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ABSTRACT In recent times, the proliferation of Internet of Things (IoT) technology has brought a
significant shift in the digital transformation of various industries. The enabling technologies have
accelerated this adoption. The possibilities unlocked by IoT have been unprecedented, leading to the
emergence of smart applications that have been integrated into national infrastructure. However, the
popularity of IoT technology has also attracted the attention of adversaries, who have leveraged the
inherent limitations of IoT devices to launch sophisticated attacks, including Multi-Stage attacks (MSAs)
such as IoT botnet attacks. These attacks have caused significant losses in revenue across industries,
amounting to billions of dollars. To address this challenge, this paper proposes a system for IoT botnet
detection that comprises two phases. The first phase aims to identify IoT botnet traffic, the input to
this phase is the IoT traffic, which is subjected to feature selection and classification model training to
distinguish malicious traffic from normal traffic. The second phase analyses the malicious traffic from
stage one to identify different botnet attack campaigns. The second stage employs an alert correlation
approach that combines the Latent Semantic Analysis (LSA) unsupervised learning and graph theory
based techniques. The proposed system was evaluated using a publicly available real IoT traffic dataset
and yielded promising results, with a True Positive Rate (TPR) of over 99% and a False Positive Rate
(FPR) of 0%.

INDEX TERMS Botnet attack, Internet of Things, graph-based analysis, intrusion detection system,
machine learning, latent semantic analysis.

I. INTRODUCTION

IN RECENT years, there has been a growing concern
regarding botnet attacks, particularly IoT botnet attacks. A

recent security intelligence report has highlighted an upward
trend in the number of command and control (C&C) servers
during the last quarter of 2023 [1]. The report indicates
that the number of active C&C servers has increased by
over 16%, with some of the most prominent networks
experiencing a surge in C&C server activities. This increase
has resulted in a corresponding rise in botnet-related malware

and IoT botnet activities. According to Nokia’s 2023 Threat
Intelligence Report [2], the number of IoT botnet activities
has significantly increased, leading to a surge in Distributed
Denial of Service (DDoS) attacks originating from IoT
devices. The report indicates that the number of devices
involved in these attacks has increased from 200,000 to
1 million. This trend has continued in subsequent years, with
a 56% increase in the number of C&C servers observed in
the previous year (2022 Q4), according to the Spamhouse
Project [3].
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In response to these threats, considerable research efforts
have been made to combat botnet attacks [4], [5], [6],
[7], [8], [9], [10]. Machine Learning (ML) has been a
popular approach, with many proposing anomaly-based
detection methods. Similarly, graph-based botnet detection
approaches have been proposed, with a primary focus on
the feature selection stage of the ML detection process.
Over the years, numerous ML and graph-based approaches
have been developed for botnet detection. For exam-
ple, [11], [12] utilised graph-based features within ML
detection approaches. While these methods have shown
promising performance in terms of accuracy of detection,
their primary limitation lies in an inability to differentiate
between detected botnet attack stages as part of a botnet
campaign or isolated attacks. Recognising the correlation
between botnet attack stages is crucial for robust botnet
campaign detection, highlighting the imperative to develop
an approach with enhanced capability to identify these attack
stages.
To enhance the capability of existing Botnet detection

approaches, this work proposes a novel approach to botnet
detection based on graph theory and LSA. The proposed
approach utilises LSA to identify inherent patterns of com-
munication (candidate clusters/categories) in network traffic
alerts. The identified candidate clusters are then mapped
to botnet attack stages, which are validated later. Alert
correlation is then performed using graph theory concepts
to determine correlated stages related to the same botnet
campaign. The proposed approach enhances accuracy and
efficacy in botnet detection by focusing on alert correlation
analysis which is part of ML, thus addressing the limitations
of the existing detection approaches. The main contributions
of this work are summarised as follows:

• The proposed approach for detecting IoT botnets
facilitates the robust development of an ensemble
alert correlation approach. This approach effectively
identifies botnet stages, resulting in a high TPR and a
low FPR. The alert correlation approach is unsupervised
and therefore capable of detecting emerging patterns
relating to IoT botnet attacks.

• The use of Term-Frequency-Inverse-Document-
Frequency (TF-IDF) is crucial for transforming IoT
traffic into an input matrix processed by LSA. This
approach effectively measures feature frequency and
reduces the impact of noisy features. Moreover,
automatic threshold selection of an optimal number of
clusters is employed to enhance LSA. LSA reveals latent
similarities, enabling efficient detection of candidate
Botnet stages.

• The use of graph theory for alert correlation analysis of
malicious activities which correlates different categories
leading to the effective detection of coordinated botnet
attack stages with reduced false alarms.

The rest of this paper is organised as follows, Section II
outlines related work, Section III covers relevant theoretical

background, Section IV explains the proposed methodology,
Section V discusses the results and finally, Section VI
concludes the paper.

II. RELATED WORKS ON BOTNET AND MALWARE
DETECTION
In their study, Ghafir et al. [13] proposed a novel approach
for detecting botnet C&C. This approach comprises two
stages. The first stage involves four distinct modules that
operate in tandem to identify malicious IP addresses, detect
domain flux, tor connections, and malicious SSL certificates,
respectively. These modules utilise intelligence feeds and
rely on blacklisting IP addresses, SSL certificates, and tor
server lists for the detection of malicious IP addresses,
malicious SSL certificates, and tor connections, respectively.
Conversely, the fourth module focuses on domain flux
detection. The second stage of the approach is a framework
for alert correlation, which aims to minimise false alarms
from the output generated by the first stage. The proposed
approach has undergone an evaluation and has demonstrated
promising results, with a TPR of 82.3% and a FPR of 13.6%.
Alharbi and Alsubhi [11] proposed a ML-based approach

that employs graph features for training. Conventional meth-
ods utilise flow-based features that are often characterised
by high computational overheads and fail to capture the
communication of network traffic. The proposed approach
mitigates these shortcomings using feature selection based
on graph theory concepts. The researchers extract graph
features and evaluate them using Pearson correlation to
identify the most suitable features that maximise accuracy.
The effectiveness of their approach was evaluated on two
datasets, namely CTU-13 and IoT23. The results show that
their approach outperforms the state-of-the-art in terms of
precision and accuracy.
The study conducted by Daya et al. [12] proposed a Botnet

detection system that utilises flow-based features. However,
these features have certain limitations such as the inability
to capture communication patterns from network traffic and
also tend to suffer from computational overheads. To address
these limitations, the proposed system employs graph-based
features for feature selection. These features are then used
to train ML models for detection purposes. The system is
deployed in two phases, where the first phase prunes the
benign traffic from network traffic, and the second phase
detects botnet attacks. The proposed system is reported to
perform well in an online setting.
Yang et al. [14] have proposed a system for detecting

Advanced Persistent Threats (APTs) utilising a causal
correlation technique aided by semantic analysis. This system
relies on existing alerts, which are input into the correlation
technique for mining causal relationships between them.
The proposed correlation technique utilises Latent Dirichlet
Allocation (LDA) to model alert chains and analyse alert
correlations. The utilisation of LDA allows for the capturing
of hidden attack intents, which aids in reconstructing APTs
scenarios, and the result is the revelation of semantic contexts
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for these alert chains. The proposed system is capable
of detecting multi-stage threats that span a long time by
mining causality between anomalous events. LDA has also
been proposed as an unsupervised learning approach for
the detection of Multi-Stage attacks based on semantic
similarities [15].

Husák et al. [16], in their research, proposed a sequential
pattern mining methodology to extract patterns from cyber
security alerts. Rule mining was also employed in their
analysis. Furthermore, the study surveyed the applicability of
alert correlation and attack prediction in cyber security. The
authors then evaluated the effectiveness of both Rule mining
and sequential pattern Mining methods in detecting cyber
attacks. Other works include Sequential Pattern Mining been
proposed for cyber attack mitigation in IDSs [17].

Arshad et al. [7] proposed a system for the detection
of IoT botnet attacks. The system employs an ensemble
method that utilises ML algorithms to analyse network
traffic. The three traditional ML algorithms employed in
the system are K-Nearest Neighbors (KNN), Decision Tree,
and Random Forest. After analysing the network traffic,
the system identifies suspicious behaviour that indicates the
presence of a botnet attack. The authors evaluated their
system’s performance using the publicly available CTU-13
dataset and reported an accuracy of 99.7% in 12.99 seconds.
Other studies have proposed ML-based approaches that focus
on feature selection to improve detection effectiveness [18].
In a recent study, Wang et al. [19] employed honeypots

to model IoT botnet attacks on medical devices. The study
reveals that botnet attacks exhibit characteristic patterns,
with a high correlation between COVID-19 and botnet
attacks. The study further shows that botnet attacks are
often associated with bots within the same network segment
and that adversaries frequently employ repetitive attempts
to ensure a successful hit. To uncover these patterns, the
study proposed a botnet inference model using unsupervised
learning approaches. The model was then evaluated through
a series of simulation experiments. The use of unsupervised
learning allows for the effective uncovering of previously
unknown patterns of botnet attacks.
In their research, Ghafir et al. [20] proposed a system

aimed at detecting APTs. The system comprises two phases;
the first phase involves scenario reconstruction of APTs
from traffic, while the second phase is responsible for attack
decoding. For the latter, the Hidden Markov Model (HMM)
is employed to determine the likely sequence of APT attack
stages from the correlated alerts. The evaluation of the
proposed system yielded promising results, with an accuracy
of 91.80% for predicting APT attack stages. Furthermore,
the prediction of the next step of the attack demonstrated an
accuracy of 66.50%, 92.70%, and 100% for two, three, and
four correlated alerts, respectively.
Haas and Fischer [21] proposed a Graph-based Alert

Correlation (GAC) algorithm, which identifies multi-step
attack scenarios and performs a Multi-Stage attack recon-
struction on the identified alert set. The algorithm’s

robustness against false alarms and its scalability with
increasing alerts have been reported. Furthermore, it is
capable of detecting distributed attacks.
Alshamrani et al. [22] surveyed APTs detection tech-

niques. The study emphasises the sophisticated nature of
these attacks and their tendency to occur over an extended
period. The researchers found that APTs have become
increasingly prevalent and prominent in recent years, with
the malware constantly evolving. In their analysis of recent
works on APT detection, the researchers found that most
detection methods focus only on specific stages of the
APT attack lifecycle. However, limited research exists on
detecting APTs across all stages. The study suggests that
methods used for detecting APTs should be applicable across
different stages of the attack lifecycle. The researchers also
recommend the use of complex correlation approaches and
behavioural analysis of users and systems across the network.
Overall, the study underscores the need for continued
research and development of effective APT detection meth-
ods particularly utilising complex correlation approaches to
mitigate the risks associated with these sophisticated and
persistent cyberattacks.
The study conducted by Kidmose et al. [23] delves into

the issue of bot infections and the challenges associated
with the alerts generated by IDSs, which are often raised
in large numbers. The authors note that although the alerts
generated by IDSs for botnet attacks tend to be highly
correlated, calling for manual processing to determine which
ones are relevant. As such, the study proposes a neural
network approach for performing alert correlation on the
generated alerts, thereby reducing the need for manual
processing, which can be time-consuming. One noteworthy
advantage of the proposed approach is that it does not
require feature extraction or domain-specific knowledge. The
authors evaluated the method using labelled IDS alert data
and demonstrated its efficacy in reducing the number of
alerts that require manual processing.
Rahal et al. [24] proposed an architecture for the detection

of botnet attacks and prediction of DDoS attacks. The
study highlights that the conventional approach of mitigating
such attacks involves overprovisioning and a sinkhole of
malicious traffic. However, the authors propose a technique
that predicts such attacks at an early stage and aims to
address the challenges involved in their detection. The
proposed architecture employs unsupervised learning to clus-
ter network devices based on causality relationships between
them. The authors evaluated their proposed architecture using
the CTU-13 botnet dataset.
Maestre Vidal et al. [25] have reported that IDSs based on

anomaly identification techniques generate a large volume of
reports on malicious activities in a monitored network. This
large number of reports poses significant challenges in terms
of analysis and management. In response to this challenge,
the authors proposed an alert correlation system that focuses
on payload analysis of network traffic, to detect malware
attacks. The proposed framework is designed to analyse
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the monitored network traffic’s payload, paying attention to
the characteristics of the models built during the training
process. The framework has been shown to perform attack
reconstruction of potential threats, enabling the detection of
malware attacks. Overall, the authors’ findings suggest that
their proposed alert correlation system is an effective tool
for detecting malware attacks in a monitored network.
Khosravi and Ladani [26] conducted a study that high-

lights the stealthy nature of APTs, which are slow, stepwise,
and typically long-term planned. These attacks may also
exploit zero-day vulnerabilities, moreover, they are continu-
ally evolving in their tactics. The complex nature of APTs
makes detecting them a challenging task. As such, most
current approaches fail to effectively detect APTs. To address
the challenges of APTs attacks, the study proposes a real-
time detection method that utilises correlation and causal
analysis on alerts. The proposed method can compute an
infection score by modeling and determining causal relation-
ships between steps of APTs attacks. Furthermore, the study
introduces dynamic programming as part of their detection
strategy. To evaluate their method, the authors utilised a semi-
real-world dataset and simulation. The proposed method
demonstrates promising results in effectively detecting APTs.
Numerous effective techniques have been successfully

employed within the Information Retrieval (IR) domain.
Typically unsupervised, these techniques are utilised for
clustering and leverage their core capabilities to capture
semantic similarities from latent patterns in the data.
They are particularly suitable for analysing unlabeled
data, thereby addressing limitations across various domains.
These results underscore the potential of unsupervised
semantic mining techniques in diverse domains. Notably,
these techniques have demonstrated effectiveness in text
mining and image retrieval, drawing from the field of
computer vision [27], [28], [29]. They excel in extracting
representative features that can be effectively employed for
classification in ML approaches.
The existing body of literature has predominantly focused

on the application of machine ML for botnet detection,
primarily as a multi-class classification problem. Likewise,
within the domain of graph-based methodologies, researchers
predominantly leverage graph theory concepts to select
features for training multi-stage classification models aimed
at various botnet stages. These approaches yield promising
results evidenced by evaluation metrics such as accu-
racy [11], [12], [30]. However, a major limitation of these
approaches is their inability to differentiate between detected
stages as part of a botnet campaign or isolated attacks.
Therefore these approaches hinder the ability to identify
botnet campaigns effectively. Recognising the correlation
between botnet stages is crucial for robust botnet campaign
detection [22]. Early-stage detection can play a pivotal
role in preventing more severe stages, such as Distributed
Denial of Service (DDoS) attacks, and can offer a more
comprehensive understanding of botnet lifecycles and their
underlying objectives. Therefore, the development of a

FIGURE 1. Typical life-cycle of IoT Botnet Attack (Derived from [31]).

comprehensive approach to botnet detection that effectively
identifies individual attack stages is imperative.

III. PRELIMINARIES
This section provides an overview and theoretical back-
ground in Botnet attacks, LSA, Graph-Based approaches and
Alert Correlation.

A. IOT BOTNET ATTACKS
Botnet attacks are a form of Multi-Stage attacks (MSAs) that
are executed through various stages, such as the infection
stage, C&C stage, scanning stage, and an attack stage, such
as a DDoS attack [31]. The typical stages of a botnet attack,
including IoT, are illustrated in Fig. 1. In this figure, the
scanning stage corresponds to Reconnaissance, the infection
stage to Malware injection, while C&C connection represents
the C&C connections and subsequent communication to the
C&C server. Finally, the Command Execution stage depicts
the final stage of the botnet attack, such as a DDoS attack.
During the infection stage, the targeted IoT device is ini-

tially infected with bot malware. Subsequently, the infected
device establishes connections with the C&C server and peri-
odically receives instructions from the server. Additionally,
the infected device communicates with the server to indicate
that it is still operational. It is also common for the infected
device to download malicious executables that match the
device’s processor architecture to increase the likelihood
of success of a botnet attack. The downloaded malicious
executable that matches the device’s architecture is executed,
and the primary goal is to infect more vulnerable devices to
create a sufficient army of infected devices, which is the next
stage in the attack lifecycle, the scanning stage. This army
of infected devices can then be used to effectively launch
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an attack, such as a DDoS attack, which is the final stage
of the botnet attack lifecycle.
The capabilities of Botnet attacks lie heavily on the

C&C communication mechanisms, as such the evolution
of Botnet attacks can be classified according to C&C
Server communication architecture [32]. Essentially, the first
generation of Botnet attacks was in the 90’s Botnet attacks
relied on Internet Relay Chat(IRC) communication. These
Botnets are they are easy to detect and the centralised
architecture makes it easy to take them down, including
DDoS-targeted attacks. The Botnet attacks evolved into the
second generation which relied heavily on HTTP-Based
communication protocol, rendering the C&C communication
indistinguishable from benign traffic, and thereby making it
challenging to detect, however since it was still centralised, it
also made it easy to take down. Finally, the third-generation
Botnet attacks employed Peer-to-Peer (P2P) networks for
C&C communication, thus eliminating centralised servers
and as such making it difficult to take them down, however,
they introduce communication overheads that impact their
performance leading to increased latency and high resource
consumption.

B. LATENT SEMANTIC ANALYSIS
LSA is a text analysis technique that was introduced in
the scientific literature [33], [34]. LSA, driven by Singular
Value Decomposition (SVD), is a powerful approach for
extracting latent features from data. It has been proven
successful in various applications, including computer vision
and clustering. The proposed system leverages the power
of SVD to identify candidate botnet categories and map
them to attack stages. The proposed system utilises LSA
in the clustering phase to generate clusters of candidate
botnet categories. These clusters are then mapped to stages
of a botnet attack. SVD takes a matrix of numbers as input
and decomposes it into three matrices that capture linear
transformation, namely rotation, stretch, and rotation. The
SVD formula is given by equation (1) [35].

SVD = U�VT (1)

SVD is a powerful mathematical tool that can be used
to obtain a compact representation of an input matrix. The
decomposition results in three matrices: a left singular matrix
U, a diagonal matrix �, and a right singular matrix VT . The
matrix U is of dimensions m× r, where m is the number of
rows in the input matrix, and r is a user-defined parameter.
Matrix � is a diagonal matrix of dimensions r×r, containing
the singular values of the input matrix arranged in descending
order. Finally, matrix VT is of dimensions r× n, where n is
the number of columns in the input matrix.
The SVD is often used for data compression, as the diag-

onal matrix � contains values that decrease in magnitude as
their corresponding singular vectors become less important.
By selecting a relatively small value of r, i.e., reducing it to
k, we can represent the input matrix as a subset of U�VT ,

FIGURE 2. Singular Value Decomposition Pictorial Representation [36].

FIGURE 3. Sample Network Traffic.

effectively compressing the data while retaining most of its
original information.
In the context of network traffic analysis, the value of r

can be used to determine the number of clusters that the
input matrix can be divided into. Matrix U captures instances
by their similarity to different concepts, while matrix VT

captures features by their similarity to these same concepts.
The resulting matrices can be used to identify patterns in the
data and to develop more effective algorithms for network
intrusion detection and other related tasks.
Fig. 2 provides a visual representation of the resulting

matrices after SVD decomposition. Overall, the SVD pro-
vides a valuable tool for reducing the dimensionality of large
datasets and for identifying hidden patterns and structures
within the data.
The illustration provided in Fig. 3 displays a set of

sample data related to network traffic, which comprises
three distinct features to be subjected to analysis through
LSA, specifically using SVD for clustering. This sample data
serves as an example to elucidate the process of transforming
the input into a matrix of numerical values and ultimately
to demonstrate how LSA decomposes the input matrix.
Table 1 serves as an illustration of the transformed

network traffic matrix. Prior to being processed by SVD,
the network traffic is altered into X features matrix. In
this matrix, rows represent instances of communications that
take place between two hosts or devices, while columns
denote features such as the protocol used, port number, IP
addressed, among others. The frequency of each feature value
is recorded as a count.
When examining the matrix, it becomes evident that

certain feature values occur in all network traffic instances.
These values, when considered solely in terms of their
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TABLE 1. Sample transformed matrix for network traffic with count scores.

frequency, seemingly possess more information that can
distinguish between various categories of network traffic.
However, this is not true as the value that is present in all
clusters/categories mined does not convey more information
that helps distinguish between clusters. The goal, therefore,
is to score these types of features slightly less indicating
that they are not as informative as feature values that are
more predominant in respective traffic categories/clusters, a
TF-IDF scoring mechanism is employed.
TF-IDF considers not only the frequency of a particular

feature value but also the occurrence of instances of the
network traffic. For instance, a value that occurs in all the
rows does not have any useful information to distinguish
between categories in data. On the other hand, a value
that tends to be present only in one cluster, ideally should
have a higher score, TF-IDF achieve this goal. The formula
for TF-IDF is derived from variations of the formula by
Manning et al. [37] and is given by Equation (2). The
tft,d variable captures the document frequency of a term’s
occurrence in a document, which is typically normalised as
needed. In the idf part of the formula, log N

dft
, N represents

the total number of documents in the collection, while df
denotes the number of documents that contain the term t.
The purpose of idft is to provide higher scores to terms
that occur less frequently across different categories of the
analysed dataset.
Utilising TF-IDF enhances the quality of the candidate cat-

egories of network traffic in botnet detection. Additionally,
it can uncover some of the emerging patterns in the network
traffic that relate to an emerging botnet attack.
The manifestation of botnet stages, especially the infection

phase, may not produce a substantial quantity of traffic that
can lead to the emergence of patterns that are identifiable
by the clustering module. In some cases, the initial infection
phase may occur only once, which can be viewed as an
insignificant activity by the analysis module. Nevertheless,

the initial infection phase is typically followed by further
infection, in which the infected device connects to the
C&C server and downloads additional malicious code that
is relevant to the device architecture. If these subsequent
activities are detected during the analysis, they can provide
additional evidence that the device was previously infected,
thereby instilling greater confidence in the initial infection
event. Furthermore, if the initial infection goes unnoticed,
the detection of further infection can trigger an alarm that
provides more insights to the Security Operations Center
about this infection.

tf .idft,d = tft,d × log N
dft

(2)

The use of Bigram in network security analysis is a
common practice that strengthens the results by considering
features occurring within proximity to one another. This
approach is especially useful when considering IP addresses
together with port numbers. The discovered features are then
utilised by the network security team, with the resulting alerts
carrying more informative insights into attack behaviour and
the precise goal of the attack.
In experimenting with different numbers of topics (clus-

ters) K, it is observed that as the value of K increases from
a smaller value to a larger value, the discovered clusters
or categories start with more informative terms that have a
major contribution to deciding which clusters are relevant.
This is because the diagonal matrix captures these concepts
and orders them from the most variance to the least. As
the value of K continues to increase, we observe duplicate
clusters or candidate categories, and the deciding terms start
to increasingly omit device identifiers as part of the deciding
features.
It is worth noting that computing the accuracy of the

first few concepts encoded by the first few values of the
diagonal matrix reveals that most of the concepts are captured
by the first few values, and the resulting clusters are still
representative of almost all the entire traffic. Therefore,
it is essential to consider an optimal value of K that
ensures a balance between informative terms and duplicate
clusters, while still being representative of the entire network
traffic.
Figures 4, 5 and 6 shows the decomposed matrices

resulting from the SVD for the input matrix derived from
Table 2.

The following analysis pertains to the decomposition of a
given input matrix into its corresponding thematic concepts
through Singular Value Decomposition (SVD). The semantic
concepts are represented by each column of the matrix
(shown in Fig. 4), and each row represents an instance
of the input data. The resulting scores for each row and
column represent the strength of each semantic concept and
its association with the input data. The highest scores for
each instance and semantic concept are highlighted in red,
green, and blue, respectively. The results demonstrate that the
input data can be characterized by three significant themes,
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FIGURE 4. Resulting Decomposed U Matrix for sample Network traffic.

FIGURE 5. Resulting Decomposed � Matrix for sample Network traffic.

FIGURE 6. Resulting Decomposed V T Matrix for sample Network traffic.

TABLE 2. Sample transformed matrix for network traffic with TF-IDF scores.

which are well-captured by the SVD-generated matrix. The
remaining rows can be discarded while still representing the
thematic concepts well, using only three columns.

Illustrated in Fig. 5, the diagonal values of the matrix
representing the strength of the semantic concepts are in
descending order and illustrate the semantic strength of each
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cluster. The highlighted blue values indicate that the input
data is predominantly comprised of three significant themes,
consistent with the input data. In unsupervised learning,
where the number of clusters must be provided, these values
can be useful in determining how many coherent clusters
the input data can be split into. The highlighted red values,
on the other hand, are fractions significantly smaller than
the blue values, indicating that they contribute less to the
semantic strength of the overall matrix.
Finally, in the matrix VT , each row represents a semantic

concept, and each column represents the corresponding
feature score for each feature value. For instance, the highest
scores for concept 1 are for the second, fourth, and eighth
features, which are history:s, Dst IP:192.168.25.45, and
Dst Port:52869. Interestingly, even though the feature value
history:s occurs more frequently, its score is not the highest
for concept one features, due to the use of TF-IDF. The
importance of the feature history:S and history:D for concept
two is highlighted, indicating their significance for that
concept. Overall, it is evident that the entire input matrix
can be approximated by the first few values of this matrix,
demonstrating its usefulness for data compression, such as
in image compression.

C. GRAPH-BASED NETWORK ANALYSIS
Fig 7 illustrates a typical scenario of a network under botnet
attack. In the illustration a graph capturing malicious activity
has been generated, it shows that two infected devices
performing scans on devices illustrated in blue and green.
The infected devices are shown in red and finally, the C&C
server is shown in magenta colour.
Graph theory concepts including In-Degree, Out-Degree of

different nodes, and degree of centrality are used to capture
the relationship between different stages of botnet attack,
and in the process effectively identify infected devices, C&C
server communication and DDoS attack stage.
Equation (3) to Equation (6) [12] illustrate different

measures of interests from the graph-based theory approach
from In-Degree through to the computation of betweenness
centrality.
Equation (3) is a piecewise function that assigns 1 or 0

depending on whether the edge ei,j is from i to j, therefore
0 is assigned, otherwise if ei,j then 1 is assigned if ej,i,
This function is utilised in Equation (4) and Equation (5) to
differentiate between incoming edges and outgoing edges of
a respective node for which the measures are computed.

F(
ei,j

) =
{

0, if ei,j ∈ E
1, otherwise

(3)

Equation (4) computes the In-Degree, it is the number of
edges from other nodes that are incoming to a particular
node. This also applies to weighted edges for a graph which
is computed by adding up all the weight of the incoming
edges to a particular node.. For network security if a device
was under a DDoS attack, its In-Degree score will be

TABLE 3. Computed centrality scores for graph in Fig 7.

significantly higher than normal and the rest of the devices
in the network.

fi,0 =
∑

vj∈V,vi �=vj
F(
ej,i

) ∀vi ∈ V (4)

Equation (5) computes Out-Degree, which is the number
of edges from other nodes that are outgoing from a particular
node. Also, this applies to the weighted edges in which the
weight of the edges capturing the importance of an edge
would be summed together with respect to the originating
node.

fi,1 =
∑

vj∈V,vi �=vj
F(
ei,j

) ∀vi ∈ V (5)

Equation (6) computes Betweenness Centrality score,
where σvjvk(vi) is the number of shortest paths for all pairs
on nodes passing through node vi, σvjvk is the total number
of shortest paths between all possible pairs of nodes and V
is a set of all nodes in the graph. This captures the influence
of a node to other nodes in the network. This information
is important in the network traffic as it captures the devices
in the network that are central and most likely infected
devices, if the devices have more outgoing links to other
devices significantly more than the rest that would be linked
to scanning other devices for vulnerabilities.

fi,4 =
∑

vj,vk∈V,vi �=vj �=vk

σvjvk(vi)

σvjvk
∀vi ∈ V (6)

Table 3 shows the different centrality scores for the
network graph illustrated in Fig 7. In the table, C&C refers
to C&C Server, ID 1 refers to Infected Device 1, ID 2
refers to Infected Device 2, D 1· · · D 10 refers to Device
1 through to Device 10 as shown in the network graph, and
finally, D 01· · · D 012 refers to Device 01 to Device 012
as shown the graph. In the table, the first row captures the
Degree of Betweenness centrality scores for the devices, the
second row shows the Degree of centrality scores, the third
row shows the In-Degree scores and finally, the fourth row
shows Out-Degree centrality.
The Betweenness centrality scores are highest for the two

infected devices and the C&C Server. This score captures or
reveals the most influential nodes in the graph. In the context
of network traffic, a graph generated from malicious traffic
would highlight the hosts or devices that should be looked at
when addressing the alerts as top priority when generating
and sending alerts to the network security team, thus cutting
the malicious activities on the hosts with the highest scores
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FIGURE 7. Network Graph Diagram illustrating Infected devices, scanned devices and C&C Server connections.

would reduce the computational cost that would otherwise be
spent on malicious activities that may not be very efficient
in eradicating an attack. This score would be suitable for
identification of malicious devices that are responsible for
expanding the network in this case the infected devices and
C&C Server.
The degree of centrality which is shown in the second

row is closely related to Betweenness centrality in that it
captures how influential a particular node is taking into
account the connected nodes’ influence, however, it differs
from the Betweenness centrality because it considers only
immediate connections or edges connecting to that particular
node while in the Betweenness centrality, the importance
of the neighbouring node is also considered. This is well
captured as the score indicates that for this measure while
C&C is important and at the center of the graph, it is not as
important as the infected devices which have influence with
respect to scanning other devices for potential vulnerabilities
to expand the botnet. This score would therefore be suitable
for the identification of malicious activities such as scanning
activities, The C&C Server would still have the high score
but coming second after infected devices.
The In-Degree and Out-Degree scores when used together

they will be able to effectively identify good candidate
devices or hosts likely to be C&C Server communications
at it will typically tend to be two way communication.
Additionally, Out-Degree can help validate scanning activ-
ities captured by other scores as it easily identifies the
devices that has a lot of activities in terms of interacting
with many devices which most likely would not be a normal
behaviour.

D. ALERT CORRELATION
IDSs are commonly deployed as an additional layer of
defence for networks. They monitor the network in addition
to other cybersecurity technologies such as the firewall.
While monitoring the network their task is to detect any
malicious incoming traffic and prevent it from entering the
network monitored. IDSs are typically deployed towards the

perimeter of the network as part of the Security Operations
Center (SOC). While monitoring the network, the detection
of malicious traffic triggers alerts which are generated and
sent to the network security team who in turn perform all
the necessary forensics and take steps to secure the affected
devices. For IoT the alerts are generated in large numbers
as the IoT devices are deployed in large numbers and
therefore the alerts are generated in large numbers resulting
in large number of alerts to process. The analysis of the
alerts is therefore time-consuming if analysed manually, for
Botnet attacks there are typically relationships within the
network traffic which are extremely challenging to determine
manually, this calls for automated analysis for aggregating
related alerts and computing relationships between them,
which will then lead to successful detection of botnet attacks
and alert correlation is the answer.

IV. PROPOSED METHODOLOGY
The overall architecture of an IoT system including deployed
Intrusion Detection System (IDS) that enables the detection
of malicious activities which includes the lifecycle of an
IoT botnet is illustrated in Fig. 8. The system is designed to
monitor IoT traffic within an IoT network, such as in a smart
city or smart home setup. The IoT traffic is generated by IoT
sensors, comprising CCTV cameras and smart bulbs, that
receive control signals from the cloud or users with hand-
held devices, such as tablets or mobile phones. A subset of
the captured traffic is transmitted to the cloud for further
processing and backup purposes, which forms the IoT traffic
that traverses the network.
To secure the network, network security devices, including

firewalls, are deployed typically close to the network perime-
ter before the uplink router. Furthermore, as an added layer
of security, IDSs are often positioned within the network
in close proximity to the perimeter as well. To detect the
botnet lifecycle, the proposed system is deployed as part of
an IDS in the overall architecture setup.
A detailed methodology for the proposed IDS is illustrated

in Fig. 9. The proposed IDS operates in two phases.
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FIGURE 8. Overall Architecture for the Detection of IoT Botnet Lifecycle.

FIGURE 9. Proposed methodology for the detection of Botnet attack lifecycle.

The objective of Phase 1 is to distinguish between normal
and malicious IoT traffic. An ML approach is employed
for detecting and filtering out benign traffic from malicious
traffic, more details about phase 1 can be found in our
previous work published in [38]. These are the devices
that are typically used in IoT systems such as smart
home systems. The selected training features comprised the
IP address, port number, transport layer protocol for the
connection, connection stage history, number of IP originator
bytes, and number of bytes sent by the originator. Any
malicious traffic detected by this phase triggers an alert that
is forwarded to the security team for further investigation.
The team takes necessary actions to recover from the

malicious attack and secure affected devices. Additionally,
the alerts are sent to Phase 2 for further processing and
analysis to detect IoT botnet lifecycles. In the second stage,
the primary objective is to conduct alert correlation to
identify and understand the connections among the malicious
activities occurring within the network. This process involves
reconstructing an attack scenario, which further helps in
detecting different Botnet campaigns.
In Phase 2, malicious activity alerts are taken as input and

processed through a clustering module, which groups similar
alerts into their respective clusters (candidate categories).
This module utilises LSA to produce a prioritised list of can-
didate categories that are ranked according to their volume,
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Algorithm 1 Implementation Pseudocode for LSA
Clustering of Malicious Traffic Alerts Into Candidate
Categories
Require: Mal_Traffic � Dataset
Require: SVD � for SVD Decomposition
1: feature_list← {} � To store optimal number of

features for cluster
2: cluster_list← {}
3: input_Matrix← convertToMatrix(Mal_Traffic)

� Create Rectangular Matrix with TF-IDF Scores
4: U�VT ← SVD(input_Matrix)
5: clusters_cutoff ← KMeans(�,K = 2)

6: feature_names← getFNames(Feature_Matrix)
7: i = 0 � number of clusters counter
8: for Row in VT do
9: sorted_scores← Sort(Row)

10: if i < clusters_cutoff then
11: feature_dic← Dict(feature_names,Row)

12: fs_cutoff ← KMeans(sorted_scores,K = 2)

13: j = 0
14: feature_list← {} � Empty the list
15: for score in sorted_scores do
16: if j < fs_cutoff then
17: feature_list← feature_list + score
18: end if
19: j ← j + 1
20: end for
21: cluster_list← cluster_list + feature_list
22: end if
23: i = i+ 1
24: end for
25: Return cluster_list

with predominant categories being given higher priority.
The resulting candidate categories are then forwarded to the
Alert Correlation module, which aims to identify different
botnet stages from the malicious clusters. The botnet stage
classifier employs a rule-based approach to detect various
stages of botnets buy taking into account the results of the
previous modules. Algorithm 1 provides a step-by-step guide
for implementing LSA clustering of malicious network traffic
into candidate clusters. The main objective of this approach
is to map the identified clusters to various stages of botnet
attacks during the analysis process carried out by the alert
correlation module. The algorithm takes in malicious traffic
as input and utilises SVD for input matrix decomposition,
which helps to identify and group similar patterns of traffic
together.
The process begins with the instantiation of the temporary

feature list (feature_list) to contain top features for each
cluster is executed in line 1, followed by the instantiation
of the list (cluster_list) representing cluster features for all
uncovered clusters in line 2. The input_Matrix is prepared,
as demonstrated in line 3, by transforming malicious traffic

into a rectangular matrix of TF-IDF scores representing
malicious traffic feature scores. This input matrix is then
passed to SVD and decomposed accordingly, resulting in
U�VT matrices. From these matrices, the strength of each
cluster is captured by the diagonal entries of the � matrix
in descending order. These entries are therefore used as a
basis for establishing the cutoff point for the number of
clusters detected with more confidence. This is achieved
by employing K-Means clustering with k = 2. K-Means
is used here as an auto threshold turning for LSA, which
results in the automatic selection of the most distinct clusters
and top features that best describe each candidate cluster.
The steps for computing and accumulating different clusters,
along with their corresponding top features are depicted in
lines 8 to 24. These steps produce a set of candidate clusters
subjected to further analysis by the alert correlation module,
which maps the traffic to the botnet attack stages by the next
module.
Once LSA categorisation has been completed, the next

module focuses on the graph-based correlation analysis of
malicious traffic, taking into account candidate clusters from
LSA to verify detected correlated botnet stages. Algorithm 2
presents the pseudocode for implementing graph-based
correlation analysis, thereby generating a graph of devices
involved in botnet activities.
To generate the graph, lists and dictionary data structures

are utilised, the steps are indicated by lines 1 to 8.
Each device from the malicious traffic is added including
corresponding edges. Appropriate dictionaries and lists of
IP addresses and ports are generated. These dictionaries
are kept accordingly, serving as lookups for later modules.
For instance, when adding devices to the graph, if the
node and the connection to the same destination already
exist, the dictionary used to update the volume of traffic
for each connection is updated. This is accomplished to
facilitate weighted edges that can detect stages like attack
stages, which are determined by a large volume of traffic
directed to the same destination. Additionally, a list of
each category and the initial timestamps for each candidate
category from LSA clustering module are generated to aid
in the detection of botnet stages. Other dictionary data
structures used include dictionaries to capture useful insights
for prediction, including a dictionary of destination port: list
of IP address pairs to aid in determining horizontal port
scan. This provides additional information to be added to
appropriate graph-based scores, such as centrality, In-Degree
(ID), Out-Degree (OD).
The procedure for computing the relevant Graph-Based

analysis scores is described in lines 9 to 14. This includes
the computation of the Betweenness centrality (BC) in line
13, OD in line 14, ID in line 15, and the creation of a
dictionary that keeps track of the feature name for each
node and a corresponding index for lookup later. All of
these graph-based measures are computed and saved in lists
with the same length as the number of nodes in a generated
graph. Following the computation of the scores, the mean
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Algorithm 2 Implementation Pseudocode for Graph-Based
Correlation Analysis of Botnet Traffic
Require: Mal_Traffic � Dataset
Require: Networkx � for Graph generation
Require: pyvis.netowrk � for visualisation
Require: xml.etree.ElementTree � For parsing of xml
1: for category in traffic do
2: for device in device_list do
3: if device NOT_IN Traffic_Graph then
4: Traffic_Graph.Apend(device)
5: updateDictionaries()
6: end if
7: end for
8: end for
9: for Node in Traffic_Graph do

10: BC←∑ σvjvk (vi)

σvjvk

11: OD←∑
vj∈V,vi �=vj F(ei,j)

12: ID←∑
vj∈V,vi �=vj F(ej,i)

13: Data_Dict← feature_name : feature_index
14: end for
15: μ←∑ Xi

N � mean - Centrality scores
16:

17: σ ←
√

(xi−μ)2

N � standard deviation - Centrality scores
18:

19: for Node in Traffic_Graph do
20: if DC[i] > (μ+ σ) then
21: Central_Node← Node[i]
22: end if
23: if (ID[i] = 1) AND (OD[i] = 0) then
24: Scanned_Node← Node[i]
25: end if
26: if (ID[i] = 1) AND (OD[i] = 1) then
27: if (Central_Node) CONNECT (OD[i]) then
28: C&C← Node[i]
29: end if
30: end if
31: end for
32: Output.append([Device_ID,BC, ID,OD])
33: Return Output

and standard deviation are computed as demonstrated in lines
15 and 17, respectively.
Once the appropriate scores have been computed, the next

step is to detect different activities, such as infection, scanning,
andC&Ccommunication, by utilising the computedmeasures.
Firstly, to determine the infected device, the dictionary with
centrality scores is utilised. The infected device is expected to
be a central node in the graph as it exerts the most influence in
the network. When considering the typical goals of a botnet
attack and the general steps followed, one of the primary
objectives would be to grow the number of infected devices
(bots) to a sufficient number, following which a botmaster
can orchestrate a plan to use these devices to launch a DDoS
attack in a coordinated fashion.

To achieve this goal, the infected device seeks to find
more devices and infect them to join the botnet, which is
done primarily through scanning, a crucial stage that ensures
the success of a botnet attack. Consequently, in a particular
network of devices involved in botnet activities, as already
stated, the infected device becomes the central node. When
examining different types of connections in the graph, the
degree of centrality and betweenness centrality are the two
measures that can help identify the infected device(s) from
the graph. The answer therefore lies in the list of centrality
scores for each of the devices. From the list of centrality
scores for each device examined, the infected device is
expected to have significantly higher scores compared to the
devices being scanned, while the devices being scanned are
expected to be as many as possible sharing the same port
number to maximise the impact of the attack, resulting in
only a few nodes in the graph having significantly large
centrality scores.
Therefore, the challenge in detecting the central node

using the centrality scores becomes how to select the central
node. Several approaches can be considered. For instance, a
threshold-based approach can be employed to determine the
cutoff between significantly high scores and lower scores,
essentially selecting infected device from other devices. This
approach would be particularly beneficial if domain-specific
knowledge is known and may not work effectively if the
number of scanned devices changes. For this work, the
approach employed is the one that selects the cutoff based
on the central tendencies of the centrality scores without
setting a particular score value.
Overall, the detection of different categories is shown by

lines 19 to 31. The cutoff is determined in lines 20 to 22 by
checking if each score is greater than (μ+ σ), and only the
device with greater scores is returned, translating to infected
devices. Lines 23 to 30 show how the other types of attacks
are determined, and finally, lines 32 and 33 compile the
output and return.

V. EVALUATION OF RESULTS
The proposed methodology employs various Python libraries
such as Pandas, NumPy, and the Scikit-learn mod-
ule for experimentation. For malicious traffic clustering,
TruncatedSVD for LSA, TfidfVectorizer, CountVectorizer,
and KMeans have been used. NetworkX and Pyvis were used
for Graph-Based analysis. The experimentation was carried
out using the University of Bradford High-Performance
Computing platform, which consists of nodes equipped with
2x Intel Xeon Gold 6138 20C 2.0GHz processors, a Standard
RAM with a capacity of 192 GB per node, and a high
memory node with 384 GB.
When evaluating IDSs, it is customary to employ a

combination of typical measures such as TPR, FPR, and
Overall Success Rate (OSR), which is also referred to
as Accuracy, Precision, and F-Score [39]. These measures
are frequently used together to ensure a comprehensive
evaluation of Intrusion Detection Systems (IDSs), addressing
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TABLE 4. CTU-IoT-Malware-Capture-43-1 (Mirai) labels distribution.

the limitations of network traffic. For instance, a metric such
as accuracy might yield a high score if the traffic is highly
imbalanced, but this could be misleading if it is the only
metric reported. As such to evaluate the proposed approach
the same metrics are used together. Equations (7) to (11),
are presented as described in [39], can be used to calculate
TPR, FPR, and F-Score.
TPR is the ratio of correctly predicted malicious traffic to

all malicious traffic.

TPR = TP

TP+ FN (7)

FPR on the other hand is the proportion of benign traffic
classified malicious among all the normal traffic.

FPR = FP

TN + FP (8)

OSR is the proportion of the traffic predicted correctly
among all the traffic.

OSR = TP+ TN
TP+ FP+ TN + FN (9)

Precision is the ratio of correctly predicted malicious
traffic to all traffic predicted malicious.

Precision = TP

TP+ FP (10)

Finally, F-Score is a composite metric that takes into
account both TPR and Precision.

F − Score = 2 · Precision · TPR
Precision+ TPR (11)

The rest of this section provides an evaluation of the
proposed system, first Section V-A discusses the dataset
followed by the experimental set-up covered in Section V-B.

A. DATASET DESCRIPTION
The IoT23 dataset is a valuable resource derived from
IoT traffic [40], and its label distribution is provided in
Table 4. This dataset represents labelled connection log files
generated by Zeek [41]. It consists of 20 features, including
ts, uid, id_orig_p, id_resp_h, id_orig_h, id_resp_p, proto, ser-
vice, duration, conn_state, local_orig, local_resp, orig_bytes,
resp_bytes, missed_bytes, history, orig_pkts, orig_ip_bytes,
resp_pkts, and resp_ip_bytes. Table 4 presents a comprehen-
sive list of categories and respective summary statistics of
flows for each category included in the dataset.

In the case of ML applications, feature selection is often
employed as a pre-processing step before training appropriate
models for detection.

B. EXPERIMENTAL SETUP AND RESULTS
The network traffic is preprocessed and transformed into
a format compatible with clustering and graph generation
tools. This includes converting the traffic into a rectangular
matrix and applying appropriate scoring that captures the
importance of each of the features. Additionally, it is well
known that when training ML models, features such as the
IP address and port number values do not carry informative
values when it comes to differentiating between different
classes. In such cases, these values are typically converted
to categorical features, often the values are the meaning
of the features. For example, internal_IP or external_IP,
in essence, encodes the insight or meaningful values as
a result of generalisation [42]. In this current work, the
same mechanism is followed for such features. Additionally,
as part of preprocessing, the feature selection approach is
applied to the network traffic to filter out any features that
are not used in terms for differentiating between categories
in unsupervised clustering to uncover botnet attack candidate
stages [38].

Fig. 10 illustrates the outcome of alert correlation utilising
graph theory. In the figure, the node with the highest degree
of centrality represents the infected device. The infection
status is further validated by candidate botnet categories that
link to the infected device.
Furthermore, the results of the clustering provide further

insights on the type of activities that took place, this includes
attack patterns uncovered from the traffic data indicating the
severity of the attack by highlighting the volume of the attack
by size. A node with out-degree of two linking to the central
node (device) suggests communication between C&C server
and infected device, thus providing more evidence that the
device has been infected.
The confusion matrices for Botnet stage prediction,

specifically Scanning, C&C Communication, and DDoS
attack stages, are presented in Fig. 11. Subsequently, typical
evaluation performance metrics for IDSs are computed
based on these matrices, and the results are summarised
in Table 5. The evaluation demonstrates that the scanning
and DDoS predictions exhibit superior performance, with
scanning activities achieving an accuracy rate of over 99.99%
and a TPR of the same value. Similarly, the prediction of
the DDoS attack stage demonstrates a perfect accuracy and
TPR of 100%. These outcomes are not unexpected, as DDoS
traffic typically has comparable patterns directed at the same
target.
In comparison to the detection of scanning and DDoS

botnet traffic, C&C prediction exhibits a lower level of
performance. This is because C&C communication patterns
are typically diverse, thus detecting the patterns for this stage
becomes more challenging resulting in lower accuracy, TPR,
and F-Score measures. Unsurprisingly, this is the case, given
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FIGURE 10. Sample of Alert Correlation Graph for Malicious Traffic.

FIGURE 11. Confusion Matrix for Botnet Stages Detected.

TABLE 5. Evaluation of the detection of IoT botnet stages.

that communication patterns from infected devices joining a
C&C channel differ from those of C&C servers instructing
infected devices to perform scanning or DDoS attacks on
specific targets.
The obtained FPR of 0% in the present study shown in

Table 5 suggests that the utilisation of the auto-threshold
tuning model during LSA clustering played an instrumental
role in eliminating candidate clusters and cluster features
with low strength scores. This was achieved by eliminating
noise in the clusters, which resulted in an increased TPR
that, in some cases, reached 100%. This was accomplished

by eliminating low-strength candidate clusters and cluster
features captured by the diagonal matrix entries (�) and
VT . The results indicate that the auto-threshold tuning model
is an effective approach for improving the efficacy of LSA
clustering and reducing the FPR.
In the realm of detecting malicious activities from Botnet

traffic, works utilising IoT23 dataset have been compared
and evaluated. Table 6 presents a comparison of these works,
highlighting the proposed methods under the methodology
column followed by performance scores. Evaluation metrics
were used to compare the results of each method. The
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TABLE 6. A performance comparison of existing systems, utilising IoT23 dataset, for IoT botnet detection.

FIGURE 12. A comparison showing the effect of auto threshold turning for LSA.

TABLE 7. Detected stages of botnet attack by timestamp.

findings reveal that the proposed approach consistently
outperforms recent works on detection approaches for Botnet
traffic. The effect of LSA auto-tuning of the threshold, which
reveals the significant benefit of boosting the detection of the
DDoS attack that would otherwise be missed, is illustrated
in Fig. 12. Additionally, Table 7 presents the detected botnet
stages ordered by their timestamp, providing a means of
validating the detected stages. This information is useful
in determining the temporal order of botnet stages, which
is essential in accurately identifying and countering botnet
attacks.
IoT devices, despite their high degree of heterogeneity,

are commonly interconnected using wireless and wired
network technologies within IoT networks. This communi-
cation involves a standard level of network traffic, requiring
identifying devices through IP addresses and targeting vul-
nerable services via port numbers. Standard TCP and UDP
protocols are commonly used for communication, although
IoT-specific protocols such as MQTT may also be utilised,
however, they still rely on TCP/UDP for transport layer
communication. The unsupervised nature of alert correlation

enables the effective detection of coordinated botnet stages
previously unseen.

VI. CONCLUSION
This paper proposes a novel approach for detecting IoT
botnets that consists of two phases: Phase 1 and Phase 2.
The first phase utilises ML algorithms to differentiate benign
traffic from IoT traffic, isolating malicious traffic that triggers
alerts to the network security team for further investigation.
Once detected, the malicious traffic is forwarded to the
second phase for further analysis. In Phase 2, the approach
employs LSA, an unsupervised learning technique, to cluster
malicious traffic into candidate botnet stages. These stages
are then correlated using graph-based theory to identify
botnet stages within the network. By utilising LSA, the
approach reduces computational costs and prioritises the
most significant malicious activities, which results in faster
alert addressing. For stages that generate insufficient traffic
to form patterns detected by LSA, the approach employs a
rule-based detection technique, such as the initial infection
stage. Timestamps are computed for each detected category
and used to organise botnet stages based on their order
of occurrence. This information provides crucial insights
that help the network security team understand the botnet
attack and develop effective mitigation steps to recover
from the attack, as well as potential future ones. The
proposed approach consistently and accurately detects botnet
campaigns by correlating different stages of the same botnet
attack with a TPR and F1 Scores of up to 100% for some of
the stages, and low FPR of 0%. The proposed approach has
been evaluated on the IoT23 dataset, based on static data.
Therefore, in the future, it is worth trying to experiment
with different datasets to evaluate further the effectiveness of
the approach in different contexts. Moreover, future research
could be directed towards applying this approach to real-
time, dynamically changing datasets to further understand
its capability, and thereby make adjustments to the approach
if required.
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