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ABSTRACT Generalized spatial modulation (GSM) is a novel multiple-antenna technique offering
flexibility among spectral efficiency, energy efficiency, and the cost of RF chains. In this paper, a novel
class of sequence sets, called enhanced cross Z-complementary set (E-CZCS), is proposed for efficient
and feasible training sequence design in broadband GSM systems. Specifically, an E-CZCS consists of
multiple CZCSs possessing front-end and tail-end zero-correlation zones (ZCZs), whereby any two distinct
CZCSs have a tail-end ZCZ when a novel type of cross-channel aperiodic correlation sums is considered.
The theoretical upper bound on the ZCZ width is first derived, upon which E-CZCSs with maximum ZCZ
width and flexible parameters are constructed. For optimal channel estimation over frequency-selective
channels, we introduce and evaluate a novel GSM training framework employing the proposed E-CZCSs.
Numerical results demonstrate that the proposed E-CZCS-based training can achieve the minimum channel
estimation mean square error (MSE) and outperform other classes of sequences.

INDEX TERMS Enhanced cross Z-complementary set (E-CZCS), cross Z-complementary set (CZCS),
generalized spatial modulation (GSM), zero correlation zone (ZCZ), generalized Boolean function (GBF),
training sequence.

I. INTRODUCTION
A. BACKGROUND

GOLAY complementary pair (GCP), found by Marcel
J. E. Golay in the middle of the 20th century, is

characterized by the property that the aperiodic autocor-
relation sum of the two constituent sequences is zero at
every non-zero time-shift [1]. In 1972, Tseng and Liu
extended the concept of GCP to Golay complementary
set (GCS), each consisting of more than two constituent
sequences [2]. Additionally, a collection of GCSs was
introduced, called the mutually orthogonal complementary
set (MOCS), where any two distinct GCSs in an MOCS

have zero aperiodic cross-correlation sums for all time-
shifts. In [3], complete complementary code (CCC) was
introduced as optimal MOCS with the maximum set size.
Owing to these ideal autocorrelation and cross-correlation
properties, complementary pairs/sets of sequences have been
employed in many communications applications including
synchronization [4], channel estimation [5], [6], interference
suppression [7], [8], [9], [10], [11], peak-to-mean power
control [12], [13], [14], [15], [16], cell search [17], and
MIMO radar [18], [19]. As a generalization of MOCSs
and CCCs, Z-complementary code set (ZCCS) having zero
correlation zone (ZCZ) was proposed in [20].
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On the other hand, spatial modulation (SM) has received
tremendous research attention in recent years as a novel
multiple-antenna technique. In SM, there is only one radio-
frequency (RF) chain, whereby one transmit antenna (TA)
is activated at each time-slot [21], [22], [23], [24], [25],
[26], [27]. Because of this, SM enjoys zero inter-antenna
interference (IAI), lower energy consumption, and reduced
transceiver complexity. For a long time, efficient channel
estimation schemes for SM systems in frequency selective
channels were missing. In 2020, Liu et al. proposed cross
Z-complementary pair (CZCP) for optimal sparse training
matrix design in broadband SM systems [28]. Several
constructions of CZCPs with larger ZCZ widths and more
flexible lengths have been proposed in [28], [29], [30],
[31], [32], [33], [34], [35]. However, the ZCZ width of
every CZCP is theoretically upper bounded by a half of
its sequence length. In [36], [37], cross Z-complementary
set (CZCS) which can tolerate larger delay spreads was
developed. Recently, CZCSs with more flexible lengths were
presented in [38].

Unlike SM, generalized spatial modulation (GSM) system
has been proposed for a higher spectral efficiency as it
allows two or more active TAs at the same time [39], [40],
[41], [42], [43]. To be specific, the transmitter of a GSM
system is equipped with a few RF chains less than the
number of TAs. During each transmission, a GSM symbol
is modulated using two information parts. The message bits
of the first information part are used to select the antenna
activation patterns, whereas the second part carries message
bits for selecting specific constellation points over those
activated TAs. Therefore, GSM provides an excellent trade-
off between the spectral efficiency and the cost of RF chains,
while retaining most of the advantages of SM.

B. MOTIVATIONS AND CONTRIBUTIONS
Training sequence design for GSM is a more chal-
lenging task. First, dense training sequences designed
for the traditional multiple-input multiple-output (MIMO)
in [44], [45], [46] cannot be used since only a few GSM
TAs are activated at each time-slot. Recently, symmetrical Z-
complementary code set (SZCCS) was proposed in [47] for
GSM training design. It is noted that SZCCS is a subclass of
ZCCSs with symmetric ZCZ properties for its autocorrelation
and cross-correlation sums. However, the proposed GSM
training framework in [47] has an additional overhead for
IAI mitigation incurred by zero-padding. Consequently, their
approach suffers from a reduced training efficiency. For
more efficient training design, CZCP and its mates were
proposed as the training sequences in GSM [48]. However,
the utilization of CZCP mates is restricted to GSM systems
equipped with two active TAs. It is desirable to develop a
more feasible training design for GSM systems, not limited
to two active TAs. Motivated by [36], [48], we aim to go
beyond the CZCP mates and CZCS by introducing new
sequence properties for more feasible training design in
GSM.

In this paper, we propose a novel family of CZCSs,
called enhanced cross Z-complementary set (E-CZCS),
each consisting of multiple CZCSs and any two distinct
constituent CZCSs possess the following two correlation
properties: 1) the aperiodic correlation sums have a front-
end ZCZ and a tail-end ZCZ; 2) there is a tail-end ZCZ
when a special type of cross-channel aperiodic correlation
sums is considered. More specifically, such a tail-end ZCZ
is required for the cross-correlation sums between the n-th
constituent sequence of one CZCS and the (n + 1)modN-
th constituent sequence of the other, where N refers to
the total number of constituent sequences. Therefore, these
additional aperiodic cross-correlation properties between
distinct constituent CZCSs can eliminate the IAI caused by
the multipath propagation. The major contributions of this
paper are summarized as follows:

• We extend the concept of CZCS to E-CZCS by incorpo-
rating the aforementioned cross-channel aperiodic ZCZ
property. Additionally, we derive an upper bound on
the width of the ZCZ.

• Two constructions of E-CZCSs are proposed. The
first construction is based on MOCSs, CCCs, and
ZCCSs. The second construction is based on generalized
Boolean functions. Both constructions can generate
binary E-CZCSs with maximum ZCZ width and various
set sizes.

• We present a novel training framework employing the
proposed E-CZCSs for broadband GSM systems. The
proposed GSM training framework can achieve optimal
channel estimation over frequency-selective channels.
Both IAI and ISI can be eliminated, thanks to the unique
correlation properties of the proposed E-CZCSs.

• Simulations show that the proposed E-CZCS-based
training scheme can achieve the minimum channel
estimation mean square error (MSE) and outperform
other classes of sequences, such as SZCCSs, ZCCSs,
and Zadoff-Chu sequences.

C. ORGANIZATION OF THIS PAPER
The rest of this paper is organized as follows. In Section II,
we first introduce some necessary notations, definitions, and
the GSM system. In Section III, we define the E-CZCS and
its correlation properties, and then propose two constructions
of E-CZCSs. Section IV describes the requirements for
training design in the GSM system and proposes a novel
training framework based on E-CZCSs. The performance
comparison is provided in Section V. Finally, concluding
remarks are drawn in Section VI.

II. PRELIMINARIES AND DEFINITIONS
First, we introduce some notations which are used throughout
this paper.

A. NOTATIONS
• “a‖b” denotes the concatenation of sequences a and b;
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• “+” and “−” denote 1 and −1, respectively;
• ξq = e2π j/q is a primitive complex qth root of unity;
• X∗ denotes the complex conjugate of the matrix X;
• XT denotes the transpose of the matrix X;
• XH denotes the Hermitian of the matrix X;
• �·� denotes the floor operation;
• (·)modN denotes the modulo operation with respect to
a positive integer N;

• Tr(X) denotes the trace of the square matrix X;
• X(L) is the matrix where each row is the cyclic-shift

(L elements to the right) of the corresponding row in X.
Let s0 = (s0,0, s0,1, . . . , s0,L−1) and s1 =

(s1,0, s1,1, . . . , s1,L−1) denote two complex-valued sequences
of length L. For any integer displacement u, the aperiodic
cross-correlation function (ACCF) of s0 and s1 is defined as

ρ(s0, s1; u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L−1−u∑

k=0
s0,k+us∗1,k, 0 ≤ u ≤ L− 1;

L−1+u∑

k=0
s0,ks∗1,k−u, −L+ 1 ≤ u < 0.

(1)

When s0 = s1, the function ρ(s0, s1; u) = ρ(s0; u) is
referred to as the aperiodic autocorrelation function (AACF)
of s0. For periodic correlations, the periodic cross-correlation
function (PCCF) of s0 and s1 at time-shift u is defined as

φ(s0, s1; u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L−1∑

k=0
s0,(k+u)modLs

∗
1,k, 0 ≤ u ≤ L− 1;

L−1∑

k=0
s0,ks∗1,(k−u)modL

, −L+ 1 ≤ u < 0.

(2)

Accordingly, the periodic autocorrelation function (PACF)
of s0 is denoted by φ(s0, s0; u) = φ(s0; u).
Definition 1: For a set of N complex sequences S =

{s0, s1, . . . , sN−1} with length L, if

φ
(
si, sj; u

) =
{

0, 1 ≤ |u| ≤ Z, 0 ≤ i = j ≤ N − 1;
0, |u| ≤ Z, 0 ≤ i �= j ≤ N − 1,

(3)

then the set S is called an (N,L,Z)-ZCZ sequence set where
Z is referred to as the width of ZCZ. The following lemma
shows an upper bound among the parameters of the ZCZ
sequence set.
Lemma 1 [49]: For an (N,L,Z)-ZCZ sequence set, there

is a well-known theoretical upper bound, called Tang-Fan-
Matsufuji bound, given as Z ≤ L/N−1. A ZCZ sequence set
is said to be optimal if the Tang-Fan-Matsufuji bound with
equality is achieved. However, for binary case, the upper
bound on ZCZ width is conjectured to be Z ≤ L/(2N).

Consider a set of M sequence sets S = {Sm|0 ≤ m ≤
M − 1} where each constitute set Sm = {smn |0 ≤ n ≤ N − 1}
consists of N sequences of length L. For Sm1 , Sm2 ∈ S and
0 ≤ m1,m2 ≤ M − 1, we define

ρ
(
Sm1 , Sm2; u) �

N−1∑

n=0

ρ
(
sm1
n , sm2

n ; u). (4)

Definition 2: A set of M sequence sets S = {Sm|0 ≤ m ≤
M − 1} is addressed as Z-complementary code set, denoted
by (M,N,L,Z)-ZCCS, if

ρ
(
Sm1 , Sm2; u) =

N−1∑

n=0

ρ
(
sm1
n , sm2

n ; u)

=
⎧
⎨

⎩

NL, u = 0,m1 = m2;
0, 0 < |u| < Z,m1 = m2;
0, |u| < Z,m1 �= m2

(5)

where M is the set size, N is the number of sequences in
each Sm, L is the sequence length, and Z is the width of ZCZ.
For an (M,N,L,Z)-ZCCS, a theoretical upper bound on the
set size is given as M ≤ N�L/Z�. An (M,N,L,Z)-ZCCS is
called optimal if the equality is achieved.
When Z = L, the set S is referred to as a mutually orthog-

onal complementary set, denoted by (M,N,L)-MOCS.
Specifically, each constituent sequence set Sm reduces to a
GCS and any two GCSs in set S are mutually orthogonal.
Likewise, the upper bound on the set size for an MOCS
satisfies the inequality M ≤ N�L/L� = N. If M = N, the
set S is called a complete complementary code, denoted by
(M,L)-CCC.
Definition 3 [47]: A set of M sequence sets S = {Sm|0 ≤

m ≤ M − 1} is called a symmetrical Z-complementary code
set, denoted by (M,N,L,Z)-SZCCS, if

ρ
(
Sm1 , Sm2; u) =

⎧
⎪⎪⎨

⎪⎪⎩

∑N−1
n=0 ρ

(
smn ; u) = 0,

for |u| ∈ T1 ∪ T2,m1 = m2 = m;
∑N−1

n=0 ρ
(
sm1
n , sm2

n ; u) = 0,

for |u| ∈ T1 ∪ T2 ∪ {0},m1 �= m2

(6)

where T1 � {1, 2, . . . ,Z} and T2 � {L − Z,L − Z + 1, . . . ,

L− 1}.

B. GENERALIZED BOOLEAN FUNCTIONS
Let f be a function of m Z2-valued variables x1, x2, . . . , xm
mapping from Z

m
2 to Zq, denoted by

f : (x1, x2, . . . , xm) ∈ Z
m
2 → f (x1, x2, . . . , xm) ∈ Zq. (7)

The function f is addressed as the generalized Boolean
function. For a q-ary generalized Boolean function f , the
associated sequence f ∈ Z

2m
q is given by

f = (f0, f1, . . . , f2m−1) (8)

where fi = f (i1, i2, . . . , im) and (i1, i2, . . . , im) is the binary
representation of the integer i = ∑m

k=1 ik2
k−1. Note that i1

is the least significant bit.
Also, we define the complex-valued sequence associated

with a generalized Boolean function f to be

ζq(f ) �
(
ξ f0q , ξ f1q , . . . , ξ

f2m−1
q

)
. (9)

Let m = 4 and q = 4 as an example. The sequence f
associated with f = 2x2 + x1x2 is

f = 2x2 + x1x2
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FIGURE 1. A generic transmitter structure of the SC-GSM system.

TABLE 1. An example of antenna activation patterns with Nt = 4 and Na = 2.

= (f (0, 0, 0, 0), f (1, 0, 0, 0), . . . , f (1, 1, 1, 1))

= (0, 0, 2, 3, 0, 0, 2, 3, 0, 0, 2, 3, 0, 0, 2, 3) (10)

and the complex modulated sequence

ζ4(f ) =
(
ξ
f0
4 , ξ

f1
4 , . . . , ξ

f15
4

)

= (1, 1,−1,−j, 1, 1,−1,−j, 1, 1,−1,−j, 1, 1,−1,−j).
(11)

C. GSM
Consider a single-carrier GSM (SC-GSM) system over
frequency-selective channels as depicted in Fig. 1. We denote
Nt, Nr, and Na as the number of TAs, receive antennas (RAs),
and RF chains, respectively. An Na × Nt switch is needed
to connect the RF chains to the TAs. During each time-slot
k, Na of the Nt TAs are activated and the corresponding
constellation symbols from quadrature amplitude modulation
(QAM) or phase-shift keying (PSK) modulation M are
transmitted on the activated TAs, while the remaining
Nt − Na antennas are kept inactive. Specifically, �log2

(Nt
Na

)�
information bits, denoted by pk, are used for selecting Na
antennas based on activation pattern mapping. Additionally,
we denote an Nt × 1 vector s = (0 · · · 1 · · · 0 · · · 1)T as an
antenna activation pattern where 1’s correspond to the active
antennas and 0’s correspond to the silent antennas. On the
other hand, Na�log2 |M|� bits, denoted by qk, are mapped
into a constellation from alphabet M through Na active
antennas. Therefore, the number of bits conveyed per symbol
period is given by �log2

(Nt
Na

)� + Na�log2 |M|�.

Example 1: Let us consider an SC-GSM system
with Nt = 4 and Na = 2 using binary phase-
shift keying (BPSK) modulation (i.e., |M| = 2). The(4

2

) = 6 possible activation patterns are shown as
follows: (1, 1, 0, 0)T , (1, 0, 1, 0)T , (1, 0, 0, 1)T , (0, 1, 1, 0)T ,
(0, 1, 0, 1)T , (0, 0, 1, 1)T . However, only 4 activation
patterns are selected since �log2

(4
2

)� = 2. Then, the set
of chosen activation patterns in this example is given
by {(1, 1, 0, 0)T , (0, 1, 1, 0)T , (1, 0, 0, 1)T , (0, 0, 1, 1)T }.
Table 1 shows a mapping from 2 information bits to the set
of chosen activation patterns. Assume that the message bits
(0101001110101111) are sent. There are 4 GSM symbols of
which each symbol consists of �log2

(4
2

)� + 2�log2 |2|� = 4
bits. We have b1 = (0101), b2 = (0011), b3 = (1010),
and b4 = (1111). Taking the first symbol for example,
we have b1 = (p1, q1) where p1 = (01) and q1 = (01).
It indicates that TA 2 and TA 3 are activated to transmit
the BPSK symbol “1” and “−1”, respectively. Therefore,
the first GSM symbol can be expressed as (0,+,−, 0)T .
Then, the SC-GSM block for the 4 GSM symbols can be
formulated as follows:

⎛

⎜
⎜
⎝

0 − − 0
+ − 0 0
− 0 0 −
0 0 + −

⎞

⎟
⎟
⎠. (12)

III. ENHANCED CROSS Z-COMPLEMENTARY SETS
In this section, we will provide the definition and the
optimality of the E-CZCS and then demonstrate two novel
constructions.
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FIGURE 2. The correlation properties of E-CZCSs.

Consider a set of M sequence sets G = {Gm|0 ≤ m ≤
M− 1} where each constitute set Gm = {gmn |0 ≤ n ≤ N− 1}
is composed of N sequences of length L. For Gm1 ,Gm2 ∈ G
with 0 ≤ m1,m2 ≤ M − 1, we define a special type of
aperiodic cross-correlation sum as follows:

ρ̂
(
Gm1 ,Gm2; u) �

N−1∑

n=0

ρ
(
gm1
n , gm2

(n+1)modN
; u

)
. (13)

Note that (13) is different from the cross-correlation sum
defined in (4). Taking M = 2 and N = 4 for example,
we assume G = {G0,G1} where G0 = {g0

0, g
0
1, g

0
2, g

0
3} and

G1 = {g1
0, g

1
1, g

1
2, g

1
3}. Then, we have

ρ̂
(
G0,G0; u

)
=

3∑

n=0

ρ
(
g0
n, g

0
(n+1)mod 4

; u
)

= ρ
(
g0

0, g
0
1; u

)
+ ρ

(
g0

1, g
0
2; u

)
+ ρ

(
g0

2, g
0
3; u

)

+ρ
(
g0

3, g
0
0; u

)
(14)

and

ρ̂
(
G0,G1; u

)
=

3∑

n=0

ρ
(
g0
n, g

1
(n+1)mod 4

; u
)

= ρ
(
g0

0, g
1
1; u

)
+ ρ

(
g0

1, g
1
2; u

)
+ ρ

(
g0

2, g
1
3; u

)

+ρ
(
g0

3, g
1
0; u

)
. (15)

Then we can define the E-CZCS based on the cross-
correlation sums given in (4) and (13). This special type of
aperiodic cross-correlation sum in (13) will be included in
the definition of the E-CZCS.
Definition 4 (Enhanced Cross Z-Complementary Set): For

positive integers M, N, L, and Z with Z ≤ L, we denote
T1 � {1, 2, . . . ,Z} and T2 � {L− Z,L− Z + 1, . . . ,L− 1}
as two distinct intervals. Let G = {Gm|0 ≤ m ≤ M − 1}
be a set of M sequence sets and Gm = {gmn |0 ≤ n ≤
N − 1} where gmn is a sequence of length L. Then, the set
G is addressed as an enhanced cross Z-complementary set,
denoted by (M,N,L,Z)-E-CZCS, if it satisfies the following
two conditions:

(C1): ρ
(
Gm1 ,Gm2; u) =

N−1∑

n=0

ρ
(
gm1
n , gm2

n ; u)

=

⎧
⎪⎪⎨

⎪⎪⎩

0, for all |u| ∈ (T1 ∪ T2) ∩ T 1,

0 ≤ m1 = m2 ≤ M − 1;
0, for all |u| ∈ T1 ∪ T2 ∪ {0},

0 ≤ m1 �= m2 ≤ M − 1;

(C2): ρ̂
(
Gm1 ,Gm2; u) =

N−1∑

n=0

ρ
(
gm1
n , gm2

(n+1)modN
; u

)
= 0,

for all |u| ∈ T2 and anym1,m2 ∈ {0, 1, . . . ,M − 1}
(16)

where T = {1, 2, . . . ,L− 1}.
If M = 1, i.e., m1 = m2 = 0, then the E-CZCS reduces to

the cross Z-complementary set, denoted by (N,L,Z)-CZCS.
It also implies each Gm1 in an E-CZCS is a CZCS. Also,
an E-CZCS is reduced to an (L,Z)-CZCP by taking M = 1
and N = 2. (C1) means the correlation sum ρ(Gm1 ,Gm2; u)
has symmetric ZCZs over T1 and T2. And (C2) indicates
that the cross-correlation sum ρ̂(Gm1 ,Gm2; u) has a tail-
end ZCZ for shifts over T2. We illustrate the correlation
properties of E-CZCSs in Fig. 2. Besides, from condition
(C1), the E-CZCS is also a ZCCS and a SZCCS. However,
the ZCCS and SZCCS do not take the condition (C2) into
account. Therefore, the E-CZCS can include CZCS, ZCCS,
and SZCCS as special cases.
The aperiodic cross-correlation property (C2) of the E-

CZCS can be utilized to eliminate the IAI when it is
employed in the proposed training framework, which will
be illustrated in Section IV-B.
Remark 1: For an (M,N,L,Z)-E-CZCS with Z ≥ L/2,

we have T1 ∪ T2 = {1, 2, . . . ,L − 1}. Therefore, (C1)
in (16) implies that an (M,N,L,Z)-E-CZCS is also an
(M,N,L)-MOCS.

Fig. 3 illustrates the relationship between E-CZCSs and
the related sequence sets, which include ZCCSs, SZCCSs,
and MOCSs.
Next, we discuss the relationship among the ZCZ width

Z, the set size M, and the number of sequences N.

1If Z equals to L, we have T1 = {1, 2, . . . , L} and T2 =
{0, 1, . . . , L − 1}. Consequently, T1 ∪ T2 = {0, 1, . . . , L}. However, we
have ρ(Gm1 ,Gm2 ; 0) = NL for 0 ≤ m1 = m2 ≤ M − 1. So we have
to exclude u �= 0. Therefore, an extra condition of the intersection with
T = {1, 2, . . . , L− 1} is needed.
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FIGURE 3. Relationship between E-CZCSs and the related sequence sets.

Theorem 1: For an (M,N,L,Z)-E-CZCS G = {G0,

G1, . . . ,GM−1}, the upper bound on ZCZ width is given by

Z ≤ NL

M
− 1. (17)

For the binary E-CZCS, we have

Z ≤ NL

2M
. (18)

Proof: Let Gm = {gm0 , gm1 , . . . , gmN−1} for m =
0, 1, . . . ,M − 1 and also let

d0 = g0
0‖g0

1‖ · · · ‖g0
N−1,

d1 = g1
0‖g1

1‖ · · · ‖g1
N−1,

...

dM−1 = gM−1
0 ‖gM−1

1 ‖ · · · ‖gM−1
N−1 . (19)

For m = 0, 1, . . . ,M − 1, we have

φ(dm; u) = ρ
(
gm0 ; u) + ρ

(
gm1 ; u) + . . . + ρ

(
gmN−1; u

)

+ ρ∗(gm0 , gm1 ;L− u
) + ρ∗(gm1 , gm2 ;L− u

) + . . .

+ ρ∗(gmN−1, g
m
0 ;L− u

)

=
N−1∑

n=0

ρ
(
gmn ; u) +

N−1∑

n=0

ρ∗(gmn , gm(n+1)modN
;L− u

)

= ρ
(
Gm,Gm; u) + ρ̂∗(Gm,Gm; L− u

)
, for 1 ≤ u < L,

(20)

and

φ(dm;L)
= ρ∗(gm0 , gm1 ; 0

) + ρ∗(gm1 , gm2 ; 0
) + . . . + ρ∗(gmN−1, g

m
0 ; 0

)

=
N−1∑

n=0

ρ∗(gmn , gm(n+1)modN
; 0

)
= ρ̂∗(Gm,Gm; 0

)
. (21)

Therefore,

φ(dm; u) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ(Gm,Gm; u) + ρ̂∗(Gm,Gm;L− u),
for 1 ≤ u < L, 0 ≤ m ≤ M − 1;
ρ̂∗(Gm,Gm; 0),

for u = L, 0 ≤ m ≤ M − 1.

(22)

Next, for two distinct integers m1,m2 with 0 ≤ m1,m2 ≤
M − 1, we have

φ
(
dm1 , dm2; u

) = ρ
(
gm1

0 , gm2
0 ; u) + ρ

(
gm1

1 , gm2
1 ; u) + . . .

+ ρ
(
gm1
N−1, g

m2
N−1; u

) + ρ∗(gm2
0 , gm1

1 ;L− u
)

+ ρ∗(gm2
1 , gm1

2 ;L− u
) + . . . + ρ∗(gm2

N−1, g
m1
0 ;L− u

)

=
N−1∑

n=0

ρ
(
gm1
n , gm2

n ; u) +
N−1∑

n=0

ρ∗(gm2
n , gm1

(n+1)modN
;L− u

)

= ρ
(
Gm1 ,Gm2; u) + ρ̂∗(Gm2 ,Gm1;L− u

)
,

for 1 ≤ u < L, (23)

φ
(
dm1 , dm2; 0

) = ρ
(
gm1

0 , gm2
0 ; 0

) + ρ
(
gm1

1 , gm2
1 ; 0

) + . . .

+ ρ
(
gm1
N−1, g

m2
N−1; 0

)

=
N−1∑

n=0

ρ
(
gm1
n , gm2

n ; 0
) = ρ

(
Gm1 ,Gm2; 0

)
, (24)

and

φ
(
dm1 , dm2 ; L

) = ρ∗(gm2
0 , gm1

1 ; 0
) + ρ∗(gm2

1 , gm1
2 ; 0

) + . . .

+ ρ∗(gm2
N−1, g

m1
0 ; 0

)

=
N−1∑

n=0

ρ∗(gm2
n , gm1

(n+1)modN
; 0

)
= ρ̂∗(Gm2 ,Gm1 ; 0

)
.

(25)
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Thus, we have

φ
(
dm1 , dm2; u

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(Gm1 ,Gm2; 0), for u = 0,

0 ≤ m1 �= m2 ≤ M − 1;
ρ(Gm1 ,Gm2; u)
+ρ̂∗(Gm2 ,Gm1;L− u),
for 1 ≤ u < L,

0 ≤ m1 �= m2 ≤ M − 1;
ρ̂∗(Gm2 ,Gm1; 0),

for u = L, 0 ≤ m1 �= m2 ≤ M − 1.

(26)

From (16), (22), and (26), we have

φ
(
dm1 , dm2; u

) =

⎧
⎪⎪⎨

⎪⎪⎩

0, for 1 ≤ |u| ≤ Z and
0 ≤ m1 = m2 ≤ M − 1;

0, for |u| ≤ Z and
0 ≤ m1 �= m2 ≤ M − 1

(27)

since G is an (M,N,L,Z)-E-CZCS. Therefore, the M
sequences d0, d1, . . . , dM−1 form an (M,NL,Z)-ZCZ
sequence set. According to Lemma 1, the (M,NL,Z)-ZCZ
sequence set satisfies that Z ≤ (NL)/M − 1 and Z ≤
(NL)/(2M) for binary sequence sets. Therefore, we complete
the proof.
Remark 2: According to Theorem 1, a q-ary (M,N,L,Z)-

E-CZCS possesses the maximum ZCZ width if Z =
(NL)/M − 1 for q > 2 or Z = (NL)/(2M) for q = 2.

A. E-CZCSS BASED ON ZCCSS
We first present a construction of E-CZCSs based on ZCCSs.
Theorem 2: Given an (M,N,L,Z + 1)-ZCCS S =

{Sm|0 ≤ m ≤ M−1} where each constitute set Sm = {smn |0 ≤
n ≤ N − 1}. Then, G = {Gm|0 ≤ m ≤ M − 1} is an
(M,N, 2L,Z)-E-CZCS by letting

Gm = {
gm0 = sm0 ‖sm1 ,

gm1 = sm2 ‖sm3 ,

...

gmN/2−1 = smN−2‖smN−1,

gmN/2 = sm0 ‖(−sm1
)
,

gmN/2+1 = sm2 ‖(−sm3
)
,

...

gmN−1 = smN−2‖
(−smN−1

)}
(28)

for m = 0, 1, . . . ,M − 1. Furthermore, if S is an
(M,N,L)-MOCS, then G is an (M,N, 2L,L)-E-CZCS.
Proof: We consider two cases to show that (C1) and (C2)

in (16) are satisfied, respectively.
Case 1: Let T1 = {1, 2, . . . ,Z}. For |u| ∈ T1 ∪ {0}, we

have

ρ
(
Gm1 ,Gm2; u)

=
N−1∑

n=0

ρ
(
gm1
n , gm2

n ; u) = 2

(
N−1∑

n=0

ρ
(
sm1
n , sm2

n ; u)
)

+
N
2 −1
∑

n=0

ρ∗(sm2
2n , sm1

2n+1;L− u
) −

N
2 −1
∑

n=0

ρ∗(sm2
2n , sm1

2n+1;L− u
)

= 2

(
N−1∑

n=0

ρ
(
sm1
n , sm2

n ; u)
)

=
⎧
⎨

⎩

2NL, u = 0,m1 = m2;
0, 0 < |u| ≤ Z,m1 = m2;
0, |u| ≤ Z,m1 �= m2

(29)

since S = {Sm|0 ≤ m ≤ M−1} is an (M,N,L,Z+1)-ZCCS.
Let T2 = {2L−Z, 2L−Z+ 1, . . . , 2L− 1}. For |u| ∈ T2, we
have

ρ
(
Gm1 ,Gm2 ; u) =

N−1∑

n=0

ρ
(
gm1
n , gm2

n ; u)

=
N
2 −1
∑

n=0

ρ
(
sm1

2n+1, s
m2
2n ; u− L

) −
N
2 −1
∑

n=0

ρ
(
sm1

2n+1, s
m2
2n ; u− L

)

= 0, for anym1,m2 ∈ {0, 1, . . . ,M − 1}. (30)

According to (29) and (30), we obtain that (C1) in (16)
holds.
Case 2: For |u| ∈ T2, we have

ρ̂
(
Gm1 ,Gm2; u) =

N−1∑

n=0

ρ
(
gm1
n , gm2

(n+1)modN
; u

)

=
N
2 −1
∑

n=0

ρ
(
sm1

2n+1, s
m2
(2n+2)modN

; u− L
)

−
N
2 −1
∑

n=0

ρ
(
sm1

2n+1, s
m2
(2n+2)modN

; u− L
)

= 0, for any m1,m2 ∈ {0, 1, . . . ,M − 1}
(31)

which means (C2) in (16) holds. Therefore, G is an
(M,N, 2L,Z)-E-CZCS.

Moreover, if S is an (M,N,L)-MOCS, we substi-
tute Z by L in Case 1 and Case 2 and hence have
T1 ∪ T2 = {1, 2, . . . , 2L − 1}. Therefore, G is an
(M,N, 2L,L)-E-CZCS.
Remark 3: To possess the largest ZCZ width, we con-

sider a binary (M,M,L)-MOCS S , i.e., (M,L)-CCC, in
Theorem 2. Then the ZCZ width of the constructed
(M,M, 2L,L)-E-CZCS satisfies the equality given in (18).
Therefore, a binary (M,M, 2L,L)-E-CZCS with maximum
ZCZ width can be obtained.
An example of the binary (4, 4, 14, 7)-E-CZCS is provided

below.
Example 2: Consider a (4, 7)-CCC S = {S0, S1, S2, S3}

obtained from [50] as shown in Table 2. We let

G0 =
{
g0

0 = s0
0‖s0

1 = (+ + + − − + + + − + − − −−),

g0
1 = s0

2‖s0
3 = (+ − + − − − − + − − + + −+),

g0
2 = s0

0‖
(
−s0

1

)
= (+ + + − − + + − + − + + ++),

g0
3 = s0

2‖
(
−s0

3

)
= (+ − + − − − − − + + − − +−)

}
,

(32)
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TABLE 2. A binary (4, 7)-CCC S = {S0, S1, S2, S3}.

G1 =
{
g1

0 = s1
0‖s1

1 = (+ + + + − + − + + − − + ++),

g1
1 = s1

2‖s1
3 = (− + − − + + − − − − − + −+),

g1
2 = s1

0‖
(
−s1

1

)
= (+ + + + − + − − − + + − −−),

g1
3 = s1

2‖
(
−s1

3

)
= (− + − − + + − + + + + − +−)

}
,

(33)

G2 =
{
g2

0 = s2
0‖s2

1 = (+ − + + − − + + − + − − −−),

g2
1 = s2

2‖s2
3 = (− + − + + + + − − + + − −−),

g2
2 = s2

0‖
(
−s2

1

)
= (+ − + + − − + − + − + + ++),

g2
3 = s2

2‖
(
−s2

3

)
= (− + − + + + + + + − − + ++)

}
,

(34)

and

G3 =
{
g3

0 = s3
0‖s3

1 = (− − − − + − + − + + − − +−),

g3
1 = s3

2‖s3
3 = (− − − + + − − − − − − + −+),

g3
2 = s3

0‖
(
−s3

1

)
= (− − − − + − + + − − + + −+),

g3
3 = s3

2‖
(
−s3

3

)
= (− − − + + − − + + + + − +−)

}
.

(35)

A (4, 4, 14, 7)-E-CZCS G = {G0,G1,G2,G3} can be
obtained by Theorem 2 in Table 3. We list the correlation
sums ρ(G0,G0; u) and ρ̂(G0,G1; u) as follows:

∣
∣
∣ρ

(
G0,G0; u

)∣
∣
∣
u=0∼13

= (56, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
∣
∣
∣ρ̂

(
G0,G1; u

)∣
∣
∣
u=0∼13

= (4, 16, 4, 8, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0).

(36)

According to Theorem 2, E-CZCSs can be constructed
based on the MOCSs, CCCs, and ZCCSs. Since MOCSs,
CCCs, and ZCCSs with various lengths can be obtained
from [50], [51], [52], [53], the lengths of the constructed
E-CZCSs from Theorem 2 are flexible.

B. E-CZCSS BASED ON GENERALIZED BOOLEAN
FUNCTIONS
In this subsection, we will present a direct construction
of E-CZCSs based on generalized Boolean functions. The
proposed construction can generate E-CZCSs with various
set sizes and large ZCZ widths including binary E-CZCS
with the maximum ZCZ width.
Theorem 3: For nonnegative integers m, v, k with v ≤

k, we let nonempty sets U1,U2, . . . ,Uk be a partition of

{1, 2, . . . ,m}. Also let mα be the order of Uα and πα be a
bijection from {1, 2, . . . ,mα} to Uα for α = 1, 2, . . . , k. The
generalized Boolean function f is given as

f = q

2

k∑

α=1

mα−1∑

β=1

xπα(β)xπα(β+1) +
m∑

i=1

ηixi + η0 (37)

where ηi ∈ Zq for i = 0, 1, . . . ,m. If v < k, we set
πv+γ (1) = m − γ + 1 for γ = 1, 2, . . . , k − v. For p =
0, 1, . . . , 2k−1, we let Gp = {ζq(gp0), ζq(gp1), . . . , ζq(gp2v−1)}
where

gpn = f + q

2

(
v∑

α=1

nv−α+1xπα(1) +
k∑

α=1

pαxπα(mα)

)

(38)

for n = 0, 1, . . . , 2v − 1; (n1, n2, . . . , nv) and
(p1, p2, . . . , pk) are binary representations of n and p,
respectively. Then the set G = {G0,G1, . . . ,G2k−1} is a
(2k, 2v, 2m, 2π1(1)−1)-E-CZCS.
Proof: The proof is given in Appendix.
Remark 4: To obtain the largest ZCZ width, we set

π1(1) = m − k + v in Theorem 3 to construct the
(2k, 2v, 2m, 2m−k+v−1)-E-CZCS which can achieve the upper
bound on the ZCZ width in (18). Therefore, binary
(2k, 2v, 2m, 2m−k+v−1)-E-CZCSs with maximum ZCZ width
can be obtained.
Example 3: Let us consider q = 2, m = 5, k = 2, and

v = 1. We let a partition of {1, 2, 3, 4, 5} by U1 = {1, 2, 4}
and U2 = {3, 5} with m1 = 3 and m2 = 2, respectively.
We also let bijections π1 = (4, 1, 2) and π2 = (5, 3). Then,
the generalized Boolean function f in (37) can be written as
f = x4x1 + x1x2 + x5x3 by setting ηi = 0 for all i. Following
Theorem 3, a binary (4, 2, 32, 8)-E-CZCS can be constructed
as G = {Gp = {ζ2(g

p
0), ζ2(g

p
1)} : p ∈ {0, 1, 2, 3}} where

gpn = f + n1x4 + p1x2 + p2x3. For example, the sequence g0
0

in G0 can be constructed as follows:

g0
0 = f = x4x1 + x1x2 + x5x3

= (f (0, 0, 0, 0, 0), f (1, 0, 0, 0, 0), . . . , f (1, 1, 1, 1, 1))

= (0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1,

1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1). (39)

Subsequently, we can obtain the corresponding modulated
sequence

ζ2

(
g0

0

)
= (1, 1, 1, −1, 1, 1, 1, −1, 1, −1, 1, 1, 1, −1, 1, 1,

1, 1, 1, −1, −1, −1, −1, 1, 1, −1, 1, 1, −1, 1, −1, −1).

(40)

We list the constituent sequence sets G0, G1, G2, and G3 in
Table 4. The correlation sums ρ(G0,G2; u) and ρ̂(G0,G2; u)
are given as follows:
∣
∣
∣ρ

(
G0,G2; u

)∣
∣
∣
u=0∼31

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16,

0, 0, 0, 32, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
∣
∣
∣ρ̂

(
G0,G2; u

)∣
∣
∣
u=0∼31

= (0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4,

0, 12, 0, 12, 0, 12, 0, 12, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0). (41)
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TABLE 3. Binary (4, 4, 14, 7)-E-CZCS in Example 2.

TABLE 4. Binary (4, 2, 32, 8)-E-CZCS in Example 3.

IV. PROPOSED TRAINING FRAMEWORK FOR
BROADBAND GSM SYSTEMS
A. TRAINING DESIGN
In this subsection, we formulate the system model and the
requirements for training design in the GSM system.
Consider a generic training-based multiple-antenna trans-

mission structure depicted in Fig. 4. Prior to data payload
transmission, the training sequences x1, x2, . . . , xNt transmit-
ted from the Nt TAs are used to estimate the channel state
information. The cyclic prefix (CP) is inserted before each
training sequence for ISI suppression in dispersive channels.
Let � denote the training matrix given by

� =

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xNt

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

x1,0 x1,1 . . . x1,L′−1
x2,0 x2,1 . . . x2,L′−1
...

...
. . .

...

xNt,0 xNt,1 . . . xNt,L′−1

⎤

⎥
⎥
⎥
⎦

Nt×L′

(42)

where xp = (xp,0, xp,1, . . . , xp,L′−1) stands for the training
sequence conveyed over the p-th TA for p = 1, 2, . . . ,Nt.
Note that all the training sequences with identical energy
E = ∑L′−1

t=0 |xp,t|2. In addition, we consider a quasi-static
frequency-selective channel with the delay spread λ. Assume
that the channel impulse response from the p-th TA to
the receiver is hp = [hp,0, hp,1, . . . , hp,λ]. To formulate the
model in matrix form, we let

X = [
X1,X2, . . . ,XNt

]

L′×Nt(λ+1)
(43)

where

Xp =

⎡

⎢
⎢
⎢
⎣

xp,0 xp,L′−1 · · · xp,L′−λ

xp,1 xp,0 · · · xp,L′−λ+1
...

...
. . .

...

xp,L′−1 xp,L′−2 · · · xp,L′−λ−1

⎤

⎥
⎥
⎥
⎦

L′×(λ+1)

(44)

FIGURE 4. A generic training-based SC-MIMO transmission structure.

for p = 1, 2, . . . ,Nt. Then, the L′ × 1 complex received
signal vector at a RA can be expressed as

y = Xh+ w (45)

where h = [h1,h2, . . . ,hNt ]
T stands for the channel matrix

and w = [w0,w1, . . . ,wL′−1]T stands for the complex
additive white Gaussian noise (AWGN) with zero mean and
variance σ 2. By using the LS channel estimator [28], [44],
the normalized mean square error can be derived as

MSE = σ 2

Ntλ + Nt
Tr

((
XHX

)−1
)

. (46)

Therefore, the minimum MSE can be achieved as σ 2/E [28]
if and only if

φ
(
xi, xj; u

) =
⎧
⎨

⎩

E, if i = j, u = 0;
0, if i �= j, 0 ≤ u ≤ λ,

or i = j, 1 ≤ u ≤ λ.

(47)

Remark 5: Since the training-based multiple-antenna
transmission incorporates the GSM transmission scheme in
Fig. 1 as a special case with a particular focus on the training
matrix design, (47) is referred to as the optimal condition
for GSM training sequences under the LS channel estimator.
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Furthermore, it should be noted that the training matrix �

needs to be sparse since every GSM system only activates
a few antennas at each time-slot.
Hence, the following design criterion provides the optimal

channel estimation conditions for the GSM system.
Design criterion: A training matrix � for the GSM

system can achieve the optimal channel estimation over the
frequency-selective channel with delay spread λ, if it satisfies
the following two conditions.
(1) Each column of the training matrix � has exactly

Na non-zero entries since Na TAs are activated over each
time-slot in the GSM system.
(2) The training matrix � needs to meet the condition

in (47).

B. PROPOSED GSM TRAINING MATRIX
Based on the design criteria outlined in Section IV-A,
we generate the training matrix employing the proposed
E-CZCSs for the broadband GSM system.
For positive integers Nt and Na, we let V = � NtNa � where

Nt is the number of transmit antennas and Na is the number
of RF chains. Let �1,�2, . . . ,�V be the training blocks as
follows:

�1 =

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xNa

⎤

⎥
⎥
⎥
⎦

,�2 =

⎡

⎢
⎢
⎢
⎣

xNa+1
xNa+2

...

x2Na

⎤

⎥
⎥
⎥
⎦

, . . . ,�V =

⎡

⎢
⎢
⎢
⎣

x(V−1)Na+1
x(V−1)Na+2

...

xVNa

⎤

⎥
⎥
⎥
⎦

.

(48)

Choosing an (M,N,L,Z)-E-CZCS G with the condition
M ≥ Na, we let X0,X1, . . . ,XN−1 be the training sub-blocks
of size Na × VL as follows:

X0 =

⎡

⎢
⎢
⎢
⎣

g0
0 0 . . . 0
g1

0 0 . . . 0
...

...
. . .

...

gNa−1
0 0 . . . 0

⎤

⎥
⎥
⎥
⎦

,X1 =

⎡

⎢
⎢
⎢
⎣

g0
1 0 . . . 0
g1

1 0 . . . 0
...

...
. . .

...

gNa−1
1 0 . . . 0

⎤

⎥
⎥
⎥
⎦

,

. . . ,XN−1 =

⎡

⎢
⎢
⎢
⎣

g0
N−1 0 . . . 0
g1
N−1 0 . . . 0
...

...
. . .

...

gNa−1
N−1 0 . . . 0

⎤

⎥
⎥
⎥
⎦

(49)

where {g0
0, g

0
1, . . . , g

0
N−1}, {g1

0, g
1
1, . . . , g

1
N−1}, . . .,

{gNa−1
0 , gNa−1

1 , . . . , gNa−1
N−1 } are Na constituent sequence sets

from the (M,N,L,Z)-E-CZCS G and 0 represents all-zero
vector of length L. Then, a VNa×NVL GSM training matrix
(Nt,Na,V,N,L)-� is provided as

� =

⎡

⎢
⎢
⎢
⎣

�1
�2
...

�V

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

X0 X1 . . . XN−1

X (L)
0 X (L)

1 . . . X (L)
N−1

...
...

. . .
...

X ((V−1)L)
0 X ((V−1)L)

1 . . . X ((V−1)L)
N−1

⎤

⎥
⎥
⎥
⎦

.

(50)

FIGURE 5. The GSM training matrix (8, 4, 2, 2, L)-� based on a (4, 2, L, Z )-E-CZCS in
the Example 4.

FIGURE 6. The GSM training matrix (8, 3, 3, 2, L)-� based on a (4, 2, L, Z )-E-CZCS in
the Example 4.

It is noted that in the scenario where Nt < VNa, the first Nt
rows of � are selected as training sequences for Nt transmit
antennas.
Example 4: Consider a GSM system equipped with Nt =

8 TAs and Na = 4 RF chains. We have V = � NtNa � =
2. The (8, 4, 2, 2,L)-� GSM training matrix based on a
(4, 2,L,Z)-E-CZCS is shown in Fig. 5. If we consider
another scenario for the GSM system with Nt = 8 TAs and
Na = 3 RF chains (i.e., V = � NtNa � = 3), the (8, 3, 3, 2,L)-�
GSM training matrix based on a (4, 2,L,Z)-E-CZCS can be
expressed as shown in Fig. 6.

We then demonstrate that the training matrix � employing
the proposed E-CZCSs satisfies the design criteria mentioned
in Section IV-A Firstly, there are Na non-zero entries and
(V− 1)Na zeros in each column of the training matrix � as
shown in (50). Secondly, we prove that the training sequences
x1, x2, . . . , xNt , i.e., the first Nt rows of �, meet the condition
in (47) if Z ≥ λ. Here, we consider an (M,N,L,Z)-E-CZCS
G = {G0,G1, . . . ,GM−1} with M ≥ Na and Z ≥ λ where λ

is the delay spread. The number of transmit antennas Nt is
divided into V antennas groups B1,B2, . . . ,BV where each
Bv consists of Na antennas where Bv = {1 + (v− 1)Na, 2 +
(v− 1)Na, . . . , vNa} for v = 1, 2, . . . ,V . We consider three
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cases below to show that the training matrix � satisfies the
condition in (47).
Case 1: Since the sets G0 = {g0

0, g
0
1, . . . , g

0
N−1},G1 =

{g1
0, g

1
1, . . . , g

1
N−1}, . . . , and GNa−1 = {gNa−1

0 , gNa−1
1 , . . . , gNa−1

N−1 }
in G satisfy the condition (C1) in (16), we have

φ(xk, xl; u)

=
N−1∑

j=0

ρ
(
gmkj , gmlj ; u

)

=
⎧
⎨

⎩

∑N−1
j=0 ρ

(
gmlj , gmlj ; u

)
, for k = l, 0 ≤ u ≤ Z;

∑N−1
j=0 ρ

(
gmkj , gmlj ; u

)
, for k �= l, 0 ≤ u ≤ Z;

=
{

ρ(Gml ,Gml; u), for k = l, 0 ≤ u ≤ Z;
ρ(Gmk ,Gml; u), for k �= l, 0 ≤ u ≤ Z;

=
⎧
⎨

⎩

NL, for k = l, u = 0;
0, for k = l, 1 ≤ u ≤ Z;
0, for k �= l, 0 ≤ u ≤ Z,

(51)

for any k, l ∈ Bv and v = 1, 2, . . . ,V where mk = (k −
1)modNa and ml = (l − 1)modNa . Over each training block
�v, the ISI at each TA and the IAI between the k-th and
the l-th TAs caused by multipath delay can be eliminated.
Case 2: For k ∈ Bv, l ∈ Bv+1, and v = 1, 2, . . . ,V − 1,

we have

φ(xl, xk; u)

=
N−1∑

j=0

ρ∗(gmkj , gmlj ;L− u
)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑N−1
j=0 ρ∗

(
gmkj , gmkj ;L− u

)
,

if l = k + Na;
∑N−1

j=0 ρ∗
(
gmkj , gmlj ;L− u

)
,

otherwise;
=

{
ρ∗(Gmk ,Gmk ;L− u), if l = k + Na;
ρ∗(Gmk ,Gml;L− u), otherwise;

= 0 (52)

where mk = (k−1)modNa , ml = (l−1)modNa , and 1 ≤ u ≤ Z.
The IAI between the k-th TA in �v and the l-th TA in �v+1
is eliminated.
Case 3: For k ∈ B1 and l ∈ BV , according to (C2) in (16),

we have

φ(xk, xl; u)

=
N−1∑

j=0

ρ∗(gmlj , gmk(j+1)modN
;L− u

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑N−1
j=0 ρ∗

(
gmkj , gmk(j+1)modN

;L− u
)
,

if l = k + (V − 1)Na;
∑N−1

j=0 ρ∗
(
gmlj , gmk(j+1)modN

;L− u
)
,

otherwise;

=

⎧
⎪⎪⎨

⎪⎪⎩

ρ̂∗(Gmk ,Gmk ;L− u),
if l = k + (V − 1)Na;
ρ̂∗(Gml ,Gmk ;L− u),
otherwise;

= 0 (53)

where mk = (k−1)modNa , ml = (l−1)modNa , and 1 ≤ u ≤ Z.
It means that the IAI between the k-th TA in �1 and the
l-th TA in �V is eliminated. Note that the last equality
in (53) follows from the aperiodic cross-correlation property
(C2) of the E-CZCS. From the above three cases, we can
conclude that the training matrix � employing the proposed
(M,N,L,Z)-E-CZCS G achieves the condition in (47) if
Z ≥ λ.

V. SIMULATIONS
In this section, we examine the channel estimation
performance of the proposed E-CZCS-based training for
the GSM system over the frequency-selective channel. We
consider a (λ+1)-path channel separated by integer symbol
durations as h[t] = ∑λ

i=0 hiδ[t − iTs] where hi’s are
complex Gaussian random variables with zero mean and
E(|hi|2) = 1/(λ + 1) for all i. We evaluate the channel
estimation performance of the GSM training matrices based
on our proposed E-CZCSs and other classes of sequence
sets including the SZCCS, ZCCS, CZCPs, binary random
sequences, and Zadoff-Chu sequences. Our first simulation
setup consists of Nt = 8 TAs, Na = 4 RF chains, and
Nr = 1 RA. We employ the binary (4, 2, 32, 8)-E-CZCS
from Example 3 to generate the (8, 4, 2, 2, 32)-� as depicted
in Fig. 5. For the ZCCS and the SZCCS, the training matrix
is given by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s0
0 0 s0

1 0
s1

0 0 s1
1 0

s2
0 0 s2

1 0
s3

0 0 s3
1 0

0 s0
0 0 s0

1
0 s1

0 0 s1
1

0 s2
0 0 s2

1
0 s3

0 0 s3
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8×128

(54)

where {s0
0, s

0
1}, {s1

0, s
1
1}, {s2

0, s
2
1}, and {s3

0, s
3
1} are the con-

stituent sets of a (4, 2, 32, 16)-ZCCS and the first four
sequence sets of the (8, 2, 32, 7)-SZCCS from [47], respec-
tively. For the training matrix based on CZCPs, the pairs
(s0

0, s
0
1), (s1

0, s
1
1), (s2

0, s
2
1), and (s3

0, s
3
1) in (54) are 4 distinct

(32, 16)-CZCPs from [28]. These CZCPs satisfy the condi-
tions (C1) and (C2) in (16) only when m1 = m2. For binary
random sequences, the elements of s0

0, s
0
1, s

1
0, s

1
1, s

2
0, s

2
1, s

3
0,

and s3
1 in (54) are randomly generated from “+1” or “−1”.

For the training matrix based on Zadoff-Chu sequences, the
sequences s0

0, s
0
1, s

1
0, s

1
1, s

2
0, s

2
1, s

3
0, and s3

1 are assigned
by 8 distinct Zadoff-Chu sequences of length 32 with low
cross-correlations. The MSE performances of the channel
estimation based on different training matrices as shown in
Figs. 7 and 8. Fig. 7 shows that the training matrix based on
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FIGURE 7. MSE comparison of GSM training based on different sequences with 8
TAs and 4 active TAs.

the (4, 2, 32, 8)-E-CZCS achieves the minimum MSE with
2.2 and 1.5 dB gains over the SZCCS and ZCCS based
training, respectively, when the number of multipaths is 9.
In Fig. 8, we consider different numbers of multipaths at
Eb/N0 = 16 dB. When the number of multipaths is less
than or equal to 9, i.e., λ = 8, our proposed E-CZCS-based
training matrix can achieve the minimum MSE since the ZCZ
width is 8. Also, we observe that the (4, 2, 32, 8)-E-CZCS
outperforms others and still performs close to the MSE
lower bound even the number of multipaths is larger than 9.
This is because the out-of-zone correlations of the proposed
(4, 2, 32, 8)-E-CZCS are small. For the SZCCS-based GSM,
the performance is worse when the number of multipaths is
larger than 8. This is because the SZCCS only consider the
condition (C1) in (16) and the ZCZ width is only 7. When
the number of multipaths is larger than 8, the out-of-zone
correlations of the SZCCS degrade the channel estimation
performance. For the ZCCS-based training, the condition
(C2) in (16) is not met, thus leading nonzero IAI. For the
CZCP-based training, the performance is worse since the
conditions (C1) and (C2) are not taken into consideration
when m1 �= m2 and hence the IAI is introduced.
Furthermore, we discuss the comparison with the GSM

training in [47] regarding the training efficiency. The training
efficiency is modeled by T/T ′ where T stands for the length
of the interval during which the training sequences are
transmitted and T ′ stands for the length of the total training
interval. This metric indicates the effectiveness of the training
framework. When the training efficiency is 1, it implies that
the training sequences are transmitted on every time slot
during the training interval. Compared to the GSM training
in [47], the training efficiency of our proposed training
framework is NVL/NVL = 1, whereas that of the training

FIGURE 8. MSE comparison of GSM training based on different sequences with 8
TAs and 4 active TAs.

FIGURE 9. MSE comparison of GSM training based on different sequences with 8
TAs and 3 active TAs.

framework in [47] is NVL/(NVL+ Nλ) < 1 where λ is the
delay spread. In the case we consider in Fig. 8, we have
V = � NtNa � = � 8

4� = 2, N = 2, and L = 32. As a result, the
training efficiency of the training framework in [47] is only
0.85 with λ = 11.

In Fig. 9, we consider the GSM system with Nt = 8
TAs, Na = 3 RF chains, and Nr = 1 RA. We use the
GSM training matrix (8, 3, 3, 2, 32)-� as depicted in Fig. 6
based on the binary (4, 2, 32, 8)-E-CZCS from Example 3.
For comparison, we take the first three sequence sets of the
(8, 2, 32, 7)-SZCCS from [47] into consideration, as well
as the (4, 2, 32, 16)-ZCCS, binary random sequences, and
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Zadoff-Chu sequences. The training matrix is given by
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s0
0 0 0 s0

1 0 0
s1

0 0 0 s1
1 0 0

s2
0 0 0 s2

1 0 0
0 s0

0 0 0 s0
1 0

0 s1
0 0 0 s1

1 0
0 s2

0 0 0 s2
1 0

0 0 s0
0 0 0 s0

1
0 0 s1

0 0 0 s1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8×192

(55)

where the component sequences smn ’s are assigned in a similar
manner as in the previous simulation. For example, {s0

0, s
0
1},{s1

0, s
1
1}, and {s2

0, s
2
1} are the three constituent sets of the

(4, 2, 32, 16)-ZCCS if the training matrix is based on the
ZCCS. For Fig. 9, the Eb/N0 is fixed at 16 dB. We observe
that the (4, 2, 32, 8)-E-CZCS outperforms others and still
performs close to the MSE lower bound even the number of
multipaths is larger than 9. This is because the out-of-zone
correlations of the proposed (4, 2, 32, 8)-E-CZCS are small.
For the SZCCS based training, the performance degrades
significantly when the number of multipaths is larger than 8.

VI. CONCLUSION
This paper is focused on a novel class of sequence sets called
E-CZCSs, each consisting of a collection of CZCSs and
with an additional cross-channel aperiodic correlation sum
property. We have proposed two systematic constructions
of E-CZCSs including one based on ZCCSs, MOCSs, and
CCCs (Theorem 2) and the other based on generalized
Boolean functions (Theorem 3). Both constructions can
generate the binary E-CZCSs with maximum ZCZ width.
Furthermore, a novel GSM training framework has been

proposed based on E-CZCSs. It is shown that the proposed
training design can achieve the optimal channel estima-
tion performance in frequency-selective channels, by fully
exploiting the correlation properties of E-CZCS.
Although Theorem 3 can generate E-CZCSs with various

set sizes and ZCZ widths, the lengths are currently limited
to powers of two. Therefore, a potential future direction is to
construct E-CZCSs with non-power-two sequence lengths.

APPENDIX
PROOF OF THEOREM 3
Before proving Theorem 3, we introduce the following
lemma which can be used to prove our main theorem.
Lemma 2 [54]: For any integer m and k with 0 <

k ≤ m, let nonempty sets U1,U2, . . . ,Uk be a partition of
{1, 2, . . . ,m}. Also let πα be a bijection from {1, 2, . . . ,mα}
to Uα where mα is the order of Uα for α = 1, 2, . . . , k.
Given an even positive integer q and the generalized Boolean
function f

f = q

2

k∑

α=1

mα−1∑

β=1

xπα(β)xπα(β+1) +
m∑

i=1

ηixi + η0 (56)

where ηi’s ∈ Zq. For 0 ≤ κ, ν ≤ 2k − 1, the set Cν =
{cν0, cν1, . . . , cν2k−1

} can be constructed as follows:

cνκ = f + q

2

k∑

α=1

καxπα(1) + q

2

k∑

α=1

ναxπα(mα) (57)

where (κ1, κ2, . . . , κk) and (ν1, ν2, . . . , νk) are binary repre-
sentations of κ and ν, respectively. Then, C0,C1, . . . ,C2k−1

form a (2k, 2m)-CCC.
Proof of Theorem 3: We consider three parts to illustrate

that G satisfies (C1) and (C2) in (16) where T1 =
{1, 2, . . . , 2π1(1)−1} and T2 = {2m−2π1(1)−1, 2m−2π1(1)−1 +
1, . . . , 2m − 1}. Let gpn = (gpn,0, g

p
n,1, . . . , g

p
n,L−1) for p =

0, 1, . . . , 2v − 1 and n = 0, 1, . . . , 2k − 1.
In the first part, we have to demonstrate that

ρ
(
Gp,Gp; u) =

2v−1∑

n=0

ρ
(
ζq

(
gpn

)
, ζq

(
gpn

); u)

=
2v−1∑

n=0

2m−1−u∑

i=0

ξ
gpn,i+u−gpn,i
q =

2m−1−u∑

i=0

2v−1∑

n=0

ξ
gpn,i+u−gpn,i
q = 0,

(58)

for |u| ∈ T1 ∪ T2. If v = k, the sequences gpn in (38) can be
rewritten as

gpn = f + q

2

(
k∑

α=1

nk−α+1xπα(1) +
k∑

α=1

pαxπα(mα)

)

(59)

implying Gp ∈ G is a GCS as given in Lemma 2. Hence,
we have ρ(Gp,Gp; u) = 0, |u| ∈ {1, 2, . . . , 2m − 1}.

If v < k, we consider two cases to show that
ρ(Gp,Gp; u) = ∑2v−1

n=0 ρ(ζq(g
p
n); u) = 0 when |u| ∈ T1 and

|u| ∈ T2, respectively. For a nonnegative integer i with binary
representation (i1, i2, . . . , im), we let j = i + u with binary
representation (j1, j2, . . . , jm).
Case 1-A: We assume iπ1(1) �= jπ1(1) in this case. For any

sequence gpn ∈ Gp where 0 ≤ p ≤ 2k−1 and 0 ≤ n ≤ 2v−1,
there exists a sequence gps = gpn+ (q/2)xπ1(1) ∈ Gp such that

gpn,j − gpn,i − gps,j + gps,i = q

2

(
iπ1(1) − jπ1(1)

) ≡ q

2
(mod q).

(60)

Since iπ1(1) �= jπ1(1), we can obtain

ξ
gpn,j−gpn,i
q /ξ

gps,j−gps,i
q = ξ

q
2

(
iπ1(1)−jπ1(1)

)

q = e
j2π
q

q
2 = −1 (61)

implying ξ
gpn,j−gpn,i + ξ

gps,j−gps,i = 0. Therefore, we have
∑2v−1

n=0 ξ
gpn,j−gpn,i
q = 0.

Case 1-B: In this case we have iπ1(1) = jπ1(1) and we
can deduce that iπv+γ (1) = jπv+γ (1) for γ = 1, 2, . . . , k −
v. Suppose not, let α′ be the smallest integer satisfy-
ing iπv+α′ (1) �= jπv+α′ (1). Therefore, im = jm, im−1 =
jm−1, . . . , im−α′+2 = jm−α′+2. Then,

u = j− i = 2m−α′ +
m−α′
∑

s=1, s�=π1(1)

(js − is)2
s−1
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≥ 2m−α′ −
m−α′
∑

s=1

2s−1 + 2π1(1)−1 = 2π1(1)−1 + 1

(62)

which contradicts the assumption that u ≤ 2π1(1)−1. So we
have iπv+1(1) = jπv+1(1), iπv+2(1) = jπv+2(1), . . . , iπk(1) = jπk(1)

here. Then we consider two subcases below.
Case 1-B (i): We assume iπα(1) �= jπα(1) for some α =

2, 3, . . . , v. For any sequence gpn ∈ Gp, there exists another

sequence gps = gpn + (q/2)xπα(1) ∈ Gp such that ξ
gpn,j−gpn,i
q +

ξ
gps,j−gps,i
q = 0.
Case 1-B (ii): Following the above case, we have iπα(1) =

jπα(1) for all α = 1, 2, . . . , k. We assume iπα(β) = jπα(β) for
α = 1, 2 . . . , α̂ − 1 with α̂ ≤ k and β = 1, 2, . . . ,mα . Then
we suppose that β̂ is the smallest integer such that i

πα̂(β̂)
�=

j
πα̂(β̂)

. Let i′ and j′ be two integers which are distinct from i

and j, respectively, only in one position πα̂(β̂ − 1). That is,
i′

πα̂(β̂−1)
= 1− i

πα̂(β̂−1)
and j′

πα̂(β̂−1)
= 1− j

πα̂(β̂−1)
. Hence,

we have

gpn,i′ − gpn,i

= q

2

(

i
πα̂

(
β̂−2

)i′
πα̂

(
β̂−1

) − i
πα̂

(
β̂−2

)i
πα̂

(
β̂−1

)

+ i′
πα̂

(
β̂−1

)i
πα̂

(
β̂
) − i

πα̂

(
β̂−1

)i
πα̂

(
β̂
)

)

+ η
πα̂

(
β̂−1

)i′
πα̂

(
β̂−1

) + η
πα̂

(
β̂−1

)i
πα̂

(
β̂−1

)

≡ q

2

(

i
πα̂

(
β̂−2

) + i
πα̂

(
β̂
)

)

+ η
πα̂

(
β̂−1

)

(

1 − 2i
πα̂

(
β̂−1

)

)

(mod q). (63)

Since i
πα̂(β̂−2)

= j
πα̂(β̂−2)

and i
πα̂(β̂−1)

= j
πα̂(β̂−1)

, we have

gpn,j − gpn,i − gpn,j′ + gpn,i′ ≡ q

2

(

i
πα̂

(
β̂
) − j

πα̂

(
β̂
)

)

≡ q

2
(mod q). (64)

Then, we can obtain

ξ
gpn,j−gpn,i
q /ξ

gp
n,j′−g

p
n,i′

q = ξ

q
2

(
i
πα̂(β̂)

−j
πα̂ (β̂)

)

q = e
j2π
q

q
2 = −1. (65)

Therefore,

ξ
gpn,j−gpn,i
q + ξ

gp
n,j′−g

p
n,i′

q = 0. (66)

From Case 1-A and Case 1-B, we can conclude that
ρ(Gp,Gp; u) = 0, for |u| ∈ T1.
Case 2: Then, let us consider |u| ∈ T2, i.e., 2m−2π1(1)−1 ≤

|u| ≤ 2m − 1. In this case, we should have iπ1(1) �= jπ1(1).
Suppose not. If iπ1(1) = jπ1(1), then we have

u = j− i =
m∑

s=1,s�=π1(1)

(js − is)2
s−1 ≤ 2m − 2π1(1)−1 − 1

(67)

which contradicts the assumption 2m−2π1(1)−1 ≤ |u| ≤ 2m−
1. Hence, we must have iπ1(1) �= jπ1(1) here. Following the
similar arguments as given in Case 1-A, we can also obtain

ξ
gpn,j−gpn,i
q + ξ

gps,j−gps,i
q = 0 where gps = gpn + (q/2)xπ1(1) ∈ Gp.

Therefore,

ρ
(
Gp,Gp; u) =

2v−1∑

n=0

2m−1−u∑

i=0

ξ
gpn,j−gpn,i
q = 0, for |u| ∈ T2.

(68)

In the second part, we will demonstrate that any two
distinct constituent sets Gp and Gl, where 0 ≤ p �= l ≤ 2k−1,
have zero cross-correlation sum for |u| ∈ T1 ∪ T2, i.e.,

ρ
(
Gp,Gl; u

)
=

2v−1∑

n=0

ρ
(
ζq

(
gpn

)
, ζq

(
gln

)
; u

)

=
2v−1∑

n=0

2m−1−u∑

i=0

ξ
gpn,i+u−gln,i
q =

2m−1−u∑

i=0

2v−1∑

n=0

ξ
gpn,i+u−gln,i
q = 0.

(69)

For v = k, similar to the first part, we can obtain that Gp

and Gl are mutually orthogonal GCSs, i.e., ρ(Gp,Gl; u) =
0, |u| ∈ {0, 1, 2, . . . , 2m − 1}. For v < k, by following the
similar arguments in the first part, we can obtain that

2v−1∑

n=0

ρ
(
ζq

(
gpn

)
, ζq

(
gln

)
; u

)
= 0, for |u| ∈ T1 ∪ T2. (70)

Now, it only suffices to show that

ρ
(
Gp,Gl; 0

)
=

2v−1∑

n=0

2m−1∑

i=0

ξ
gpn,i−gln,i
q = 0. (71)

We denote pα and lα as the α-th bits of the binary
representations of p and l, respectively. Also, let iπα(mα) be
the πα(mα)-th bit of the binary representation of i. According
to (38), we have

gpn,i − gln,i ≡ q

2

k∑

α=1

(pα − lα)iπα(mα) (mod q). (72)

It can be observed that (72) is the linear combination of
the term iπα(mα). For i ranging from 0 to 2m − 1, there

are 2m−1 i’s such that ξ
gpn,i−gln,i
q = ξ

q/2
q = −1 and 2m−1

i’s such that ξ
gpn,i−gln,i
q = ξ0

q = 1. Therefore, we can obtain
∑2m−1

i=0 ξ
gpn,i−gln,i
q = 0.

In the last part, we will prove the condition (C2) in (16)
holds for G, i.e.,

ρ̂
(
Gp,Gl; u

)
=

N−1∑

n=0

ρ
(
ζq

(
gpn

)
, ζq

(
gl(n+1)modN

)
; u

)

=
2m−1−u∑

i=0

N−1∑

n=0

ξ
gpn,i+u−gl(n+1)modN ,i
q = 0 (73)
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where 2m − 2π1(1)−1 ≤ |u| ≤ 2m − 1 and N = 2v. Similarly,
we let j = i + u for any integer i. From Case 2 in the
first part, we deduce that iπ1(1) �= jπ1(1). Let (n1, n2, . . . , nv)
and (h1, h2, . . . , hv) be the binary representations of n and
h = (n+ 1)modN , respectively. We also let n′ and h′ be the
integers that are distinct from n and h, respectively, in only
one position, i.e., n′

v = 1 − nv and h′
v = 1 − hv. We can

obtain

gpn,j − gpn′,j = q

2

(
nvjπ1(1) − (1 − nv)jπ1(1)

)

= −q

2
jπ1(1) + qnvjπ1(1) ≡ −q

2
jπ1(1) (mod q)

(74)

and

glh,i − glh′,i = q

2

(
hviπ1(1) − (1 − hv)iπ1(1)

)

= −q

2
iπ1(1) + qhviπ1(1) ≡ −q

2
iπ1(1) (mod q).

(75)

Then, we have

gpn,j − glh,i − gpn′,j + glh′,i ≡ q

2

(
iπ1(1) − jπ1(1)

) ≡ q

2
(mod q)

(76)

since iπ1(1) �= jπ1(1). Therefore, ξ
gpn,j−glh,i
q + ξ

gp
n′,j−glh′,i

q = 0
and (73) is proved. From the above three parts, we can
conclude that G is a (2k, 2v, 2m, 2π1(1)−1)-E-CZCS.
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