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ABSTRACT In this work, we investigate the performance of geometric constellation shaping for high-
order coded quadrature amplitude modulation (QAM) over an additive white Gaussian noise (AWGN)
channel. We focus on a systematic design where a single parameter uniquely determines the entire
constellation points according to the truncated Gaussian distribution, and the parameter is optimized
based on the resulting mutual information. Our main objective is to combine the proposed systematic
geometric shaping with practical coded modulation so as to achieve high bandwidth efficiency with
low design/decoding complexity. To this end, we investigate the use of multilevel coding (MLC) under
multistage decoding (MSD) as well as bit-interleaved coded modulation (BICM), along with pulse
amplitude modulation (PAM) consisting of as much as 128 signal points, i.e., leading to 16 384-ary QAM
in the two-dimensional case. Our comparative studies employing the off-the-shelf binary punctured turbo
codes show that, as we target higher spectral efficiency, MLC with MSD is more attractive than BICM in
view of both bit error rate (BER) performance and decoding complexity. In addition, we introduce new
closed-form bounds related to constellation constrained capacity, based on which one can quickly assess
the capacity behavior of given discrete PAM constellations.

INDEX TERMS Bit-interleaved coded modulation (BICM), constellation constrained capacity bounds,
geometric constellation shaping, multilevel coding (MLC), multistage decoding (MSD).

I. INTRODUCTION

DUE TO ever-increasing demands for high data-
rate communications with limited spectral resources,

bandwidth-efficient coded modulation schemes, especially
in combination with higher-order modulations [1], would
play an important role in future communications systems.
Furthermore, in order to approach Shannon limit with a
finite number of constellation points, the use of constellation
shaping is essential [2].

Constellation shaping techniques have been investigated
extensively so as to enhance achievable information rate
at a given signal-to-noise power ratio (SNR). They can
be classified into probabilistic shaping (e.g., [3], [4], [5])
and geometric shaping (e.g., [6], [7]), where the former

attempts to control the probability distribution of the regular
quadrature amplitude modulation (QAM) constellations,
whereas the latter attempts to modify only the location of
constellation points without controlling their distribution.
Despite its significant potential gain, probabilistic shaping
requires a distribution matcher, which typically increases
the computational complexity of the transmitter [8]. To
mitigate this issue, low-complexity implementations with
short block codes have been studied in [9], [10]. Also, a
combination of probabilistic and geometric shaping designed
through machine learning has recently been considered
in [11], [12]. This work focuses on geometric shaping since
its complexity required for shaping operation is generally
lower than that of probabilistic shaping, and it also has
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high compatibility with the standard coded modulation
schemes.
As for coded modulation, bit-interleaved coded mod-

ulation (BICM) [13], [14] and multilevel coding (MLC)
with multistage decoding (MSD) [15] are the two rep-
resentative approaches. BICM is a well-known approach
that enjoys design simplicity with robustness against fading
channels [14], [16]. Its major advantage from a viewpoint of
practical implementation is that one can employ off-the-shelf
capacity-approaching binary channel codes, such as turbo
codes and low-density parity-check (LDPC) codes, without
major modification of encoder and decoder. The main
drawback of BICM is that its achievable information rate,
which is characterized by bit-wise mutual information (BMI),
is generally lower than the constellation constrained capacity.
MLC is an alternative approach that can be operated with
binary channel codes, where it can achieve channel capacity
with MSD provided that the code rates of component codes
are properly designed according to the information rates
determined by the constellation constrained capacity [17].
Another major advantage of MLC/MSD in practice is that
it can be employed with various binary channel codes
that are available today. This is in contrast to trellis-coded
modulation (TCM) [18], where the codes are designed
over the Euclidean space and thus essentially non-binary.
Nevertheless, designing MLC/MSD system with higher-order
modulation is not straightforward due to a growing number
of decoding stages. Therefore, the comparison between the
two coded modulation schemes in view of achievable error
rate performance as well as decoding complexity should be
of great practical interest. We thus attempt to numerically
compare these coded modulation schemes with geometric
shaping.
The application of geometric shaping to MLC/MSD

system has been investigated in [19], where hard deci-
sion decoding is employed in the higher levels so as
to reduce overall decoding complexity [17], [20]. With
application to BICM, a pseudo-Gaussian constellation design
has been studied in [21], whereas the optimization of bit
labeling is discussed in [22]. There have been several
studies on constellation optimization with geometric shaping.
Joint optimization of constellation and binary labeling
based on simulated annealing (SA) has been proposed
in [23], [24], whereas the applications of particle swarm
optimization (PSO) algorithm and genetic algorithm (GA)
have been investigated in [25] and [26], respectively. Also, an
end-to-end learning of geometric shaping and probabilistic
shaping has received significant recent attention in the field
of optical fiber communications [27], [28].
In this work, we focus on a systematic approach where

the constellation points can be uniquely determined by
only a single parameter. More specifically, we modify
Gaussian signaling similar to [21], [29], where the Gaussian
distribution is first truncated to a specific level and then
all the points are uniquely identified under certain statistical
constraints. Thanks to this systematic design approach, the

resulting constellation can be fully described with the single
parameter. Therefore, unlike other numerical approaches
that involve complex constellation optimization processes,
our constellation can readily be reproduced and evaluated.
We here attempt to optimize the parameter based on the
constellation constrained capacity and the total BMI, which
serve as achievable information rates for MLC/MSD and
BICM, respectively.
The main drawback of our constellation design is that

since it is based on a single dimension, its achievable
shaping gain should be less than those optimized over multi-
dimensional cases such as [30], [31], [32]. Nevertheless,
these constellations require special and rather complicated
set partitioning for MLC/MSD. For example, see [33]
and [34] in the cases of two-dimensional non-square con-
stellations such as hexagonal shell modulation (HSM) and
amplitude-phase shift keying (APSK), respectively. It is thus
challenging for high-dimensional constellations to achieve
the constellation constrained capacity using binary channel
coding in practice. On the other hand, if the constellation
is a variant of the standard PAM having 2m constellation
points for a given positive integer m, then the application of
MLC/MSD (with m levels) is rather straightforward. Such
an approach has also been adopted in [35] in the framework
of superposition coding.
In general, calculation of constellation constrained

capacities requires numerical integration, which is often
implemented by simulations such as Monte-Carlo integra-
tion. To circumvent this, their closed-form alternatives have
been studied in the literature [36], [37], [38], and we also
develop closed-form bounds that account for the loss of
mutual information from its upper limit. Since these bounds
are calculated without any numerical integration, they can
be used for quickly assessing the capacity behavior as well
as verifying the precise results obtained through numerical
integration.
The main contributions of this work are summarized as

follows:

• A systematic geometric constellation based on the
truncated Gaussian distribution with a single parameter
optimization is developed for high-order QAM con-
stellations. The parameter is optimized based on the
maximization of mutual information of the resulting
constellation. We also compare our proposed constel-
lations with those of [35] in terms of constellation
constrained capacity, demonstrating the superiority of
the proposed design in the case of one-dimensional
constellation that can employ MLC/MSD with low-
computational complexity.

• We compare the performance of BICM and MLC/MSD
with the proposed geometric constellation shaping by
extensive computer simulations employing the off-the-
shelf binary punctured turbo codes in high spectral
efficiency regime based on non-uniformly spaced QAM
constellations with up to 16 384 constellation points. We
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also meticulously evaluate the decoding complexity of
both systems by quantifying the numbers of mathemat-
ical operations required for their bit-metric calculation.
Our results show that MLC/MSD offers superior error
rate performance and decoding complexity under the
constraint that each code has the same codeword
length.

• Two new closed-form expressions that serve as tight and
loose bounds on the loss in constellation constrained
capacity are developed. The accuracy of these bounds
are examined by comparing with the precise value
obtained by numerical integration.

The rest of this paper is organized as follows. In Section II,
we first review the constellation constrained capacity and
derive new bounds focusing on one-dimensional constella-
tion, i.e., pulse-amplitude modulation (PAM). In Section III,
we describe our systematic geometric shaping based on
the truncated Gaussian distribution with optimization of a
single parameter. The system models of MLC/MSD and
BICM are briefly described in Section IV. The performance
of these coded modulation systems with the proposed
geometric shaping is compared through computer simulation
in Section V, followed by the discussion of their decoding
complexity in Section VI. Finally, Section VII concludes this
work.
We note that some initial results on the constellation

shaping based on the truncated Gaussian distribution in this
paper were presented in [39].

II. CLOSED-FORM BOUNDS FOR LOSS IN
CONSTELLATION CONSTRAINED CAPACITY
We first review a mathematical expression of constellation
constrained capacity for arbitrary discrete constellations.
Throughout this work, we focus on a practical framework
where the two orthogonal channels, i.e., in-phase (I) and
quadrature (Q) channels, are designed independently as in
the case of the standard QAM. Therefore, we analyze the
constellation constrained capacity of PAM as its application
to the two-dimensional case is straightforward (i.e., it is twice
as much as the one-dimensional capacity with appropriate
scaling of SNR).
To date, derivation of simple approximate expressions or

bounds for constellation constrained capacity remains one
of the continuing challenges in signal constellation design.
An approximate expression for the mutual information of
extremely dense PAM (referred to as ∞-PAM) has been
considered in [36], whereas a closed-form upper bound for
the constellation constrained capacity of QAM has been
derived through the sphere-packing argument in [37]. Also,
capacity of pulse-position modulation (PPM) is discussed
in [38], where its simple upper bound based on Jensen’s
inequality has been proposed as a performance measure of
ultra-wideband communications. In this section, we derive
closed-form bounds focusing on the loss from the capacity
limit of PAM.

A. CONSTELLATION CONSTRAINED CAPACITY
We consider the following real-valued discrete-time AWGN
channel:

Y = X + Z, (1)

where Y is the received symbol and Z is the AWGN
term with zero mean and variance σ 2 = N0/2, i.e., Z ∼
N (0, σ 2). The transmitted symbol X is chosen from the PAM
constellation set A = {a0, a1, . . . , aM−1}, where M = 2m

is the number of constellation points in one dimension
and the positive integer m corresponds to the number of
uncoded bits transmitted by each PAM symbol. We denote
the average energy of the transmitted PAM symbol by
Es/2, with Es representing that of QAM. We also assume
that all the constellation points are equally probable, i.e.,
PX(ak) � P(X = ak) = 1/M for ∀k = {0, 1, . . . ,M − 1}.
The conditional probability distribution function (PDF) of
the received symbol Y given that the symbol X = a is
transmitted is written by

pY|X(y | a) = 1√
2πσ 2

e
− (y−a)2

2σ2 . (2)

Under the above model, the mutual information between
the transmitted symbol and the received symbol over an
AWGN channel, often called coded modulation capacity, is
expressed in terms of the constellation set A and the channel
SNR, Es/N0, as [18]

CCM

(
A, Es

N0

)
= EY,X

[
log2

pY|X(Y | X)
pY(Y)

]
(3)

in bits per dimension, where E[ · ] denotes an expectation
operation with its subscript(s) representing the random vari-
able(s) over which the expectation is performed. The above
equation can also be expressed, omitting the dependence on
A and Es/N0 for simplicity, as

CCM = m− 1

M

M−1∑
k=0

EZ

[
log2

{
M−1∑
l=0

e
− 2Z(ak−al)+(ak−al)2

2σ2

}]
. (4)

As a consequence, the constellation constrained capacity for
PAM is expressed as

CCM = m− EZ[ψ(Z)]︸ ︷︷ ︸
� ξ

, (5)

with

ψ(Z) � 1

M

M−1∑
k=0

log2

{
M−1∑
l=0

e
− ak−al

σ2 Z− (ak−al)2
2σ2

}
. (6)

Note that the quantity ξ defined in (5) corresponds to the
reduction of capacity from its upper limit of m = log2 M.
While this upper limit is determined only by M, i.e., the
number of constellation points, the term ξ depends on the
constellation points A. Therefore, it serves as an alternative
measure equivalent to the constellation constrained capacity.
In general, however, calculation of ξ requires expectation
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with respect to Z, and this may not be expressed in
closed form. As a result, numerical integration should be
necessary, where its accuracy depends on the precision of
numerical calculation. To circumvent this, we will develop
two closed-form lower bounds for ξ , depending on the
geometric property of PAM constellations. They may serve
as alternative measures for assessing the reduction of
information rate associated with given constellation points
without resorting to numerical integration.

B. DERIVATION OF BOUNDS
We attempt to find two lower bounds to the measure ξ
defined in (5). To this end, we first show that the function
ψ(Z) defined in (6) is convex for Z ≥ 0. Note that ψ(Z)
can be rewritten as

ψ(Z) = 1

M

M−1∑
k=0

log2

⎛
⎜⎜⎝1 +

M−1∑
l=0
l �=k

αle
AlZ

⎞
⎟⎟⎠, (7)

where

αl � e
− (ak−al)2

2σ2 , Al �
al − ak
σ 2

. (8)

Therefore, it is sufficient to show that the following function

g(x) = ln

(
1 +

∑
l

αle
Alx

)
, for αl ≥ 0,Al ∈ R, (9)

is convex for x ≥ 0. Since the second derivative of g(x) is
expressed as

g′′(x) =
∑

l αlA
2
l e
Alx +∑∑

i<l αiαl(Ai − Al)2e(Ai+Al)
2

(
1 +∑l αle

Alx
)2 ,

(10)

it follows that g′′(x) ≥ 0 for x ≥ 0, and thus ψ(Z) is convex
for Z ≥ 0.

1) A LOOSE BOUND FOR GENERAL PAM

Since ψ(Z) is convex for Z ≥ 0, by Jensen’s inequality we
have

ξ = EZ[ψ(Z)] ≥ ψ(EZ[Z]) = ψ(0) � ξL, (11)

where ξL corresponds to the loose lower bound to ξ . It thus
can be expressed as

ξL = 1

M

M−1∑
k=0

log2

⎧⎪⎪⎨
⎪⎪⎩

1 +
M−1∑
l=0
l �=k

e
(ak−al)2

2σ2

⎫⎪⎪⎬
⎪⎪⎭
, (12)

which does not require any numerical integration for its
calculation.

2) A TIGHTER BOUND FOR SYMMETRIC PAM

In practice, PAM constellations are designed to be origin-
symmetric, i.e.,

ak = −a(M−1)−k, for ∀k ∈ {0, 1, . . . ,M/2 − 1}. (13)
When the above relationship holds, then we can derive a
tighter lower bound to ξ .
To this end, we first notice that with the condition (13),

ψ(Z) is expressed as

ψ(Z) =
M/2−1∑
k=0

[
log2

{
M−1∑
l=0

e
− (ak−al)

σ2 Z− (ak−al)2
2σ2

}

+ log2

{
M−1∑
l=0

e
− (aM−1−k−al)

σ2 Z− (aM−1−k−al)2

2σ2

}]

=
M/2−1∑
k=0

[
log2

{
M−1∑
l=0

e
− (ak−al)

σ2 Z− (ak−al)2
2σ2

}

+ log2

{
M−1∑
l=0

e
− (ak−al)

σ2 (−Z)− (ak−al)2
2σ2

}]

= ψ(−Z), (14)

which means that ψ(Z) is an even function. We may thus
write

ξ = EZ[ψ(Z)] = EZ[ψ(|Z|)] ≥ ψ(EZ[|Z|]) � ξT , (15)

where ξT corresponds to the tighter lower bound to ξ .
Noticing that

EZ[|Z|] =
∫ ∞

−∞
|z|√
2πσ 2

e
− z2

2σ2 dz

= 2
∫ ∞

0

z√
2πσ 2

e
− z2

2σ2 dz =
√

2σ 2

π
, (16)

we may express ξT in closed form as

ξT = 1

M

M−1∑
k=0

log2

⎧⎪⎪⎨
⎪⎪⎩

1 +
M−1∑
l=0
l �=k

e
−(ak−al)

√
2

πσ2 − (ak−al)2
2σ2

⎫⎪⎪⎬
⎪⎪⎭
, (17)

which can easily be calculated without numerical integration.

C. NUMERICAL COMPARISON
Fig. 1 compares the numerical values of ξ with the corre-
sponding two lower bounds ξL, ξT in the case of the standard
(uniformly-spaced) PAM constellations with M = 16, 32, 64,
and 128. It can be observed that the derived bound ξT (dot-
dashed lines) is tighter than ξL (dotted lines) as expected.
Note that from (5), we may express an upper bound of the
constellation constrained capacity as CCM ≤ m−ξT ≤ m−ξL
for m = log2 M. Unfortunately, these bounds may not be
necessarily informative as they may exceed the theoretical
limit (i.e., Shannon limit) in low SNR regions of interest.
Nevertheless, the bounds ξT and ξL themselves may serve
as useful indicators in terms of degradation from the upper
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FIGURE 1. Comparison of the measure ξ calculated through numerical integration
and the two closed-form lower bounds ξL, ξT in the case of the standard PAM
constellations.

FIGURE 2. Comparison of the measure ξ and the two closed-form lower bounds
ξL, ξT applied to the four different 128-PAM constellations.

limit of capacity for a given set of discrete constellation
points, as opposed to the Shannon limit which results from
(continuous) Gaussian distribution.
Fig. 2 compares the numerical values of ξ and the

corresponding closed-form bounds ξT and ξL for each of
the four different 128-PAM constellations according to their
specific design approaches described in the next section. It
is observed from these results that one can largely assess the
performance gaps among different discrete constellations by
the proposed closed-form numerical measures ξT and ξL.

III. SYSTEMATIC GEOMETRIC CONSTELLATION
SHAPING
While it is well known that the optimal constellation over an
AWGN channel under the average signal power constraint
is Gaussian, the number of constellation points should be
finite in practical systems, and uniformly-spaced PAMs
(QAMs) are often adopted. To improve their achievable
information rate without any major additional complexity,

geometric shaping approaches focusing on Gaussian-like
discrete constellations have been proposed in the literature.
In particular, the centroid-based approach is suggested in [40]
and cumulative distribution function (CDF)-based approach
is considered in [41]. In this section, we describe these
constellation designs and analyze their performance in terms
of capacity and peak-to-average power ratio (PAPR). We also
introduce a systematic constellation design approach based
on the truncated Gaussian distribution, where a single param-
eter balances the two extreme constellations represented by
the standard (uniform) and Gaussian distributions.

A. CONVENTIONAL CONSTELLATION DESIGN
1) STANDARD PAM

We first describe the standard M-ary PAM constellations
where the adjacent points have equal Euclidean distance. Let
A = {a0, a1, . . . , aM−1} denote the constellation points of
general PAM. In the case of the standard PAM, we have

ak = (−M + 1 + 2k)d, k ∈ {0, 1, . . . ,M − 1}, (18)

with

d =
√

3

2
(
M2 − 1

) . (19)

Note that 2d corresponds to the minimum Euclidean distance
of the constellation points, and since we assume that the
probability distribution of each constellation point is equal,
i.e., PX(ak) = 1/M for ∀k ∈ {0, 1, . . . ,M − 1}, the average
energy is normalized such that E[X2] = Es/2. Note also that
without loss of generality, we set Es = 1 in what follows.

2) GAUSSIAN-LIKE PAM (CENTROID-BASED APPROACH)

We review the approach based on the centroid [40], where we
first divide the entire region (−∞,∞) into M sub-regions
such that the probability of selecting each sub-region is equal
(i.e., 1/M), and set the constellation point of each sub-region
as its expected value (i.e., the centroid). More specifically, we
divide the zero-mean Gaussian probability density function
(PDF), N (0, σ 2), where σ 2 represents its variance, into M
disjoint sub-regions, where the kth sub-region is given by
Rk = (Rk,Rk+1) with the boundary conditions R0 = −∞
and RM = ∞. Since the signal should fall on one of the M
sub-regions with equal probability, we have
∫ Rk+1

Rk

1√
2πσ 2

e
− x2

2σ2 dx = 1

M
, k ∈ {0, 1, . . . ,M − 1}. (20)

It follows that

Rk =
√

2σ 2 erf−1
(

2k

M
− 1

)
, (21)

where erf(·) is the error function and thus erf−1(·) is its
inverse function. With X ∼ N (0, σ 2), the signal point in each
sub-region can be uniquely determined by its conditional
expectation as
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âk = E[X |X ∈ Rk],

= M√
2πσ 2

(
e
− R2

k
2σ2 − e

− R2
k+1

2σ2

)

= M√
2πσ 2

(
e
−
[
erf−1

(
2k
M −1

)]2

− e
−
[
erf−1

(
2(k+1)
M −1

)]2
)
. (22)

Since the set of the constellation points {â0, â1, . . . , âM−1}
does not meet the energy constraint, we scale them as

ak �
âk√

2
M

∑M−1
k=0 â2

k

(23)

such that the resulting constellation {a0, a1, . . . , aM−1} sat-
isfies E[X2] = 1/2.

3) GAUSSIAN-LIKE PAM (CDF-BASED APPROACH)

In [41], a simple approach of generating Gaussian-like
discrete constellation is developed. In this case, each tentative
constellation point is chosen such that its CDF value is
equally spaced. Specifically, let X ∼ N (0, 1

2 ) with its CDF
FX(x) given by

FX(x) = P(X ≤ x) = 1 + erf(x)

2
. (24)

The kth tentative constellation point âk should be chosen
such that

FX
(
âk
) = k + 1

2

M
, k ∈ {0, 1, . . . ,M − 1}. (25)

Thus, we obtain the kth tentative constellation point as

âk = erf−1
(

2k + 1

M
− 1

)
. (26)

We finally scale the magnitude of constellation according
to (23) and obtain the desired points {a0, a1, . . . , aM−1}.
The above two Gaussian-like constellations with M = 32

are compared in Fig. 3 as M2-QAM, where we observe a
slight difference especially in their dynamic range. As we
will see later, the CDF-based approach has an advantage
in terms of achievable information rate (in addition to its
lower PAPR) over the centroid-based approach, despite its
simpler expression. Thus, in the next subsection, we will
focus on the constellation design based on modification of
the CDF-based approach.

B. PROPOSED CONSTELLATION DESIGN
We propose a constellation design according to the CDF-
based approach where the reference CDF is modified
according to the truncated Gaussian distribution. We first
introduce a new coefficient b, which limits the effective
range of the Gaussian PDF to (−b, b). According to (24),
the probability that the signal is below b can be expressed
as

FX(b) = 1 + erf(b)

2
. (27)

FIGURE 3. Comparison of two Gaussian-like constellations (1024-QAM); The orange
circles and blue crosses represent those designed by the centroid-based and
CDF-based approaches, respectively.

Then, the effective range of the CDF should be scaled
from [0, 1] to [FX(−b),FX(b)], and thus the kth tentative
constellation point should be chosen such that

FX
(
âk
) = 1 + erf

(
âk
)

2

= (FX(b)− FX(−b))k + 1
2

M
+ FX(−b). (28)

After some manipulations, we obtain the kth tentative signal
point as

âk = erf−1
(
α

(
2k + 1

M
− 1

))
, (29)

with

α � erf(b), α ∈ [0, 1], (30)

which is used as our shaping parameter. Finally, the
desired constellation points {a0, a1, . . . , aM−1} are obtained
according to the normalization, i.e., (23).
The transition of 32-PAM constellation points (i.e., 1024-

QAM) designed by this approach along with the parameter α
is plotted in Fig. 4, where we observe that the signal points
closely resemble the Gaussian distribution as α increases up
to 1. On the other hand, they approach the standard (i,e,.
uniformly spaced) 32-PAM as α approaches 0 since, in that
case, the PDF within the effective range (−b, b) can be
considered to be flat (constant) in the limit of b → 0.

C. NUMERICAL ANALYSIS
1) CAPACITY ANALYSIS

We numerically evaluate the above designed 32-PAM con-
stellations in terms of both the constellation constrained
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FIGURE 4. Transition of the shaped constellation points in the case of 32-PAM with
respect to the design parameter α.

FIGURE 5. Comparison of CM and BICM capacity in case of the shaped 32-PAMs
with respect to the design parameter α.

capacity and total bit-wise mutual information (BMI), where
the latter is often called BICM capacity (denoted by CBICM
in what follows), and considered as the ideal information
rate achieved by BICM system at a given SNR. (The precise
definition will be described later in Section IV-B.) The results
are shown as a function of α in Fig. 5, where the SNR is
fixed at 26.50 dB. Note that this SNR corresponds to the
case where the information rate reaches around 4.250 in
bits per dimension, which corresponds to the rate achieved
by 32-PAM with an ideal rate-17/20 channel code. It is
observed that the maximum value of nearly 4.262 is reached
at α = 0.882 in the case of CM capacity. Similarly, the
maximum value of 4.256 is achieved with α = 0.874 for
BICM capacity. Thus, in what follows, we refer to the
constellations obtained with these parameters as the optimal
constellations for each respective coded modulation scheme.
The constellation constrained capacities among several

representative 32-PAM constellations are compared in Fig. 6
within the SNR range where the information rate is around
4.250 in bits per dimension. It can be observed that the

FIGURE 6. Comparison of the conventional and proposed 32-PAMs in terms of their
constellation constrained capacity.

FIGURE 7. Comparison of the proposed 256-PAMs and that based on [35] in terms
of their constellation constrained capacity.

CDF-based Gaussian-like constellation is superior to the
centroid-based constellation, and these Gaussian-like con-
stellations are attractive in relatively low SNR regions when
compared to the standard (uniformly-spaced) constellation.
However, the proposed constellation based on the truncated
Gaussian with the selected parameter outperforms the others
for the information rate range of interest. In Section V, we
will investigate the error rate performance of the proposed
constellations by extensive simulations employing practical
coded modulation schemes. Since we employ M2-QAM
symbols consisting of the two identical M-PAM symbols in
practice, the total achievable information rate of the entire
system should be doubled.
Coded modulation based on non-uniform high-order PAM

has also been investigated in [35], where a geometric shaping
approach based on binomial distribution is introduced.
In their approach, m = log2 M parameters need to be
optimized to determine M-ary PAM constellation. In Fig. 7,
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FIGURE 8. PAPR versus the parameter α in the proposed constellation design;
Square points and diamond points correspond to the cases of the standard QAM and
CDF-based Gaussian-like QAM, respectively. Also, the circles represent those with the
constellations optimized at their target SNR values (i.e., α = 0.882 for 1024-QAM and
α = 0.884 for 16384-QAM, as discussed in Section V).

the constellation constrained capacity of our proposed 256-
PAM is compared with that of [35], where each constellation
is optimized at SNR of 30.10 [dB]. The result indicates that
our proposed PAM as well as Gaussian PAM outperform that
based on [35], even though the proposed systematic design
approach requires much less parameters to be optimized.

2) PAPR ANALYSIS

In general, geometrically shaped constellations often have
higher PAPR, which is a well-known major drawback since
it results in poor power amplifier efficiency [42]. Thus, we
should take this issue into account when designing constel-
lation in practice. For a given set of discrete constellation
points with normalized energy, the PAPR of the proposed
constellation is expressed as [43]

PAPR = max
k,l

|ak + jal|2 = 2a2
0

=
M erf−1

(
α
(

1
M − 1

))
∑M−1

k=0 erf−1
(
α
(

2k+1
M − 1

)) , (31)

which will be determined only by the two parameters α and
M. For several representative values of M, the transition of
the PAPR with respect to the design parameter α is shown in
Fig. 8, where it is apparent that the PAPR of the Gaussian-
like constellations rapidly grows with M, while that of the
standard constellations (i.e., α = 0) saturates at its upper
limit of 3 [43]. This is one of the major practical issues
associated with the constellation design based on Gaussian
distribution. As for the proposed design, the resulting PAPR
depends on the value of α, and the constellations optimized
at their target SNR values have much lower values than
the Gaussian-like constellations (i.e., α = 1), despite the
fact that they potentially improve the achievable error rate
performance.

FIGURE 9. Comparison of the loss of the achievable information rate from the
Shannon limit with modulation sizes M2 = 256, 1024, 4096, 16384.

3) LOSS FROM OPTIMAL CONSTELLATION

We discuss the applicability of our proposed shaping
approach to systems operating with various modulation sizes
and information rates in terms of the loss of the achievable
information rate by a given constellation set A from the
corresponding Shannon limit evaluated at specific SNR [20].
It is defined as

L

(
A, Es

N0

)
� log2

(
1 + Es

N0

)
− 2CCM

(
A, Es

N0

)
(32)

in bits per symbol, where the second term corresponds to
the two-dimensional coded modulation capacity. The results
in the cases of M2 = 256, 1024, 4096, and 16384 are shown
in Fig. 9, where it can be confirmed that the proposed
shaping approach is effective for all the modulation sizes.
Furthermore, compared to the standard QAM, reduction in
the loss from the Shannon limit achieved by the optimized
case becomes significant as the constellation size increases.
Therefore, the use of shaping approach would be beneficial
especially for the transmission systems with high information
rate, which is the main focus of this work.
There have been a growing number of studies on geomet-

rical shaping optimization over two or higher-dimensional
constellation cases such as [30], [31], and [32]. In [30], a
rigorous constellation optimization algorithm for two and
higher dimensional cases is proposed and it is shown to
achieve remarkable shaping gains over a wide range of SNRs.
In order to make a comparison with [30] in a practical
coded modulation scenario, we also evaluate the loss of the
achievable information rate in the case of BICM calculated
using (32) with CCM replaced by CBICM. (Note that the
BICM capacity of the proposed constellation is discussed
later in Section IV-B.) The results are shown in Fig. 10,
where that of a two-dimensional constellation in the case
of 1024 points, optimized at an SNR of 26.00 dB according
to [44], is also plotted. We observe that our proposed 1024-
QAM designed by optimizing one-dimensional constellation
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FIGURE 10. Loss of the achievable information rate from the Shannon limit in the
case of BICM with the proposed constellations. The case of the two-dimensional
constellation with 1024 points proposed in [30] is also plotted.

has a gap of 0.279 bits per symbol from the limit at the SNR
of 26.00 dB, whereas that of [44] is as low as 0.182 bits
per symbol, indicating the limitation of our one-dimensional
approach. Nevertheless, the shaping gain achieved by the
proposed constellations should remain beneficial when one
considers practical issues such as computational cost required
for demapping operation as well as their applicability to
MLC/MSD without major modifications, which will be
discussed in the subsequent sections.

IV. CODED MODULATION SCHEMES AND THEIR DESIGN
In the previous section, we have shown that the proposed
constellation shaping can achieve the gain over the
standard QAM constellation from a viewpoint of the
resulting constellation constrained capacity and the bit-wise
mutual information. In order to investigate their achievable
performance in terms of bit error rate with actual channel
coding, practical coded modulation schemes should be
applied. In this section, we investigate the application of two
representative coded modulation schemes to the proposed
shaping system.

A. MULTILEVEL CODING AND MULTISTAGE DECODING
Multilevel coding (MLC) with multistage decod-
ing (MSD) [15] has been shown to approach the
constellation constrained capacity using multiple binary
channel codes [17]. In what follows, we briefly review
MLC/MSD design based on the capacity rule [17], which
will be employed with our proposed geometric shaping.

1) MULTILEVEL CODING (MLC) AND MULTISTAGE
DECODING (MSD)

We consider the MLC transmitter employing a given con-
stellation A with cardinality |A| = M = 2m. A binary
information sequence q is first partitioned into m binary sub-
sequences denoted by q(i), i ∈ {0, 1, . . . ,m−1}. Each binary

sub-sequence q(i) of length Ki is encoded by a different
binary component code to generate a codeword c(i) =
(c(i)0 , c

(i)
1 , . . . , c

(i)
N−1) of length N with its code rate given by

Ri = Ki/N. Each element of m codewords is combined to
form cn = (c(0)n , c(1)n , . . . , c(m−1)

n ) for n ∈ {0, 1, . . . ,N − 1}
and then mapped onto the corresponding constellation point
chosen from A, which will be transmitted over an AWGN
channel. The information rate R of the entire system (bits
per dimension) is given by

R = R0 + R1 + · · · + Rm−1. (33)

At the receiver side, decoding is performed sequentially from
the lowest level until all the codewords in m levels are
decoded.

2) EQUIVALENT CHANNEL

Let X ∈ A denote a random variable representing a
transmitted symbol and let X0,X1, . . . ,Xm−1 ∈ F

m
2 denote

its binary representation (corresponding to cn). The mutual
information of X and its received symbol Y over an AWGN
channel can be expressed as

CCM = I(Y;X)
= I
(
Y;X0,X1, . . . ,Xm−1

)
. (34)

The application of the chain rule [45] to the above equation
yields

CCM = I
(
Y;X0

)
︸ ︷︷ ︸

�C0

+ I
(
Y;X1|X0

)
︸ ︷︷ ︸

�C1

+ · · · + I
(
Y;Xm−1|X0,X1, . . . ,Xm−2

)
︸ ︷︷ ︸

�Cm−1

. (35)

The above equation implies that, provided that all the
bits in the lower levels are known, the transmission of
MLC can be regarded as the parallel transmission of the
binary symbols (X0,X1, . . . ,Xm−1) over the m independent
equivalent channels. As a result, the capacity of the ith
equivalent channel is given by

Ci = I
(
Y;Xi|X0,X1, . . . ,Xi−1

)
(36)

for i ∈ {1, 2, . . . ,m− 1}.
3) RATE DESIGN BASED ON CAPACITY RULE

According to the capacity rule [17], the rates of the
component codes should satisfy

Ri ≤ Ci. (37)

The information rate R of (33) can be achieved as long
as (37) holds for all levels. In principle, by setting Ri
equal to Ci, one can achieve the constellation constrained
capacity CCM by MLC/MSD. In practice, however, some
rate loss would be unavoidable due to the lack of flexibility
in component code design as well as a limitation of the
codeword length.
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FIGURE 11. The equivalent channel capacities for the proposed 32-PAM (solid lines)
and the standard 32-PAM (dot-dashed lines).

4) DESIGN EXAMPLE

The equivalent channel capacities over an AWGN channel
for the proposed 32-PAM constellation (α = 0.882) with
natural labeling are numerically calculated and plotted in
Fig. 11 as solid lines, whereas those of the standard 32-
PAM are also plotted as dot-dashed lines for reference. The
vertical line indicates the SNR of 26.50 dB, at which we
will design and compare our system through simulations
in Section V. It is observed that MLC/MSD achieves the
information rate of around CCM = 4.262 at this SNR, where
the resulting rates of the component codes are given by
C0 = 0.360,C1 = 0.902,C2 = 0.999, and C3 = C4 =
1.000. From this result, we observe that the two highest
equivalent channels can be left uncoded, which is beneficial
in terms of practical receiver implementation.

B. BIT-INTERLEAVED CODED MODULATION
Bit-interleaved coded modulation (BICM) [14] is a simple
coded modulation scheme which uses only a single chain of
channel encoder and decoder. BICM can be modeled as a
serial concatenation of encoder, random bit-wise interleaver,
and signal mapper.
At the transmitter, the entire information sequence q is

encoded by a single encoder. The codeword c is bit-wise
interleaved and then mapped onto the corresponding signal
point from a constellation set A.

1) BICM CAPACITY

Similar to MLC/MSD, BICM decomposes each symbol
consisting of 2m constellation points into m binary channels,
where these binary channels are combined through random
bit interleaver. As a result, BICM enjoys simplified design
and implementation, but the price is its loss in terms of
achievable information rate compared to CCM since all the
binary channels are treated as independent.

FIGURE 12. Comparison of CBICM and CCM for various 32-PAM constellations.

The corresponding mutual information is expressed as [16]

CBICM = m−
m−1∑
i=0

EY,Bi

⎡
⎣log2

∑
x∈A pY|X(Y | x)∑
x∈A(i)

Bi

pY|X(Y | x)

⎤
⎦, (38)

where Bi ∈ F2 is a random variable representing the bit
of the ith binary channel, and A(i)

b denotes the set of
constellations in the ith binary channel with the bit specified
by b ∈ F2. The gap between CCM and CBICM is significantly
affected by bit labeling schemes that determine A(i)

b for
i ∈ {0, 1, . . . ,m − 1}, and in high SNR regime it is well
known that the binary reflected Gray code (BRGC) becomes
optimal for the standard QAM constellations [46]. As for the
Gaussian-like constellations, the optimization of bit-labeling
has been studied in [22], and through numerical analysis it
turned out that BRGC still achieves the best performance
across a wide range of SNRs. Thus, we adopt BRGC for all
the constellations employed in BICM throughout this work.

2) NUMERICAL EXAMPLE

Fig. 12 compares CBICM (solid lines) and CCM (dot-dashed
lines) for various 32-PAM constellations considered in this
work. By comparing all the curves corresponding to CBICM,
we observe that significant shaping gain (from the standard
constellation) can be expected even for BICM. It can also
be observed that when we focus on the information rate of
4.250 in bits per dimension, each gap between CBICM and
CCM is relatively small, indicating that they may perform
similarly when they are designed targeting relatively high
information rate.

V. SIMULATION RESULTS
In this section, we evaluate the performance of our proposed
constellation shaping in combination with MLC/MSD and
BICM in terms of their bit error rate (BER) performance
through computer simulation. The simulation parameters
adopted are listed in Table 1. The corresponding PAPR
values are indicated by the circles in Fig. 8.
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TABLE 1. Simulation parameters.

TABLE 2. Code rates of component codes in MLC systems.

A. CODE RATE DESIGN
In all the simulations, we employ the original rate-1/3 turbo
coding, where the code rates are adjusted by rate-compatible
puncturing [47]. In our simulations for 32-PAM (1024-
QAM), we set the code rate as R = 17/20 leading to
the spectral efficiency of 4.250 in bits per dimension. This
corresponds to the case discussed in Section III-C. For
128-PAM (16 384-QAM) with R = 22/25, the resulting
spectral efficiency is 6.16 in bits per dimension.

For MLC, we should adjust the code rate of each level
according to the equivalent channel capacity, shown in
Fig. 11 in the case of 32-PAM (1024-QAM). Consequently,
we set R0 = 9/25,R1 = 9/10, and R2 = 99/100,
whereas R3 = R4 = 1 (uncoded) for 32-PAM. As for 128-
PAM (16 384-QAM), the number of levels is m = 7 per
dimension and the rates are determined by the same process
as that of 32-PAM (1024-QAM). The resulting rates that we
found are summarized in Table 2 for both cases.

B. BER RESULTS
The BER performances of the standard 32-PAM (1024-
QAM) and the proposed shaping with optimal parameters
are compared in Fig. 13, where MLC/MSD and BICM are
applied to both the systems. As expected, we observe that
MLC/MSD outperforms BICM when compared at a BER
around 10−4. Furthermore, for both systems, the proposed

FIGURE 13. Comparison of BER performances between the standard and proposed
32-PAM (1024-QAM) constellations with MLC/MSD and BICM. The case for BICM
employing the two-dimensional constellation proposed in [30] with the same
cardinality is also depicted.

FIGURE 14. Comparison of BER performances between the standard and proposed
128-PAM (16384-QAM) constellations with MLC/MSD and BICM.

constellation shaping significantly improves the performance
over the standard constellations. The BER performance
of the BICM employing the two-dimensional designed
constellation with 1024 points is also shown in the figure,
where we observe that this constellation achieves the best
performance among BICM systems. However, our proposed
MLC through one-dimensional optimization still reaches a
BER of 10−4 at the lowest SNR among all systems compared
here.
Furthermore, the case of 128-PAM (16384-QAM) con-

stellations are compared in Fig. 14, where we observe the
same tendency as that of 32-PAM (1024-QAM) in Fig. 13,
indicating that the proposed shaping can be systematically
designed even for QAM constellations of an arbitrary large
size. It is also interesting to observe that the shaping gains
become more visible with the larger number of constellation
points.
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VI. COMPLEXITY COMPARISON
Finally, we compare MLC/MSD and BICM from the
viewpoint of decoding complexity. We here focus on
computational complexity associated with bit metric calcu-
lation as it is independent of coding schemes employed.
Note that there have been various researches on simpli-
fied soft-output demappers for both single-dimensional and
two-dimensional constellations [48], [49], [50]. However,
since these approaches typically rely on unique structure
of specific geometrical constellations, we focus on the
conventional bit LLR calculation in view of generality.

A. GENERAL TWO-DIMENSIONAL CONSTELLATION
Let us assume that transmitted symbols are chosen from a
given set of complex-valued (i.e., two-dimensional) constel-
lation points A, where its cardinality is given by |A| = 22m

with a positive integer m. Then the complexity should be
measured by the numbers of multiplications, additions, and
comparisons required for calculating 2m LLR values in one
transmitted symbol.
Since the exact calculation of LLR values becomes com-

putationally demanding as the constellation size increases,
the LLR value of the ith bit level is commonly approximated
by

Li = log

⎡
⎢⎣
∑

a∈A(i)
0

exp
(
−|y−a|2

2σ 2

)
∑

a∈A(i)
1

exp
(
−|y−a|2

2σ 2

)
⎤
⎥⎦ (39)

≈ min
a∈A(i)

0

{
|y− a|2

}
− min

a∈A(i)
1

{
|y− a|2

}
, (40)

where y ∈ C represents the received complex-valued symbol.
From the above equation, it is necessary to calculate the
squared Euclidean distances between the received symbol
and all of |A| constellation points. This process requires 2|A|
real multiplications and |A| real additions. Then, one has to
compare these values in order to identify the minimum values
associated with the subsets A(i)

0 and A(i)
1 . The corresponding

number of comparison operations, denoted by Nc, can be
expressed as

Nc = (log2 |A|)
log2 |A|∑
i=0

(∣∣∣A(i)
∣∣∣− 2

)
, (41)

where A(i) � A(i)
0 ∪ A(i)

1 is the (sub)set of the constellation
points associated with the ith bit level, and we thus have
|A(i)| = |A(i)

0 | + |A(i)
1 | since the subsets A(i)

0 and A(i)
1 are

mutually exclusive in general. Finally, log2 |A| additions are
required to complete the entire LLR calculation process.
Since A(i) = A for all the bit levels in the case of BICM,

we have |A(i)| = |A|. On the other hand, for MLC/MSD,
the number of constellation points decreases as the bit level
i increases. Specifically, the cardinality of A(i) becomes half
of that of its lower level A(i−1), and thus we have |A(i)| =
|A|/2i for the ith bit level. Therefore, the required number
of comparisons for MLC/MSD is significantly lower than
that of BICM in higher spectral efficiency regime.

TABLE 3. The numbers of several operations required for calculating 2m LLR values
per one transmitted symbol. Numerical values correspond to the case with m = 7 (i.e.,
16384-QAM).

B. TWO INDEPENDENT PAM CONSTELLATIONS
In this work, we have exclusively focused on the system
where each of in-phase and quadrature channels consists of
an independent one-dimensional constellation. Therefore, the
number of the constellation points per each dimension is
the square root of that of the two-dimensional constellation,
i.e., |A| = 2m, which leads to significant reduction of the
overall computational complexity compared to the general
two-dimensional case described above.

C. DISCUSSION
The numbers of mathematical operations required in
MLC/MSD and BICM decoders are summarized in Table 3
as functions of m, where we consider the following four
cases: MLC/MSD and BICM with general two-dimensional
constellations and those based on two independent one-
dimensional constellations. Note that the specific numbers
shown on the right side indicate the cases with m = 7,
thus leading to |A| = 214 = 16 384. When we focus
on one-dimensional systems, it can be confirmed that the
number of comparisons required in MLC/MSD is about
27% of that of BICM, and thus MLC/MSD has much less
decoding complexity in addition to its superior error rate
performance.
Constellations designed in two or even higher dimensions,

such as those proposed in [30], [31], and [32], have their
significant shaping gains, but the price is their required
computational complexity for decoding, especially when
BICM is employed. From all the above results, we may
conclude that MLC/MSD with our proposed one-dimensional
shaping approach should achieve well-balanced trade-off
between the error rate performance (including shaping gain)
and decoding complexity, which should be attractive from a
viewpoint of practical coded modulation implementation.

VII. CONCLUSION
In this paper, we have proposed a systematic geometrical
constellation shaping for high-order QAM designed accord-
ing to the truncated Gaussian distribution and evaluated
its achievable BER performance in the framework of
MLC/MSD and BICM.
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The simulation results of the proposed system employing
practical off-the-shelf binary punctured turbo codes indicate
that the effective shaping gains can readily be achieved even
with a low-complexity parameter optimization. Furthermore,
MLC/MSD can offer better BER performance as well as
decoding simplicity compared to BICM, provided that the
code rates of their equivalent binary channels are properly
designed.
As future work, the application of the proposed shaping

to adaptive modulation would be of significant practical
interest. Furthermore, the impact of high PAPR caused
by shaping operation in the presence of power amplifier
nonlinearity should be investigated.
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