depending upon the reliability. It provides a small number
of Gaussian functions in each check-to-variable message; in
particular, it allows the use of a single Gaussian function
when the message has high reliability. Fewer Gaussian
functions mean lower decoder complexity. Reliability-based
decoding uses a threshold to select the number of Gaussian
functions. This threshold can be found using the Kullback-
Leibler (KL) divergence between the approximation and the
true distribution, but explicitly computing the divergence
is inefficient. Instead, we form an upper bound on this
KL divergence, and linear regression is used to efficiently
estimate this threshold.
The second contribution is a CLDLC construction using

Eisenstein integers (EI). This new construction reduces the
complexity of message-passing decoders where an infinite
Gaussian mixture is represented by a finite mixture. The
advantage of the Eisenstein integers over the Gaussian
integers is that the hexagonal Voronoi cells of the Eisenstein
integer lattice have the tightest packing in two dimensions.
As a result, the quality of the message-passing approximation
is improved and mixtures have a smaller number of Gaussian
functions. This smaller number of Gaussian functions leads
to lower decoder complexity. While the extension of CLDLC
to Eisenstein integers is straightforward, the contribution
is that the Eisenstein integer construction lowers decoding
complexity, compared to Gaussian integers.
Reliability-based decoding is applied to decoding both

Eisenstein integer CLDLC (EI-CLDLC) and Gaussian inte-
ger CLDLC (GI-CLDLC) constructions in this paper.
For decoding GI-CLDLC, reliability-based decoding has
lower complexity, and slightly better performance, than the
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previous CLDLC decoder of Yona and Feder [11]. Moreover,
EI-CLDLC decoding has lower complexity than GI-CLDLC
decoding for dimension n ≥ 49.

D. NOTATION AND DEFINITIONS
We use C, R, and Z to denote the fields of complex
numbers, real numbers, and integers, respectively. We use
boldface lowercase with bar x to denote column vectors
and boldface uppercase H to denote matrices. We use three
interchangeable ways of writing complex numbers: z = a+
bi, vector z = [a b]T (without a bar) where [·]T is the
transpose, and reiθ where r = √a2 + b2 and θ = tan−1( ba ).
Also, xRe = a and xIm = b denote the real and imaginary
parts of the complex number x. The conjugate transpose or
Hermitian transpose of G is G†, and the complex conjugate
of c is c∗. The n-by-n identity matrix is In.

The rest of the paper is organized as follows. Section II
describes the preliminaries of CLDLCs, its Latin square
construction for the check matrix and the overall picture
of the reliability-based parametric BP decoding algorithm
describe in Sections II-B and II-C, respectively. Section II-D
describes operations over complex Gaussian mixtures and
the moment matching approximation. Section III explains
the proposed approximation of Gaussian mixtures at variable
nodes. The approximation using Gaussian and Eisenstein
integers, the reliability of the check-to-variable message,
the number of Gaussian function selections based on its
reliability, the threshold function formed by an upper
bound on KL divergence, and the detail of Gaussian
mixture approximation at the variable node are explained in
Section III-A to Section III-E. Section IV gives the numerical
evaluation of decoder error rate, complexity, and convergence
properties for various lattice dimensions. The last section,
Section V summarizes the paper.

II. PRELIMINARIES OF COMPLEX LOW-DENSITY
LATTICE CODES
This section provides the preliminaries of CLDLC.
Section II-A describes the overall picture of CLDLC and the
unconstrained power complex additive white Gaussian noise
(CAWGN) system. Section II-B explains a Latin square con-
struction which is the inverse generator matrix for encoding.
Section II-C describes the overall picture of the reliability-
based parametric BP decoding algorithm. (The proposed
infinite Gaussian mixture approximation at variable nodes
is explained in Section III.) The last subsection describes
operations on complex Gaussian functions and the moment
matching approximation which are used in Section II-C.

A. CLDLC AND UNCONSTRAINED POWER CAWGN
SYSTEM
An n-dimensional complex lattice � is a discrete additive
subgroup of Cn, defined by a non-singular square generator
matrix G. A lattice point x is an integral linear combination
of basis vectors in G. Each lattice point is constructed from:

x = Gb. (1)

Complex-valued lattices are a generalization of real-valued
lattices. In CLDLC, the inverse of G, H = G−1 is restricted
to be sparse to develop a linear-time iterative decoding
scheme [8], where H is called the check matrix or inverse
generator matrix. For encoding, CLDLC can use Jacobi
method as in the real-valued LDLC case [8]. We consider
two types of complex integers b, Gaussian integers (GI) Z[i]
(i = √−1) and Eisenstein integers (EI) Z[ω] where ω =
−1+i√3

2 . A vector of GI is written b = [b1,Re+ib1,Im, b2,Re+
ib2,Im, . . . , bn,Re+ ibn,Im], and a vector of EI is written b =
[b1,Re + ωb1,Im, b2,Re + ωb2,Im, . . . , bn,Re + ωbn,Im], where
bRe, bIm ∈ Z

n.
Since we consider the unconstrained lattice only, a

complex lattice point x ∈ � is transmitted over a complex
additive white Gaussian noise (CAWGN) channel, and the
received sequence y = (y1, y2, . . . , yn) ∈ C

n is:

y = x+ z, (2)

where the vector zj ∼ CN (0, σ 2I2) is complex additive
Gaussian noise, and j = 1, 2, . . . , n. CN denotes complex-
normal distribution, σ 2 is noise variance of each element of
complex number.
The Voronoi region of a lattice point is the set of

points in C
n that are closest to the lattice point. For a

square generator matrix G, the Voronoi region volume V(�)

equals det(G†G) for lattices with Gaussian integers, and
V(�) equals (

√
3

2 )n det(G†G) for lattices with Eisenstein
integers [31]. We consider here the unconstrained power
system. this paper uses the volume-to-noise ratio (VNR) as
an analog to the signal-to-noise ratio. The VNR for Gaussian
and Eisenstein integer lattices is defined as:

VNR = V(�)2/n

2πeσ 2
. (3)

The Poltyrev capacity, or unconstrained lattice capacity, is
σ 2 = 1

2πe [32], which corresponds to VNR = 0 dB. In the
sequel, we normalize the Voronoi region volume such that
V(�) = 1.

The maximum likelihood lattice point estimate x̂ is:

x̂ = arg max
x∈�

Pr(y|x). (4)

If x = x̂ the correct codeword is received, or an error
occurred otherwise.

B. LATIN SQUARE CONSTRUCTION
A Latin square construction for check matrixH was proposed
by Sommer et al. for real number LDLC [8] and extended
by Yona and Feder [11] to CLDLC. A Latin square CLDLC
can be constructed by designing a check matrix H having a
constant number of non-zero values (degree) d in every row
and column. Let H = {h1, h2, h3, . . . , hd} be a generating
sequence, where hi ∈ C and i = 1, 2, . . . , d. The non-zero
entries of each row and each column are h1, h2, h3, . . . , hd,
so that each row (respectively, column) is a permutation
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of any other row (column), except for complex rotations,
including sign changes.
Sommer et al. showed that a sufficient condition to achieve

exponential convergence of the message variance in the BP
decoder is to select the generator sequence |h1| ≥ |h2| ≥
· · · ≥ |hd| such that:

α =
∑d

j=2 |hj|2
|h1|2 < 1, (5)

where | · | denotes the Euclidean norm [8]. An example of
a Latin square check matrix H is shown in (6),

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 h2 0 0 h3 0
h∗2 1 0 0 0 0 0 h3
0 −h∗3 1 0 0 0 0 h2
0 0 −h∗3 1 0 0 h2 0
−h3 0 0 0 1 h2 0 0

0 0 −h∗2 h3 0 1 0 0
0 −h∗2 0 0 h3 0 1 0
0 0 0 0 h2 h3 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (6)

The Latin square check matrix H has the lattice dimension
n = 8, row and column degree d = 3. The generating
sequence H is |h1| = 1 and |h2| = |h3| = 1√

d
, for example,

H = {1,

√
2
9 + i

√
1
9 ,

√
2
9 + i

√
1
9 }, and in the sequel, we

normalize V(�) = 1.

C. CLDLC RELIABILITY-BASED PARAMETRIC BP
DECODER
For CLDLC decoding, this paper proposes to approximate
the infinite complex Gaussian mixture function with a finite
number of complex Gaussian functions using the reliability
of check-to-variable messages and a threshold function.
This approximation takes place at the variable node. This
subsection describes the overall picture of the CLDLC
reliability parametric BP decoding algorithm. Details of
the approximation at the variable node are explained in
Section III.
CLDLC message-passing decoding can be performed

on a bipartite graph, where rows of H correspond to
check nodes, and columns of H correspond to variable
nodes. The variable-to-check messages are qk(z) and the
check-to-variable messages are Rk(z). The proposed CLDLC
reliability parametric BP decoding algorithm is as follows.
• Initialization: For the CAWGN channel (2), the initial
variable-to-check message is

yi(z) = N
(
z; yi, σ 2I2

)
, (7)

for i = 1, 2, . . . , n. Received messages are sent to
connected check nodes in the initial step.

• Check-to-variable message: The check node incoming
messages are qk(z), where k = 1, . . . , d − 1 single
Gaussian functions and output is k = d. In the first
iteration, qk(z) is the channel message yk(z). (The
subscript i of yi(z) changed to k because the incoming
messages of one specific check node are considered.)

The corresponding non-zero coefficients from H are
h1, . . . , hd. The output Rd(z) is:

Rd(z) = N (z;md,Vd). (8)

where mean md and covariance matrix Vd can be found
from

md = −[hd]−1
d−1∑

k=1

[hk]mk and

Vd =
d−1∑

k=1

[
hk
hd

]

Vk

[
hk
hd

]T
, (9)

where [ hd], [ hk], and [ hkhd ] can be expressed as

[ hd] = [
Re{hd} −Im{hd}
Im{hd} Re{hd} ], [ hk] expression is same

as [ hd] but the subscript changes to k, and [ hkhd ] =
[
Re{ hkhd } −Im{ hkhd }
Im{ hkhd } Re{ hkhd }

].

• Variable-to-check message: The messages Rk(z) coming
from the check nodes are expanded to a periodic
function R̃k(z), but with a finite number of Gaussian
functions depending on their reliability. Then, the
moment matching approximation MM is used to find
the message of single-Gaussian function fd(z) sent back
to the check node:

fd(z) = yi(z)
d−1∏

k=1

R̃k(z) and

qd(z) = MM(fd(z)). (10)

The efficient implementation of the variable node is a
contribution of this paper, Section III describes details
of this implementation. Section III-A shows how to
select Gaussian functions near the channel value yi.
The specific number of Gaussian functions selected
should be as small as possible which are selected using
reliability and thresholds as shown in Section III-B to
Section III-D. Section II-C gives the variable node
function (10) in detail which includes the periodic
expansion.

• Final decision: At the last iteration, the product without
omitting any message is performed:

qfinali (z) = yi(z)
d∏

k=1

R̃k(z). (11)

The lattice point estimate x̂ and the integer estimate b̂
are:

x̂i = arg max
z
qfinali (z), and b̂ = �Hx̂	, (12)

where �·	 denotes the rounding to the nearest integer.
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D. OPERATIONS ON COMPLEX GAUSSIAN MIXTURES
This subsection describes operations on complex Gaussian
functions which are messages in belief propagation decoding,
described in Section II-C. The probability density function
(PDF) of a complex Gaussian function with 2 × 1 mean
vector m and 2× 2 covariance matrix V is:

N (z;m,V) = 1

2π
√|V|e

− 1
2 (z−m)TV−1(z−m). (13)

From the AWGN channel assumption, the messages in belief
propagation decoding are Gaussian mixtures. The message
f (z) is a mixture of N Gaussian functions,

f (z) =
N∑

j=1

cjN
(
z;mj,Vj

)
, (14)

where cj ≥ 0 are mixing coefficients with
∑N

j=1 cj = 1, mj

and Vj are mean and covariance of the Gaussian mixture.
In this way, each Gaussian mixture can be described by a
set of triples (m1,V1, c1), . . . , (mN,VN, cN).
Let f (z) = ∑N

j=1 fj(z) and g(z) = ∑M
k=1 gk(z) be two

Gaussian mixtures, where fj(z) = c1N (z;m1,V1) and
gk(z) = c2N (z;m2,V2). The product of two Gaussian mix-
tures f (z) ·g(z) is a mixture of NM Gaussian functions. Each
mixture element is the pairwise product of two components
fj(z) and gk(z), a Gaussian function s(z) = cN (z;m,V)

with mean m, variance V and mixing coefficient c given by:

V =
(
V−1

1 + V−1
2

)−1
, m = V

(
V−1

1 m1 + V−1
2 m2

)
, (15)

c = c1c2

2π
√|V1 + V2|e

− 1
2 (m1−m2)

T (V1+V2)
−1(m1−m2). (16)

Let f (z) be a Gaussian mixture. The moment matching
approximation (MM) which minimizes the Kullback-Leiber
divergence between f (z) and q(z) is used to approximate
f (z) with a single Gaussian function q(z) [24]. The MM
approximation finds the single Gaussian function q(z) which
has the same mean m and variance V as f (z), given by:

m =
N∑

j=1

cjmj, V =
N∑

j=1

cj
(
Vj + (mj −m)(mj −m)T

)
.

(17)

This operation is denoted as:

q(z) = MM(f (z)). (18)

III. RELIABILITY-BASED GAUSSIAN MIXTURE
APPROXIMATION FOR CLDLC DECODING
This section explains the proposed algorithm for infi-
nite Gaussian mixture approximation at variable nodes of
CLDLC decoder in Section II-C. The number of finite
Gaussian functions in the check-to-variable message is adap-
tively selected depending upon its reliability. The message
reliability is compared to the threshold functions to select
the number of finite Gaussian functions. This approximation
is done for both Gaussian integers and Eisenstein integers.

Section III-A describes the approximation using Gaussian
integers and Eisenstein integers. Section III-B describes
the use of message reliability and the threshold function
to approximate the different numbers of finite Gaussian
functions. Section III-C and D explain the reliability function
of the check-to-variable message and the threshold function
formed by an upper bound on KL divergence, respectively.
The last subsection describes the approximation at the
variable node in Section II-C.

A. GAUSSIAN MIXTURE APPROXIMATION USING
GAUSSIAN AND EISENSTEIN INTEGERS
This subsection describes an approximation of an infinite
Gaussian mixture using a finite Gaussian mixture; this is
done for both Gaussian integers and Eisenstein integers.
This is used at the variable node of the belief-propagation
decoding algorithm for CLDLC lattices in Section II-C. The
advantage of Eisenstein integers over Gaussian integers is
that Eisenstein integers give a more accurate approximation
for a fixed number of Gaussian functions in the mixture.
If a fixed number of Gaussian functions (corresponding
to either Gaussian integers or Eisenstein integers) which
have means closest to the channel value are selected in the
approximation, for example, three Gaussian functions. Three
Eisenstein integers will together give a higher likelihood than
three GI. This is because Eisenstein integers have hexagonal
packing, which is tighter than the cubic packing of GI (the
hexagonal packing is the tightest in two dimensions). Due
to the tighter packing, the distance to the channel value will
be lower on average.
In exact BP decoding, the messages Rk(z) which come

from the check nodes are expanded over all integers at the
variable nodes [8]. (For convenience, the subscript k of Rk(z)
will be omitted, and call it R(z) from now on.) The check-
to-variable message is an infinite complex Gaussian mixture,
which for GI is given by

R(z) =
∑

j∈Z[i]

N
(

z;mc + j

h
,Vc

)

, (19)

and for EI, the sum is over Z[ω]. The infinite periodic
Gaussian functions R(z) with period 1/h has mean mc and
variance Vc. The channel message Y(z) is a single complex
Gaussian function with mean ma and variance Va = σ 2I2.
The exact product of Y(z) and R(z) at the variable node
is also an infinite complex Gaussian mixture. This infinite
Gaussian mixture Y(z)R(z) must be reduced to a finite
number of Gaussian functions Y(z)̃R(z) in practice. R̃(z) is
the summation in (19) restricted to some finite subset B,
given by

R̃(z) =
∑

j∈B
N

(

z;mc + j

h
,Vc

)

, (20)

where B ⊂ Z[i] in the GI case and B ⊂ Z[ω] in the EI case.
Choosing a finite subset of integers B of R̃(z) which is

sufficient to represent the infinite Gaussian mixtures R(z) is
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the key for an accurate approximation. The periodic Gaussian
functions far from the channel message have near-zero
mixing coefficients and can be safely ignored. Therefore,
R(z) can be restricted using some finite integer set B which
are near the channel message Y(z). How to select B is the
subject of the next subsection.
Next, we present an approximation of R(z) based on a

subset of Gaussian integers B ⊂ Z[i] and Eisenstein integers
B ⊂ Z[ω] at the variable node. For Gaussian integers, the
three cases of |B| = 1, |B| = 2 and |B| = 4 Gaussian
functions near Y(z) are considered, where |B| is the number
of elements of B or the number of Gaussian functions in
the approximation. Each case of |B| is used to approximate
check-to-variable messages which have different reliability.
If a check-to-variable message has high reliability, |B| = 1
is sufficient to represent the infinite Gaussian mixtures. But
if the check-to-variable message has intermediate or low
reliability |B| = 2 or 4 will be applied, respectively. For
Eisenstein integers, the three cases of |B| = 1, |B| = 2 and
|B| = 3 Gaussians near Y(z) are considered. If the check-
to-variable message has high and intermediate reliability,
|B| = 1 and 2 will be applied as in the case of Gaussian
integers. The difference is if the check-to-variable message
has low reliability, |B| = 3 is sufficient to approximate the
infinite Gaussian mixtures.

• High-reliability: For Gaussian integers, let the single
Gaussian function set be B = {b0}, where b0 is

b0 = �−[ h] (mc −ma)�. (21)

For Eisenstein integers, the single Gaussian function
B = {b0} can be found using coset decoding of the
hexagonal lattice [18]. First, b̃0 = −[ h] (mc −ma) is
defined as the soft value of b0. Then, the soft value b̃0
is quantized to an Eisenstein integer b0 following [31].
The resulting Gaussian function is R̃(z) = N (z;mc +
[h]−1b0,Vc).

• Intermediate reliability: Two Gaussian integers are
selected, B = {b0,b1}. For Gaussian integers, b0
is found from (21). b1 is found from the minimum
Euclidean distance between the soft value b̃0 and the
eight integers nearest b0. Define ζ0 = b0 + {[−1 −
1]T , [−1 0]T , [−1 1]T , [0 −1]T , [0 1]T , [1 −1]T ,
[1 0]T , [1 1]T} so that b1 is:

b1 = min
x∈ζ0
||x− b̃0||2. (22)

For Eisenstein integers, b0 is from the previous item
(high-reliability) and b1 is found from the minimum
Euclidean distance between b̃0 and the six integers
nearest b0. Define as ε0 = b0 + {[−1 0]T , [1 0]T ,
[− 1

2

√
3

2 ]T , [ 1
2

√
3

2 ]T , [− 1
2 −

√
3

2 ]T , [ 1
2 −

√
3

2 ]T},
so that b1 can be calculated using (22) but x ∈ ζ0 is
substituted to x ∈ ε0. The resulting Gaussian mixture is
R̃(z) =∑

j∈{b0,b1}N (z;mc+[h]−1j,Vc). Note that eight
and six integers nearest b0 for Gaussian and Eisenstein
integer approximation are determined by the deep hole.

The definition of deep hole is explained at the end of
this subsection. For Gaussian integers, there are four
deep holes around the integer which are connected to
eighth integers. For Eisenstein integers, there are three
deep holes around the integer which are connected to
six integers.

• Low reliability: For Gaussian integers, four Gaussian
integers are selected, B = {b0,b1,b2,b3}. b0 and b1
can be found from equation (21) and (22). b2 can be
computed as

b2 = min
x∈ζ1
||x− b̃0||2, (23)

where ζ1 = ζ0 − b1, and − denotes set subtraction. b3
can be found as,

b3 = min
x∈ζ2
||x− b̃0||2, (24)

where ζ2 = ζ1 − b2. The resulting Gaussian mix-
ture is R̃(z) = ∑

j∈{b0,b1,b2,b3}N (z;mc + [h]−1j,Vc).
For Eisenstein integers, three Eisenstein integers are
selected, B = {b0,b1,b2}, where b0 and b1 can be
found as above items (high and intermediate reliability),
and b2 can be computed as (23) but x ∈ ζ1 is substituted
to x ∈ ε1, where ε1 = ε0 − b1. The resulting Gaussian
mixture is R̃(z) =∑

j∈{b0,b1,b2}N (z;mc + [h]−1j,Vc).
For Gaussian integers, example b0,b1,b2 and b3 are

shown in Fig. 1-(a). In summary, b0 is the closest to the soft
value b̃0, b1 is second closest, etc. For Eisenstein integers,
example b0,b1, and b2 of Eisenstein integers are shown in
Fig. 1-(b). In the figures, T1 and T2 are thresholds to select
between high, intermediate, and low reliability, and will be
described in Section III-B.
The maximum value for |B| of 4 and 3 for Gaussian and

Eisenstein integers is related to the number of lattice points
connected to a deep hole. The deep hole is the furthest point
from the lattice point on the Voronoi cell and are shown in
Fig. 1-(a) and (b). If the check-to-variable message r is at the
deep hole in the worst case, the number of high-likelihood
integers |B| near r is 4 and 3 for Gaussian and Eisenstein
integers, respectively.

B. RELIABILITY-BASED IMPLEMENTATION AT THE
VARIABLE NODES
This subsection describes the reliability-based selection of
Gaussian functions to be used at the variable node in
Section II-C. From Section III-A, the infinite complex
Gaussian mixtures can be approximated by 1, 2, or 4
Gaussian functions in the GI case, or 1, 2, or 3 Gaussian
functions in the EI case. This subsection addresses how
to select the number of Gaussian functions. We define the
reliability, 1/ρ of the check-to-variable messages which is
used to choose the number of Gaussian functions for each
incoming message at the variable node. Two thresholds T1 <

T2 will be set at the variable node. If the reliability is high,
that is ρ satisfies ρ ≤ T1, then one Gaussian function will be
selected. If the reliability is intermediate, that is, ρ satisfies
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FIGURE 1. Gaussian approximation based on the reliability of check-to-variable message for (a) Gaussian integers, (b) Eisenstein integers for three example check-to-variable
messages r1, r2 and r3.

T1 < ρ ≤ T2, then two Gaussian functions will be selected.
Otherwise, the reliability is low and four Gaussian functions
or three Gaussian functions will be selected for Gaussian
integers or Eisenstein integers, respectively. The thresholds
T1,T2 are selected such that the Kullback-Leiber divergence
of the resulting approximation is no greater than a target
value.

C. RELIABILITY FUNCTION
The reliability is based on the likelihood of the soft check-
to-variable message b̃0 = −[ h] (mc −ma) given its nearest
integer approximation b0, as given by (21). When the channel
is noiseless, b̃0 will be equal to b0, and the highest likelihood
value is obtained. The likelihood of b̃0 given b0 can represent
the inverse magnitude of the noise or the reliability of the
message. If there is a large difference between b̃0 and b0,
it means that the message has low reliability or high noise
magnitude. The likelihood is:

Pr
(
b̃0|b0

) = 1

2π
√|V|e

− 1
2

(
b̃0−b0

)T
V−1

(
b̃0−b0

)

. (25)

For any given Gaussian function with variance V, b̃0 and
b0 are the only variables in (25), the other parameters are
constant. We define ρ as the relevant part of the likelihood:

ρ = |̃b0 − b0| = |(−[ h] (mc −ma))− �−[ h] (mc −ma)�|, (26)
which satisfies 0 ≤ ρ ≤ 1. A smaller value of the
magnitude of the Gaussian noise means higher reliability,
so the reliability is written as 1/ρ. Fig. 1-(a) and (b) show
three example check-to-variable messages r1, r2 and r3 which
have reliabilities ρ1, ρ2 and ρ3, respectively; both Gaussian
integers and Eisenstein integers are shown. ρ1 < ρ2 < ρ3
represent low, intermediate and high intensity of the Gaussian
noise, respectively.

D. THRESHOLD AND BOUND ON KULLBACK-LEIBLER
DIVERGENCE
This subsection describes how to obtain the thresholds
T1,T2, using the Kullback-Leibler (KL) divergence. In
particular, the smallest number of Gaussian functions are
chosen such that an estimate of the resulting KL divergence
does not exceed a target value. The KL divergence between
two Gaussian mixtures does not have a closed-form solution
in general. Our approach is to form an upper bound on the
KL divergence and use this to upper bound the thresholds,
T1, T2. Then, linear regression is used as an approximation.

The KL divergence represents the similarity between two
probability density functions (PDFs) [33], [34]. If the two
PDFs are the same, the divergence is zero. Our main interest
is the KL divergence between the infinite Gaussian mixture
Y(z)R(z) and the finite Gaussian mixture Y(z)̃R(z):

D
(
Y(z)R(z)||Y(z)̃R(z)

) =
∫

C

Y(z)R(z) log
Y(z)R(z)

Y(z)̃R(z)
dz, (27)

where Y(z) is channel message with mean ma and variance
Va. R(z) and R̃(z) are given in (19) and (20). The KL
divergence of the Gaussian mixture approximation depends
on 5 parameters: h, mc, ma, Vc and Va. If h, Vc and Va are
fixed, the KL divergence depends on mc − ma only.
Let κ denote the maximum allowed KL divergence in (27)

— we seek approximations with KL divergence not greater
than κ . Without loss of generality, set ma = 0 and b0 = 0;
then the KL divergence depends on mc only. The region R
are the values of mc where the KL divergence is less than
or equal to the target value κ , that is:

R = {mc ∈ C | KL(mc) ≤ κ}. (28)

The threshold T is the radius of the largest disc that is
fully contained in R. The region R is not a disc, but we
restrict the effective region to be the disc |mc| ≤ T , for ease
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FIGURE 2. (a) T1, and (b) T2 of Gaussian integer approximation, for k = 4 and κ = 10−2. Solid lines represent T1 and T2 calculated from the upper bound. Dashed lines
represent T1 and T2 approximated by linear regression.

of computation. Interpret T as T1 if R̃(z) is one Gaussian
function, and as T2 if R̃(z) is two Gaussian functions.
Next, in order to bound the KL divergence, assume

that Vc and Va have covariance zero, and the larger of
the two variances is used as this has the greater effect
on the KL divergence. Accordingly, the maximum element
of the covariance matrix Vc and Va is vc,max and va,max
respectively.
Since the target is to find the thresholds T1 (one Gaussian

function) and T2 (two Gaussian functions), R̃(z) is an
l-Gaussian mixture where l equals one or two. To form a
bound, k Gaussian functions are selected from R(z) where
k ∈ Z

+ (ideally, k→∞, but since most resulting Gaussian
mixtures have near-zero mixing coefficients, it is more
effective to consider k most relevant Gaussian functions).
Using these assumptions, an upper bound on (27) can be
formed.
Proposition 1: Let Rk(z) consist of k Gaussian functions

with mean mc as in (19). If R̃(z) is either a single
Gaussian function approximation or two-Gaussian function
approximation, then:

D
(
Y(z)R(z)||Y(z)̃R(z)

) ≤
(k − 1)va,max

a|h|2(vc,max + va,max
)
(

1+ eb
2(mc,RehRe−mc,ImhIm)−1

2|h|2(vc,max+va,max)

)c . (29)

where (a, b, c) = (2,−1, 1) for the single-Gaussian function
approximation and (a, b, c) = (1, 1, 2) for the two-Gaussian
function approximation.
The proof is given in Appendix. This can be used to form

an upper bound on T1 and T2. The value of T1 and T2
is 0 ≤ {T1,T2} ≤ 1/h because T1 and T2 are calculated
from the check-to-variable message after stretching by 1/h.

We are interested in the value of mc for which the bound
attains κ; this value is T1 (l = 1) or T2 (l = 2). In (27),
D(Y(z)R(z)||Y(z)̃R(z)) has the worst case when mc,Re =
mc,Im, so we assume mc,Re = mc,Im in (29). For l = 1, 2 we
have Tl as:

Tl = |h|
(hRe − hIm)

(
1

2
+ 1

b
|h|2(va,max + vc,max

)

log

(
c

√
√
√
√

(
(k − 1)

(
va,max

)

aκ|h|2(vc,max + va,max
)

)

− 1

))

. (30)

where (a, b, c) are as given in Proposition 1 for l = 1
single Gaussian function and l = 2 two-Guassian functions
approximation. Note that from (26), 0 ≤ ρ ≤ 1 applies to
the check-to-variable message before stretching by 1/h. So
that T1 and T2 is comparable with ρ, scalar |h| is included
in (30).
While (30) is not linear, we observed that it is roughly

linear for parameters of interest, so linear regression is used
to estimate T1 and T2. Fig. 2 (a) and (b) show T1 and T2
obtained from the upper bound and its linear approximation,
for Gaussian integers. The linear approximation equation of
T1 and T2 used for decoding is given in (31)

T = p1 − p2va,max − p3vc,max − p4va,maxvc,max, (31)

where the set of coefficient {p1, p2, p3, p4} is provided in
Table 2.

The constant value κ is set at 10−2. This value was
chosen to give a favorable performance-complexity trade-off,
that is, it is the largest value of κ for which there is no
noticeable degradation in decoder symbol error rate (SER),
as determined by substantial simulations.
For the number of Gaussian functions k in the infinite

Gaussian mixture R(z), we selected k = 4 and 3 for Gaussian
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TABLE 1. Approximation of T1 and T2 obtained using linear regression.

integer and Eisenstein integer, respectively. (k = 4 and 3
are sufficient to accurately approximate the infinite Gaussian
mixtures because these are the number of neighbors of a
deep hole for Gaussian integer and Eisenstein integer; see
the explanation at the end of Section III-A.) In order to
implement a practical algorithm, the same threshold for all
check-to-variable messages independently of coefficient h is
desired, so h = 1 was selected because this gives the smallest
(i.e., most pessimistic) threshold value.

E. GAUSSIAN APPROXIMATION AT VARIABLE NODE
This subsection describes the approximation at the variable
node in Section II-C. Unlike existing decoding algorithms
based on real and complex numbers [8], [9], [11], [13], [14],
[15], [16], the variable node function of the proposed algo-
rithm adaptively selects the number of Gaussian functions
using the reliability of the check-to-variable message. At
each iteration, the variable node function is as follows.

• Step 1, calculate reliability: At a variable node, the
input messages are Ri(z) with mean mi and variance Vi,
for i = 1, 2, . . . , d. Find the corresponding reliabilities
ρ1, ρ2, . . . , ρd using (26).

• Step 2, find the number of Gaussian functions in
message expansion: For i = 1, 2, . . . , d, the reliability
ρi of each message is compared to the threshold T1
and T2. If the reliability ρi ≤ T1, then the number of
Gaussian functions in the message expansion is |Bi| =
1. If T1 < ρi ≤ T2, then |Bi| = 2, otherwise, |Bi| = 3
or 4 for Gaussian or Eisenstein integers, respectively.

• Step 3, message expansion: Each message
R1(z),R2(z), . . . ,Rd(z) is expanded to a periodic
function using |Bi| Gaussian functions from step 2. The
periodic Gaussian function is R̃i(z) =∑

b∈Bi N (z;mi+
[hi]−1b,Vi). The set Bi for Gaussian and Eisenstein
integers is found in Section III-A.

Note that a forward-backward recursion is applied at the
variable node to reduce the number of operations inside
the variable node. This recursion is similar to the existing
forward-backward recursion of [15] (real-valued case) but it
is different [11] (complex-valued case) in how the channel
value yi is handled, in [15] the channel message yi is
multiplied at the last step of the recursion while [11] the
channel message yi is multiplied at the first step of the
recursion.
Finally, we summarize all the steps of CLDLC reliability-

based BP decoding algorithm in Algorithm 1. This algorithm
illustrates clearly that the contributions of this work are in
the message expansion part of variable nodes.

Algorithm 1 CLDLC Reliability-Based BP Decoder
Require: 1) Received messages from the CAWGN channel which
are the initial variable-to-check messages yi(z) = N (z; yi, σ 2I2)
in (7), where i = 1, 2, . . . , n. 2) Preparing the threshold T1 and
T2 lookup table for different value of variance. This can be
computed from (31) and Table 1.

Ensure: Estimate the integers b̂ in (12).

b̂← b
Compute initialization:
{
The check node incoming messages are qk(z), where k =
1, . . . , d− 1 single Gaussian functions and output is k = d, then
qk(z) = yk(z).
}
while iter �= max.iter do

Compute check-to-variable messages:
{
Rd(z) = N (z;md,Vd) in (8)
}

Compute variable-to-check message:
{
The proposed approximation at the variable node
{
Step 1, calculate check-to-variable message reliability:
Find the corresponding reliability ρi of Ri(z) in (26)
,where i = 1, 2, . . . , d

Step 2, find the number of Gaussian functions in
message expansion:
if ρi � T1 then

the message expansion, |Bi| = 1
else if T1 < ρi � T2 then
|Bi| = 2

else
|Bi| = 4 for Gaussian integers
|Bi| = 3 for Eisenstein integers

end if

Step 3, message expansion:
from |Bi| in step 2, the message can be expanded as:
R̃i(z) =

∑
b∈Bi N (z;mi + [hi]−1b,Vi).

The set Bi for Gaussian and Eisenstein integers is
found in Section III-A.
}
After expanding Rk(z) to R̃k(z),
find the message qd(z) sent back to the check node,
fd(z) = yi(z)

∏d−1
k=1 R̃k(z) and qd(z) = MM(fd(z))

}
end while
Final decision:
{
qfinali (z) = yi(z)

∏d
k=1 R̃k(z)

x̂i = arg maxz q
final
i (z), and b̂ = �Hx̂	

IV. NUMERICAL RESULTS
A. ERROR RATE FOR RELIABILITY-BASED DECODER
The error rate of the reliability-based parametric CLDLC
decoder was evaluated on the unconstrained input power
CAWGN channel. We compared five decoding algo-
rithms: 1) real-valued LDLC with the 3 Gaussian function
decoder [15], 2) CLDLC based on GMR algorithm with
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FIGURE 3. The performance comparison in terms of VNR vs symbol error rate of (a) GI-CLDLC, and (b) EI-CLDLC.

9 Gaussian functions [11]; CLDLC decoding with a fixed
number of Gaussian functions: 3) 4 Gaussian functions (4
GI-CLDLC) and 4) 2 Gaussian functions CLDLC (2 GI-
CLDLC), which are the extension of real-valued decoding [15]
to the complex case. Finally, 5) the proposed reliability-
based CLDLC decoder. Here, complex-valued lattices with
dimension n = 8, 49, 500, and 5,000 were used, and the
matrix H had row and column degrees d of 3, 3, 5, and
7, respectively. The elements of the GI and EI vector b in
equation (1) are randomly chosen from the set of integers
bRe, bIm ∈ Z , where Z = {−10,−9, . . . , 9, 10}. For real-
valued LDLC lattices, dimensions n = 16, 100, 1,000, and
10,000 were used, and the row and column degrees are the
same as CLDLC and the elements of the real integer vector b
are randomly chosen fromZ . The inverse generatormatrixwas

created with the generator sequence H = {1,
1√
d
, . . . ,

1√
d
},

and the matrix was normalized such that V(�) = 1. For
9 Gaussian functions with GMR algorithm, we follow the
settings of [11] using M = 10,K = 3,VarRangeLen = 0.4,
and CheckRangeLen = 0.05, where M is the number of
Gaussian functions in each list,K is the number of replications,
VarRangeLen and CheckRangeLen denote each axis grouping
range length. At each VNR, we simulated until the number
of symbol errors and word errors reach 1,000 and 500 at least
(must satisfy both conditions). The number of iterations t of
BP decoding is 50 iterations.
Fig. 3 (a) shows the symbol error rate of each decoding

algorithm for CLDLC based on Gaussian integers (a symbol
error occurs when b̂i �= bi). The result shows that the
reliability-based decoding gives the best performance when
n ≤ 500. In addition, CLDLC outperforms real-valued
LDLC when n ≤ 500. For n = 5000, all CLDLC decoding
algorithms based on Gaussian integers yield the same
performance as the real-valued LDLC.

Fig. 3 (b) shows the symbol-error rate of decoding
CLDLC based on Eisenstein integers. We also compared five
algorithms: 1) 3 Gaussian functions LDLC, 2) 7 EI-CLDLC,
3) 3 EI-CLDLC, 4) 2 EI-CLDLC, and 5) EI reliability-
based CLDLC decoder. The general tendency of the results
are similar to CLDLC based on Gaussian integers. The
reliability-based decoding algorithm based on Eisenstein
integers gives the best performance among four CLDLC
decoding algorithms, and EI-CLDLC outperforms the real-
valued LDLC when n ≤ 500. For n = 5000, all CLDLC
decoding algorithms based on Eisenstein integers show the
same performance as the real-valued LDLC.
The reason that when n ≤ 500, CLDLC outperforms the

real-valued LDLC, and for n = 5000 CLDLC shows the
same performance as the real-valued LDLC was explained
in Section II-D of [11] by Yona and Feder. In CLDLC,
each narrow variance message (variance approach 0) in the
check node has a mean that converges to a specific lattice
point, known as hypothesis. When this narrow variance
message is multiplied by the wide variance messages in the
variable node, this process removes irrelevant hypothesis,
aiding convergence to the correct lattice point. The wide
variance messages alignment in 2-dimensional messages of
CLDLC makes it easier to remove irrelevant hypothesis and
converge to the correct hypothesis. For n ≤ 500, the CLDLC
alignment is better than the real-valued LDLC alignment,
which leads to the performance improvement. However,
when the lattice dimension increases, the CLDLC advantage
becomes negligible because there is a good alignment even
in the real-valued LDLC.

B. RELIABILITY-BASED DECODER COMPLEXITY
The complexity of the proposed reliability-based decoding
algorithm and existing algorithms are described in this
subsection.
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FIGURE 4. (a) The performance comparison between GI and EI reliability-based CLDLC with Polar lattices [25] in terms of VNR vs word error rate. (b) Average number of
Gaussian functions |B| of the reliability-based parametric decoder in the periodic expansion step vs VNR for each lattice dimension, solid lines and dash lines show GI-CLDLC
and EI-CLDLC, respectively.

For GMR decoding of CLDLC lattices [11], the storage
requirement needed after the GMR algorithm is O(n ·d ·M).
The computational complexity is O(n · d · t ·K2 ·M3), and is
dominated by sorting and searching in tables, where n is the
lattice dimension, d is the degree of the inverse generator
matrix, t is the number of iterations, K is the number of
replications and M is the number of Gaussian functions in
each list. K = 3 and M = 10 were used in [11].

The three/two Gaussian functions decoding algorithm
which is proposed by [15] reduces the number Gaussian
mixtures in LDLC (real number case). It is straightforward
to extend this algorithm to the complex case; we call this
GI-CLDLC and EI-CLDLC decoding. The computational
complexity of GI-CLDLC are O(n·t ·2d−1) and O(n·t ·4d−1)

for 2 Gaussian function replications and 4 Gaussian function
replications, respectively. For EI-CLDLC, the complexity
are O(n · t · 2d−1) and O(n · t · 3d−1) for 2 Gaussian
function replications and 3 Gaussian function replications,
respectively. After MM algorithm, the storage requirement
needed is 5 · n · d because the message passed between
the check and variable nodes are single complex Gaussian
functions which are represented by five parameters, 2 × 1
mean vector m and 2× 2 covariance matrix V.
The average computational complexity of the proposed

reliability-based decoding algorithm is O(n·t·|B̃|d−1), where
|B̃| is an average number of Gaussian functions in the
periodic expansion step. This complexity analysis assumes
that |B| is independent for each edge. While not strictly
independent, the sparse graph is locally tree-like, making this
a good approximation. After the MM algorithm, the storage
requirement is 5·n·d ·|B̃| as a function of the 3 parameters n,

d and VNR is shown in Fig. 4 (b). For example, for a fixed
VNR, we can see that |B̃| decreases when n and d increase.
On the other hand, for a fixed n and d, |B̃| decreases when
VNR increases. The mean of |B̃| ranges from 3.75 (at VNR
= 0.5 dB) to 1.35 (at VNR = 6 dB) Gaussian functions on
average for GI reliability-based, and 2.9 (at VNR = 0.5 dB)
to 1.38 (at VNR = 6 dB) Gaussian functions on average for
EI reliability-based. Significantly, when GI and EI reliability-
based decoding are compared, the EI decoder has lower
complexity at n = 49, 500 and 5000, when the VNR range is
1–4 dB. This is due to the tighter packing of the Eisenstein
integers which allows fewer Gaussian functions for a good
approximation, as was discussed earlier. The computational
complexity of decoding algorithms in Fig. 3 (a) and (b) are
summarized in Table 2.

The computational complexity based on O notation in
Table 2 also can represent the time complexity and tell
us whether the decoding algorithms have shorter or longer
computation times compared to each other. Besides the time
complexity based on O notation, we also represent the
computation time of CLDLC and LDLC based on computer
simulation for visualization or providing an image that which
algorithms provide shorter or longer computation time com-
pared to each other. These computation run-times are shown
Fig. 5 (a) and (b) which are implemented by MATLAB2020a
on a desktop with Intel Core I7-9700 3.0 GHz CPU, 32
GB RAM, and Windows 10 operating system. The run-
time might be different for other programming languages,
CPU, RAM, and operating systems, however, in terms of
related run-times to each other (shorter or longer), this
run-time would not change. The computation time of the
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FIGURE 5. (a) Time comparison between 9 Gaussian functions GMR, 4 GI-CLDLC, 2 GI-CLDLC, GI reliability-based CLDLC, 7 EI-CLDLC, 3 EI-CLDLC, 2 EI-CLDLC, EI
reliability-based CLDLC and 3 Gaussian functions LDLC for CLDLC dimension n = 8 and degree d = 3, and (b) for CLDLC dimension n = 500 and degree d = 5.

TABLE 2. Computational complexity of CLDLC and LDLC decoders.

reliability-based decoder based on Gaussian integers and
Eisenstein integers, 9 Gaussian functions GMR algorithm,
4 GI-CLDLC, 2 GI-CLDLC, 7 EI-CLDLC, 3 EI-CLDLC,
2 EI-CLDLC, and 3 Gaussian functions LDLC are shown
here. We consider two lattice dimensions n = 8 and 500

with degree d = 3 and 5, respectively. For n = 8, 2 GI-
CLDLC and 2 EI-CLDLC give comparable performance to
other algorithms, as was shown in Fig. 3 (a) and (b), and
also give the lowest computation time when VNR < 4.5 dB.
When VNR ≥ 4.5 dB reliability-based decoders provide the
lowest computation time.
For n = 500, Fig. 5 shows that 2 GI-CLDLC and 2

EI-CLDLC give the lowest computation time when VNR
< 4.5 and 4.25 dB, respectively. However, the 2 Gaussian
functions expansion loses performance when n ≥ 49, as
was shown in Fig. 3 (a) and (b). Therefore, reliability-based
decoders provide the lowest computation time that also have
good decoder error rates when n ≥ 49. In addition, if we
compare GI reliability-based decoding and EI reliability-
based decoding, EI shows lower computation time when
VNR ≤ 4.6 dB, again because the EI integers provide a
good approximation with fewer Gaussian functions.
In Fig. 6, the average number of iterations required

for decoder convergence is shown. We took a sample of
10,000 converged codewords (non-converging codewords
are ignored) and evaluate the mean of the number of
iterations required. The number of iterations reduces when
the VNR increases. Fig. 6 (a) and (b) show the number of
iterations for GI decoding and EI decoding, respectively. The
complex-valued LDLC decoder needs fewer iterations for
convergence compared to the real-valued LDLC. Both GI
and EI reliability-based decoding require the fewest iterations
for convergence.

C. COMPARISON OF ERROR RATE AND DECODER
COMPLEXITY BETWEEN CLDLC AND POLAR LATTICES
Fig. 4 (a) shows word error rate (WER) comparison between
GI and EI reliability-based CLDLC and Polar lattices with
the SC [25], [26] and SCL decoding algorithms [26]. For
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FIGURE 6. Average number of iterations required for decoder convergence in terms of VNR, for CLDLC dimension n = 500 and degree d = 5, (a) GI-CLDLC and (b) EI-CLDLC.

Polar lattices under SC decoding, we consider n = 128 [26]
and n = 1024 [25]. For Polar lattices under SCL decoding,
we consider n = 128 and list size L = 128 [26]. We consider
GI and EI reliability-based CLDLC n = 64, 150, 500 and
d = 3 to compare the performance and complexity with
Polar lattices. For GI reliability-based CLDLC, |B̃| of n = 64
ranges from 3.7 (at VNR = 1 dB) to 2.7 (at VNR = 3.5 dB).
|B̃| of n = 150 ranges from 3.65 (at VNR = 1 dB) to 2.95
(at VNR = 3 dB). |B̃| of n = 500 ranges from 3.62 (at VNR
= 1 dB) to 3.35 (at VNR = 2 dB). For EI reliability-based
CLDLC, |B̃| of n = 64 ranges from 2.8 (at VNR = 1 dB)
to 2.3 (at VNR = 3.5 dB). |B̃| of n = 150 ranges from 2.76
(at VNR = 1 dB) to 2.4 (at VNR = 3 dB). |B̃| of n = 500
ranges from 2.74 (at VNR = 1 dB) to 2.7 (at VNR = 2 dB).

For the same lattice dimensions, Polar lattices n = 128
compared to CLDLC n = 64 and Polar lattices n = 1024
compared to CLDLC n = 500, CLDLC outperforms Polar
lattices under SC decoding while having higher decoding
complexity. However, when compared to Polar lattices under
SCL decoding, CLDLC provides worse performance and
this also comes with lower complexity. The overall decoding
complexity of SC and SCL decoding is O(n log2 n) and O(L·
n log2 n), respectively. To compare the complexity between
CLDLC and Polar lattices, CLDLC and Polar lattices must
have close WER performance to each other. There are two
options for this. The first one is decreasing the list size L of
SCL decoding and WER of Polar lattices will be close to
CLDLC. The other way is increasing the lattice dimensions
of CLDLC and WER of CLDLC will be close to Polar
lattices. We selected the second option which is changing the
lattice dimensions of CLDLC because the implementation
and result of another list size L for Polar lattices under
SCL decoding are not provided in [26], and it is not in
the scope of this work to implement it. We selected the
CLDC lattices n = 150 and d = 3 which provide nearly the

same WER performance as Polar lattices with SCL decoding.
The result shows that EI reliability-based CLDLC provides
lower complexity than Polar lattices based on SCL decoding
which have n = 128 and L = 128 while GI reliability-based
CLDLC provides higher complexity.

V. CONCLUSION
We proposed the construction of CLDLC based on Eisenstein
integers, to reduce the complexity of CLDLC decoding.
We defined the reliability of the check-to-variable messages
for choosing the number of finite Gaussian functions for
each incoming message at the variable node. Each incoming
message at the variable node can be approximated by a
varying number of finite Gaussian functions, depending on
its reliability. Therefore, the number of finite Gaussian func-
tions will be minimized for each incoming message, reducing
complexity. The reliability-based decoding algorithm was
applied to CLDLC based on Gaussian integers as well.
Our results show that the reliability-based decoding

algorithm for Eisenstein integers gives the lowest complexity
when n ≥ 49. In addition, reliability-based decoding
algorithms based on both Eisenstein integers and Gaussian
integers shows the best performance when n ≤ 500.
Eisenstein integers provides lower complexity than Gaussian
integers because the hexagonal Voronoi cells of the
Eisenstein integer lattice has the tightest packing in two
dimensions, leading to a higher reliability than Gaussian
integers for the same fixed number of Gaussian functions in
the approximation.

APPENDIX
PROOF OF PROPOSITION 1
The proof of Proposition 1 is given. The check-to-variable
messages R(z) and R̃(z) have mean mc, variance Vc, where
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the k-Gaussian mixture R(z) expressed as:

R(z) =
k−1∑

i=0

N (z;mc + bi/h,Vc) (32)

and the l-Gaussian function approximation is R̃(z),
expressed as:

R̃(z) =
l−1∑

j=0

N (
z;mc + bj/h,Vc

)
. (33)

The channel message has mean ma, variance Va, expressed
as Y(z) = N (z;ma,Va). And it is assumed that Vc and Va

are diagonal covariance matrices.
Define f and g as Y(z)R(z) and Y(z)̃R(z), respectively,

and these products are:

f = Y(z)R(z) =
k−1∑

i=0

πiN (z;mi,V)
︸ ︷︷ ︸

fi

, and

g = Y(z)̃R(z) =
l−1∑

j=0

ωjN
(
z;mj,V

)

︸ ︷︷ ︸
gj

, (34)

where V,mi, πi and ωj are:

V =
(
V−1
c + V−1

a

)−1
,mi = V

(
V−1
c (mc + bi/h)

)
,

π ′i =
1

2π
√|Vc + Va|e

− 1
2 (mc+bi/h)T (Vc+Va)−1(mc+bi/h),

πi = π ′i
∑k−1

i=0 π ′i
, and ωj =

π ′j
∑l−1

j=0 π ′j
. (35)

Without loss of generality, π ′0 ≥ π ′1 ≥ · · · ≥ π ′k−1 and
ma = 0 is assumed, which implies |m0| ≤ |m1| ≤ · · · ≤
|mk−1|.

Then, the KL divergence between Y(z)Rk(z) and Y(z)̃R(z)
can be expressed as:

D
(
Y(z)R(z)||Y(z)̃R(z)

) = D

⎛

⎝
k−1∑

i=0

πifi||
l−1∑

j=0

ωjgj

⎞

⎠. (36)

This can be upper bounded using the variational upper bound
on KL divergence [34]:

D
(
Y(z)R(z)||Y(z)̃R(z)

) ≤
k−1∑

i=0

l−1∑

j=0

πiωjD
(
fi||gj

)
. (37)

In general, the KL divergence between two complex
Gaussian functions f̂ and ĝ has a closed-form expression,

D
(
f̂ ||ĝ

)
= 1

2

(

log
|Vĝ|
|Vf̂ |
+ Tr

[
V−1
ĝ Vf̂

]
− 2

+
(
mf̂ −mĝ

)T
V−1
ĝ

(
mf̂ −mĝ

))

. (38)

Here, f and g have the same variance V. Then, V and m
in (35) is substituted into (38), so that:

πiωjD
(
fi||gj

) =
{

0, if i = j

πiωj
va|mi−mj|2

2(vc+va) , ifi �= j.
(39)

Equation (37) has l(k − 1) non-zero terms, and
π0ω1D(f0||g1) = π1ω0D(f1||g0) are equal and the greatest,
so the term π0ω1 determines the upper bound.
For single Gaussian function approximation ω0 = 1, and

π1 is given by:

π1 = π ′1
∑k−1

i=0 π ′i
=

⎛

⎝ e−
|mc+b1/h|2

2(vc+va)

∑k−1
i=0 e

− |mc+bi/h|22(vc+va)

⎞

⎠, (40)

Now make the restriction to k = 2

π1 ≤
⎛

⎝ e−
|mc+b1/h|2

2(vc+va)

e−
|mc+b0/h|2

2(vc+va) + e− |mc+b1/h|2
2(vc+va)

⎞

⎠

= 1

1+ e
−(mch+m∗c h∗)+1

2|h|2(vc+va)

= 1

1+ e
−2(mc,RehRe−mc,ImhIm)+1

2|h|2(vc+va)

(41)

where b0 = 0 and b1 is any integer at the minimum
Euclidean distance of 1, |b1| = 1, so without loss of
generality, take b1 = −1. Then, (41) is substituted into (39),
where |mi−mj|2 is upper bounded by |mi−mj|2 ≤ 1/|h|2.
Form the upper bound from (37) by replacing the (k − 1)

non-zero terms with the greatest term, so the upper bound
of single Gaussian function approximation is:

D
(
Y(z)R(z)||Y(z)̃R(z)

) ≤
(k − 1)va

2|h|2(vc + va)|
(

1+ e
2(mc,RehRe−mc,ImhIm)+1

2|h|2(vc+va)

) . (42)

For two Gaussian function approximation, the term π0ω1
can be written as:

π0ω1 = π ′0
∑k−1

i=0 π ′i

π ′1
∑l−1

j=0 π ′j

=
⎛

⎜
⎝

e−
|mc+b0/h|2

2(vc+va)

∑k−1
i=0 e

− |mc+bi/h|22(vc+va)

⎞

⎟
⎠

⎛

⎝ e−
|mc+b1/h|2

2(vc+va)

∑l−1
i=0 e

− |mc+bi/h|22(vc+va)

⎞

⎠

π0ω1 ≤
⎛

⎜
⎝

e−
|mc+b0/h|2

2(vc+va)

∑l−1
i=0 e

− |mc+bi/h|22(vc+va)

⎞

⎟
⎠

2

. (43)

Make the restriction to l = 2

π0ω1 ≤
⎛

⎜
⎝

e−
|mc+b0/h|2

2(vc+va)

e−
|mc+b0/h|2

2(vc+va) + e− |mc+b1/h|2
2(vc+va)

⎞

⎟
⎠

2

=
⎛

⎜
⎝

1

1+ e
2(mc,RehRe−mc,ImhIm)−1

2|h|2(vc+va)

⎞

⎟
⎠

2

, (44)

where b0 = 0 and, b1 = −1. Then, (44) is substituted
into (39), where |mi−mj|2 ≤ 1/|h|2. Form the upper bound
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from (37) by replacing the 2(k− 1) non-zero terms with the
greatest term, so the upper bound of two Gaussian function
approximation is:

D
(
Y(z)R(z)||Y(z)̃R(z)

)

≤ (k − 1)va

|h|2(vc + va)
(

1+ e
2(mc,RehRe−mc,ImhIm)−1

2|h|2(vc+va)

)2
. (45)

REFERENCES
[1] R. Zamir, Lattice Coding for Signals and Networks: A Structured

Coding Approach to Quantization, Modulation, and Multiuser
Information Theory. Cambridge, U.K.: Cambridge Univ. Press, 2014.

[2] R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on the
AWGN channel,” IEEE Trans. Inf. Theory, vol. 44, no. 1, pp. 273–278,
Jan. 1998.

[3] U. Erez and R. Zamir, “Achieving 1/2 log (1+SNR) on the AWGN
channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

[4] Y. Tian, D. Wu, C. Yang, and A. F. Molisch, “Asymmetric two-
way relay with doubly nested lattice codes,” IEEE Trans. Wireless
Commun., vol. 11, no. 2, pp. 694–702, Feb. 2012.

[5] Y. Huang, N. E. Tunali, and K. R. Narayanan, “A compute-and-
forward scheme for Gaussian bi-directional relaying with inter-symbol
interference,” IEEE Trans. Commun., vol. 61, no. 3, pp. 1011–1019,
Mar. 2013.

[6] D. Fang, Y.-C. Huang, Z. Ding, G. Geraci, S.-L. Shieh, and
H. Claussen, “Lattice partition multiple access: A new method of
downlink non-orthogonal multiuser transmissions,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), 2016, pp. 1–6.

[7] A. Hindy and A. Nosratinia, “Lattice coding and decoding for
multiple-antenna Ergodic fading channels,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 1873–1885, May 2017.

[8] N. Sommer, M. Feder, and O. Shalvi, “Low-density lattice codes,”
IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1561–1585, Apr. 2008.

[9] B. Kurkoski and J. Dauwels, “Reduced-memory decoding of low-
density lattice codes,” IEEE Commun. Lett., vol. 14, no. 7,
pp. 659–661, Jul. 2010.

[10] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

[11] Y. Yona and M. Feder, “Complex low density lattice codes,” in Proc.
IEEE Int. Symp. Inf. Theory, 2010, pp. 1027–1031.

[12] J. Zhu and M. Gastpar, “Gaussian multiple access via compute-and-
forward,” IEEE Trans. Inf. Theory, vol. 63, no. 5, pp. 2678–2695,
May 2017.

[13] B. Kurkoski and J. Dauwels, “Message-passing decoding of lattices
using gaussian mixtures,” in Proc. IEEE Int. Symp. Inf. Theory, 2008,
pp. 2489–2493.

[14] Y. Yona and M. Feder, “Efficient parametric decoder of low density lat-
tice codes,” in Proc. IEEE Int. Symp. Inf. Theory, 2009, pp. 744–748.

[15] R. A. Parrao Hernandez and B. M. Kurkoski, “The three/two gaussian
parametric LDLC lattice decoding algorithm and its analysis,” IEEE
Trans. Commun., vol. 64, no. 9, pp. 3624–3633, Sep. 2016.

[16] S. Liu, Y. Hong, E. Viterbo, A. Marelli, and R. Micheloni, “Efficient
decoding of low density lattice codes,” IEEE Wireless Commun. Lett.,
vol. 8, no. 4, pp. 1195–1199, Aug. 2019.

[17] W. Wiriya and B. M. Kurkoski, “Reliability-based parametric LDLC
decoding,” in Proc. Int. Symp. Inf. Theory Appl. (ISITA), 2018,
pp. 188–192.

[18] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and
Groups, vol. 290. New York, NY, USA: Springer, 2013.

[19] J. Freudenberger and S. Shavgulidze, “Signal constellations based
on Eisenstein integers for generalized spatial modulation,” IEEE
Commun. Lett., vol. 21, no. 3, pp. 556–559, Mar. 2017.

[20] S. Stern, D. Rohweder, J. Freudenberger, and R. F. H. Fischer,
“Multilevel coding over Eisenstein integers with ternary codes,” in
Proc. 12th Int. ITG Conf. Syst. Commun. Coding (SCC), 2019, pp. 1–6.

[21] N. E. Tunali, Y.-C. Huang, J. J. Boutros, and K. R. Narayanan,
“Lattices over Eisenstein integers for compute-and-forward,” IEEE
Trans. Inf. Theory, vol. 61, no. 10, pp. 5306–5321, Oct. 2015.

[22] Y.-C. Huang, K. R. Narayanan, and P.-C. Wang, “Adaptive compute-
and-forward with lattice codes over algebraic integers,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), 2015, pp. 566–570.

[23] Y.-C. Huang, K. R. Narayanan, and P.-C. Wang, “Lattices over
algebraic integers with an application to compute-and-forward,” IEEE
Trans. Inf. Theory, vol. 64, no. 10, pp. 6863–6877, Oct. 2018.

[24] Y. Wang, A. Burr, and D. Fang, “Complex low density lattice codes
to physical layer network coding,” in Proc. IEEE Int. Conf. Commun.
(ICC), 2015, pp. 2060–2065.

[25] L. Liu, Y. Yan, C. Ling, and X. Wu, “Construction of capacity-
achieving lattice codes: Polar lattices,” IEEE Trans. Commun., vol. 67,
no. 2, pp. 915–928, Feb. 2018.

[26] O. R. Ludwiniananda, N. Liu, K. Anwar, and B. M. Kurkoski, “Design
of polar code lattices of finite dimension,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), 2021, pp. 1011–1016.

[27] N. Di Pietro, G. Zémor, and J. J. Boutros, “LDA lattices without
dithering achieve capacity on the Gaussian channel,” IEEE Trans. Inf.
Theory, vol. 64, no. 3, pp. 1561–1594, Mar. 2017.

[28] K. Huber, “Codes over Gaussian integers,” IEEE Trans. Inf. Theory,
vol. 40, no. 1, pp. 207–216, Jan. 1994.

[29] K. Huber, “Codes over Eisenstein-Jacobi integers,” in Contemporary
Mathematics, vol. 168. Providence, RI, USA: Am. Math. Soc., 1994,
p. 165.

[30] D. Rohweder, J. Freudenberger, and S. Shavgulidze, “Low-density
parity-check codes over finite Gaussian integer fields,” in Proc. IEEE
Int.Symp. Inf. Theory (ISIT), 2018, pp. 481–485.

[31] Q. T. Sun, J. Yuan, T. Huang, and K. W. Shum, “Lattice network
codes based on Eisenstein integers,” IEEE Trans. Commun., vol. 61,
no. 7, pp. 2713–2725, Jul. 2013.

[32] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 409–417, Mar. 1994.

[33] C. Nafornita, Y. Berthoumieu, I. Nafornita, and A. Isar, “Kullback-
Leibler distance between complex generalized gaussian distributions,”
in Proc. 20th Eur. Signal Process. Conf. (EUSIPCO), 2012,
pp. 1850–1854.

[34] J. R. Hershey and P. A. Olsen, “Approximating the Kullback-Leibler
divergence between gaussian mixture models,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), 2007, pp. IV–317–IV–320.

WARANGRAT WIRIYA (Member, IEEE) was
born in Thailand. She received the B.S.
and M.S. degrees from the Department of
Telecommunication Engineering, King Mongkut’s
Institute of Technology Ladkrabang (KMITL),
Thailand, in 2010 and 2012, respectively, and
the Ph.D. degree from the School of Information
Science, Japan Advanced Institute of Science
and Technology (JAIST) in 2023. She currently
works with Technology Strategy and Compliance
Division, Rakuten Mobile, Japan. Then, she

worked with the Research and Development Team of Read/Write Head in
Seagate Technology Ltd., Thailand, from 2012 to 2016. She received a
scholarship from National Electronics and Computer Technology Center,
Thailand, from 2010 to 2012, while she was a M.S. Student at KMITL.
From 2016 to 2019, during the Ph.D. Program at JAIST, she received
two scholarships, the Doctoral Research Fellow from JAIST, and KDDI
Foundation Scholarship.

BRIAN M. KURKOSKI (Member, IEEE) was born
in Portland, OR, USA. He received the B.S.
degree from the California Institute of Technology
in 1993, and the M.S. and Ph.D. degrees from
the University of California at San Diego in
2000 and 2004, respectively. He worked at
Two California Startups. He is a Professor with
the Japan Advanced Institute of Science and
Technology (JAIST) in Nomi, Japan. He received a
JSPS Postdoctoral Fellowship from 2004 to 2006,
while the University of Electro-Communications

in Tokyo, Japan, where he continued as an Associate Professor from 2007
to 2012. He has been with JAIST since 2012. He was an Associate Editor
for IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences from 2010 to 2014. He was the Chair of the
Data Storage Technical Committee, a Technical Committee of the IEEE
Communications Society from 2017 to 2018, and was a Secretary from
2013 to 2016. For the IEEE Information Theory Society, he is a member
of the Board of Governors from 2021 to 2023, and has been the Chair
of the Digital Presence/Online Committee since 2019. He was a General
Co-Chair of the 2021 IEEE Information Theory Workshop.

4336 VOLUME 5, 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


