
Received 24 May 2024; accepted 16 June 2024. Date of publication 24 June 2024; date of current version 16 July 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3418574

Emerging Technologies for 6G
Non-Terrestrial-Networks: From Academia to

Industrial Applications
CONG T. NGUYEN1,2, YURIS MULYA SAPUTRA 3 (Senior Member, IEEE),

NGUYEN VAN HUYNH 4 (Member, IEEE), TAN N. NGUYEN 5 (Member, IEEE),
DINH THAI HOANG 6 (Senior Member, IEEE), DIEP N. NGUYEN 6 (Senior Member, IEEE),

VAN-QUAN PHAM7 (Member, IEEE), MIROSLAV VOZNAK 8 (Senior Member, IEEE),
SYMEON CHATZINOTAS 9 (Fellow, IEEE), AND DINH-HIEU TRAN 10

1Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Vietnam
2Faculty of Information Technology, Duy Tan University, Da Nang 50000, Vietnam

3Internet Engineering Technology, Department of Electrical Engineering and Informatics, Vocational College, Universitas Gadjah Mada,
Yogyakarta 55281, Indonesia

4Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, U.K.
5Communication and Signal Processing Research Group, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

6School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
7Nokia Bell Labs, Murray Hill, NJ 07974, USA

8Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 708 00 Ostrava, Czechia
9Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg

10Nokia, 92100 Boulogne-Billancourt, France

CORRESPONDING AUTHOR: T. N. NGUYEN (e-mail: nguyennhattan@tdtu.edu.vn)

This work was supported in part by the European Union through the REFRESH Project - Research Excellence for Region Sustainability and High-Tech Industries
of the European Just Transition Fund under Grant CZ.10.03.01/00/22_003/0000048, and in part by the Ministry of Education, Youth and Sports of the

Czech Republic (MEYS CZ) through the Project SGS ID under Grant SP 061/2024 conducted by VSB - Technical University of Ostrava.

ABSTRACT Terrestrial networks form the fundamental infrastructure of modern communication systems,
serving more than 4 billion users globally. However, terrestrial networks are facing a wide range of
challenges, from coverage and reliability to interference and congestion. As the demands of the 6G era
are expected to be much higher, it is crucial to address these challenges to ensure a robust and efficient
communication infrastructure for the future. To address these problems, Non-terrestrial Network (NTN)
has emerged to be a promising solution. NTNs are communication networks that leverage airborne (e.g.,
unmanned aerial vehicles) and spaceborne vehicles (e.g., satellites) to facilitate ultra-reliable communi-
cations and connectivity with high data rates and low latency over expansive regions. This article aims
to provide a comprehensive survey on the utilization of network slicing, Artificial Intelligence/Machine
Learning (AI/ML), and Open Radio Access Network (ORAN) to address diverse challenges of NTNs
from the perspectives of both academia and industry. Particularly, we first provide an in-depth tutorial
on NTN and the key enabling technologies including network slicing, AI/ML, and ORAN. Then, we
provide a comprehensive survey on how network slicing and AI/ML have been leveraged to overcome the
challenges that NTNs are facing. Moreover, we present how ORAN can be utilized for NTNs. Finally,
we highlight important challenges, open issues, and future research directions of NTN in the 6G era.

INDEX TERMS NTN, network slicing, AI/ML, ORAN, and 6G.
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I. INTRODUCTION

TERRESTRIAL networks, encompassing land-based
infrastructures such as fiber optics, coaxial cables,

and wireless transmission, are the backbone of modern
communication systems, enabling the seamless exchange of
information in our interconnected world. However, with the
ever-increase of demands, e.g., nearly 5 billion Internet users
worldwide [1], terrestrial networks are facing a wide range
of challenges, from coverage and reliability to interference
and congestion. Particularly, as reported by Ericsson, only
10% of the global population has access to mobile broadband
services [2]. The main reason for this is due to the difficulties
in establishing infrastructure in underserved regions, such as
rural areas, islands, and isolated communities. Moreover, the
reliability and resilience of terrestrial networks are required
to be improved, especially in case of natural disasters,
accidents, or attacks [3]. Furthermore, current terrestrial
networks are not suitable for new use cases and services that
require high bandwidth, low latency, or global coverage [4].
Non-terrestrial Network (NTN), encompassing satellites,

Unmanned Aerial Vehicles (UAVs), and High-Altitude
Platform Stations (HAPS) networks, is a promising solution
to address the challenges that terrestrial networks are
facing. For instance, through the utilization of satellites
and HAPS, NTN can effectively overcome coverage gaps
in terrestrial networks, facilitating broadband connectivity
across expansive distances. NTN can also play a vital role
in enhancing the resilience of terrestrial infrastructure during
crises by utilizing UAVs to provide emergency access [5].
Furthermore, by integrating with terrestrial networks, NTN
can unlock new possibilities for applications requiring high
bandwidth, low latency, and global coverage, including
autonomous driving, smart cities, Internet-of-Things (IoT),
Augmented Reality, Virtual Reality, cloud gaming, and video
conferencing, in the 6G era [6], [7]. Table 1 [6] summarizes
the main differences between NTNs and terrestrial networks.
Despite its potential, the development of NTN is also facing

serious challenges. Particularly, NTN often faces significant
propagation delay and path loss due to high altitudes. This can
significantly hinder the effectiveness of NTN in time-sensitive
applications. Moreover, the challenging nature of channel
estimation is exacerbated by the time-variant characteristics
of NTN. The high moving speed of satellites also causes
severe Doppler effects and serious challenges in mobility
management. Another limitation of NTN is the high initial
investment cost compared to that of terrestrial networks,
especially for satellites, e.g., more than $2 million launch cost
per satellite [13].Additionally, the complex integration ofNTN
and existing terrestrial network infrastructure necessitates
careful design and considerations to optimize.
To address these challenges, various solutions have been

developed in recent years, leveraging technologies such
as network slicing, Artificial Intelligence/Machine Learning
(AI/ML), and Open Radio Access Network (ORAN).
Particularly, with the powerful ability to create multiple virtual
networks froma shared physical network architecture, network

slicing enables a single NTN to serve multiple types of
applications and users with different demands, e.g., low-
latency communication for UAVs and high bandwidth for
satellite Internet services. Moreover, AI/ML can help NTNs
to overcome critical challenges of NTNs. Specifically, AI/ML
techniques are very effective in handling non-linear effects and
general impairments of channels in NTNs. Those techniques
can also enable the autonomous operation of numerous
wireless applications, thereby reducing the need for constant
human intervention. Additionally, by utilizing the current
diverse vendors ecosystem, ORAN can help to significantly
improve NTNs’ resiliency, scalability, and flexibility.
This paper aims to provide an in-depth and comprehensive

survey on the utilization of those technologies to address
the diverse challenges of NTNs from the perspectives of
both academia and industry. Particularly, we first provide
an in-depth tutorial on NTN and the enabling technologies
including network slicing, AI/ML, and ORAN. Then, we
provide a comprehensive survey on how network slicing and
AI/ML have been leveraged to overcome the challenges that
NTNs are facing. Moreover, we present how ORAN has been
utilized for NTNs from an industry standpoint. Finally, we
discuss the current challenges and open issues and introduce
potential research directions for NTN in the 6G era.
As summarized in Table 2, there are a few surveys on the

development of NTN in the literature, such as [4], [6], [7],
[8], [9], [10], [11]. Particularly, [8] focuses on the integration
of New Radio in NTN, whereas [4] elaborates on the role of
NTN in 5G systems. Moreover, [6] surveys the integration
of NTN with different types of networks such as IoT, Mobile
Edge Computing (MEC), and mmWave. Taking another
approach, [7] discusses the utilization of cellular, Wide-Area,
and NTN for IoT applications. Additionally, although [9]
and [12] provide comprehensive surveys on the application
of AI/ML in NTN, network slicing and ORAN are not
the focus of these surveys. Taking another approach, [10]
and [11] discuss the architecture, performance evaluation,
and standardization aspects of NTNs and terrestrial networks
integration. To the best of our knowledge, there exist
no comprehensive studies on how the abovementioned
technologies are employed to address the challenges in NTN,
especially from an industry perspective. Given the rapid
increase in user demands and the emergence of new services,
there is an urgent need for new solutions to address the
limitations of NTNs. As a result, this paper is expected to
fill the gap in the literature and contribute to the future
development of 6G networks.
As illustrated in Fig. 1, the rest of this paper is organized

as follows. Section II provides a tutorial on NTN and its core
enabling technologies including network slicing, ORAN, and
AI/ML. Then, the applications of network slicing and AI/ML
in NTN are discussed in detail in Sections III and IV.
Next, the industry applications of ORAN are presented in
Section V. Open issues, challenges, and future research
directions are presented in Section VI, and conclusions are
given in Section VII.
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TABLE 1. Comparison between NTNs and terrestrial networks [6].

TABLE 2. Comparison with existing surveys.

FIGURE 1. Organization of this paper.

II. OVERVIEW OF NTN AND ENABLING TECHNOLOGIES
In this section, we first provide an overview of NTN,
including its architectures, advantages, and use cases. Then,
the challenges in NTNs are discussed thoroughly. Finally, we
provide a brief background on advanced technologies and
infrastructures that can be adopted to efficiently address these
challenges, including network slicing, AI/ML, and ORAN.

A. OVERVIEW OF NTN
NTNs are communication networks that partially or fully
operate through the airborne or spaceborne vehicle(s) [6],

[14], [15], [16]. With connections from the air or space,
NTNs can empower ultra-reliable communications when
terrestrial infrastructures are not available, such as in remote
and unreachable areas or during natural disasters [17]. In
addition, NTNs can easily provide multicast connectivity
with high data rates and low latency over a large region,
enabling massive Machine Type Communication (mMTC)
and enhanced Mobile Broadband (eMBB) communications.
Moreover, multiple NTNs can be connected together and/or
connected to existing terrestrial networks to provide con-
tinuous and ubiquitous wireless coverage, thus bringing
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FIGURE 2. Overview of NTN [14].

us closer to the era of anything, anytime, and anywhere
communications [6].

The development of NTNs can be traced back to
the 1990s with the commercialization efforts of the two
companies Globalstar and Iridium Communications [18].
By deploying several satellites, they can provide low-
bandwidth connections to specialized handsets. Since then,
NTN technologies have been studied extensively by both
academia and industry with a vision of creating a network of
satellites and providing Internet services to users anywhere
on Earth. The potential features, requirements, and protocols
for NTNs have been standardized by 3GPP since 2017 with
a study item on deployment scenarios and channel models in
Release-15 [17]. After that, the required features to enable
New Radio (NR) support for NTN are determined by a
study in the Radio Access Network (RAN) working group
of Release-16. This is then developed further in Release-17
with a set of potential features to enable 5G NR to operate
over NTN at frequencies up to 7.125 GHz [17]. Potential
use cases of IoT over NTN with link budget and parameters
are also discussed in this Release-17. Release-18 is under
development and will focus on 5G systems with satellite
backhaul architecture as well as addressing the mobility and
continuity problems when connecting different NTNs and
also connecting NTNs to terrestrial networks [17].
NTN has been attracting great attention from both industry

and academia recently due to its potential to complement and
enhance existing terrestrial networks in terms of coverage,
capacity, and mobility. It is expected to play an essential
role in the development of 5G-advanced and 6G networks.
For that, big tech companies like SpaceX, OneWeb, Amazon
Kuiper, and SoftBank are investing billions of dollars in this
field to provide global connectivity and expand their business
models [19], [20]. In general, NTNs can be categorized into
airborne and spaceborne platforms as illustrated in Fig. 2.

1) AIRBORNE PLATFORMS

This category includes UAVs and HAPSs [21]. While UAVs
operate at low altitudes, (e.g., a few hundred meters), HAPSs,
such as airplanes, balloons, and airships, can reach the
stratosphere region with altitudes ranging from 20 kilometers
to 200 kilometers [14]. One example of airborne NTN is
Project Loon [22], [23] from Google which deploys balloons
at high altitudes from 18 kilometers to 25 kilometers to
provide connectivity to remote and rural areas. Facebook is
also involved in airborne NTN by developing solar-powered
drones that operate at an altitude of up to 27 kilometers
and provide Internet services to an 80-kilometer-radius area
below its flying path through Project Aquila [24].
Airborne NTN can be deployed quickly at a lower cost

and has a much smaller propagation delay compared to
spaceborne NTN. However, airborne platforms face critical
challenges of stabilization on air and refueling. In partic-
ular, operating at low altitudes makes them vulnerable to
environmental conditions such as strong winds or storms
that can change the flying path of balloons and drones
or even destroy them. It is also difficult and inefficient
to refuel airborne vehicles while maintaining connections
for users. These challenges could be the reason for the
termination of projects Aquila and Loon in 2018 and 2021,
respectively. While airborne platforms may not be effectively
used to provide Internet services, they can be used in
emergency scenarios such as during natural disasters and
rescue missions in rural areas where cellular coverage is not
available.

2) SPACEBORNE PLATFORMS

Recently, spaceborne NTN has been emerging as a promising
technology for future communication networks (e.g., 5G-
Advanced and 6G) where satellites are placed in space
to provide communications for users on Earth. These
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satellites fly around the Earth in specific orbits and can be
categorized into: (i) Geostationary Earth Orbit and (ii) Non-
Geostationary Earth Orbit [14], [25], [26], [27].
1) Geostationary Earth Orbit (GEO): Satellites operating in
GEO (i.e., GEO satellites) fly around the Earth above the
equator from west to east following the Earth’s rotation.
GEO satellites travel at the same rate as the Earth and
take 23 hours 56 minutes and 4 seconds to complete one
orbital period. As a result, these satellites are “stationary”,
i.e., appear motionless, at a fixed position in the sky to
observers on Earth [28]. To exactly match the Earth’s
rotation, GEO satellites must travel at the speed of about 3
kilometers per second at an altitude of 35,786 kilometers.
Due to the high altitude, GEO satellites can cover a
large portion of the Earth’s surface. Theoretically, three
GEO satellites can provide near-global coverage. The beam
footprint of GEO satellites can range from 200 kilometers
to 3,500 kilometers [6]. There are currently hundreds of
GEO satellites in the orbit [29], and most of them are
used to provide services such as weather monitoring, TV
broadcasting as well as remote sensing and positioning.
GEO satellites can also be used for communication services.
However, due to the high altitude, the communication latency
is significantly high (around 600 milliseconds according to
Starlink [19]). To provide low latency connections, satellites
operating at low orbits have been gaining great attention
recently.
2) Non-Geostationary Earth Orbit (NGEO): Different from
GEO satellites, NGEO satellites operate at lower altitudes
with orbital periods of less than 24 hours. In addition, their
positions can be always changed with respect to observers
on Earth. There are two types of NGEO satellites according
to their altitudes: (I) Medium Earth Orbit (MEO) satellites
and (ii) Low Earth Orbit (LEO) satellites.

• MEO satellites usually operate at 2,000 kilometers to
25,000 kilometers above the Earth’s surface [14]. Flying
at these altitudes allows MEO satellites to create beams
with diameters from 100 kilometers to 500 kilometers.

• LEO satellites can be deployed at altitudes from 200
kilometers to 2,000 kilometers [14] which is lower than
other orbits but still very far from the Earth’s surface.
LEO satellites can create beam footprints with diameters
from 5 kilometers to 200 kilometers.

MEO and LEO satellites can be used for sensing,
positioning, and communication systems due to their low
propagation delay compared to GEO satellites. For example,
the U.S. Global Positioning System (GPS) uses at least
24 MEO satellites for its global positioning services. As
of June 26, 2022, the GPS constellation consists of 31
operational satellites [30]. Although MEO satellites can be
used for communication services, the communication latency
is still high and may not be feasible for today and future
communication applications. Recently, LEO satellites have
been emerging as promising platforms to provide Internet
services to users on Earth anywhere and anytime. For

example, Starlink, the world’s first and largest constellation,
uses thousands of LEO satellites to deliver broadband
Internet for services such as streaming, online gaming, and
video calls to users around the world [19]. Starlink’s satellites
fly at an altitude of about 550 kilometers with much lower
propagation delay compared to those of GEO and MEO
satellites. As a result, Starlink can achieve a roundtrip
delay of around 25 milliseconds for its services [19]. The
current biggest competitor of Starlink is Amazon’s Project
Kuiper which aims to launch over 3,236 LEO satellites
to provide low latency and high-speed Internet services to
users on a global scale. In addition, this satellite system
is also integrated into resilient communication infrastructure
powered by a global network of ground stations and Amazon
Web Services for better services [20].

B. CHALLENGES OF NTN
Although providing various promising applications and use
cases, NTN faces several technical challenges that need to be
fully addressed to ensure its success in future communication
networks.

• Propagation delay and path loss: NTN platforms face
a particular challenge of propagation and path loss due
to their high altitudes. For example, GEO satellites
experience a round-trip latency of around 600 mil-
liseconds [19] which is considered significantly high.
This may not be feasible for communications that
require low or ultra-low latency such as online gaming,
video streaming, and VR/AR. Compared to terrestrial
communications, the propagation path losses of NTN
platforms are much higher due to long distances to
UEs. In addition, NTN platforms at high altitudes can
cover large areas to serve a massive number of users
with different propagation delays and path losses in
different regions [6]. Consequently, ensuring good com-
munications for all users is very challenging. Moreover,
managing initial accesses and synchronizations for these
diverse users also poses another challenge to NTNs.

• Channel estimation: Channel estimation is an essential
task in every communication system. For NTNs, it
is even more challenging due to the inherent time-
variant property of NTN platforms. In particular, at
high altitudes, NTN platforms fly from horizon to
horizon very fast (e.g., around 5-10 minutes for LEO
satellites [14]). As a result, users on Earth remain in
the coverage of a particular NTN platform for a very
short period. In addition, the long propagation delay
may make estimated channel state information outdated
quickly [31]. Hence, traditional estimation methods in
terrestrial networks may not be feasible for NTNs, and
advanced approaches are required to ensure the success
of NTNs.

• Doppler effect: Due to their high movement speeds,
NTN platforms introduce significant Doppler effects
on communication links between them and users on
Earth. In particular, the Doppler effect is the shift in the
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frequency of signals during the relative motion between
transceivers. The Doppler effect also happens in terres-
trial networks, e.g., users on high-speed trains or cars.
However, in NTNs, this effect is more serious as NTN
platforms fly at very high speeds. For example, a user
communicating with an LEO satellite operating at 600
kilometers above the ground may experience a Doppler
shift of up to 48 kHz given the carrier frequency of
2 GHz [32]. This Doppler shift is significantly larger
compared to those of users in terrestrial networks.

• Mobility management: Another challenge in NTNs is
mobility management due to the high speeds of NTN
platforms. For example, satellites operating at NGEO
have short orbital periods (around 2-10 hours [14]).
Consequently, users on the ground can only observe
a particular NGEO satellite over a very short period,
typically several minutes [14]. In this case, the ground
users will need to perform handovers frequently, espe-
cially when these satellites use multiple beams to cover
an area on Earth.

• Resource management: Compared to terrestrial termi-
nals, NTN platforms need to transmit signals with
much higher power to deal with the high path loss
and ensure users on Earth can successfully decode the
transmitted signals. This introduces a new challenge for
NTN platforms as they are not equipped with stable
power sources like terrestrial terminals. Moreover, the
frequency bands assigned to NTN communications are
limited and already crowded. In particular, the S-band
and Ka-band are the target bands for NTNs [14].
However, 4G LTE devices are using the S-band, and
millimeter wave-enabled devices in 5G are using the
Ka-band. As a result, users in NTNs may experience
co-channel interference from these terrestrial devices.
This demands novel spectrum-sharing solutions to
intelligently and efficiently utilize the limited frequency
bands.

C. TECHNOLOGIES AND INFRASTRUCTURES FOR NTN
Solutions to address the aforementioned challenges of NTNs
have been actively developing in the past few years, including
beamforming designs, efficient resource allocation, dynamic
routing, and intelligent operation management [33], [34], by
leveraging advanced technologies in AI/ML, communica-
tions and networking, and computing. Among them, network
slicing, ORAN, and AI/ML are promising technologies that
are expected to play vital roles in NTNs. In this section,
we will provide the fundamentals and advantages of these
technologies for NTNs.

1) NETWORK SLICING

Network slicing is a new technology that allows us to create
multiple unique logical and virtualized networks, called
slices, on top of a physical infrastructure [36], [37], [38].
With network slicing, service providers can quickly serve
diverse services according to their requirements such as

resources, quality of service (QoS) demands, and network
functionalities, simultaneously. To do that, network slicing
deploys various technologies such as Software-Defined
Networking (SDN), Network Function Virtualization (NFV),
and Network Orchestration. In particular, SDN is an
approach to decouple the control plane from the data
plane of network devices and make the control plane
programmable [39]. In this way, SDN can dynamically
perform network configurations through the centralized
controller, resulting in better network performance compared
to conventional networking. NFV is a novel technology
to virtualize network services such as firewalls, routers,
and load balancers by using virtualization technologies and
commercial off-the-shelf programmable hardware [40]. In
such a way, NFV brings various benefits to network operators
such as decoupling software from hardware, flexible network
function deployment, and dynamic scaling [41]. Finally,
network orchestration refers to the automated rules to
dynamically control and automatically program the network,
allowing it to ensure the service level agreements for the
services. With these advanced technologies, network slicing
is expected to play an essential role in 5G and beyond due
to its advantages as follows [38], [42]:

• Enabling Scalability and Flexibility: In practice,
network services may require different amounts of
resources and network functions at different times.
To better utilize the system’s resources, network slic-
ing allows network operators to dynamically allocate
resources from a particular slice to other slices that
demand higher resource requirements without affecting
services in the source slice. Network slicing also
can quickly create a slice for new services when
requested, e.g., critical applications, and adjust the
allocated resources and network functions based on
users’ demands.

• Ensuring Security and Privacy: Although using the
same physical infrastructure, slices in network slicing
networks are independent. As such, security attacks in
one slice cannot affect other slices in the system. This
is called slice isolation, an important design principle
of network slicing.

• Improving QoS: Network slicing can allocate different
types of resources and network functions to diverse
services based on their QoS requirements. In addition,
during congestion situations, network slicing can still
guarantee the QoS for users by dynamically allocating
resources and prioritizing traffic between slices in the
network.

With the aforementioned advantages, network slicing has
emerged as a potential enabler that can effectively address
various challenges of NTNs. A general network slicing-
powered NTN system is illustrated in Fig. 3. In particular,
like traditional network components, NTN platforms can
also be virtualized both in terms of resources and network
functions by using SDN and NFV to support different types
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NTN Infrastructure

Low Latency

Massive Connectivity

High Reliability

FIGURE 3. General architecture of network slicing-powered NTN [35], [36].

of services simultaneously. With network slicing, service
providers can quickly establish new slices for NTN services
such as Earth observation, broadcast services, and broadband
services to serve different groups of users [43]. This can
efficiently address the problem of high cost and high delay in
building satellite constellations in orbits. In addition, network
slicing also allows NTNs to be effectively and flexibly
integrated into existing terrestrial networks. Nevertheless,
network slicing-powered NTN systems still face several chal-
lenges in designs, protocols, and optimizations. In particular,
the high mobility of satellites can create frequent topology
changes and handovers that may not be fully addressed
by using existing network slicing technologies. In addition,
satellite communications have higher latency and energy
consumption compared to traditional communications. As
such, managing and allocating different types of virtual
resources to maintain efficient network slicing operations are
more complex in NTNs than in terrestrial networks. These
challenges and existing approaches in the literature will be
discussed in detail in Section III.

2) AI/ML

AI/ML has been developing significantly since the deep neu-
ral network (DNN) architecture was re-invented and trained
over a large amount of data by powerful computational com-
puters. It has been successfully applied to various areas such
as computer vision, gaming, and natural language processing.
In the fields of communications and networking, AI/ML has
been emerging as a promising solution to efficiently and
significantly improve communication performance. AI/ML
is a potential technology for NTNs to overcome their critical
challenges that conventional approaches cannot handle well.
For instance, Deep Reinforcement Learning (DRL), an
advanced AI/ML algorithm, can be used to address resource
allocation, routing, handover, and beamforming problems in
NTNs [44], [45], [46] due to its capability in dealing with
the dynamics and uncertainty of the system. Deep learning
(DL) with advanced neural network architectures such as
Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) is very effective in handling non-linear
effects and general impairments of channels in NTNs. In this
section, we will present the fundamentals of common AI/ML
techniques that can be used to improve the performance of
NTNs. The details of existing AI/ML applications for NTNs
will be presented in Section IV.

AI refers to a field of computer science that focuses
on building machines (especially computer systems) to
perform tasks that require human intelligence such as
learning, problem-solving, decision-making, and reasoning.
ML is a special subset of AI in which a machine tries
to learn a specific task (e.g., image classification, voice
recognition, or signal classification and resource allocation
in communication networks) and performance metrics such
as classification accuracy and performance loss by using
only the data collected from the task. ML can be generally
categorized into three subsets: (i) supervised learning, (ii)
unsupervised learning, and (iii) Reinforcement Learning
(RL) [47].

• Supervised learning: In this type of ML, the learning
model is trained with labeled datasets to classify data
or predict outcomes accurately. For example, an ML
model can be trained with a dataset of images of
different animals that are labeled by humans. Over time,
the model can learn ways to identify these animals.
Supervised learning is the most common type of ML
used today. The standard supervised learning techniques
include Naive Bayes, Liner Regression, Decision Tree,
Support Vector Machine, and Logistic Regression [47].

• Unsupervised learning: Different from supervised learn-
ing, unsupervised learning models are trained on
unlabeled data. To do that, unsupervised learning algo-
rithms scan through training data to identify patterns
or trends without human intervention. For example,
unsupervised learning can be used to learn from online
sales data to look for different types of clients making
purchases. The standard techniques in unsupervised
learning include K-means clustering, Self-Organization
Map, and Principal Component Analysis [47].

• Reinforcement learning: This type of ML does not
require a prior dataset for training. In particular, RL
is trained through trial and error by interacting with
an external environment. Given a particular state, the
RL agent makes an action based on its current policy.
After that, it observes the next system state and the
immediate reward calculated by a predefined reward
function. All these observations will be learned by
the agent to gradually obtain the optimal policy. The
standard techniques in RL include Q-learning, deep Q-
learning, and multi-armed bandit [47], [48], [49], [50].

To further improve the prediction performance of ML
models, DL has been proposed by leveraging the capabilities
of DNNs in learning from a large amount of data. Compared
to conventional ML algorithms, DL has several advantages
such as no need for system modeling, supporting parallel and
distributed algorithms, and being reusable. A typical DNN
consists of four main components: (i) neurons, (ii) weights,
(iii) biases, and (iv) activation functions. In particular, layers
of a DNN are connected to each other by neurons, also
known as nodes. Each neuron has an activation function
such as tanh, sigmoid, and relu [48]. The activation function
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FIGURE 4. General architecture of ANN.

is used to calculate the output of each neuron given its
weight and bias. During training, the weights of the DNN
are updated by calculating the gradient of the loss function.
There are three main types of DNNs including (i) Artificial
Neural Network (ANN), (ii) Recurrent Neural Network
(RNN), and (iii) Convolutional Neural Network (CNN).

• Artificial Neural Network: ANN, also known as feed-
forward neural network, is the most common type
of DNNs. Typically, an ANN consists of nonlinear
processing layers, including an input layer, several
fully connected hidden layers, and an output layer
as shown in Fig. 4. As a hidden layer takes the
outputs of its previous interconnected layer as its
inputs, ANN processes information in one direction
from the input layer through the hidden layer to the
output layer. Generally, ANN can work well with
nonlinear functions, and thus it can be considered a
universal function approximation. Due to its simple
architecture and ability to extract useful information
from training data, ANN has been commonly adopted
to address emerging issues in communications and
networking. For example, the authors in [51] propose
to use an ANN architecture with only three hidden
layers for channel estimation and signal detection in
orthogonal frequency-division multiplexing (OFDM)
systems. Simulation and experimental results then reveal
that ANN is a promising tool for channel estimation
and signal detection in wireless environments under
complex channel distortion and interference. Moreover,
in [52], the authors present several use cases of applying
ANNs to different problems in wireless communications
such as UAV-based wireless networks, radio access, and
mobile edge caching and computing.

• Recurrent Neural Network: RNN is a special architec-
ture of DNNs that is widely used for time series data or
data that involves sequences. To do that, RNN deploys
a feedback loop and hidden states to store information
of previous inputs to improve the learning processes of
the next data, as illustrated in Fig. 5. In particular, the
output of the RNN cell at time t − 1 will be stored
in the hidden state ht. This stored information will
be used for learning the next sequence at time t. In
complex systems, RNN may not perform well due to
the “vanishing” or “exploding” gradient problem during
the backpropagation operation. To overcome this issue,

FIGURE 5. General architecture of RNN.
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FIGURE 6. General architecture of CNN.

an extended version of RNN, namely Long Short-Term
Memory (LSTM), is proposed. In particular, LSTM
employs additional gates to determine the amount of
previous information in the hidden state that will be
used for the output and the next hidden state. In this
way, LSTM can efficiently learn the long-term depen-
dencies in training data while mitigating the issue of
the backpropagation process. RNN, especially LSTM,
has emerged as a promising architecture for signal
classification in wireless communications due to the fact
that signals are naturally sequential and collected over
multiple antennas [53], [54]. In addition, LSTM can be
used for resource allocation, modulation classification,
intrusion detection, and beamforming [55], [56], [57].

• Convolutional Neural Network: CNN is designed
mainly for training over image data. The general archi-
tecture of a CNN is illustrated in Fig. 6. Specifically,
a CNN consists of convolution layers that have a
set of convolutional filters. Each convolutional filter
extracts specific features from image data. After each
convolution operation, CNN uses a Rectified Linear
Unit (ReLU) transformation to maintain positive values
during training. This helps the training process to
be faster and more effective. The pooling layer, also
known as downsampling, is used to reduce the number
of training parameters by performing dimensionality
reduction. It has been widely demonstrated that CNN
can handle image data much more effectively than
ANN. This is because CNN does not need to convert
images to 1-dimensional data before training, which
increases the number of training features as well as
removes the correlations of features in images. CNN,
in contrast, can learn these features directly from
image data by using convolutional layers. As a result,
CNN has been widely applied in communications and
networking to handle data in the form of images or
high-dimensional matrices. For example, the authors
in [58] propose to use CNN for spectrum sensing in
cognitive radio networks. In addition, CNN can be used
for automatic modulation classification as demonstrated
in [59] by taking IQ time-domain vectors of modulated
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FIGURE 7. General architecture of mobile networks.

signals as its inputs. Due to the ability to handle high-
dimensional input data, CNN is a promising architecture
for channel feature extraction as studied in [60].

As mentioned, DL approaches usually require sufficient
training data from users to achieve good performance.
However, in practice, users may not be willing to share their
data with the centralized server due to privacy and security
concerns. To address this issue, federated learning (FL) was
introduced in [61]. In FL, each user, i.e., client, uses their
local data to train a DL model. After that, they send their
model updates, i.e., their models’ weights, to a centralized
server for aggregation. The server then sends the aggregated
global model to all the clients. Based on this global model,
the clients then continue to train it with their local data. This
process is repeated until a desirable accuracy is obtained.
In this way, FL can effectively address the privacy problem
as well as reduce the required bandwidth as only models’
weight is transmitted to the server instead of raw training
data. Due to these advantages, FL has been widely adopted in
wireless communications and networking to address a wide
range of problems such as spectrum management, caching,
and IoT [62], [63]. Applications of FL in NTNs will be also
discussed in detail in Section IV.

3) ORAN

ORAN is the disaggregation of the traditional RAN, allowing
cellular equipment provided by different vendors can be
interoperated by using open and standards-based proto-
cols [64], [65]. In the following, we first provide the
fundamentals of RAN and then discuss the architecture and
advantages of ORAN over RAN.
Fig. 7 illustrates a general architecture of mobile

networks, including RAN, core network, and services. In
particular, the purpose of RAN is to connect user devices
(e.g., mobile phones and computers) to the core network to
access services provided by network operators. The main
component of RAN is base stations. In general, a base station
consists of two main units: (i) radio unit (RU) and (ii)
baseband unit (BBU). RU receives signals from users and
sends them to BBU for processing before transmitting them
to the core network. Traditionally, a single vendor provides
all the units, software, and connections between them of
the base station. As a result, it is difficult if not impossible
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to change any component of RAN, making it costly and
less flexible in deployment and operation. To address all
these drawbacks of conventional RAN, ORAN was proposed
recently with a more flexible design.
In Fig. 8, we illustrate the differences in the designs of

RAN and ORAN. In particular, ORAN allows the radio
access network to work with hardware from any vendor
while traditional RAN requires a specific vendor for its
hardware. Similarly, in the software part, software from
any vendor can be used with a commercial off-the-shelf
server, whereas RAN requires proprietary RAN software
from a specific vendor. With this open design, ORAN offers
various advantages compared to RAN, such as flexibility,
open management, and orchestration, enabling multi-vendor
solutions, and being able to use less-expensive third-party
hardware and software. With these advantages, ORAN can
be an important technology for NTNs as well as NTN-
integrated terrestrial networks. More detailed applications of
ORAN for NTN and current development both in academia
and industry will be presented in Section V.

III. NETWORK SLICING-AIDED NTN
Network slicing is a powerful technique in telecommuni-
cations, which allows operators to create multiple virtual
networks from a shared physical network architecture.
Utilizing technologies such as SDN and NFV, the operators
can dynamically allocate network resources to each network
slice according to its specific requirements in terms of
bandwidth, latency, and reliability. In the context of NTN,
network slicing enables a single network infrastructure
to serve multiple types of applications and users with
different demands. For example, remote control for UAVs
often requires low-latency communication, whereas satellite
Internet service might require higher bandwidth to serve
millions of users. For both cases, network slicing can divide a
single physical NTN into two virtual slices to meet different
demands by allocating different resources to each slice.

A. SATELLITE NETWORKS
Satellite networks, due to their benefits such as worldwide
coverage area and fast deployment, can significantly enhance
mobile terrestrial networks [35]. Several challenges for
satellite networks such as delay, throughput, and utilization
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of resources can be addressed effectively by network
slicing [67]. However, those advantages come with several
problems such as seamless integration of satellite network
into the existing mobile networks [35], load balancing,
resource allocation considering satellite constellation topol-
ogy [68], and efficient routing methods [69]. To address
these problems, multiple approaches have been proposed.

1) RESOURCE ALLOCATION

Among those problems, resource-allocation-related chal-
lenges have been addressed in [70], [71], [72], [73].
Specifically, in [70], the authors propose innovative
approaches to integrate network slicing into railway commu-
nication. These approaches aim to optimize network resource
allocation by ensuring that latency requirements are met for
each class of service in a network. First, a mathematical
approach, namely Queuing Theory (QT) method, uses a non-
linear constrained optimization to minimize the difference
between the latency. In addition, a Neural Network (NN)
approach, namely NN total model, utilizes delays obtained
through simulations as input dataset to produce the control
variables. Since this approach approximates the required
latency by simple fitting, it could lead to inefficient and
inaccurate results. To overcome this drawback, the authors
propose an NN-divided model [70] to approximate the
latency of satellite and terrestrial networks using two separate
neural networks. This approach solves an optimization
problem similar to that of the QT-based method, except that
it minimizes an expected mean latency. Simulation results
show that these approaches can reduce the latency by roughly
25%-60%. With a focus on the dynamic allocation of radio
resources, in [71], the authors propose an RL-based slicing
strategy, namely dynamic radio resource slicing strategy
(Sat-RRSlice), to serve the LEO networks. Particularly, the
network slicing problem is modeled as a Semi-Markov
Decision Process (SMDP), including network states, actions,
state dynamics, and rewards. The states of each slice
denote the resource allocation and utilization at a time slot.
Moreover, the actions, taken by a resource manager on each
slice at a time slot, indicate whether a resource unit is
allocated to a slice or not. Furthermore, the reward function
is used to calculate the reward, defined by the network’s
total utility, for taking a certain action. Using Q-learning,
optimal Q-values are learned iteratively based on information
obtained from a wireless environment over discrete time
slots. Simulation results show that, compared with the static
slicing strategy [71], Sat-RRSlice can increase the resource
utilization rate and sum utility (i.e., the total benefit gained
from communication) by at least 18.5% and 9%, respectively.
Taking another approach, in [72], the authors design a

network-slicing architecture for the LEO satellite network
with a focus on increasing flexibility and resource utilization.
In this architecture, network slicing is managed through
Network Slice Selection Assistance Information (NSSAI)
and Network Slice Selection Policy (NSSP). The NSSAI,
stored in each device, is specifically configured for each

device while the NSSP is the set of rules that the network
management component must follow. Moreover, two types of
network slices are defined: shared slices used by all users for
common functions (e.g., storing user data and authenticating
users), and dedicated slices for providing personalized ser-
vice. Experimental results show that a network implemented
with this architecture can effectively handle multimedia
communications over IP networks. The authors in [73]
design a framework for SDN/NFV-enabled satellite ground
segment systems to enable on-demand network slicing. This
framework, namely OnDReAMS, has a Service Orchestrator
(SO) responsible for managing the life cycle of network
slices, e.g., instantiation, maintenance, and termination.
Besides, an NFV Manager is used to handle the instantiation,
modification, and termination of the VNFs. Moreover, a
novel component, namely Satellite Network Slice Descriptor
(SNSD), describes the characteristics of the slice as requested
by the customer, allowing the SO to set up the slice with
flexibility. For resource allocation, the slicing problem is
solved using a Mixed Integer Linear Program (MILP) model.
A time-window-based online algorithm is then developed to
handle the on-demand aspect of the solution, which solves
the MILP at the beginning of each time window with updated
slice resources. Simulation results show that OnDReAMS
can reduce the average QoS violation by approximately 10%-
50% compared with a baseline approach.

2) ROUTING

Besides resource allocation, another important aspect of
slice-aware satellite networks is routing, which is the focus
of [69] and [74]. Particularly, in [69], a routing strat-
egy for real-time applications over satellite networks with
Virtual Functions (VFs) deployed on satellites is proposed.
Particularly, the authors develop a VF constrained simple
path algorithm to find the shortest path by searching for
paths while checking their delay and function requirements
iteratively. To overcome the drawbacks of this algorithm (i.e.,
sub-optimality, instability, and non-scalability), a second
algorithm is developed, namely VF-aware shortest path algo-
rithm (VFSP). In this algorithm, the problem of finding the
best path in an SN is divided into two sub-problems: finding
the shortest path from the source to each functional satellite
and from each functional satellite to the destination. By
leveraging the unique property of Dijkstra’s algorithm [75],
these sub-problems are solved efficiently by running the
algorithm twice, once forward from the source and once
from the destination, eventually joining these paths to find
the optimal solution. Simulation results show that both
algorithms have a run time of approximately 100 times
faster than that of the integer linear programming (ILP)
approach. Moreover, compared to the KSP-based approach,
the VFSP method can improve the acceptance ratio by at
least 5%. Another approach for routing, i.e., link-embedding
methods, is presented in [74]. Specifically, the authors
propose a network slicing planning scheme for satellite
networks, considering the mobility of LEO satellites and
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FIGURE 9. Space edge cloud satellite network architecture [67].

the handover of virtual networks. To this end, two link-
embedding methods are developed. The first method is an
algorithm that aims to find the shortest path while ignoring
the links with limited capacity, thereby significantly reducing
the propagation delay. The second method locates the largest
link in the neighborhood and updates the path weight to
the found path’s minimum link capacity, thereby improving
the link stability. Simulation results show that the proposed
methods can improve the data throughput by up to 21%.

3) SATELLITE EDGE COMPUTING

Network slicing applications to satellite edge computing
(SatEC) architectures are discussed in [68] and [67].
Particularly, in [68], the authors present an IoT-supportable
SatEC architecture to use satellites for 6G IoT services
efficiently. To that end, the authors propose solutions to
address two problems: balancing the trade-offs between
latency and power and managing network resource alloca-
tion. For the first problem, a multi-objective optimization
problem is formulated considering latency, computational
power, and transmission power attenuation. A Satellite Edge
Multi-objective Tabu Search (SE-MOTS) [76] algorithm is
used to find a Pareto-optimal point, which presents the best
trade-off among the three factors considering the dynamic
satellite topology and service requirements. For the second
aspect, a sliced SatEC optimization problem, formulated as
a normalized weighted sum of three objective functions, is
used to schedule the tasks with different demands. A golden-
section method [77] is used to solve this aspect with low
computational resources. Taking another approach, in [67],
the authors design a system architecture that combines space-
based edge computing and network slicing for space-based
network resource management, as illustrated in Fig. 9. In
this architecture, edge computing nodes are included due
to their benefits of being closer to the data sources and
their ability to process data locally. These nodes, namely
distributed fog satellite nodes and centralized space-based
edge clouds, are responsible for computing tasks with low
and high complexity, respectively. In the control plane of

the network, the authors introduce the two-layer controller,
Fog SDN controller (FSC) and Cloud SDN controller &
Slicing Manager (CSC&SM). Particularly, FSC abstracts fog
satellite nodes and manages their resources while CSC&SM
optimizes resource management of network slices with
a global view of the network. Moreover, a 5G Satellite
Network Slice Management(5G SNSM) [67] is proposed
to perform flexible network slice allocation based on QoS
requirements. Simulation results show that the proposed
architecture can improve the end-to-end delay and jitter by
at least 7% and 50%, respectively.

4) SLICE ADMISSION CONTROL

Slice admission control is another important aspect of
network slicing that should be considered simultaneously
with resource allocation. In [78], a two-stage approach is
developed to jointly optimize resource allocation and slice
admission control in LEO satellite networks. To this end,
the authors first formulate a robust optimization problem to
optimize slice admission, taking into account the uncertainty
in the network state and user distribution. Based on the
admission decisions in the first stage, the resource allocation
strategies are optimized in the second stage to guarantee QoS
for users. Since the original optimization problem is non-
convex, auxiliary variables are introduced to transform the
problem into a convex form, thereby significantly reducing
the problem’s complexity. Simulation results show that the
proposed approach can improve the user QoS by 7.2%
compared to the non-robust approach.

B. INTEGRATED SATELLITE-TERRESTRIAL NETWORKS
Integrated Satellite-Terrestrial Networks (ISTNs) utilize
satellite communication to extend network coverage and
reduce the dependence on terrestrial infrastructure, thereby
offering services to users with higher efficiency. Network
slicing can bring several advantages to ISTNs such as
efficiency in resource sharing, differentiated QoS provi-
sioning [79], and network flexibility as well as scalability.
However, multiple challenges also arise from this application,
including network awareness requirements and the highly
dynamic environments [79], QoS reduction due to terrestrial
obstacles [80], limited resource constraint, and service
provider incentives.

1) RESOURCE ALLOCATION

Innovative approaches are proposed to overcome those
challenges. To address the resource allocation problem in
slice-aware ISTN, optimizing the VNE [81] algorithm is
a promising solution. To that end, the authors in [80]
design a framework, namely Slice-Aware VNE for Satellite-
Terrestrial (SAST-VNE) to improve the implementation of
the VNE algorithm in ISTNs. In this framework, problematic
network slices, i.e., those that do not meet Key Performance
Indicators (KPIs) or will undergo satellite handover, are
inserted into a queue for analysis. In case a new slice
is created, the embedding is computed using the DViNE
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algorithm [82]. For problematic network slices, if they
have high priority, i.e., low tolerated latency, each affected
link will be remapped with the shortest-path algorithm.
On the contrary, if they have lower priority, the authors
propose an iterative algorithm, namely SAST-VNE, to
balance the network load and minimize the migration cost.
Simulation results show that during handovers, SAST-VNE
can reduce the average node migrations and average link
migration by roughly 25% and 6%, respectively. Another
implementation of VNE for ISTNs is presented in [79].
Particularly, the authors design a testbed to validate the
feasibility of integrating non-GEO satellite constellations and
implementing VNE algorithms in highly dynamic network
conditions. This testbed consists of a dynamic satellite-
terrestrial network emulated in Mininet [79], an external
Ryu SDN [79] controller and a VNE algorithm script.
First, the Mininet emulator is used to build an OpenFlow-
based substrate network, enabling the Ryu SDN controller
to manage the flow of packets in the network. The Ryu SDN
controller also uses a Traffic Engineering (TE) application
to create paths for each VN, set rate limits, gather network
statistics, read the network topology, and process changes
to the network topology in real-time. Furthermore, the
VNE algorithm script, implemented in MATLAB using
an Integer Linear Programming formulation with a load-
balancing objective function, handles required resources for
virtual networks and updates the network configuration to the
Ryu SDN controller. Simulation results show that the testbed
can handle many scenarios and changes in the network
topology such as adding new VNs, dynamic changes in the
network layout, and handling of network failures.
Moreover, approaches to optimize resource allocation are

presented in [83] and [84]. Particularly, the authors in [83]
propose a dynamic slicing strategy for ISTNs. The proposed
strategy uses mirror nodes, instead of virtual nodes, to store
motion duration and resource information of satellites. Based
on that, the service forwarding path and slice resources can
be adjusted, as illustrated in Fig. 10. The mirror nodes also
communicate the satellite resources with ground stations and
receive feedback, i.e., which satellites to be chosen for the
slicing process. An optimization model is then formulated
to maximize the long-term average slicing performance
of the network with a constraint of computing, storage
and bandwidth resources. Moreover, a resource reserved
in slices and adaptive adjustment between slices algorithm
(R2A2) is developed to solve the optimization problem.
Simulation results show that, compared to a DQN approach,
R2A2 can increase resource utilization and slice satisfaction
by roughly 33% and 30%, respectively. With a focus on
the admission decision for a slice request, the authors
in [84] propose a game-theory-based solution for resource
allocation in ISTNs. To solve the challenges related to limited
resource constraints, slice admission control is formulated
involving different combinations of service providers and
users. Specifically, service providers and users form a multi-
sided market to exchange resources. To participate in the

FIGURE 10. Mirror node model [83].

network, both sides consider their prices, i.e., network
resources for the providers and the cost for the users.
An auction, designed with the Multi-Sided Ascending-Price
Auction Mechanism [84], is performed by increasing the
price for both sides based on supply and demand until a
balance is reached. Eventually, the final prices are set, and the
allocation of resources to users is determined. Experimental
results show that, compared to a baseline approach, i.e.,
second-price auction [84], the ascending-price auction can
increase the bandwidth per user, the admission ratio, and
the gain from trade per user by up to 25%, 33%, and 20%,
respectively.
A novel approach for network slice orchestration is

presented in [85]. Particularly, the authors present a system
model for the deployment of network slicing for aircrafts
using satellites. This model aims to enhance resource
management in ISTNs by incorporating the concept of slice
collaboration, i.e., defining network slices based on their
willingness to share user traffic statistics with the infras-
tructure provider). To this end, a Mixed Integer Non Linear
Programming (MINLP) model is developed to maximize
the resources, i.e., cache and backhaul resources) while
satisfying slice constraints. Moreover, a pricing model [85]
is proposed to increase the chances of uncooperative slices,
i.e., slices that are unwilling to share user traffic statistics,
being served. Simulation results show that the MINLP model
can increase the selection probability of uncooperative slices
by 33% and cooperative slicing can accommodate 200%
more services compared to that of uncooperative slicing.
Taking another approach, the authors in [35] propose a slice-
aware NTN architecture to enable the seamless integration
between NTN and terrestrial networks. To this end, the
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authors propose an end-to-end slicing model which treats the
NTN as a slice-aware link in the terrestrial network. Based on
the proposed model, a functional architecture fully compliant
with the 3GPP standard is developed to allow the NTN to
be integrated with the terrestrial network. The architecture
consists of three main segments: the user segment with the
satellite terminal, the ground segment with satellite gateways
and network control components, and the space segment with
one or more satellites. The Satellite Terminal (ST) serves as
the User Equipment (UE) in 5G networks, communicating
with the space segment, which then relays messages to the
satellite gateway. Satellite gateways are the central entities
that manage resource allocation, authentication, and data
processing. Simulation results show that the proposed slice-
aware scheme can achieve better trip time, packet error rate,
and jitter compared to those of the cases without network
slicing.

2) USER ASSIGNMENT

In addition to routing, several frameworks have been
proposed to enhance network performance by optimizing
user assignment in [45], [86], and [87]. Particularly, in [86],
the authors propose a network slicing scheme for hybrid
satellite-terrestrial networks, aiming to improve reliability
and reduce the video traffic offload. To this end, the
authors develop a scheduling strategy that assigns the users
to three different types of networks, e.g., only satellite,
only terrestrial, and hybrid satellite-terrestrial, based on
Channel Quality Indicator (CQI) and QoS requirements.
Simulation results show that the proposed scheduling strat-
egy can improve the network throughput by up to 48%
compared to the case where only the satellite network
is employed. Differently, with a focus on space-terrestrial
integrated vehicular networks (STIVN), the authors in [45]
propose a scheme for network slicing to support both delay-
tolerant services (DTSs) and delay-sensitive services (DSSs).
This scheme aims to solve the problem of scheduling
and resource slicing in STIVN, which involves allocating
spectrum resources to slices, determining bandwidth allo-
cation, and user assignment for each vehicle. Specifically,
the system cost (i.e., DSS requirement violation, DTS
delay, and slice reconfiguration) is taken into account in
two subproblems: a resource slicing subproblem in large-
timescale, and a resource scheduling subproblem in a smaller
timescale. To solve those subproblems, a two-layered RL-
based scheme is developed. In the first layer, namely
resource slicing layer, spectrum-resources are pre-allocated
to slices using a proximal policy optimization (PPO)-based
RL algorithm [45]. In the second layer, namely resource
scheduling layer, depending on network conditions and
service requirements, spectrum resources are assigned to
vehicles using match-based algorithms. Simulation results
show that the proposed approach can reduce the overall
system cost up to roughly 72.57%, compared to that of a
baseline approach. In another approach, the authors in [87]
propose a network slicing scheme to improve their existing

resource management approach in satellite-LTE networks.
In the previous approach, an adaptive hybrid satellite-LTE
downlink scheduler (H-MUDoS) [88] determines if users can
be served through satellite network or ground-based stations.
However, simulation results show that the decrease in QoS
of the satellite network affects the performance of the entire
hybrid network. In the current approach, the network is
separated into isolation slices, each with its own scheduling
strategy assigned by the scheduler. Simulation results show
that the decrease in QoS of a slice does not affect other
slices.

3) ROUTING

Next, approaches for optimizing routing are presented in [89]
and [90]. Particularly, in [89], the authors propose a novel
framework to optimize resource distribution for network
slicing management in ISTNs. In this framework, a hybrid
approach combining ML and Ant Colony Optimization, is
implemented to associate a new metric, i.e., a cost metric,
to any route in the network. In this case, when a route
is chosen more frequently, its cost is increased and vice
versa. With this mechanism, the network can adapt to
changes in user demands and effectively allocate resources.
Experimental results show that the proposed framework
increases the user acceptance ratio up to roughly 15%
under different numbers of users and 20% under different
numbers of servers. Taking another approach, an automatic
network slicing framework for ISTNs is presented in [90].
The proposed framework aims to find the satellite-gateway
assignments and resource allocation to optimize the overall
utility, e.g., throughput and latency, of network slices. To
that end, a Voronoi tessellation-based topology construction
mechanism is proposed to map the satellite constellations to
equivalent network topologies. Based on that, an MILP is
formulated. To reduce the complexity of the MILP problem,
the optimization problem is decomposed into a resource
allocation and a satellite-gateway assignment sub-problems.
An online iterative algorithm is then developed to solve the
two sub-problems. Simulation results show that the proposed
framework can increase the slice admittance rate by up to
23% and reduce the control traffic by 76% compared to the
standard SDN approach.

C. SPACE-AIR-GROUND INTEGRATED NETWORKS
Space-Air-Ground Integrated Networks (SAGINs) aim to
achieve full network coverage and ubiquitous services
by integrating terrestrial networks, satellite networks,
and aerial networks [91], [92]. While applying network
slicing to SAGINs is an effective solution for effi-
cient usage of network resources, this technique faces
new challenges such as complex slice orchestration in
multi-domain networks, resource optimization consider-
ing UAVs position, and dispatching cost. To address
those challenges, multiple innovative schemes have been
proposed.

3864 VOLUME 5, 2024



1) RESOURCE ALLOCATION

For instance, as the main concern of network slicing
application, resource allocation is discussed in [93], [94],
[95], [96]. Particularly, in [93], the authors propose a
framework for integrating network slicing to a SAGIN, which
establishes three types of RAN slices, i.e., high-throughput,
low-delay, and wide-coverage. In particular, a non-scalar
multi-objective optimization problem (MOOP) is formulated
to jointly optimize throughput, service delay, and coverage
area. Moreover, a Central and Distributed Multi-agent Deep
Deterministic Policy Gradient (CDMADDPG) algorithm
is developed to solve the problem. This CDMADDPG
algorithm uses a centralized unit to determine the optimal
positions for the virtual UAVs (vUAVs) and the most
suitable subchannels as well as power resources among
the slices. Then, intra-slice resource sharing is arranged
by virtual base stations, vUAVs, or virtual LEO satellites,
depending on the distributed units. Eventually, near-Pareto
optimal solutions can be found. Simulation results show that,
compared to a baseline approach, the proposed framework
can improve throughput and delay by up to 10% and 50%,
respectively. With a focus on dynamically slicing spectrum
resource in SAGINs an online control framework is proposed
in [94]. Here, the proposed framework aims to adapt to
varying vehicular environments and achieve isolated service
provisioning, i.e., each type of service is processed in an
independent queue. To that end, the authors propose a
workflow of dynamic slicing consisting of four steps, i.e.,
request admission, request scheduling, UAV dispatching,
and resource slicing, to ensure that services with different
QoS are adequately served. Based on that, a Lyapunov-
based approach is proposed to maximize the system revenue
and minimize a time-averaged penalty while stabilizing
the system. This approach aims to minimize time-averaged
queue backlogs of all services, i.e., the average number of
unprocessed requests in a queue over a period. Simulation
results show that the proposed framework can increase the
throughput by approximately 26%.
Taking another approach utilizing AI, the authors in [95]

introduce an AI-enabled network slicing architecture for 6G
networks, aiming to enable intelligent network management
and facilitate emerging AI services. Particularly, the archi-
tecture has two main characteristics: AI for slicing, i.e.,
using AI to manage multiple network slices with strict QoS
requirements, and slicing for AI, i.e., creating special slices
for AI services. It is shown in [95] that AI can be used
to support different phases of the network slicing process
such as preparation (e.g., service demand prediction and
slice admission), planning (e.g., VNF placement and resource
reservation), and operation (e.g., resource orchestration and
Radio Access Technology selection), as illustrated in Fig. 11.
Moreover, in the proposed architecture, network slices are
tailored to support three stages of AI services (including
data collection, model training and model inference) with
their corresponding required QoS. Simulation results show

FIGURE 11. AI based network slicing solution [95].

that a deep deterministic policy gradient (DDPG)-based
network slicing solution has a system cost (a weighted sum
of resource reservation cost, slice reconfiguration cost, and
delay requirement violation penalty) 15% lower than that of
myopic resource reservation [95].
Considering the current status of power communication

network development, the authors in [96] propose a SAGIN
slicing architecture. Specifically, the proposed architecture
consists of four layers, i.e., service request, slicing manage-
ment and scheduling, virtualized resource, and infrastructure
layer. The service request layer receives requests from users
to define requirements and build service slices. The slicing
management and scheduling layer provides the management
interface for users, controls the scheduling management,
stores the data required by the platform environment and
transmits the corresponding data to the lower functional
components. The virtualized resource layer utilizes NFV
to virtualize the physical resources and allocates sufficient
virtual resources to different slices. The infrastructure layer
provides the physical resources. It is shown in [96] that
this architecture can manage network resource allocation
efficiently to meet different demands of the power grid
communication service.

2) SLICE CONFIGURATION AND ROUTING

Together with resource allocation, multiple aspects are
considered to enhance network performance, including slice
configuration, Service Level Agreement (SLA) decomposi-
tion, and routing. A multi-domain network slicing framework
is proposed in [97], which aims to jointly optimize all the
three aspects. It is shown in [97] that the proposed framework
can handle multiple slice configurations in satellite-terrestrial
edge computing networks (STECNs). Particularly, a Markov
process is modeled to track the probability of satisfying
the SLA per configuration. Moreover, an index-based slice
configuration policy, based on restless multi-armed bandits
(RMABs) [98], [99], is defined to solve the multi-domain
slicing problem. Based on the slice configuration policy
and the slice/resource availability, the SLA is decomposed.
The routing and resource allocation optimization problem is
solved by each domain controller with consideration of the
slice/resource availability. Simulation results show that the
proposed framework can achieve three to six times higher
rewards than those of baseline approaches in terms of user
requirements in the SLA and the energy consumption. It is
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TABLE 3. Summary of network slicing approaches in NTN.

also shown in [97] that the proposed framework can achieve
optimal configuration under different network conditions,
e.g., outage and delay.
In [100], the authors propose a scheme to integrate

network slicing to SAGINs with native AI. In particular,
under the assumption that all network entities are software-
defined and can load multiple network functions and take
any required roles, all network entities are classified into
three classes, i.e., end entity, routing entity, and man-
agement as well as orchestration entity. End entities are
communication sources and destinations. Routing entities
are responsible for access control, traffic routing, and QoS
management. Management and orchestration entities are
responsible for entity management, network slicing manage-
ment, and resource orchestration. A pre-defined operating
entity [100], aware of network characteristics, adopts the
Distributed Weighted Classification Method (DWCM) to
assign roles to all network entities. Experimental results show
that, compared to a baseline approach [100], the proposed
scheme can increase the delivery ratio and the overall data
rate by roughly 4% and 28%, respectively and reduce the
end-to-end delay and routing overhead by approximately
46% and 6%, respectively.
Summary: In this section, we have discussed multiple

approaches for network slicing integration in NTNs, e.g.,
satellite networks, ISTNs, and SAGINs. Specifically, network

slicing is an effective solution to enhance NTNs with better
delay, throughput, network resource utilization, network
flexibility, and scalability. However, multiple challenges arise
when applying network slicing to NTNs such as resource
allocation, routing, load balancing, slice admission control,
and SLA decomposition. Among those challenges, resource
allocation is the most noticeable concern. To address resource
allocation, one approach is to formulate an optimization
problem, which can be solved by AI/ML-based methods,
mathematic algorithms, scheduling strategies, or innovative
mechanisms. Additionally, optimizing VNE is effective in
enhancing resource allocation. Another challenge to network
slicing is routing, which can be solved by shortest-path
approaches. Although the proposed approaches can effec-
tively address various challenges of network slicing in NTN,
there are still open issues that stem from the complex-
ity of network slicing optimization problems. Particularly,
these problems often include numerous constraints due to
resource limitations and various platforms, e.g., space, air,
and ground, resulting in high complexity. As a result,
most of the proposed approaches do not consider network
slicing holistically or are based on simplified assumptions.
Therefore, additional effort is needed to develop effective
and holistic solutions for network slicing in NTNs, especially
the integration of NTNs and terrestrial networks. The works
surveyed in this section are summarized in Table 3.
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FIGURE 12. The integrated air-ground and NTN for IoT systems.

IV. AI/ML-AIDED NTN
As people continue to explore and establish more practical
applications throughout the Earth, there exists a growing
need for advanced technologies to support NTN. AI/ML-
aided NTN offers a guarantee for significant benefits in
this area, from improving communication efficiency for IoT
systems to enabling autonomous UAV operations in huge
and remote areas. Specifically, AI/ML can increase efficiency
and reliability to optimize communication protocols using
NTN. They can also enable the autonomous operation
of numerous wireless applications, thereby reducing the
need for constant human intervention. Finally, AI/ML can
facilitate new scientific discoveries and insights by enabling
more efficient and targeted data analysis using NTN. As a
result, NTN can generate vast quantities of data, and AI/ML
may help to extract valuable insights and enable better-
informed decisions in a variety of practical applications, as
discussed in the following.

A. IOT
The utilization of AI and ML in NTN has the potential
to revolutionize IoT systems by improving data collection
and enabling extensive communication for sensors located in
remote and broad areas. NTN may increase radio coverage,
providemonitoring, and incorporate sensing services to remote
locations by utilizing satellites, airships, and aircraft as
illustrated inFig. 12.This can lead to significant improvements
in data collection from areas that were previously inaccessible,
allowing for more comprehensive and accurate insights.
In [101], the authors investigate the potential use of DL for

NTN-based industrial IoT (IIoT) services, i.e., spaceborne-
based and airborne-based intelligent IIoT systems. This
research describes how diverse DL-based algorithms have
been used and tested for NTN-based IIoT applications
based on the optimization objective, the available power,
and processing resources. Here, DL is considered the
most effective AI algorithm when it comes to end-to-
end optimization. Specifically, for spaceborne applications,

an ensemble DNN-based optimization can be utilized for
resource allocation while a deep-Q network can be used for
energy consumption and processing latency in Satellite-IoT
(S-IoT) networks. Additionally, S-IoT edge computing and
DL methods can accelerate data processing and transmission
as well as enhance bandwidth utilization. Since the practical
viability of conventional DL is contingent on the availability
of a large amount of sensor data and sufficient computing
power, DRL with lower complexity can be used. For airborne
applications, an IoT network with three layers for online
large data processing based on MEC is proposed with UAVs
as edge servers, Lyapunov optimization, DRL algorithm, and
CNN Q-networks. In this case, the CNN Q-network, which
enables action reward prediction, is trained using the UAVs’
views of the surrounding environment, and the DRL can
efficiently optimize the path planning of the UAVs.
To provide more benefits of using ML/AI-aided NTN,

the authors in [7] categorize the NTN into integrated UAV-
IoT networks and integrated S-IoT networks. For integrated
UAV-IoT networks, an RL method can be applied to build
the data collection trajectory of a UAV from IoT devices
with the aim to increase the UAV’s flight duration. Using
a double deep Q-network strategy, an effective path to
maximize collected IoT data under flight time and obstacle
avoidance limitations can be designed. Then, to increase the
IoT network’s energy efficiency, a DRL strategy is employed
to optimize the channel and power allocation of IoT devices
in the uplink communication. Meanwhile, a DRL approach
can be adopted in the integrated S-IoT networks. In this case,
an energy-efficient channel allocation mechanism for LEO
S-IoT network can be implemented. The DRL approach can
also be employed to address the complexity of energy cost
and latency minimization influenced by IoT user association
and resource allocation.
Despite that NTNs, especially the ISTNs, can provide

wide coverage for IoT systems, their links still suffer
from high dynamics and latency. To address the problem,
several ML/DL approaches are surveyed in [102], aiming at
optimizing the routing strategy update. Specifically, traffic
patterns of the integrated network are learned using CNN,
resulting in routing paths that balance traffic. Then, a deep
Q-learning-based method is proposed to reduce the routing
delay in the integrated network by combining both satellite
and terrestrial users’ networking, caching, and computing
resources. Additionally, the ISTN has considerable spectrum-
sharing potential, and thus two spectrum-sharing systems
based on SVM and CNN are presented. Here, the intelligent
spectrum sharing reduces interference and increases spec-
trum efficiency compared to traditional approaches. As the
satellite covers a large area, it is important for IoT devices
to be accurately positioned to ensure that the service stays
up and runs in the integrated network.

B. MOBILE SERVICES
Since NTN consists of space-borne base stations (BSs), e.g.,
satellites, and airborne BSs, e.g., UAVs and aircraft, they
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FIGURE 13. NTN with moving NT-BSs and NT-users.

may lead to a dynamic and non-stationary environment. As
such, non-terrestrial users (NT-users) on the ground need to
predict the mobility of those non-terrestrial BSs (NT-BSs)
autonomously. Likewise, NT-users may move frequently,
e.g., drones, which makes the trajectory estimation from the
NT-BSs side challenging (as illustrated in Fig. 13).
To cope with those issues, the work in [103] and [104]

propose new ML/AI-aided NTN, aiming at supporting the
activities of NT-BSs and NT-users. In [103], the authors
introduce an NT-users-driven DRL approach for handover
and throughput optimization in NTN-based multi-user access
control. Specifically, a centralized agent on the backhaul
side of NT-BSs trains DQN parameters with a sigmoid
activation function. The trained DQN is then used by each
NT-user with slow mobility, e.g., smartphone user, to make
his/her own access decisions. The proposed technique allows
each NT-user to intelligently access a suitable NT-BS to
improve long-term system throughput and reduce the NT-
BSs’ handovers. Compared with other benchmark methods,
e.g., RSS-based and Q-learning algorithms, the proposed
framework is superior in terms of the long-term throughput
and the handover numbers by 6 times and 8%, respectively.
The above work is then extended with the existence

of NT-users with medium/high mobility, i.e., drones in
low-altitude or high-altitude, by the authors in [104]. In
this case, each NT-BS should autonomously forecast NT-
users’ trajectories and the likelihood of their presence at
any site. For that, instead of using the aforementioned
complex DRL method, this work proposes novel RL systems
in which each of many NT-BSs independently calculates
deployment trajectories to maximize the access of NT-
users. For the deployment trajectory, multiple NT-BSs can
apply k-step state reduction (SR) distributive Q-learning to
optimize the autonomous trajectory. Via simulation results,
the suggested approaches outperform Q-learning, maximal
SINR, and distributive DRL in terms of the average number
of served NT-users up to 47%.

C. NETWORK MANAGEMENT
One of the NTN communication systems, i.e., the satel-
lite communication networks, typically has a challenge
in terms of system capacity, in which the resources of

FIGURE 14. The communication between satellites and ground stations using
software-defined network and virtualization.

most satellites are usually underutilized. To address this
challenge, collaboration among different satellite systems can
be one of the most effective solutions to enhance resource
utilization. Currently, each satellite has an unconnected
system architecture and dedicated resource utilization. For
that, ML/AI approaches can be used to cope with the above
limitations by developing intercommunication frameworks
among different satellite systems.
The authors in [44] propose a resource management

framework in heterogeneous satellite networks. In the frame-
work, SDN and virtualization methods in the data center
are used to manage and combine disparate resources as
shown in Fig. 14. To obtain the optimal resource utilization,
a DRL approach that uses the Markov decision process
(MDP) and integrates DL for inference capability as well
as RL for decision-making potential is then applied. In
this work, the state space contains service and resource
states, whereas the action state includes all actions in which
an agent provides resources to the services. Additionally,
the reward may include spectral efficiency, bandwidth,
throughput, and power efficiency. Here, each satellite acts
as a smart multi-agent that can perform distributed data
processing and transmit information between satellites and/or
ground stations in the cloud system. This reduces the
workload of the data center and enhances the efficiency
of communication because of shorter transmission paths.
The SDN-based integrated networks for resource allocation
are also proposed in [105]. The purpose of this integrated
network is to monitor networks, computation resources as
well as caches, and orchestrate them all simultaneously. They
use the Markov decision process for the resource allocation
optimization problem, and deep Q-learning approach for
the problem solving. The simulation results reveal that the
proposed scheme can achieve the highest expected utility
per resource up to 10 times compared with other baseline
methods.
Then, the work in [106] presents a novel framework of “self-

evolving networks (SENs),” which employs AI through ML
algorithms, e.g., federated learning and online learning, to fully
automate and intelligently evolve future integrated NTN in
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terms of network management, communication, computation,
and mobility of mobile users. For that, the authors utilize
the intelligent vertical heterogeneous network (I-VHetNet)
architecture as a model to envision the idea of SEN in
future integrated networks. The I-VHetNet design not only
combines terrestrial, aerial, and satellite networks, but also
includes intelligence, computation, and caching platforms to
allow multi-level edge computing. In particular, the SEN
engine first employs AI to forecast where additional network
capacity and coverage are required based on user movement,
behavior, and applications. Utilizing the prediction result, the
SEN engine intelligently and automatically sends UAV-BSs
or adjusts a HAPS beam to enhance network coverage and
increase its capacity to serve customers. It then can choose
terrestrial, aerial, or satellite networks to backhaul UAV-BSs
based on the QoS requirements. The SEN engine can also
execute computational offloading to the best computational
level systems, e.g., cloud computing, fog computing, or
collaborative computing of mobile users. Afterward, the
SEN engine can monitor network performance and user
satisfaction. To adapt to dynamic changes and create more
accurate automated and intelligent decisions, the SEN engine
uses network environment assessment as feedback. From
the simulation using three data centers and 300/3000 users,
the proposed system can minimize the data offloading and
computing delay by 0.05 seconds with 10GB-10TB offloaded
data per user.
To further relax the network management and service-

oriented resource allocation of the integrated terrestrial
and NTN in B5G/6G networks, network slicing can be
used through leveraging AI-based approaches. In [107],
dynamic-adaptive AI-enabled network slicing management
to deal with dynamic wireless environments is discussed.
Specifically, to allow intelligent orchestration of optimization
problems in network slicing management, several AI-based
approaches can be applied. However, it is worth noting that
using conventional DNN, CNN, or DRL methods may suffer
from a slow convergence rate, and thus it can deteriorate
the learning performance especially when parameters change
fast dynamically. To this end, transfer learning and meta-
learning can provide a fast response with fewer samples.
Both learning methods benefit from transfer/meta knowledge
without requiring data training from scratch to solve the new
learning problem with less training data. The use of RL then
can speed up the convergence in re-training and improve
the re-fitting ability. Based on the case study, the proposed
transfer and meta-learning framework can minimize the loss
and cost of slices up to 0 and 0.7 over time, respectively,
in two typical dynamic schemes, i.e., bursty traffic and
devices’ arrival/departure in slices. A similar network slicing
method to guarantee different QoS levels according to users’
requirements for eMBB in 5G-satellite networks is proposed
in [108]. Particularly, the authors introduce a neural network-
based resource allocation optimization problem to satisfy
different QoS requirements. Here, the work adopts the neural
network with a weighted round-robin scheduler (WRR-NN)

since a multi-queue system for packet fetching is utilized,
aiming at meeting the delay requirement for average end-
to-end packet delivery delay. Based on the comprehensive
simulations, this technique can precisely follow system
dynamics and satisfy eMBB’s service latency and jitter
criteria at approximately 0.025s and 10-50ms, respectively.
The addition of privacy for resource allocation in inte-

grated networks can also be implemented. The authors
in [109] present a distributed federated learning (FL)-based
intrusion detection system (IDS) in the integrated terrestrial
networks and NTN, aiming at addressing limited satellite
network resources and high privacy requirements. As such,
the FL is used to allocate resources adequately in each
domain and block malicious traffic, including DDoS attacks.
Here, the FL only sends the trained model without raw data
sharing to preserve privacy. This solution outperforms DL-
based IDS for malicious traffic identification rate at 98%,
packet loss at 0%, and CPU consumption rate at 70%.

D. VEHICULAR NETWORKS
In terms of vehicular networks, the integration between
terrestrial and NTN has the potential to bring efficient,
reliable, and robust data transmission for medium/high speed
or delay-sensitive/delay-tolerant services. This can reduce
the dynamic network environment including handover and
unstable network connection problems.
For example, the authors in [110] apply multipath

transmission control protocol (MPTCP) congestion con-
trol mechanism to perform data transmission through the
integrated networks concurrently for high-speed railway
schemes. Nonetheless, due to frequent handover problems,
they utilize reference signal received power information
according to a DRL approach to boost the goodput (i.e., the
amount of successful data received by the recipient within the
deadline) performance. Particularly, the integration among
gated recurrent unit (GRU), CNN, and deep deterministic
policy gradient (DDPG) are used to build a learning model.
First, the representation network generates a network state
representation for the actor and critic networks to develop
congestion control actions. Second, the actor network can
derive the congestion control actions according to the
observed state. Meanwhile, the critic network can assess
congestion control actions performance to further optimize
the policy gradients and update the actions. Finally, the
experience memory stores congestion control state, action,
reward, and next state sequences. Random sampling from
saved experience sequences then trains the representation,
critic, and actor networks, thereby reducing data reliance.
Through simulations using static and high-speed mobile
scenarios, the proposed solution can achieve the highest
goodput up to 63% compared with other baseline algorithms.
Next, a joint resource slicing and scheduling problem to

minimize the system cost in a long-term scenario in the
integrated space-terrestrial vehicular networks is investigated
in [45]. Here, the system cost includes the delay-sensitive ser-
vice cost, delay-tolerant service cost, and slice configuration
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FIGURE 15. The resource slicing and scheduling in the integrated space-terrestrial
vehicular networks.

cost. To find the solution, a two-layer RL-based approach
is used, as illustrated in Fig. 15. In the resource slicing
layer, a proximal policy optimization-based RL method pre-
allocates spectrum resources. Meanwhile, matching-based
algorithms assign spectrum resources in each slice to
each vehicle based on dynamic network circumstances and
service requirements in the resource scheduling layer. From
the trace-driven experiments, the proposed framework can
efficiently minimize the system cost by 98% while meeting
service quality standards, compared with the proportional
slicing scenario.
Then, the authors in [111] foresee 6G convergent terrestrial

and NTNs of virtual emotion and pandemic prevention
from two perspectives that are Red AI for accuracy and
Green AI for efficiency. Specifically, the Red AI-enabled 6G
virtual emotion approach leveraging DL algorithms can be
used to detect specific emotions of humans passing through
a specified area using vehicles with high accuracy and
low delay. Furthermore, the Red AI-enabled 6G epidemic
prevention approach is utilized to provide epidemic services
including fast medical item delivery and epidemic prevention
map construction using autonomous vehicles with smart
devices on the ground. Meanwhile, Green AI-enabled 6G
virtual emotion focuses on computation cost reduction in
detecting emotion with pre-defined accuracy. For Green AI-
enabled 6G epidemic prevention using DL algorithms, it
provides the same services as the Red AI however with the
minimum data and reduced number of training processes and
communications, thereby maximizing the efficiency. All the
above are supported by the NTN via 6G communications.

E. UAV
In the next decade, B5G and 6G wireless networks that
include terrestrial networks and NTN will be heavily reliant
on UAVs for a variety of purposes [21]. For that, wireless

communication must be reliable, trustworthy, and inex-
pensive to support such huge UAV deployments. Through
unlimited connectivity in 6G, UAVs for commercial use can
be used widely at different altitudes from low to high ones,
e.g., delivery, surveillance, traffic control, and aerial imaging.
The authors in [112] investigate antenna tilt deployment

optimization of air-to-ground (A2G) network between ter-
restrial base stations and UAVs using a DL method, aiming
at maximizing users’ throughput in the air. In particular,
bi-DNN is employed to approximate the behavior of the
A2G network and decide the optimal network configuration.
The optimal solution can be achieved by considering inter-
site distance, number of antenna sectors, UAV altitude, base
stations’ locations, and traffic load. Through the experiment,
optimal antenna tilt angles decrease by up to 30 degrees
as inter-site distance increases between 20km and 80km to
ensure adequate coverage throughout the cell.
In [113], UAV-based low altitude platform systems (LAPS)

with ML/DL approaches to create a flying ad hoc network
(FANET) is discussed. Specifically, Q-learning-based RL
can be used to develop autonomous and adaptive packet
routing among UAVs. In addition to Q-learning, SVM
and logistic regression can support real-time and dynamic
resource allocation to provide robust UAV services. The
combination of Q-learning and FL, i.e., federated Q-learning
can also be utilized to protect the FANET through jamming
detection. A case study with ground base station and UAVs
in smart farming scenarios using the opportunistic network
environment shows that the proposed system can achieve
more than 95% delivery ratio and average latency 50% lower
than those of other delay tolerant networks.
To further optimize packet forwarding between distant

ground terminals, the integration between LEO satellites
and UAVs to provide seamless relays using radio frequency
(RF) or free-space optical (FSO) links is presented in [114]
(as shown in Fig. 16). Here, the authors propose multi-
agent DRL to optimize the relationship between orbiting
LEO satellites and UAVs’ trajectories by maximizing the
overall throughput of communication over long distances
while reducing the system’s energy consumption. The
environment includes multi-hop communication, while the
state includes LEO satellites’ position in two orbital planes,
the UAV’s position, the link distance for each RF/FSO
link, the UAV’s energy consumption, and the time slot.
The actions contain associations and accelerations, while
the reward function optimizes the actions that maximize
throughput and minimize energy consumption and distance
between UAVs. Through simulations, it is shown that the
proposed framework can obtain throughput two times higher
than that of a baseline method with fixed ground relays.
Furthermore, the energy efficiency can be improved by 2.25
times compared with the baseline method.

F. MARITIME SERVICES
Seamless marine connection service is becoming a reality
as a result of recent advances in merging high-capacity
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FIGURE 16. The integration between LEO SATs and UAVs with RF/FSO links for
packet forwarding.

and ultra-reliable integrated terrestrial network and NTN
technologies. Here, NTN can boost terrestrial system
coverage and enable access to marine services in off-
shore and non-line-of-sight (NLoS) environments. To
deal with the rising complexity of controlling these
interconnected systems, ML/AI-based approaches can be
applied, aiming at achieving the service needs and energy
efficiency objectives in diverse marine communication
conditions.
For example, the use of ML/AI-based methods to provide

sustainable 6G maritime networks through NTN is inves-
tigated in [115]. Particularly, the most potential maritime
scenarios are first described including maritime search
and rescue, intelligent harbor and vessel logistics, on-
board entertainment, navigation and fleet management, and
shipborne IoT. In this case, distributed intelligence, wherein
learning and inference are utilized at several system levels,
is required to cope with the dynamic networking. Then,
the authors show how ML may improve energy-efficient
topology management and scheduling in dynamic marine
networks over baseline model-based techniques. For the
energy-efficient topology management, a multi-hop wireless
network with the aid of NTN is deployed in the area
of 100 km2 to reduce energy usage of the network while
finding the optimal routing paths for heterogeneous traffic
delivery to multiple destinations, e.g., cargo vessels. For that,
the DNN-based DL approach is utilized to estimate which
connections are absolutely necessary for the best possible
configuration as the system’s traffic patterns change. As a
result, the number of involving connections in the routing and
execution time can be minimized. Additionally, the temporal
and geographical correlations in traffic may be discovered
and multi-objective optimization issues can be supported
by employing other promising methods such as LSTM and
auto-encoder. For the energy-efficient scheduling, the LSTM
approach can be applied to predict channel quality because
of its ability to deal with time series problems. Consequently,
the channel reporting accuracy can be improved and packet
delay can be reduced at a fixed 2 seconds for a user density
of more than 2 users/m2.

FIGURE 17. Federated learning using multi-level network architecture, i.e.,
space-air-ground networks.

G. OTHER APPLICATIONS
Aside from all the above applications, ML/AI-aided NTN
scenarios have been investigated for other emerging appli-
cations. For example, a cybertwin-enabled 6G for SAGIN
using FL is discussed in [91]. Specifically, accounting for
non-homogeneity of SAGIN, mobile users that are served by
different RANs can offload their local data independently to
train them at the respective RANs as shown in Fig. 17. In
this case, the cloud server can work as the trained model
aggregator and global model updater. Here, MNIST dataset is
used in the cybertwin space of the SAGIN. Using additional
helpers from SAGIN as the edge nodes, i.e., LEO satellite
for the space network, a UAV for the air network, and a base
station for the ground networks, an FL training process can
be conducted. From the simulation results, it is shown that
the satellite network suffers from the slowest training time
and convergence rate due to the large communication delay
between the mobile users and the satellite. The convergence
gets faster when UAV-based networks and base station-
based networks are utilized. Here, the accuracy for SAGIN
can reach up to 90%. To further boost the accuracy, the
combination of all the edge nodes and mobile users can be
used for the FL training processes.
Due to the unique features of SAGIN, e.g., time-varying

connectivity, diverse resources, and complex 3-level network
design, an adaptive data transmission mechanism needs to
be investigated. In [116], a DRL-based intelligent adaptive
transmission framework for SAGIN is proposed, aiming
at maximizing the system throughput while satisfying the
packet delay and reliability standards of the traffic flow.
Particularly, the authors first formulate a mixed-integer
stochastic optimization problem. Then, a re-parameterization
method based on a deep deterministic policy gradient
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(RPDDPG) algorithm is utilized to solve the problem. From
the numerical results, the RPDDPG algorithm is effective in
improving the throughput and outage probability compared
with the relaxation-based DDPG and heuristic algorithms.
Likewise, the authors in [117] propose a DL-based approach
to enhance the traffic control performance of the SAGIN.
Particularly, several GEO, MEO, and LEO satellites as well
as hundreds of UAVs are first considered. Then, online
training including data collection and the training process
using a CNN method is performed. From the trained model,
a routing strategy to forward packets to a specific destination
and select the optimal traffic path can be executed. From
the simulations, the proposed method can significantly boost
the network throughput by 9% over 500 episodes, compared
with the conventional routing strategy.
In [118], a clustering-based users’ scheduling problem

using their characteristics in high-throughput and multibeam
precoded GEO satellite systems is investigated. Particularly,
the work considers three clustering algorithms for unsuper-
vised learning including K-means, hierarchical clustering,
and self-organization. Each of the algorithms is evaluated as
a function of users’ feature vectors which contain location
and channel information. From the numerical results, it is
observed that the channel information of the user improves
the clustering and scheduling performance depending on
per-beam clusters and the number of multicast users. The
numerical results show that the K-means and hierarchical
clustering can achieve an average throughput of 0.01Gbps
higher than that of the self-organization method for 24 to
32 clusters per beam.
Summary: In this section, we have discussed the ML/AI-

aided NTN for various emerging applications/services, e.g.,
IoT systems, mobile services, network management, vehic-
ular networks, UAVs, maritime services, cybertwin, and
adaptive data transmission. Particularly, ML/AI approaches
have emerged as one of the most potential solutions
in dynamic and mobile environments where the NTN
radio access network, e.g., satellites, frequently move.
Additionally, ML/AI-based NTN can support integrated
networks where the deployments of satellites on multiple
orbits for space networks, UAVs/drones for aerial networks,
and base stations for ground networks exist in such a highly
dynamic environment. Here, we can observe from the above
discussion that DL, RL, FL, and the combination among
them can take part successfully to help NTN implementation
for various services. First, the DL method is popular for
end-to-end optimization, e.g., resource allocation, channel
estimation, and scheduling. In this case, DNN with deep
Q-network or the joint DL and RL approaches, i.e., DRL,
can be utilized to reduce the complexity of the data training
processes. Meanwhile, the use of CNN can be used to
optimize the routing strategy of data traffic in the integrated
networks. All the aforementioned ML/AI techniques adopt
the centralized ML approach in which all radio accesses
in the integrated network send their data to a cloud server.
Alternatively, the FL approach can be used to provide a

decentralized ML approach, where satellites, UAVs, ground
base station, and mobile users can train their local data
individually and then share the train models with the
cloud server. Nonetheless, the existing works of ML/AI
for NTN also face several drawbacks. First, ML/AI-aided
NTN may increase the complexity of the overall NTN
system due to the integration of various ML/AI methods
and their compatibility with existing network infrastruc-
ture. Here, the next research can focus on simplifying
the implementation process without compromising accuracy
performance through modular design, protocol standardiza-
tion, and abstraction layer introduction of ML/AI method
in NTN. Second, NTN with ML/AI method can also suffer
from large amounts of data that can lead to data storage,
processing, and transmission problems. To address this issue,
future research can explore techniques for data compression,
feature selection, or data augmentation in NTN. Third, the
ML/AI-based NTN may introduce computationally-intensive
and time-consuming training process which can delay the
deployment of NTN solutions. To this end, future research
can focus on developing more efficient training algorithms,
optimizing hardware accelerators, or exploring distributed
training approaches to parallelize the training process.
Finally, based on the existing centralized and decentralized
ML/AI approaches, future research can investigate the trade-
offs between these approaches in terms of privacy, latency,
and scalability, and then develop hybrid approaches that
combine the benefits of both centralized and decentralized
ML/AI in NTN. The summary of all ML/AI-aided NTN for
various applications is presented in Table 4.

V. ORAN-AIDED NTN
As open networks move the Radio Access Network (RAN)
to the cloud, an intriguing alternative is venturing into space.
The concept of NTN has garnered increasing attention, with
numerous experts asserting that this innovative approach
holds the potential to extend 6G coverage ubiquitously [128].
Nevertheless, there is currently a scarcity of research in
this domain. Consequently, this section delves into the
potential utilization of ORAN for NTN. In this section, we
describe the 3GPP and non-3GPP-based NTN architectures.
Our purpose is to provide a comprehensive overview of
the NTN architectures from both industrial and academic
perspectives. Subsequently, based on these architectures, we
will demonstrate how ORAN connects to the NTN system
according to each specific one. In particular, this work
provides detailed information about the NTN architecture
in both 3GPP and non-3GPP environments. Additionally, it
offers insights into components within the ORAN system
that can connect to satellites, which were previously not
clearly addressed. This comprehensive perspective aids
researchers in gaining a complete insights into the subject.
We commence by examining the advantages of ORAN,
followed by the presentation of a general ORAN application
architecture. Then, we present each NTN architecture and
the corresponding ORAN-based NTN architecture. More
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TABLE 4. Summary of ML/AI-aided NTN for various emerging applications.

specifically, we show two main NTN architectures in 3GPP:
transparent and regenerative NTN systems in Release 16 of
3GPP [31]. Then, we show 1 more NTN architecture in non-
3GPP scenario. Based on each NTN system, we detail which
components in ORAN can connect to the NTN system, which
has not been covered before. This can provide an easy-to-
understand perspective for academic researchers instead of
reading jargon-filled and confusing industry documents.

A. BENEFITS OF ORAN FOR 5G AND BEYOND
ORAN plays a crucial role in 5G and beyond since it
provides several benefits as follows:

• Cost reduction and network resiliency: ORAN has the
potential to reduce costs for operators by opening
the RAN ecosystem to multiple vendors. Therefore,
operators have more options to select cost-effective
solutions suitable to their specific requirements. ORAN
also leverages off-the-shelf hardware and cloud-based
deployment, thereby lowering costs. This diverse vendor
ecosystem not only saves costs but also enhances
network resiliency. By using equipment from different
vendors, operators can reduce the risk of being depen-
dent on one vendor and better protect their networks
against service disruption or potential vulnerabilities.

• Scalability, flexibility, and interoperability between ven-
dors: ORAN allows operators to easily scale up/down
their networks through disaggregation and hardware
and software supply chain decoupling. Hereby, dis-
aggregation refers to the separation of traditional

monolithic RAN components such as baseband pro-
cessing, radio functions, and control functions, into
independent and functional entities/modules that can
be developed, deployed, and operated independently.
For example, the control unit (CU) is responsible for
centralized functions, i.e., baseband processing, control
plane processing, and network management functions.
The distributed unit (DU) is responsible for radio
functions such as physical layer processing (PLP),
radio frequency processing (RFP), and connection
management. By disaggregating the RAN components,
ORAN offers flexibility and vendor diversity to the
infrastructure. Therefore, the operator can select the
best solutions from different vendors for each functional
component, promoting competition and innovation in
the market. It also leverages interoperability between
different vendors’ devices, and thus, it is easier to
integrate and upgrade network components.

• Innovation, forward-looking, and technology conver-
gence: ORAN encourages innovation by allowing
start-ups and niche vendors to introduce their novel
solutions and technologies into the RAN domain. It fos-
ters a vibrant ecosystem that helps drive advancements
in VR, MEC, AI, digital twins, semantic communica-
tions, haptic communications, and network automation.
ORAN architecture interfaces can facilitate the inte-
gration and interoperability of the above-mentioned
technologies.

• Security enhancement: With ORAN disaggregated
architecture, security checks and verifications can be
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FIGURE 18. ORAN architecture.

performed more efficiently. Moreover, operators can
analyze and evaluate the security of each component,
including CUs and DU. This level of granularity allows
for better identification and mitigation of potential
vulnerabilities. Another reason for the security enhance-
ment is that ORAN supports network slicing, allowing
operators to create virtualized networks dedicated to
specific use cases. Each network slice can have its secu-
rity policies and mechanisms, creating separate security
zones. This allows for custom security configurations
for different services and applications, ensuring that
appropriate security levels are maintained based on the
specific requirements of each slice.

B. ORAN ARCHITECTURE
Based on the above-mentioned benefits of ORAN for 5G
and beyond, we introduce ORAN architecture as shown in
Fig. 18. Fig. 18 represents different components of ORAN
such as service management and orchestration, near-real-
time RIC, open evolved NodeB (O-eNB), O-RAN Central
Unit-Control Plane (O-CU-CP), Open Distributed Unit (O-
DU) and Open Radio Unit (O-RU), and O-Cloud (a cloud
computing platform comprising physical infrastructure nodes
to host O-RAN functions) [129]. First, O-Cloud is a
cloud-computing platform consisting of a set of physical
infrastructure components satisfying the ORAN requirements
to host related ORAN functions such as O-CU-UP, O-CU-
CP, O-DU, and near-RT RIC. Moreover, O-Cloud supports
three software components, i.e., virtual machine monitor,
operating system (OS), and container runtime. Second, O-
eNB enables O-RU and O-DU with an Open Fronthaul
Interface (OFI) between them. Third, an Open radio unit (O-
RU) is used to terminate the OFI and LOW-PHY functions
(i.e., Fast Fourier Transform (FFT), inverse Fast Fourier
Transform (iFFT), and physical random access channel
(PRACH) extraction.) of the radio interface (RI) to the UE.

Moreover, O-RU also terminates the OF M-Plane Interface
(OFMPI) to the Open distributed unit (O-DU) and Service
Management and Orchestration (SMO). Fourth, O-DU is
used to terminate OFI, F1, and E2 interfaces, together with
the radio link control (RLC), medium access control (MAC),
and HIGH-PHY functions of the RI to the UE. O-DU also
terminates the OFMPI to the O-RU and O1 interface to
the SMO. Fifth, the Oran Control Unit User Plane (O-CU-
UP) helps to terminate the F1-u, X2-u, S1-u, Xn-u, E1,
01, and NG-u interfaces. Besides, it also terminates the
Service Data Adaption Protocol (SDAP) and Packet Data
Convergence Protocol (PDCP) protocols. Sixth, the ORAN
control unit control plane helps to terminate the X2-c, F1-
c, NG-c, Xn-c, E2, O1 interfaces, PDCP protocol, and
radio resource control (RRC) protocol. Seventh, the near-
real-time (RT) RAN intelligent control (RIC) supports RT
control and optimization for E2 functions and actions over
the E2 interface with latency between 10 ms to 1 second.
Lastly, the SMO helps to manage the O-Clouds and support
the orchestration of platform, and workflow management.
The following functionalities are supported by SMO, i.e.,
software management of deployments; deployments and allo-
cated O-Cloud resources; creating, deleting, and associating
O-Cloud resources; software management of cloud platform;
administration of O-Cloud resources.
In the description above, we provide an overview of each

ORAN function but it would be remiss if we did not mention
the interface between them. The details of interfaces in
ORAN architecture can be described in Table 5.

C. ORAN-AIDED 3GPP NTN ARCHITECTURE
In this subsection, we describe about 3GPP-based NTN
architectures [31]. Then, we outline the specific ORAN com-
ponents that can interface with it, a perspective not previously
presented in detail. In 3GPP Release 16, two primary NTN
architectures are listed: transparent and regenerative NTN
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TABLE 5. ORAN interface notations.

systems [31]. Consequently, we’ll illustrate these two NTN
architectures alongside their respective ORAN counterparts.

1) ORAN-AIDED NTN ARCHITECTURE FOR
TRANSPARENT SATELLITE, WITHOUT GNB ONBOARD

Fig. 19 a) shows the transparent NTN system whereas the
satellite acts as a relay between the NTN ground gateway and
the UE [31]. More specifically, the satellite plays the roles of
RF amplifier and frequency conversion [31], [130]. Besides,
the satellite can replicate the radio interface, transmitting
signals from the feeder link (connecting the NTNGW and
the satellite) to the service link (linking the satellite and the
UE), and vice versa. The interfaces in a transparent NTN
system can be described as follows:

• The UE connects to the satellite through NR Uu
interface. Moreover, the NR Uu interface will also be
used to connect between satellite and NTNGW and from
NTNGW to gNB.

• The gNB connects to the 5G CN through next genera-
tion (NG) interface.

• N6 interface is used to connect between 5G CN to the
data network.

In Fig. 19 b), we show a scenario with transparent NTN
while gnB is assumed to be allocated on the Earth [31].
Therefore, it is assumed that the NTN O-DU is located on
Earth and is connected to the NTNGW through the next
generation (NG) interface [130]. The UE then connects to
the satellite through NR-Uu interface [130]. Moreover, the
O-CU-CP and O-CU-UP have NGNA and GTP interfaces
with 5GC, respectively.

2) ORAN-AIDED NTN ARCHITECTURE FOR
REGENERATIVE SATELLITE, WITH GNB ONBOARD

Fig. 20 a) and b) present the regenerative NTN systems
in which the satellite is equipped as a base station [31].
In Fig. 20 a), we depict the scenario where only a single
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FIGURE 19. ORAN-aided NTN architecture for the transparent NTN and gNB on Earth.

FIGURE 20. ORAN-aided NTN architecture for the regenerative NTN with gNB onboard.

satellite connects to the NTNGW. Fig. 20 b) presents a
generalized version of Fig. 20 a), incorporating an inter-
satellite link (ISL) interface between satellites. The interfaces
in regenerative NTN system can be described as follows:

• The UE connects to the satellite through NR-Uu
interface.

• The Xn interface, operating over the ISL, facilitates
connections between satellites. The ISL can utilize
either a radio interface (RI) or an optical interface
(OI) and may conform to either 3GPP or non-3GPP
standards.

• The regenerative satellite connects to the NTNGW
through the NG satellite radio interface (SRI), which

serves as a transport link. Moreover, the NTNGW
is a transport network layer (TNL) node capable of
supporting all transport protocols.

• N6 interface is used to connect between 5G CN to the
data network.

In Fig. 20 c), we show a novel architecture for the
regenerative satellite [131]. To the best of our knowledge,
this is the first proposed architecture that shows how ORAN
can work with NTN systems [131]. Specifically, the gNB
is equipped with a satellite. In this scenario, the NTNGW
connects directly to the O-CU-UP and O-CU-UP through
the F1-c and F1-u interfaces, respectively. Besides, the
NTNGW also connects with non-real-time RIC, and the
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FIGURE 21. ORAN-aided non-3GPP NTN architecture.

in-band controls such as E2, F1-c, and F1-u. Then, the
NTNGW connects to the satellite through F1/O1/E2 over SRI
interface. In this case, the satellite is assumed to be equipped
with NTN O-DU. The UE also connects to the satellite
through NR-Uu as in the transparent satellite scenario.

D. ORAN-AIDED NON-3GPP NTN ARCHITECTURE
In this subsection, we describe one more NTN architecture
that is not agreed and listed in 3GPP documents [31]. Then,
we show in detail which ORAN components can connect to
the NTN system.
In Fig. 21 a), we illustrate a scenario in which the gNB

cannot directly connect to the 5G CN [35]. This may occur
if the gNB is deployed in an isolated area without an optical
link to the 5G CN, or if the connection is disrupted due to
a disaster or accident. The interfaces in a transparent NTN
system can be described as follows:

• The UE connects to the gNB through NR Uu interface.
• The gNB connects to the NTNGW through the NG
interface.

• The satellite connect to the NTNGW and 5G CN
through NG over SRI interface.

• N6 interface is used to connect between 5G CN to the
data network.

In Fig. 21 a), we detail how ORAN components connect
to the satellite. In this scenario, the satellite plays as a
relay between NTNGW and the 5GC. Therefore, it provides
a satellite backhaul link to the NTNGW. Moreover, the
satellite connects to the 5GC through NG over SRI interface.
As an illustration, let us consider an example to facilitate
understanding. Initially, let’s assume there exists an optical
link between the 5GC and the gNB. However, in the event
of a disaster, this link is destroyed. To expedite the rescue
mission in the isolated area, satellites can serve as relays to

transmit information from the 5GC to the gNB located in
this isolated region.

E. ORAN-AIDED UAV TRAJECTORY DESIGN BASED ON
RADIO RESOURCE ALLOCATION
In this section, we describe a case where a UAV trajectory
flight path is based on the UAV radio resource allocation,
which helps operators fine-tune their radio resource policies
in the ORAN architecture [127]. Since the location along
the trajectory is mainly focused on GUEs, the UAV does not
always belong to the main lobe of the ground base station
(GBS). Moreover, the side lobes of the GBS antenna lead to
the scattered cell association phenomenon, especially in the
sky. The cell pattern on the ground is ideally a contiguous
area whereas the best cell is usually the cell closest to the
UE. When the UE moves upward, the side lobes of the
antenna start to show up and the best cell may no longer
be the closest one. The connectivity of the cell in this case
becomes discrete, particularly at an altitude of 300m or more.
As shown in Fig. 22, the NRT RIC can retrieve essential

UAV-related measurements from the network based on UE
and SMO reports, as well as UAV trajectory information,
aerial load information, and climate information. For exam-
ple, unmanned traffic management (UTM) is used to
build/train relevant AI/ML models deployed in RAN. This
could be uplink/downlink interference from the UAVs,
UAV detections, and prediction of available radio resources
such as bandwidth, frequency, cell, and beam. Based on
this information, the NRT RIC can support the building
and execution of AI/ML models from Non-real-time RIC.
Moreover, the NRT RIC can make radio resource allocation
for on-demand coverage of UAVs taking into account the
trajectory and radio channel information.
Recently, there are some works that investigate how

ORAN meets UAV communications [132], [133], [134],
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FIGURE 22. UAV trajectory path design based on ORAN-aided UAV radio resource
allocation [127].

[135]. In [132], Mitsui et al. tried to solve the fairness
problem from ground UEs to UAV by optimizing the
UAV’s speed and allocated bandwidth. Particularly, the
authors proposed iterative algorithms that run on ORAN
architecture to solve the above-mentioned problem. More
specifically, they first fixed the allocated bandwidth and
optimized the UAV’s flying speed. Then, they used the
optimized UAV’s flying speed to optimize the allocated
bandwidth. This algorithm was stopped when it reached
the saturation point. In [133], Betalo et al. tried to
minimize the UAV’s energy consumption by optimizing
task scheduling, trajectory design, and resource allocation
in wireless sensor networks (WSNs). As the problem is
NP-hard, they designed a multi-agent deep reinforcement
learning (MADRL) algorithm to solve it, and this algorithm
is deployed on the ORAN system. Reference [134] is the
first work that investigated the benefits of multi-UAV in
ORAN architecture. More specifically, the authors aimed
to maximize network utility, i.e., data rate and computing
resources, by optimizing the UAVs’ flight paths and the
allocated offloading tasks in ORAN architecture. Different to
other works that investigated from the theoretical perspective,
Lorenzo et al. [135] conducted an experimental study on
drone video streaming applications on ORAN architectures.
More specifically, the authors designed a control system for
UAV positions and transmission directionality to improve the
total network performance, i.e., the UE’s uplink throughput.
Specifically, they prototyped the proposed solution in a real
testbed.

F. FLOW DIAGRAM FOR ORAN-AIDED UAV
TRAJECTORY DESIGN BASED ON RADIO RESOURCE
ALLOCATION
In Fig. 23, we describe a flow diagram for an ORAN-aided
UAV trajectory design based on radio resource allocation
using ML models [127]. In step 1, the collector in the
SMO performs data collection from O-CU/O-DU via the
O1 interface. Then this data is transmitted to the non-RL

RIC in step 2. In step 3, the application server transmits
the application data to non-RT RIC. From steps 4 to 6, the
ML flow is performed. In particular, non-RT RIC trains and
deploys the ML models in steps 4 and 5, respectively. In
step 6, non-RT RIC deploys or updates ML models in near-
RT-RIC through the O1 interface. In step 7, the application
data is transmitted from the application server to non-RT
RIC. In steps 8 and 9, non-RT RIC sends radio resource
allocation, updated policies, intents, and enrichment data to
near-RT RIC via the A1 interface. From steps 11 to 14, the
performance evaluation and optimization are performed. In
step 11, the collector collects data from O-CU/O-DU and
then transmits it to the non-RT RIC in step 12. In step 13,
the non-RT RIC executes the performance monitoring and
evaluation. Finally, the process of re-training or updating the
model is performed in step 14.

G. SUMMARY
In this section, we have discussed multiple approaches
for ORAN-aided NTN, i.e., benefits of ORAN for 5G
and beyond, ORAN architecture, ORAN-aided 3GPP NTN
architecture (ORAN-aided NTN architecture for transparent
satellite and ORAN-aided NTN architecture for regenerative
satellite), ORAN-aided non-3GPP NTN architecture, ORAN-
aided UAV trajectory design based on radio resource
allocation. Different to the traditional monolithic RAN
architecture, ORAN provides many advantages such as cost
reduction, scalability, interoperability between vendors, and
disaggregation. It also brings new challenges and opportuni-
ties for researchers due to the architecture of ORAN is totally
different from the RAN. Some potential research directions
of ORAN-aided NTN can be described as follows:

• Design ORAN-NTN routing path: Designing ORAN-
NTN routing paths to efficiently support the
heterogeneous requirements of UEs in each area, with
different latency and rate requirements and in a large
coverage area, has become essential to satisfy the UE’s
QoS. This is especially important in emergency/disaster
scenarios or when the terrestrial network becomes
overloaded.

• Real time applications: How to design efficient algo-
rithms in an ORAN-NTN system to support real-time
(e.g., latency requirement of less than 1 ms), near-real-
time (e.g., latency requirement from 10 ms to 1 second),
and non-real-time RIC (e.g., latency requirement greater
than 1 second) requirements at UEs is a complex
issue. Depending on different data rates and latency
requirements at UEs, we need to allocate resources and
design routing paths efficiently. This problem becomes
tricky in large-scale scenarios in practice, e.g., more
than 1000 BSs and hundreds of thousands of UEs.

• AIML for ORAN control: In order to utilize ORAN
efficiently on a large scale and automatically, AIML can
provide efficient solutions by predicting the incoming
traffic of the network. Therefore, it offers good solutions
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FIGURE 23. Flow Diagram for UAV trajectory path design based on ORAN-aided UAV radio resource allocation [127].

to deal with dynamic control and varying traffic
requirements.

• Security for ORAN-NTN: It is necessary to design,
maintain, develop, and test algorithms to improve the
security of the ORAN-aided NTN system, especially
since the large distance between NTN and ORAN
creates high transmission delays, making it vulnerable
to attacks

• Energy efficiency: One of the biggest concerns of the
operators is how to reduce the energy consumption at
the BSs, which contributes to 2-3% of greenhouse gas
emissions and is a major operational expense. Therefore,
designing efficient algorithms to operate the ORAN-
aided NTN system has become an urgent need.

• ORAN-based NTN network slicing: How we enable
ORAN NTN network slicing to support diverse applica-
tions with varying latency and rate requirements. How
we design routing paths from NTN through different
ORAN components to meet the UE’s QoS requirements
with limited resources.

• NTN-based ORAN digital twin: How to enable ORAN
NTN digital twin for real-time, near real-time, and
non-real-time in different NTN architectures, such as
transparent and regenerative NTN modes.

VI. CHALLENGES, OPEN ISSUES, AND FUTURE
RESEARCH DIRECTIONS
A. CHALLENGES AND OPEN ISSUES
1) COMPLEXITY OF NETWORK SLICING

The complexities of constrained optimization problems inher-
ent in network slicing for NTN pose significant challenges.
Particularly, these optimization problems are characterized
by numerous practical constraints, ranging from bandwidth
limitations and latency requirements to security considerations.

Moreover, the combination of various platforms in different
altitudes, e.g., satellites, UAVs, and base stations, further
aggravates the problem complexity. Consequently, to ensure
the effectiveness of network slicing in NTN, optimization
techniques need to be carefully designed to take into account
the unique characteristics of each platform and the dynamic
nature of the network environment.

2) CHALLENGES OF AI-ENABLED NTN

AI techniques in NTN face a wide range of challenges
due to the distinctive features of non-terrestrial commu-
nication environments. First, the dynamic nature of NTN,
influenced by atmospheric conditions and connectivity shifts,
hinders the effectiveness of conventional AI techniques
with limited domain adaptation capability. Moreover, con-
strained bandwidth further complicates the deployment of
AI models, limiting the transmission of large datasets,
which in turn reduces the effectiveness of AI models’
training. Non-terrestrial platforms also often have limited
power and computational capabilities, which complicates
the deployment of AI techniques. Additionally, applications
demanding high prediction accuracy, such as autonomous
driving, introduce challenges in adapting AI models to
the inherent propagation delay of NTN. To address these
challenges, techniques such as Transfer Learning (TL) [136]
can be employed to improve the domain adaption ability
of AI models, as well as to address the limited power and
computational issues. Moreover, both FL and TL can be
utilized to reduce the data transmission demands.

3) SECURITY

There is a wide range of security issues in NTNs, ranging
from data transmission and signal jamming to unauthorized
access. Particularly, due to the vast distance of transmission,
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NTNs are susceptible to interception and eavesdropping.
Moreover, the expansive coverage areas of NTN also make
them potential targets for unauthorized access. This also
brings forth privacy concerns as sensitive data are transmitted
over long distances. Additionally, the reliance on satellite
communication introduces challenges related to secure satel-
lite operation, such as satellite commands and cyberattacks.
To overcome these problems, promising solutions such
as AI-empowered intrusion detection systems, blockchain-
based authentication, and privacy-preserving homomorphic
encryption should be investigated.

B. FUTURE RESEARCH DIRECTIONS
1) BLOCKCHAIN FOR NTN

Potential applications of blockchain in NTN encompass
diverse areas, aiming to enhance security, interoperability,
efficiency, and privacy. For example, in [137], a blockchain-
based approach is developed for secure data sharing in
SAGINs. The proposed approach utilizes session-based
authentication and public key cryptography for secure com-
munication between satellites, UAVs, and IoT devices. In this
system, a blockchain serves as a decentralized platform to
manage authentication processes, leveraging smart contracts
to automate and securely execute the authentication protocols
between entities.
Besides automating the authentication processes, smart

contracts can be leveraged to orchestrate network slicing,
enabling the automatic execution of agreements among
network entities, as well as streamlining the process of
allocating and managing resources dynamically. Blockchain
can also play a pivotal role in stimulating collaboration
and resource-sharing through digital tokens and incentive
mechanisms [138]. Particularly, participants can be incen-
tivized to contribute resources, share data, or engage in
collaborative efforts through token-based rewards, thereby
alleviating resource and data demands in NTN applications.

2) FL FOR NTN

In NTN, FL can enable collaborative model training across
various non-terrestrial platforms. This collaborative learning
paradigm brings two significant advantages. First, data can
be used to train the models locally, and thus reducing the
risks of exposing sensitive data over the network. Moreover,
this also reduces the need to transmit data, thereby alle-
viating the transmission demands [139]. Nevertheless, the
integration of FL in NTN involves challenges related to
varying connectivity, platform mobility, and heterogeneous
datasets. Specifically, different non-terrestrial platforms may
experience intermittent or fluctuating network connections,
affecting the synchronization and coordination required
for FL processes. Moreover, the mobility of these plat-
forms introduces complexities in maintaining consistent and
reliable communication channels for collaborative model
training. The transmission of training data for FL, especially
over large distances, might also be prone to eavesdrop-
ping [140]. Addressing these challenges, therefore, is crucial

for unlocking the full potential of FL in NTN and requires
more efforts from the academia.

3) GENERATIVE AI FOR NTN

Exploring the integration of Generative Artificial Intelligence
(GAI) in NTN is a promising future research direction with
huge potential. Generative AI, known for its ability to create
synthetic data and generate novel content [141], can be
utilized to address several challenges in NTN. For instance,
it can be employed to generate high-quality synthetic data,
complementing the training and testing of traditional AI
techniques in the dynamic and diverse NTN environments.
Moreover, GAI can enhance the security of NTN by
generating realistic attack scenarios, enabling robust evalu-
ation of network defense mechanisms. Another approach is
utilizing GAI to generate network data for simulating various
network conditions, thereby aiding network optimization and
predicting potential bottlenecks.

4) HOLOGRAPHIC MIMO AND INTELLIGENT
REFLECTING SURFACES

The recent advancement of antenna technologies has opened
promising research directions that can significantly enhance
the performance of NTN. For example, holographic MIMO
is an advanced antenna technology that leverages prin-
ciples from holography to enable highly directional and
focused transmissions from a single aperture. This technique
enables highly directional transmissions while mitigating
interference, thereby improving spectrum utilization and
throughput for NTN systems [142]. Additionally, the concept
of intelligent reflecting surfaces (IRS) has emerged as a
promising enabling technology for NTNs. IRSs comprise
arrays of reconfigurable meta-surfaces that can alter the prop-
agation properties of impinging electromagnetic waves [143].
By strategically deploying IRSs in conjunction with satellites
or aerial platforms, NTN providers can optimize signal
reflections, extend coverage areas, and enhance the overall
quality of service. Moreover, another promising direction
could be the combination of IRS and holographic MIMO,
e.g., deploying IRSs in strategic locations to intelligently
reflect and focus the multiple beams generated by a
holographic MIMO transmitter towards intended receivers.

VII. CONCLUSION
In this paper, we have presented a comprehensive survey
of NTN for 6G networks from both academic and industry
perspectives. Particularly, we have presented an in-depth
tutorial on NTN and the enabling technologies including
network slicing, AI/ML, and ORAN. Then, we have surveyed
state-of-the-art network slicing and AI/ML approaches that
are proposed to address various challenges of NTN in the
literature. Moreover, we have presented how ORAN has been
utilized for NTN from the industry standpoint. Finally, we
have discussed the current challenges as well as open issues
and introduced promising technologies as future research
directions of NTNs.
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