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ABSTRACT This paper presents optimal receiver implementations for Zak-OTFS modulation. Zak-OTFS
has a receiver structure that includes a twisted convolution filter followed by delay-Doppler domain
sampling. We first show that this receiver is equivalent to a correlation demodulator where the receive
pulses are determined by the choice of the receive delay-Doppler domain twisted convolution (TC) filter.
We formulate the notion of a matched TC filter as the receive TC filter that maximizes the SNR in an
additive white Gaussian noise (AWGN) channel, for a given transmit TC filter. We show that the matched
TC filter formulation is crucial for understanding noise processes in the delay-Doppler domain. More
generally, for a doubly dispersive channel, we define a receive TC filter that is matched to the twisted
convolution of the channel with the transmit TC filter. We show that this receive TC filter, sampled
at the delay-Doppler grid points is the optimal Zak-OTFS receiver that recovers sufficient statistics for
maximum likelihood detection of the data symbols. We first present an implementation of this optimal
receiver for a general sparse doubly dispersive channel which requires radar matched filter processing and
involves computing ambiguity functions. We then present a second implementation that uses a receive
TC filter that is matched to the transmit TC filter (not the channel) and only requires time and frequency
windowing. We show that these two approaches converge when the window supports are large relative
to the fundamental periods of the delay-Doppler grid. We also show that the second approach has an
interpretation as a rake receiver operating in the delay-Doppler domain.

INDEX TERMS Optimal receiver, delay-Doppler domain, Zak-OTFS, Zak transform, twisted convolution
filters, time-frequency windowing, crystalline regime, rake receiver, channel predictability.

I. INTRODUCTION

ORTHOGONAL Time Frequency Space (OTFS) mod-
ulation was proposed for doubly dispersive channels

to overcome the inter-carrier interference (ICI) problem
suffered by OFDM in high Doppler scenarios [1], [2]. The
core idea of OTFS is to modulate information symbols in
the delay-Doppler (DD) domain, by using pulses which
are nearly localized in the DD domain [1], [2], [3]. The
sparsity of the DD domain channel is exploited to perform
equalization efficiently [3], [4], [5], [6]. The original proposal
of OTFS, referred to as multi-carrier OTFS (MC-OTFS), was
a two stage implementation [2], where the OTFS symbol
was created via a sequence of coded OFDM symbols. This
provided a practical implementation, however it resulted

in a complicated input-output relationship in which each
information symbol undergoes a different transformation due
to the channel, as was shown in [7], [8].
Recently in [7], [8], a new OTFS framework, called Zak-

OTFS, was presented which directly uses the basis functions
of the Zak transform for modulation. Zak-OTFS introduced
the concept of a twisted convolution (TC) filter for DD
domain pulse shaping of the waveform, which then leads to
an input-output relationship where each symbol undergoes
the same transformation through the channel. This allows for
more accurate and simpler channel estimation and an ability
to operate in non-sparse channels. It was also shown that
the Zak-OTFS framework has the potential to offer superior
bit error rate (BER) performance compared to MC-OTFS

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

4462 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0003-0345-2988
HTTPS://ORCID.ORG/0000-0003-0147-4403
HTTPS://ORCID.ORG/0000-0002-4857-2601
HTTPS://ORCID.ORG/0000-0002-0524-9927


in high Doppler spread scenarios. In [9], it was shown
that Zak-OTFS has superior performance over an alternative
multi-carrier modulation based DD domain scheme called
Orthogonal Delay Doppler Modulation (ODDM) [10] and
MC-OTFS in terms of out-of-band emissions and channel
predictability.
In [9], practical implementations of Zak-OTFS modulation

were proposed, which included implementation of TC filters
and generation of the time domain Zak-OTFS waveform.
Time and frequency windowing functions were proposed to
implement two different classes of DD domain TC filters
(called Type-1 and Type-2) [9]. It was shown that the
Zak-OTFS transmitter for a Type-1 transmit TC filter can
be implemented via a Time Division Multiplexing (TDM)
pulse shaping approach, and for a Type-2 transmit TC
filter, it can be implemented via an Orthogonal Frequency
Division Multiplexing (OFDM) pulse shaping approach,
after necessary precoding and digital windowing steps. The
previously known Discrete Zak Transform (DZT) based
OTFS implementation [11] is a special case of Type-1 Zak-
OTFS when restricting to a rectangular time window, and
the DD-OFDM modulation [12] is a special case of Type-
2 Zak-OTFS when both frequency and time windows are
rectangular.
Zak-OTFS has a receiver structure that includes a twisted

convolution filter followed by delay-Doppler domain sam-
pling. Existing Zak-OTFS receiver implementations rely on
time and frequency windowing based TC filters, and they
sample on the DD grid points [8], [9], [11]. The question of
an optimal Zak-OTFS receiver which recovers the sufficient
statistics for maximum likelihood detection, remains open. In
this paper, we present optimal Zak-OTFS receiver structures
that are crucial for realizing the full potential of this new
DD domain modulation scheme.
First, we show that a Zak-OTFS receiver is equivalent

to a correlation demodulator with underlying receive pulses
which are determined by the receive TC filter. For a given
transmit TC filter, we formulate the notion of a matched TC
filter at the receiver and show that it maximizes the SNR in
an AWGN channel (analogous to a matched filter in pulse
amplitude modulation, i.e., time division multiplexing). The
matched TC filter formulation is crucial for understanding
noise processes in the DD domain. We characterize the white
noise process as a non-stationary Gaussian process in the
DD domain. We show that filtering white noise with a TC
filter also results in a Gaussian process and that specifying
its covariance function requires the notion of a matched TC
filter.
More generally, for a doubly dispersive channel, we define

a receive TC filter that is matched to the twisted convolution
of the channel with the transmit TC filter. We show that this
receive TC filter, sampled at the delay-Doppler grid points
is the optimal Zak-OTFS receiver that recovers sufficient
statistics for maximum likelihood detection of the data
symbols. We show that this optimal Zak-OTFS receiver is
closely linked to a radar matched filtering approach for a

single radar target channel. A similar link was recently noted
for the discrete DD domain, in the context of channel tap
estimation [13].
We present two implementations of the optimal receiver

for general sparse doubly dispersive channels, based on the
insight from the single radar target channel. The first receiver
implementation requires radar matched filter processing
and involves computing ambiguity functions. The second
implementation uses matched Type-1 and Type-2 transmit
and receive filters, and only requires appropriate time and
frequency windowing of the received signal followed by DD
domain sampling via the discrete Zak transform. We show
that this Type-1 and Type-2 based Zak-OTFS implementation
converges to the optimal radar matched filter approach, in
the crystalline regime, i.e., when the window supports are
larger than the fundamental periods of the delay-Doppler
grid. We also show that the proposed Type-1 and Type-2
based Zak-OTFS approach has an interpretation as a rake
receiver operating in the delay-Doppler domain.
Our results for radar sensing using Type-1 and Type-2

Zak-OTFS pulsones show that a Zak-OTFS receiver can be
directly used for radar sensing with no performance loss
in terms of SNR, delay resolution, or Doppler resolution,
compared to the standard radar approach, when operating in
the crystalline regime. These results emphasise the suitability
of Zak-OTFS as a candidate waveform for integrated sensing
and communication.
In summary, the contributions of the paper are as follows:
• In Section III, we derive results on the Zak-OTFS
receiver structure and introduce the concept of a
matched TC filter.

• In Section IV, we show that noise processes are DD
domain Gaussian processes.

• In Section V, we derive the structure of the optimal
Zak-OTFS receiver for doubly dispersive channels.

• In Section VI, we derive the effective channel response
of Type-1 and Type-2 Zak-OTFS implementations,
where the receiver is matched to the transmit TC filter.

• In Section VII, we compare a Type-1 and Type-2 Zak-
OTFS implementation with a radar matched filtering
approach for radar sensing in a single target channel,
and also reveal connections to the optimal Zak-OTFS
receiver.

• In Section VIII, we present implementations of the
optimal Zak-OTFS receiver.

II. ZAK-OTFS SYSTEM MODEL
This section summarizes the essential framework of Zak-
OTFS modulation that was introduced in [7], [8], and
also the time and frequency windowing based Zak-OTFS
implementation introduced in [9]. In the following sections,
we will present receiver structures for this system model.
Note that the receiver implementations in prior work [7],
[8], [9], [11], [12] used time-frequency based TC filtering
with DD grid sampling. The optimality, or otherwise, of
that approach was not addressed. In Section VIII, we will
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derive the optimal Zak-OTFS receiver for doubly dispersive
channels, using general TC filtering. We also provide
implementations underpinned by fractional sampling.

A. ZAK-OTFS MODULATION
Zak-OTFS modulates data in the delay-Doppler domain,
where both delay and Doppler are discretized on a M × N
grid. The data symbols x̂[l, k] are placed on the M×N DD
data grid, where 0 ≤ l ≤ M − 1 is the delay index and
0 ≤ k ≤ N − 1 is the Doppler index. The conversion to
DD domain from the time domain is done through the Zak
transform as defined below [7].
Definition 1: For T > 0, the Zak transform of a continu-

ous time signal s(t) is defined as

Zs(τ, ν) :=
∑

n∈Z
s(τ + nT)e−j2πνnT . (1)

Zs(τ, ν) is the delay-Doppler domain representation of the
time domain signal s(t).

Note that a DD domain signal is quasi-periodic due to the
quasi-periodicity of the Zak transform, i.e., Zs(τ + n′T, ν +
m′�f ) = ej2πνn

′TZs(τ, ν) for each m′, n′ ∈ Z and �f := 1
T .

1) ZAK-OTFS TRANSMITTER

As shown in [7], the full Zak-OTFS discrete DD domain
signal xdd[l′, k′] is constructed by performing a quasi periodic
encoding of the data symbols onto the infinite DD grid, by
extending the M × N data grid as follows:

xdd[l+ nM, k + mN] := x̂[l, k]ej2π
nk
N (2)

for (m, n) ∈ Z×Z and (l, k) ∈ {0, . . . ,M−1}×{0, . . . ,N−1}.
The discrete signal xdd[l′, k′] is then converted to an analog

DD domain signal xdd(τ, ν)1 on the grid, by modulating
the discrete values using DD domain impulses, as follows:

xdd(τ, ν) :=
∑

(l′,k′)∈Z×Z

xdd
[
l′, k′

]
δ

(
τ − l′T

M

)
δ

(
ν − k′�f

N

)
.

(3)

Hence, the impulse at location (l′ TM , k
′�f
N ) modulates the

symbol xdd[l′, k′] for each (l′, k′) ∈ Z × Z.
It was proposed in [7] that the pulse shaping of the

signal xdd(τ, ν) in Zak-OTFS be done by means of a DD
domain twisted convolution (TC) filter [7], where the twisted
convolution operation of two DD domain functions is defined
as follows:
Definition 2: Twisted convolution of two DD functions

a(τ, ν), b(τ, ν) is defined as

a ∗σ b(τ, ν) :=∫∫
a
(
τ ′, ν′)b

(
τ − τ ′, ν − ν′)ej2πν′(τ−τ ′)dτ ′dν′.

1Note that the DD domain Zak-OTFS signal xdd(τ, ν) is a quasi-
periodic DD function. Quasi-periodicity is crucial since all time domain
signals are quasi-periodic DD domain functions under the Zak transform.
Other arbitrary DD functions do not correspond to time domain signal
representations.

Remark 1: As noted before, all time domain signals
correspond to quasi-periodic functions in the DD domain,
and as noted in [7], [8], twisted convolution operations
preserve quasi-periodicity. Hence, the resulting output of a
DD domain TC filter corresponds to a time domain signal.2

Let g(τ, ν) denote a generic TC filter in the DD domain.
Now let gTx(τ, ν) specifically denote the transmit filter of
Zak-OTFS. The transmitted DD domain signal in Zak-OTFS

is therefore given by xg
Tx

dd (τ, ν) := gTx ∗σ xdd(τ, ν). By

Remark 1, the DD domain signal xg
Tx

dd (τ, ν) can be converted
to the time domain transmitted signal using the inverse Zak
transform as

x(t) := 1

�f

∫ �f

0
xg

Tx

dd (t, ν)dν. (4)

The transmit TC filter is critical for Zak-OTFS waveform
implementation.3 Section II-B, provides details of the trans-
mit TC filters and the corresponding time domain transmitted
signal x(t).

The following two subsections discuss the effect of the
channel in the DD domain, and the Zak-OTFS DD domain
receiver processing, which are crucial for our subsequent
derivation of the optimal Zak-OTFS receiver.

2) DOUBLY DISPERSIVE CHANNEL

The output of the channel, i.e., the received time domain
signal is given by

y(t) = r(t)+ n(t) (5)

where n(t) is the additive noise, and the signal component

r(t) :=
∫∫

h(τ, ν)x(t − τ)ej2πν(t−τ)dτdν (6)

where h(τ, ν) is the delay-Doppler response (also known as
delay-Doppler spreading function) of the doubly dispersive
channel. Taking the Zak-transform of (6), results in a twisted
convolution relation [8] in the DD domain as

Zr(τ, ν) = h ∗σ Zx(τ, ν) = h ∗σ
(
gTx ∗σ xdd

)
(τ, ν) (7)

where (7) follows from the fact that the transmitted DD
signal Zx(τ, ν) is the transmit TC filtered version of
xdd(τ, ν).

3) ZAK-OTFS RECEIVER AND EFFECTIVE CHANNEL
RESPONSE

As proposed in [7], at the receiver, a receive TC filter
gRx(τ, ν) is applied to the received signal Zy(τ, ν) to obtain
the TC filtered received signal ydd(τ, ν) := gRx ∗σ Zy(τ, ν).
Substituting Zr(τ, ν) from (7), the effective DD domain
input-output (I/O) relation of Zak-OTFS is obtained as

ydd(τ, ν) = hdd(τ, ν) ∗σ xdd(τ, ν)+ ndd(τ, ν) (8)

2see Definition 3 for the time domain expression of a TC filtered signal.
3For a detailed treatment of Zak-OTFS time domain transmitter imple-

mentations, see [9], which includes a comparison of various transmit TC
filters and their resource efficiency in terms of bandwidth and time duration.
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where ndd(τ, ν) is the receive TC filtered noise process and
the effective DD channel response [7] is given by

hdd(τ, ν) := gRx ∗σ h ∗σ gTx(τ, ν) (9)

is a cascade of three TC filters, 1) transmit TC filter, 2) the
channel response and 3) receive TC filter.
As shown in [7], [8], the discrete DD domain samples

are obtained by sampling the TC filtered received signal
ydd(τ, ν) on the DD grid points (τ, ν) = (l TM , k

�f
N ) for

(l, k) ∈ Z × Z to obtain

ydd[l, k] = ydd

(
l
T

M
, k
�f

N

)
. (10)

Note that quasi-periodicity of the Zak-transform means
that ydd[l + nM, k + mN] = ydd[l, k]ej2π

nk
N for all (m, n) ∈

Z
2. Hence, knowledge of the MN samples {ydd[l′, k′]} for
(l′, k′) ∈ {0, . . . ,M − 1} × {0, . . . ,N − 1} at the receiver is
sufficient, since these samples contain all the information of
the infinite 2D sequence ydd[l, k] for any (l, k) ∈ Z

2.

B. ZAK-OTFS IMPLEMENTATION IN THE TIME DOMAIN
USING TYPE-1 AND TYPE-2 TC FILTERS
This subsection summarizes the Zak-OTFS implementation
framework in [9] including Type-1 and Type-2 TC filters. In
the following sections, we will show that one of our optimal
Zak-OTFS receiver designs can be implemented using these
TC filters.
Definition 3: In the time domain, TC filtering of a signal

s(t) with a TC filter g(τ, ν) is equivalent to the following
operation:

sg(t) :=
∫∫

g(τ, ν)s(t − τ)ej2πν(t−τ)dτdν, (11)

i.e., Zsg(τ, ν) = g∗σ Zs(τ, ν) in the DD domain. We use the
notation sg(t) and g ∗σ s(t) in the time domain to represent
the signal s(t) TC filtered by g(τ, ν), to indicate that the
relationship in the DD domain is a twisted convolution.

1) TYPE-1 AND TYPE-2 TC FILTERS

We focus on the two general classes of TC filters (Type-1
and Type-2) proposed in [9]. Type-1 filters are a product of
a delay spreading function, α(τ), and a Doppler spreading
function, β(ν), as follows:

g1(τ, ν) = α(τ)β(ν) (12)

and Type-2 filters have an extra multiplicative sinusoidal
component as follows:

g2(τ, ν) = α(τ)β(ν)ej2πτν (13)

Let A(f ) denote the frequency window which is the Fourier
transform of delay component α(τ) and B(t) denote the time
window which is the inverse Fourier transform of Doppler
component β(ν), defined as follows:

A(f ) :=
∫
α(τ)e−j2π f τdτ (14)

B(t) :=
∫
β(ν)ej2πνtdν. (15)

The key result of [9] concerning time-frequency windowing
is summarized in the following note. This note shows that
twisted convolution operation in the DD domain with Type-1
and Type-2 TC filters is equivalent to frequency windowing
(i.e., convolution in time) and time windowing operations
with window functions A(f ),B(t) in the appropriate order.
Note 1: From [9, Th. 1];
• Applying time window B(t) followed by frequency
window A(f ) on a signal s(t) is equivalent to TC filtering
with Type-1 TC filter g1(τ, ν) in the DD domain, i.e.,

sg1(t) = α(t) ∗ (B(t)s(t)) (16)

Zsg1 (τ, ν) = g1 ∗σ Zs(τ, ν) (17)

where ∗ represents convolution.
• Applying frequency window A(f ) followed by time
window B(t) on a signal s(t) is equivalent to TC filtering
with Type-2 TC filter g2(τ, ν) in the DD domain, i.e.,

sg2(t) = B(t)(α(t) ∗ s(t)) (18)

Zsg2 (τ, ν) = g2 ∗σ Zs(τ, ν) (19)

where ∗ represents convolution.

2) TIME DOMAIN TRANSMIT PULSES CORRESPONDING
TO TYPE-1 AND TYPE-2 TC FILTERS

The key result of [9] regarding Zak-OTFS transmit pulses
is summarized in the following note. First, we introduce the
necessary terminology and notation.
The unfiltered Zak-OTFS transmit pulse corresponding to

point (τ, ν) is defined as

φτ,ν(t) := T
∑

n∈Z
ej2πνnTδ(t − τ − nT) (20)

We also denote

τl := l
T

M
and νk := k

�f

N
(21)

for (l, k) ∈ R × R to be the normalized representation of
points on the DD domain plane, where the normalization is
with respect to grid resolution ( TM ,

�f
N ).

As noted in [9], these unfiltered transmit pulses correspond
to the DD domain signal xdd(τ, ν) (from (3)) as it is the
Zak-transform of

∑M−1
l=0

∑N−1
k=0 x̂[l, k]φτl,νk(t).

Note 2: In [9], it was shown that
• The time domain Zak-OTFS transmit pulses {φg1

τl,νk(t)}
that modulate data symbols x̂[l, k] for (l, k) ∈
{0, . . . ,M−1}×{0, . . . ,N−1}, corresponding to Type-1
transmit TC filter g1(τ, ν) are

φg1
τl,νk

(t) = T
∑

n∈Z
B(τl + nT)ej2πνknT

α(t − τl − nT) (22)

which is a train of pulses {α(t−τl−nT)}n∈Z modulating
samples of a time windowed tone B(t′)ej2πνk(t′−τl)
sampled at pulse locations t′ = τl + nT .
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FIGURE 1. Block Diagram of a time and frequency windowing based Zak-OTFS
receiver.

• The time domain Zak-OTFS transmit pulses {φg2
τl,νk(t)}

that modulate data symbols x̂[l, k] for (l, k) ∈
{0, . . . ,M−1}×{0, . . . ,N−1}, corresponding to Type-2
transmit TC filter g2(τ, ν) are

φg2
τl,νk

(t) = B(t)ej2πνk(t−τl)
∑

m∈Z
A(m�f + νk)e

j2πm�f (t−τl) (23)

which is the product of a periodic pulse train∑
m∈Z A(m�f + νk)ej2πm�f (t−τl) and a time windowed

tone B(t)ej2πνk(t−τl).
As noted in [9], these TC filtered transmit pulses correspond
to the pulse shaped (i.e., TC filtered) DD domain signal

xg
Tx

dd (τ, ν), since the corresponding transmit signal x(t)

(from (4)) equals
∑M−1

l=0
∑N−1

k=0 x̂[l, k]φ
gTx
τl,νk(t).

For Type-1 and Type-2 transmit TC filters, note that the
time window B(t) determines the time duration of Zak-OTFS
signal, and the frequency window A(f ) determines the band-
width, as was shown in [9]. For detailed implementations
see [9], where it was shown that the Type-2 Zak-OTFS
transmitter has an OFDM based implementation whereas the
Type-1 transmitter has a TDM based implementation, with
additional precoding and digital windowing steps.
As explained in Note 2, the Type-1 and Type-2 Zak-

OTFS transmit pulses consist of two components, a pulse
train component, and a windowed tone component. Hence,
these Zak-OTFS transmit pulses are also referred to as
pulsones [7].

3) ZAK-OTFS RECEIVER IMPLEMENTATION USING TIME
AND FREQUENCY WINDOWING

As shown in [9], the implementation of a Zak-OTFS receiver
for a Type-1 or a Type-2 receive TC filter is done according
to the block diagram in Figure 1. This Zak-OTFS receiver
consists two blocks, a receive TC filter block which performs
frequency and time windowing of the signal, and a DD
domain sampling block that use discrete Zak transform
(DZT) to obtain DD domain samples from the time domain
samples.
For the first block, note that for a Type-1 or a Type-2

receive filter gRx(τ, ν), the TC filtering operation can be
performed by time windowing and frequency windowing in
the appropriate order, given in Note 1. The resulting signal
in the DD domain is

ZygRx (τ, ν) = gRx ∗σ Zy(τ, ν) = ydd(τ, ν). (24)

To obtain the output symbols ydd[l, k], from yg
Rx
(t) (or

equivalently ydd(τ, ν) as shown above), the DZT block is
implemented as follows:

ydd[l, k] = ZygRx (τl, νk) =
∑

n∈Z
yg

Rx
(nT + τl)e

−j2πνknT

=
∑

n∈Z
yg

Rx
(
(nM + l)

T

M

)
e−j2π

nk
N (25)

where (25) follows from the definition of Zak transform
in (1). As in (25), the output symbols ydd[l, k] are obtained
from the time domain samples (taken at integer multiples of
T
M , i.e., at a sampling rate M�f ) of the receive TC filtered
signal yg

Rx
(t), using the DZT operation.

III. ZAK-OTFS RECEIVER STRUCTURE AND THE
MATCHED TWISTED CONVOLUTION FILTER
In this section, we introduce our notion of a matched
TC filter and derive its structure. The matched TC filter
formulation will be crucial for deriving the optimal Zak-
OTFS receiver, and for characterizing noise processes in the
DD domain.
We first show that a general Zak-OTFS receiver (for an

arbitrary receive TC filter) is equivalent to a correlation
demodulator where the underlying receive pulses are deter-
mined by the choice of the receive TC filter. We then use
this insight to introduce the matched TC filter.

A. ZAK-OTFS RECEIVER AS A CORRELATION
DEMODULATOR
We now present an alternative interpretation of a general
Zak-OTFS receiver (i.e., for a general receive TC filter)
as a correlation demodulator. We show that the underlying
receive pulses of Zak-OTFS are determined by its choice of
the receive TC filter.
Note that the Zak transform from (1) can be alternatively

expressed using basis functions as follows:

Zs(τ, ν) :=
∫
s(t)ψτ,ν(t)dt (26)

where the Zak transform basis function ψτ,ν(t), parameter-
ized by delay variable τ and Doppler variable ν, is

ψτ,ν(t) := φ∗
τ,ν(t)

T
=

∑

n∈Z
δ(t − τ − nT)e−j2πνnT (27)

We use this interpretation of the Zak transform, i.e., (26)-
(27), in Theorem 1, which is our main result on the
Zak-OTFS receive pulses.
Theorem 1: For a general receive TC filter g(τ, ν), the

output of the Zak-OTFS receiver sampled at (τ ′, ν′), i.e.,

Zyg
(
τ ′, ν′) :=

∫
(g ∗σ y(t)) ψτ ′,ν′(t)dt

is equivalent to a correlation receiver that correlates y(t) with
the receive pulse that is a TC filtered version of the Zak
transform basis function as follows:

Zyg
(
τ ′, ν′) =

∫
y(t)

(
g̃ ∗σ ψτ ′,ν′(t)

)
dt, (28)
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FIGURE 2. A general Zak-OTFS receiver as a correlator demodulator: The transmitter modulates data symbols x̂[l, k ] on the transmit pulses φgTx
τl ,νk (t). At the receiver, the DD

domain samples ydd[l, k ] are the correlation outputs of the received signal y(t) with the receive pulses ψ g̃Rx
τl ,νk (t).

where the TC filter g̃(τ, ν) is defined as

g̃(τ, ν) := g(−τ, ν)ej2πντ . (29)

Proof: See Appendix A.
Remark 2: In Theorem 1, we have shown that, for a

signal y(t) and a TC filter g(τ, ν), a Zak transform sample
Zyg(τ

′, ν′) of the TC filtered signal (evaluated at point
(τ ′, ν′)) is equivalent to taking the correlation of the original
signal y(t) with the TC filtered Zak-transform basis function
ψ
g̃
τ ′,ν′(t).
Hence, a Zak-OTFS receiver is equivalent to a correlation

demodulator as illustrated in Figure 2. The transmitter

consists of MN pulses {φgTxl,k (t)} that are determined by the
choice of the transmit TC filter. The receiver consists of
a bank of MN correlators with underlying receive pulses

{ψ g̃Rx

l,k (t)} that are determined by the choice of the receive
TC filter.
For the case of Type-1 and Type-2 receive TC filters, we

obtain the main result on the Zak-OTFS receive pulses as a
corollary of Theorem 1 as follows:
Corollary 1: For (l, k) ∈ {0, . . . ,M−1}×{0, . . . ,N−1},

the received symbol ydd[l, k] is determined as follows:

• For a Type-1 TC filter g1(τ, ν) = α(τ)β(ν), ydd[l, k] =∫
y(t)ψ g̃1

τl,νk(t)dt, where the receive pulse is

ψ g̃1
τl,νk

(t) := �f B(t)e−j2πνk(t−τl)
∑

m∈Z
A(νk + m�f ) e−j2πm�f (t−τl). (30)

• For a Type-2 TC filter g2(τ, ν) = α(τ)β(ν)ej2πντ ,
ydd[l, k] = ∫

y(t)ψ g̃2
τl,νk(t)dt, where the receive pulse is

ψ g̃2
τl,νk

(t) :=
∑

n∈Z
B(τl + nT)e−j2πνknT

α(τl + nT − t). (31)

Remark 3:

• By inspection of (23) and (30), note that the Type-
1 receive pulse has the same pulsone structure as a
Type-2 transmit pulse. More precisely, let gTx(τ, ν) :=
α(τ)β(ν)ej2πντ be the Type-2 transmit TC filter, and
let gRx(τ, ν) = α∗(−τ)β∗(−ν) be the Type-1 TC filter

TABLE 1. Type-1 and Type-2 Zak-OTFS implementations.

associated with the conjugate frequency window A∗(f )
and the conjugate time window B∗(t). Then,

Tψ g̃Rx
τl,νk

(t) =
(
φg

Tx

τl,νk
(t)

)∗
. (32)

• By inspection of (22) and (31), note that the Type-
2 receive pulse has the same pulsone structure as a
Type-1 transmit pulse. More precisely, let gTx(τ, ν) :=
α(τ)β(ν) be the Type-1 transmit TC filter, and let
gRx(τ, ν) = α∗(−τ)β∗(−ν)ej2πντ be the Type-2 TC
filter associated with the conjugate frequency window
A∗(f ) and the conjugate time window B∗(t). Then,

Tψ g̃Rx
τl,νk

(t) =
(
φg

Tx

τl,νk
(t)

)∗
. (33)

From Remark 3, when a Type-1 transmit TC filter is
combined with a Type-2 receive TC filter, the transmit pulse
and the receive pulse have the same structure. Furthermore,
if conjugate windows are used at the receiver, the receive
pulses are conjugates of the transmit pulses.
Hence, we focus on two Zak-OTFS implementations that

can be implemented using time and frequency windowing,
as in Figure 1. We call them, Type-1 Zak-OTFS and Type-2
Zak-OTFS. In a Type-1 Zak-OTFS implementation, the
transmit TC filter is of Type-1 and the receive TC filter is of
Type-2 (with conjugate windows). In a Type-2 Zak-OTFS,
the transmit TC filter is of Type-2 and the receive TC filter
is of Type-1 (with conjugate windows). Table 1 summarizes
the details of the TC filters under the two implementations,
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and the corresponding time-frequency windowing operations
at the receiver.4

In the next subsection, we show that the proposed
implementations have an interpretation as a matched TC filter
in an additive white Gaussian noise channel.

B. MATCHED TWISTED CONVOLUTION FILTER
To characterize the optimal TC filter, we start with the
simplest channel. Consider an additive white Gaussian noise
(AWGN) channel as follows:

y(t) = s(t)+ n(t), (34)

where s(t) is the input signal and n(t) is an AWGN process
whose noise power spectral density is N0 Watts per Hz.
Suppose that the input signal s(t) is the Zak-OTFS

transmit pulse φg
Tx

τl,νk(t) (for transmit TC filter gTx(τ, ν)),
where φτl,νk(t) is the unfiltered transmit pulse of Zak-OTFS
from (20). Let gRx(τ, ν) denote the receive TC filter. The
signal power of Zak-OTFS receiver output ydd[l, k] is given
by

∣∣∣ZsgRx (τl, νk)

∣∣∣
2 =

∣∣∣∣
∫
φg

Tx

τl,νk
(t)ψ g̃Rx

τl,νk
(t)dt

∣∣∣∣
2

by applying Theorem 1.

Since ndd[l, k] = ∫
n(t)ψ g̃Rx

τl,νk(t)dt from Theorem 1, the
noise variance is given by

σ 2
τl,νk

:= E

[
|ndd[l, k]|2

]
= N0

∫ ∣∣∣ψ g̃Rx
τl,νk

(t)
∣∣∣
2
dt,

obtained by using the fact that E[n(t)n∗(t + τ)] = N0δ(τ ).
By Cauchy-Schwarz inequality,

∣∣∣ZsgRx (τl, νk)

∣∣∣
2 ≤

∫ ∣∣∣φg
Tx

τl,νk
(t)

∣∣∣
2
dt

∫ ∣∣∣ψ g̃Rx
τl,νk

(t)
∣∣∣
2
dt

and hence the SNR must satisfy
∣∣∣ZsgRx (τl, νk)

∣∣∣
2

σ 2
τl,νk

≤
∫ ∣∣∣φg

Tx

τl,νk(t)
∣∣∣
2
dt

N0
(35)

where the equality holds when ψ g̃Rx
τl,νk(t) = K(φg

Tx

τl,νk(t))
∗ for

any constant K �= 0.
Mirroring the definition of a matched filter, we define the

notion of a matched TC filter as follows.
Definition 4: The matched twisted convolution filter of

the transmit TC filter gTx(τ, ν) is the receive TC filter
gRx(τ, ν) that achieves the maximum SNR in (35) for each
l, k.
For a general transmit filter gTx(τ, ν), we derive the

matched TC filter in the following theorem.
Theorem 2: For a transmit TC filter gTx(τ, ν), the matched

TC filter at the receiver is

gRx(τ, ν) =
(
gTx(τ, ν)

)†
:=

(
gTx(−τ,−ν)

)∗
ej2πντ . (36)

4The transmitter implementation for Type-1 Zak-OTFS is provided in [9,
Sec. V.A], whereas the transmitter implementation for Type-2 Zak-OTFS
is provided in [9, Sec. V.B].

Furthermore, the receive pulse corresponding to the
matched TC filter gRx(τ, ν) = (gTx(τ, ν))† is

ψ g̃Rx
τl,νk

(t) = 1

T

(
φg

Tx

τl,νk
(t)

)∗
. (37)

Proof: See Appendix A.
The receive TC filters presented in Remark 3 are matched

to the Type-1 and Type-2 transmit TC filters as noted in the
following corollary.
Corollary 2: For a Type-1 transmit TC filter, the matched

receive TC filter is a Type-2 TC filter using conjugate
windows. Similarly, for a Type-2 transmit TC filter, the
matched receive TC filter is a Type-1 TC filter using
conjugate windows.
Theorem 2 motivates the following definition of a matched

TC filter operation on a DD domain function.
Definition 5: The matched TC filter operation, denoted

by (·)†, is defined as

a†(τ, ν) = a∗(−τ,−ν)ej2πντ (38)

for any DD domain function a(τ, ν).
Property 1: Let a(τ, ν) and b(τ, ν) denote two arbitrary

DD domain functions, we note the following properties of
the matched TC filter operation (·)†:

(
a†(τ, ν)

)† = a(τ, ν) (39)

(a ∗σ b)†(τ, ν) = b† ∗σ a†(τ, ν) (40)

From (39), operation (·)† is its own inverse. From (40), oper-
ation (·)† flips the order of functions in twisted convolution.

We will use these properties of the matched TC filter
operation throughout the rest of the paper.

IV. CHARACTERIZATION OF NOISE PROCESSES IN THE
DD DOMAIN
In this section, we show that noise processes in the DD
domain are Gaussian processes, and we derive a DD domain
input-output relationship for TC filtered white Gaussian
noise. We derive its covariance function and show that
it requires the notion of the matched TC filter (that we
introduced in the previous section).

A. TC FILTERED NOISE PROCESS CHARACTERIZATION
Let n(t) be a white Gaussian noise process with power
spectral density N0 Watts per Hz and let ng(t) denote the
TC filtered noise process in the time domain where the TC
filter is g(τ, ν). We denote Zng(τ, ν) to be the TC filtered
white noise process ng(t) represented in the DD domain.
Definition 6: The noise covariance function of TC filtered

DD domain noise process Zng(τ, ν) is defined as

CZng

(
τ, ν|τ ′, ν′) := E

[Zng(τ, ν)Z∗
ng
(
τ ′, ν′)] (41)

The noise covariance function is crucial for characterizing
the distribution of the TC filtered noise process Zng(τ, ν) in
the DD domain.
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Theorem 3: Suppose that the TC filtered basis functions
ψ
g̃
τ◦,ν◦(t) are square integrable for all (τ◦, ν◦) ∈ R

2, for a
given TC filter g(τ, ν). Then, the following hold:

1) The DD domain TC filtered noise process Zng(τ, ν)

is a zero mean Gaussian process.
2) The covariance function of Zng(τ, ν) is given by

CZng

(
τ, ν|τ ′, ν′) = N0

T
g ∗σ g† ∗σ Zφτ ′,ν′ (τ, ν) (42)

where φτ ′,ν′(t) is defined in (20) and its Zak transform
is Zφτ ′,ν′ (τ, ν) = ∑

(m,n)∈Z2 ej2πν
′nTδ(τ−τ ′−nT)δ(ν−

ν′ − m�f ).

Proof: See Appendix B.
Remark 4: We note that our Theorem 3 completely

characterizes the TC filtered noise process Zng(τ, ν), since
for zero mean Gaussian processes, the covariance function
is sufficient to characterize the distributions (see [14,
Th. 3.6.3]). Also note that Zng(τ, ν) is a non-stationary
Gaussian process in the DD domain since the covariance
function CZng

(τ, ν|τ ′, ν′) is not just a function of τ −τ ′ and
ν − ν′, but also depends on ν′.

B. TYPE-1 AND TYPE-2 TC FILTERED NOISE PROCESS
In this subsection, we focus on the case of Type-1 and
Type-2 TC filters, and provide conditions on when the
noise samples (and hence the received output samples) are
uncorrelated.
We start by introducing the necessary terminology.
Definition 7: • The cross-ambiguity function of two
time domain functions p(t),q(t) is defined as

Xp,q(τ, ν) :=
∫
p(t)q∗(t − τ)e−j2πν(t−τ)dt (43)

• The cross-ambiguity function of two frequency domain
functions P(f ),Q(f ) is defined as

YP,Q(τ, ν) :=
∫
P(f )Q∗(f − ν)ej2πτ f df (44)

Note that Xp,q(τ, ν) = YP,Q(τ, ν) if P(f ) is the Fourier
transform of p(t) and Q(f ) is the Fourier transform of q(t).
For the sake of brevity, we also define Xp(τ, ν) := Xp,p(τ, ν)

and YP(τ, ν) := YP,P(τ, ν) to represent the auto-ambiguity
functions.
Definition 8: The auto-correlation functions Rp(τ ),

RQ(ν) of p(t) and Q(f ) respectively are defined as

Rp(τ ) :=
∫
p(t)p∗(t − τ)dt (45)

RQ(ν) :=
∫
Q(f )Q∗(f − ν)df (46)

We begin by considering a Type-1 TC filter g(τ, ν) =
α(τ)β(ν). By evaluating the twisted convolution, it can be
shown that

g ∗σ g†(τ, ν) = Xα(τ, ν)Rβ(ν). (47)

Hence from Theorem 3, the noise covariance function is

CZng
(τl, νk|τl′ , νk′)

=
∑

(m,n)∈Z2

Xα(τl − τl′ − nT, νk − νk′ − m�f )

Rβ(νk − νk′ − m�f ) ej2πνknTej2πτl′(νk−νk′−m�f)

Suppose that β(ν) is a square root Nyquist pulse with
sampling interval �f

N . Then Rβ(νk − νk′ − m�f ) = δ[k −
k′ − mN]. In this case,

CZng
(τl, νk|τl′ , νk′) =

∑

(m,n)∈Z2

Xα(τl − τl′ − nT, 0)δ
[
k − k′ − mN

]
ej2π

nk
N .

Note that Xα(τl − τl′ − nT, 0) = Rα(τl − τl′ − nT). Now
suppose that α(τ) is also a square root Nyquist pulse, with
sampling interval T

M . Then Rα(τl−τl′ −nT) = δ[l−l′−nM].
Hence we obtain

CZng
(τl, νk|τl′ , νk′)

=
∑

(m,n)∈Z2

δ
[
l− l′ − nM

]
δ
[
k − k′ − mN

]
ej2π

nk
N . (48)

This means that the noise samples {ndd[l, k]} for (l, k) ∈
{0, . . . ,M − 1} × {0, . . . ,N − 1} are uncorrelated.

For a Type-2 TC filter, g(τ, ν) = α(τ)β(ν)ej2πντ , note
that g ∗σ g†(τ, ν) = Rα(τ )Yβ(τ, ν), and hence the same
result can be obtained for square root Nyquist pulses. We
summarize this key result on Type-1 and Type-2 TC filters
with square root Nyquist pulses as the following theorem.
Theorem 4: For receive TC filter gRx(τ, ν) that is either

Type-1 or Type-2, the output noise samples ndd[l, k] for
(l, k) ∈ {0, . . . ,M − 1} × {0, . . . ,N − 1} are uncorrelated, if
both the following conditions hold.

• A(f ) is a square root Nyquist window, i.e., |A(f )|2 is a
Nyquist window, or equivalently α(τ) is a square root
Nyquist pulse with sampling interval T

M .
• B(t) is a square root Nyquist window, i.e., |B(t)|2 is a
Nyquist window, or equivalently β(ν) is a square root
Nyquist pulse with sampling interval �fN .

Remark 5: For a Type-1 or a Type-2 receive TC filter, we

note that the receive pulses ψ g̃Rx

l,k (t) for (l, k) ∈ {0, . . . ,M−
1}×{0, . . . ,N−1} form an orthogonal set when using square
root Nyquist windows. This is the underlying reason for
uncorrelated noise samples in Theorem 4.

C. DD DOMAIN INPUT-OUTPUT RELATIONSHIP FOR TC
FILTERED WHITE GAUSSIAN NOISE
We now use Theorem 3 and Type-1 sinc TC filters to define a
DD domain representation Zn(τ, ν) for the white noise n(t) as
a Gaussian process. We will use this to present a DD domain
input-output relationship for TC filteredwhite noise processes.
Consider a sequence of TC filters gM′,N′(τ, ν) :=

2M′�f sinc(2M′�f τ) 2N′Tsinc(2N′Tν) where the scale
parameters (M′,N′) ∈ R

2+. Note that this Type-1 TC filter
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corresponds to windowing by a rectangular time window
with support [−N′T,N′T] followed by windowing by a
rectangular frequency window with support [−M′�f ,M′�f ].
The true white noise process can therefore be imagined as
the limiting TC filtered noise process by taking N′ → ∞
first, followed by taking M′ → ∞.
By Theorem 3, the (M′,N′)th TC filtered noise process

Zn
gM′,N′ (τ, ν) is a zero mean Gaussian noise process where

the covariance function depends on gM′,N′ ∗σ g†
M′,N′(τ, ν).

By evaluating (47) for α(τ) = 2M′�f sinc(2M′�f τ) and
β(ν) = 2N′Tsinc(2N′Tν) (using (65) from [8]), we note that

gM′,N′ ∗σ g†
M′,N′(τ, ν) = 2N′Tsinc

(
2N′Tν

)
ejπτν

2M′�f
(

1 − |ν|
2M′�f

)
sinc

(
τ(2M′�f − |ν|)) (49)

By taking N′ → ∞, 2N′Tsinc(2N′Tν) → δ(ν) and hence

lim
N′→∞

gM′,N′ ∗σ g†
M′,N′(τ, ν) = δ(ν)2M′�f sinc

(
2M′�f τ

)

Now by taking M′ → ∞, we get

lim
M′→∞

lim
N′→∞

gM′,N′ ∗σ g†
M′,N′(τ, ν) = δ(ν)δ(τ ) (50)

Hence by Theorem 3, we can treat white noise in the
DD domain as the limiting process, which is a zero mean
non-stationary Gaussian noise process with the covariance
function CZn(τ, ν|τ ′, ν′) given as follows:

CZn

(
τ, ν|τ ′, ν′) = N0

T

∑

(m,n)∈Z2

ej2πν
′nTδ

(
τ − τ ′ − nT

)

δ
(
ν − ν′ − m�f

)
. (51)

Using (51) and Theorem 3, we can now establish the
following DD domain input-output relationship for TC
filtered white noise, as follows:

Zng(τ, ν) = g ∗σ Zn(τ, ν). (52)

Remark 6: This twisted convolution input-output relation-
ship (52) demonstrates that when a white Gaussian process
is TC filtered, the output in the DD domain is a zero mean
Gaussian processes with covariance function:

CZg
n

(
τ, ν|τ ′, ν′) = g ∗σ g† ∗σ CZn

(
τ, ν|τ ′, ν′) (53)

where CZn(τ, ν|τ ′, ν′) is the covariance function of the input
white noise.

V. OPTIMAL ZAK-OTFS RECEIVER FOR DOUBLY
DISPERSIVE CHANNELS
In this section, we provide the characterization of the optimal
Zak-OTFS receiver for doubly dispersive channels, where
the optimal receiver is defined as follows.
Definition 9: An optimal Zak-OTFS receiver is the one

whose output symbols ydd[l, k] are sufficient statistics for
maximum likelihood (ML) detection of the input data
symbols (x̂[l, k]).
We will show that the optimal receive TC filter is the one

that is matched to the twisted convolution of the channel DD

response with the transmit TC filter, and that DD sampling
on the grid with this optimal receive TC filter provides the
sufficient statistics for ML detection.
Consider a doubly dispersive channel with DD response

h(τ, ν) as in (5)-(6). The received signal y(t) = h∗σ x(t)+n(t)
can be expressed as

y(t) =
M−1∑

l=0

N−1∑

k=0

x̂[l, k]φh∗σ gTxτl,νk
(t)+ n(t) (54)

Let x̂ := (x̂[l, k]) denote the transmit symbol vec-
tor. Following similarly as in [15, Sec. 9.3-1], the
optimal x̂opt that has the smallest probability of sym-
bol error is the ML estimate x̂est that minimizes∫ |y(t)− ∑M−1

l=0
∑N−1

k=0 x̂est[l, k]φ
h∗σ gTx
τl,νk (t)|2dt. Hence, the

ML estimate x̂opt is the x̂est that maximizes

2Re

⎛

⎝
∑

l,k

x̂∗est[l, k]
∫
y(t)

(
φh∗σ gTxτl,νk

(t)
)∗
dt

⎞

⎠

−
∑

l,k

∑

l′,k′
x̂∗est[l, k]x̂est

[
l′, k′

] ∫ (
φh∗σ gTxτl,νk

(t)
)∗
φh∗σ gTxτl′ ,νk′ (t)dt.

where Re(·) represent the real part of a complex number.

Hence, yopt[l, k] := ∫
y(t)(φh∗σ g

Tx

τl,νk (t))∗dt are sufficient
statistics for ML detection. The optimal receiver that recovers
yopt[l, k] is presented in the following theorem.
Theorem 5: For a doubly dispersive channel with response

h(τ, ν), the optimal Zak-OTFS receiver is as follows:

• The optimal Zak-OTFS receive TC filter is gRx(τ, ν) =
(h ∗σ gTx(τ, ν))† which is matched to the cascade h ∗σ
gTx(τ, ν) of the transmit TC filter and the channel.

• The output symbols ydd[l, k] = Z
ygRx

(τl, νk) obtained by
sampling the optimal TC filtered received signal on the
DD grid points are sufficient statistics for ML detection
of input data symbols x̂.

Proof: See Appendix C.
With regard to implementation, note that the optimal

receive TC filter depends on the channel realization of
h(τ, ν). For a general channel response, h(τ, ν), the matched
TC filter might not have a Type-1 or Type-2 structure,
which means it is not possible to implement the matched
TC filter using time and frequency windowing techniques.
Furthermore, knowledge of the DD channel response h(τ, ν)
is also required, which is impractical when the channel
response h(τ, ν) is continuous and non-sparse.
In the paper, we hence focus on the optimal TC filter for

the practical case of a sparse doubly dispersive channel with
P paths, where h(τ, ν) = ∑P−1

p=0 hpδ(τ − τlp)δ(ν − νkp). We
will discuss the implementation of the optimal TC filter. We
will show that it is sufficient to match the receive TC filter
to the transmit TC filter under certain conditions referred to
as the crystalline regime conditions. We will first introduce
the concepts of effective channel response and crystalline
regime for Type-1 and Type-2 Zak-OTFS implementations
that are required for the discussion.
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VI. EFFECTIVE CHANNEL RESPONSE OF TYPE-1 AND
TYPE-2 ZAK-OTFS IMPLEMENTATIONS
In this section, we present the effective channel response of
Type-1 and Type-2 Zak-OTFS implementations for a given
choice of transmit and receive windows (or equivalently TC
filters). Recall that a Type-1 implementation uses a Type-1
transmit TC filter and the matched Type-2 receive TC filter,
whereas a Type-2 implementation uses a Type-2 transmit TC
filter and the matched Type-1 receive TC filter.
We show that the effective channel response depends on

the ambiguity functions of the windows. We then introduce
the crystalline regime conditions for Type-1 and Type-
2 Zak-OTFS implementations. In the crystalline regime,
we establish the convergence of ambiguity functions to
corresponding auto-correlation functions, when the channel
spread is smaller than DD grid dimensions (T,�f ). This
means the effective channel response in the crystalline
regime depends on the auto-correlation functions. In the next
section, we use these results to derive the structure of the
optimal Zak-OTFS receiver implementation.
We will show that the DD domain effective channel

response depends on the cross-ambiguity functions of the
transmit and the receive windows. First, we introduce
the necessary notation and definitions. Let the frequency
windows at the transmitter and the receiver be ATx(f )
and ARx(f ) respectively. Similarly let the time windows
at the transmitter and the receiver be BTx(t) and BRx(t)
respectively. As such, αTx(τ ), βTx(ν) and αRx(τ ), βRx(ν)

are the delay and the Doppler components of the TC filters
at the transmitter and the receiver respectively.
The following theorem presents the effective DD channel

characterizations for Type-1 and Type-2 Zak-OTFS imple-
mentations. It can be noted the effective channel is linked to
the ambiguity functions of the transmit and receive windows.
Theorem 6: For a Type-1 Zak-OTFS implementation, the

effective channel response is

hdd(τ, ν) =
∫∫

h
(
τ ′, ν′)ej2π(ντ−ν′τ ′)YATx,(ARx)∗

(
τ − τ ′,−ν′)

XBTx,(BRx)
∗
(−τ, ν − ν′)dτ ′dν′ (55)

For a Type-2 Zak-OTFS implementation, the effective
channel response is

hdd(τ, ν) =
∫∫

h
(
τ ′, ν′)ej2π(ντ−ν′τ ′)YATx,(ARx)∗

(
τ − τ ′,−ν)

XBTx,(BRx)
∗
(−τ ′, ν − ν′)dτ ′dν′ (56)

Proof: See Appendix D.
Our focus is on the case where the TC filter at the receiver

is matched to the TC filter at the transmitter. Hence as
mentioned earlier, we consider the following case: ATx(f ) =
A(f ),ARx(f ) = A∗(f ) and BTx(t) = B(t),BRx(t) = B∗(t). In
this case, YATx,(ARx)∗(τ, ν) equals the auto ambiguity function
YA(τ, ν), and XBTx,(BRx)∗(τ, ν) equals the auto ambiguity
function XB(τ, ν).
For a sparse channel with P paths, the channel response

h(τ, ν) = ∑P−1
p=0 hpδ(τ − τlp)δ(ν − νkp). From Theorem 6,

FIGURE 3. Plot of the effective channel gain |hdd(τ, ν)| (in dB) for rectangular
windows with M = 4, N = 4.

the effective channel response for a Type-1 implementation
is given by

h(1)dd (τ, ν) =
P−1∑

p=0

hpe
j2π

(
ντ−νkp τlp

)

YA
(
τ − τlp ,−νkp

)

XB
(−τ, ν − νkp

)
(57)

whereas for a Type-2 implementation, it is given by

h(2)dd (τ, ν) =
P−1∑

p=0

hpe
j2π

(
ντ−νkp τlp

)

YA
(
τ − τlp ,−ν

)

XB
(−τlp , ν − νkp

)
(58)

Consider the following rectangular windows A(f ) =
1√
M�f

I[0,M�f )(f ) and B(t) = 1√
NT

I[0,NT)(t) where IS(a) is the
indicator function, which equals 1 if a ∈ S and 0 otherwise.
Figure 3 illustrates the effective channel response of a two
path channel for M = 4,N = 4, where the red dotted
rectangle is of dimensions T × �f . It can be noted that
the effective channel response is not localized within this
rectangle.

A. CRYSTALLINE REGIME
The concept of crystalline regime was first defined in [8].
It is the regime where the effective channel response is
compact and is localized (in the sense of having most of its
energy) in a fundamental rectangular region of dimensions
T×�f [8], and hence there is negligible effect of DD domain
aliasing. Crystalline regime is crucial for Zak-OTFS channel
predictability performance which deals with accuracy of
measured effective channel taps [8], [9].
Figure 4 shows an illustration of the channel response

for rectangular windows with (M,N) = (32, 32). As can
be observed, now the spread of the effective channel is
much smaller, and is almost localized within a fundamental
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FIGURE 4. Plot of the effective channel gain |hdd(τ, ν)| (in dB) for rectangular
windows with M = 32, N = 32.

rectangular region depicted in red. This demonstrates that
as the window supports get larger, the effective channel
response becomes more localized around the path DD
locations. Hence, large window supports are a necessary
feature of the crystalline regime.
Let WA denote the support of the frequency window A(f )

and WB denote the support of the time window B(t).5

Remark 7: For the crystalline regime condition to hold,
it is required that

WA � �f ;WB � T (59)

as well as �f > νmax, the Doppler spread, and T > τmax,
the delay spread.
To derive results for the crystalline regime, we restrict

to the class of windows that have square integrable auto-
correlation functions, and the auto-correlation functions are
Lipschitz continuous on the positive real line. Note that this
allows for a wide range of functions, including rectangular
and root-raised cosine (RRC) windows.
Lemma 1: Consider a family of window functions

{AW(f )}W≥1 formed from a prototype unit window A1(f )

that has unit support. AW(f ) :=
√

1
WA1(

f
W ) is the scaled

window that has support W with the same energy and shape
as A1(f ). Suppose that the auto-correlation function RA1(ν)

is Lipschitz continuous on [0,∞). Then ∃KA1 > 0 such that

∣∣YAW (τ, ν)− RαW (τ )
∣∣ ≤ KA1

√ |ν|
W

for all (τ, ν) ∈ R
2.

5For general windows that are not finitely supported, our results can
be extended by considering the variances

∫
t2|B(t)|2dt (and ∫

f 2|A(f )|2df )
to be much larger compared to the fundamental periods T (and �f )
respectively. We use window supports in the paper, since in engineering
applications, other notions of support, such as half-power bandwidth and
first-null bandwidth, are typically used for non-finite support windows.

Proof: See Appendix D.
Lemma 1 shows that the ambiguity function YAW (τ, ν)

converges to RαW (τ ) uniformly, as |ν|
W → 0, i.e., for Doppler

shifts ν that are significantly smaller than the frequency
window support W.
Note 3: An identical result to Lemma 1 can be obtained

for time domain windows that have Lipschitz continu-
ous correlation functions. Hence, we take the following
results (60)-(61) to hold for the Zak-OTFS window functions
A(f ),B(t) considered in the paper.

YA(τ, ν) = Rα(τ )+ O

(√
|ν|
WA

)
(60)

XB(τ, ν) = Rβ(ν)+ O

(√
|τ |
WB

)
(61)

By applying (60)-(61), we will now show that the effective
channel response depends on the auto-correlation functions
of the delay shape α(τ) and Doppler shape β(ν), when
operating in the crystalline regime. Note that since Rα(τ )

is the auto-correlation function of α(t), it is also the inverse
Fourier transform of |A(f )|2. This means that the resulting
effective pulse shape along the delay axis is the inverse
Fourier transform of the product of the transmit window
A(f ) and the receive window A∗(f ). Similarly, Rβ(ν) is the
Fourier transform of |B(t)|2.
Consider the effective channel response for a Type-1

implementation given in (57). In the crystalline regime, note
from (60) that YA(τ−τlp ,−νkp) ≈ Rα(τ−τlp), since WA �
�f > |νkp | from Remark 7. Also since T � 1

wA
, Rα(τ−τlp)

is localized (in the sense of having almost all its energy) in
a small interval of length 2T ′, [τlp − T ′, τlp + T ′], such that
2T ′+τmax < T . As a result, Rα(τ−τlp) ≈ 0 for |τ | ≥ T . For
|τ | ≤ T , note that XB(−τ, ν−νkp) ≈ Rβ(ν−νkp) from (61),
since WB � T from Remark 7. Let wB := WB

T and wA := WA
�f ;

then more formally,

lim
wB↑∞ lim

wA↑∞YA
(
τ − τlp ,−νkp

)XB
(−τ, ν − νkp

)

= Rα

(
τ − τlp

)Rβ

(
ν − νkp

)

for each τ, ν.
Hence, for a Type-1 implementation, the effective channel

response in the crystalline regime is given by

h̄dd(τ, ν) =
P−1∑

p=0

hpe
j2π

(
ντ−νkp τlp

)

Rα

(
τ − τlp

)Rβ

(
ν − νkp

)

(62)

We summarize the crystalline approximation result for
a general channel h(τ, ν) as a corollary of Theorem 6 as
follows:
Corollary 3: For either a Type-1 Zak-OTFS implemen-

tation or a Type-2 Zak-OTFS implementation, the effective
channel response in the crystalline regime is given by
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(
gTx

)† ∗σ h ∗σ gTx(τ, ν) ≈ h̄dd(τ, ν) (63)

:=
∫∫

h
(
τ ′, ν′)ej2π(ντ−ν′τ ′)Rα

(
τ − τ ′)Rβ

(
ν − ν′)dτ ′dν′

= ej2πντ
(
h(τ, ν)e−j2πντ �

(Rα(τ )Rβ(ν)
))

(64)

where � denotes 2D convolution.
We have presented our results for the matched TC filter

case, however, they can be applied for more general Type-1
and Type-2 TC filters as follows. The effective DD domain
pulse shape along the delay axis is the inverse Fourier
transform of ATx(f )ARx(f ), where as the pulse shape along
Doppler axis is the Fourier transform of BTx(t)BRx(t), in the
crystalline regime.

VII. RADAR MATCHED FILTER WITH PULSONES VS.
TYPE-1 AND TYPE-2 ZAK-OTFS
In this section, we compare a Type-1 and Type-2 Zak-OTFS
receiver with the traditional radar matched filter (which is
optimal) in a single target radar scenario. We show that in
the crystalline regime, the performance gap is negligible in
terms of SNR, delay resolution and Doppler resolution. This
result highlights the suitability of Zak-OTFS waveform for
integrated sensing and communication.
We also show that the optimal Zak-OTFS receiver for a

single reflector channel is closely linked to radar matched
filter processing. We use the insights derived here for
implementation of the optimal Zak-OTFS receiver for sparse
doubly dispersive channels.
Consider a single reflector channel as follows:

y(t) = s(t − τ◦)ej2πν◦(t−τ◦) + n(t) (65)

where s(t) is the transmitted signal, y(t) is the received signal
and n(t) is an additive white Gaussian noise (AWGN) process
with power spectral density N0 Watts per Hz. We note that
(τ◦, ν◦) ∈ [0,T)× [ −�f /2,�f /2).

A. OPTIMAL ZAK-OTFS RECEIVER FOR SINGLE
REFLECTOR CHANNEL
Note that for this channel, the Zak-OTFS correlating receive

pulse ψ g̃Rx
τl,νk(t) corresponding to the output sample at (τl, νk)

(using the optimal receive TC filter gRx(τ, ν) = (h ∗σ
gTx(τ, ν))†) is

ψ g̃Rx
τl,νk

(t) = 1

T

(
h ∗σ φgTxτl,νk

(t)
)∗

(66)

= 1

T

(
φg

Tx

τl,νk
(t − τ◦)

)∗
e−j2πν◦(t−τ◦). (67)

since h(τ, ν) = δ(τ − τ◦)δ(ν − ν◦).
Hence by Theorem 1, the Zak-OTFS output ydd[l, k] =

ZygRx (τl, νk) corresponding to the optimal receive TC filter

gRx(τ, ν) = (h ∗σ gTx(τ, ν))† is

ZygRx (τl, νk) =
∫
y(t)ψ g̃Rx

τl,νk
(t)dt = 1

T
X
y,φg

Tx
τl,νk

(τ◦, ν◦). (68)

We will now show that this optimal receiver is closely
related to the traditional radar matched filter approach in
this channel.

B. RADAR MATCHED FILTER IN SINGLE TARGET
CHANNEL
In the radar context, the channel in (65) is a single target
channel with the target at DD location (τ◦, ν◦), and s(t) is
the input radar pulse. The traditional radar approach [8] to
estimate the target’s delay and Doppler shift, is to obtain the
maximum likelihood estimate as

(
τ̂ , ν̂

)
:= arg max

(τ,ν)∈S
∣∣Xy,s(τ, ν)

∣∣ (69)

where S ⊆ [0,T)×[−�f /2,�f /2) is the region of interest.
The estimation process requires evaluating the samples of
the ambiguity function Xy,s(τ, ν) to find its peak.
Let the signal component of the received signal y(t)

be r(t) := s(t − τ◦)ej2πν◦(t−τ◦). Let rτ,ν denote the signal
component of the ambiguity function sample Xy,s(τ, ν) at
the point (τ, ν) as

rτ,ν := Xr,s(τ, ν) (70)

= ej2πν◦(τ−τ◦)Xs,s(τ − τ◦, ν − ν◦) (71)

and let nτ,ν := Xn,s(τ, ν) be the noise component. Let
σ 2
τ,ν := E[

∣∣nτ,ν
∣∣2] denote the noise variance. Hence the SNR

at sample point (τ, ν) is

|rτ,ν |2
σ 2
τ,ν

=
∣∣Xs,s(τ − τ◦, ν − ν◦)

∣∣2

N0Xs,s(0, 0)
(72)

The signal-to-noise ratio (SNR) |rτ,ν |2
σ 2
τ,ν

is maximized at the

target location (τ, ν) = (τ◦, ν◦). Note that sampling the
ambiguity function Xy,s(τ, ν) at (τ ′, ν′) is equivalent to
correlation of the received signal y(t) with the pulse s∗(t −
τ ′)e−j2πν′(t−τ ′). Hence, the radar matched filter approach is
correlating the received signal y(t) with the pulse s∗(t −
τ◦)e−j2πν◦(t−τ◦) corresponding to the target location (τ◦, ν◦).
Remark 8: Hence from (68), for a single reflector channel,

the Zak-OTFS output ydd[l, k] corresponding to the optimal
receive TC filter (h ∗σ gTx(τ, ν))† can be obtained using
radar matched filter processing of the received signal y(t),

treating φg
Tx

τl,νk(t) as the input radar pulse s(t). Under such an
implementation, the radar matched filter output sampled at
location (τ◦, ν◦) yields Tydd[l, k].

Note that this optimal Zak-OTFS receiver implementation
is not a standard radar implementation where an ambiguity
function (obtained with respect to a single radar prototype
pulse) is sampled. In contrast, the approach here requires
computation of one sample from each of the MN ambiguity
functions in (68), which is potentially highly complex.
Moreover, it clearly cannot be implemented directly using a
standard Type-1 and Type-2 Zak-OTFS receiver approach of
a time and frequency windowing block followed by a DZT
block as in Figure 1.

In the next two subsections, we will focus on the radar
sensing problem in the single target channel using a Zak-
OTFS pulsone as a radar pulse. We will show that the SNR
curves obtained from a radar matched filter implementation
and a Type-1 (or a Type-2) Zak-OTFS implementation
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TABLE 2. The two approaches for a single target radar channel with the transmit
radar pulse φgTx

τl ,νk (t).

are the same in the crystalline regime. We will use the
insights derived here to present a time-frequency windowing
based implementation of the optimal Zak-OTFS receiver for
general sparse doubly dispersive channels.
The processing outputs of the two approaches are summa-

rized in Table 2. As noted here, the radar approach output
is the ambiguity function sample of the received signal y(t)

computed with respect to the input radar pulse φg
Tx

τl,νk(t),
whereas the Type-1 and Type-2 Zak-OTFS output is the DD
domain sample of the TC filtered received signal (matched
to the transmitter gTx(τ, ν)) and sampled at (τl + τ, νk + ν).

C. RADAR MATCHED FILTER WITH ZAK-OTFS
PULSONES
Let the transmitted radar signal s(t) be the Type-1 Zak-OTFS
pulsone φg1

τl,νk(t), i.e., Type-1 Zak-OTFS transmit pulse. Note
that in this case, the signal component of the radar matched
filter output can be evaluated as

Xs,s(τ − τ◦, ν − ν◦)
= T

∑

(m,n)∈Z2

YA(τ − τ◦ + nT, ν − ν◦)

XB(−nT, ν − ν◦ + m�f ) e−j2πνknTej2πm�f τl (73)

In the crystalline regime, since |ν − ν◦| < �f � WA,
recall that YA(τ−τ◦+nT, ν−ν◦) ≈ Rα(τ−τ◦+nT) by (60).
Also recall that Rα(τ ′) ≈ 0,∀τ ′:

∣∣τ ′∣∣ ≥ T since it is localized
in a very small region [ − T ′,T ′] where T ′ < T . Hence,
Rα(τ − τ◦ +nT) ≈ 0, ∀n : |n| > 1 (since τ − τ◦ ∈ [−T,T]).
Hence, we obtain the radar ambiguity function as

Xs,s(τ − τ◦, ν − ν◦) ≈ T
1∑

n=−1

Rα(τ − τ◦ + nT)e−j2πνknT

∑

m∈Z
XB(−nT, ν − ν◦ + m�f ) ej2πm�f τl

Repeating the same arguments for time window B(t), the
crystalline regime ambiguity function can be obtained as

Xs,s(τ − τ◦, ν − ν◦) ≈ T
1∑

n=−1

Rα(τ − τ◦ + nT)e−j2πνknT

1∑

m=−1

Rβ(ν − ν◦ + m�f ) ej2πm�f τl

(74)

Hence, we obtain the following theorem regarding the SNR
curve for a radar matched filter approach.

Theorem 7: In the crystalline regime (i.e., when WA �
�f and WB � T), the SNR curve of the radar matched filter
output is given by

∣∣rτ,ν
∣∣2

σ 2
τ,ν

≈ T

N0

1∑

n=−1

|Rα(τ − τ◦ + nT)|2
Rα(0)

1∑

m=−1

∣∣Rβ(ν − ν◦ + m�f )
∣∣2

Rβ(0)
(75)

∀(τ, ν) ∈ [0,T)×[−�f /2,�f /2), for a transmit radar pulse
s(t) = φ

g1
τl,νk(t) that is a Type-1 Zak-OTFS pulsone for any

l, k ∈ {0, . . . ,M − 1} × {0, . . . ,N − 1}.
Proof: See Appendix E.
Remark 9: We note that similar result as Theorem 7 can

be obtained for Type-2 Zak-OTFS pulsones, by following
the same arguments. Hence, Theorem 7 demonstrates a key
property of the Zak-OTFS pulsones, when operating in the

crystalline regime. The SNR curve |rτ,ν |2
σ 2
τ,ν

is the same for all

l, k ∈ {0, . . . ,M − 1} × {0, . . . ,N − 1}, i.e., all input Zak-
OTFS pulsones. This result is closely linked to the channel
predictability property [8], [9] of Zak-OTFS.
Note that the task of optimal channel tap estimation for

the discrete DD domain (i.e., utilizing samples on the grid)
was also shown to be linked to radar processing in [13],
where discrete DD TC filters were introduced as spreading
filters for information symbol spreading in the discrete DD
domain leading to spread pulsones. A discrete ambiguity
function was defined and shown to be the optimal channel
tap estimator.

D. ZAK-OTFS RECEIVER MATCHED TO THE TRANSMIT
TC FILTER
Now consider a radar sensing setup using a standard
Type-1 and Type-2 Zak-OTFS receiver matched to the
transmitter, i.e., gRx(τ, ν) = (gTx(τ, ν))†. Recall that the
Zak-OTFS approach for this receive TC filter has a simple
implementation using time and frequency windowing as
shown in Figure 1. We first note that this Zak-OTFS receiver
can be used more generally to sample at an arbitrary point
(τ ′, ν′), that may not be on the transmission DD grid (by
computing (25) for (τ ′, ν′) instead of (τl, νk)).

As in the previous subsection, let the transmitted radar
signal s(t) be the Type-1 Zak-OTFS pulsone φ

g1
τl,νk(t).

Consider the sample at point (τl + τ, νk + ν) given by
ZygRx (τl + τ, νk + ν). As before, let rτ,ν denote the signal
component and nτ,ν denote the noise component. The signal
component for the Zak-OTFS receiver can be evaluated as

rτ,ν := e−j2πν◦τ◦
∑

n∈Z

∑

m∈Z
YA(τ − τ◦ + nT,−ν◦)e−j2πνknT

XB(−τ − nT, ν − ν◦ + m�f ) ej2π(m�f+ν)(τl+τ)

(76)
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whereas the noise component can be evaluated as

σ 2
τ,ν := N0

T

∑

n∈Z

∑

m∈Z
YA(nT, 0) e−j2π(ν+νk)nT

XB(−nT,m�f )ej2πm�f (τ+τl) (77)

In the crystalline regime, using the same arguments as in
the previous subsection, the signal component becomes

rτ,ν ≈ e−j2πν◦τ◦
1∑

n=−1

Rα(τ − τ◦ + nT)e−j2πνknT

1∑

m=−1

Rβ(ν − ν◦ + m�f ) ej2π(m�f+ν)(τl+τ) (78)

where as the noise component becomes

σ 2
τ,ν ≈ N0

T
Rα(0)Rβ(0) (79)

By inspection of (78)-(79), note that the Zak-OTFS

receiver output SNR |rτ,ν |2
σ 2
τ,ν

corresponding to sample at (τl +
τ, νk + ν) is high when the sampling point is close to the
optimal point (τl+τ◦, νk+ν◦), and the SNR is lower further
away from this point. This behaviour is very similar to that
of the ambiguity function used in the radar approach. We
now present a much stronger result about the connection
between these two approaches.
The following claim is obtained from (78)-(79) by using

similar arguments as in the proof of Theorem 7.
Claim 1: In the crystalline regime (i.e., when WA � �f

and WB � T), the SNR curve |rτ,ν |2
σ 2
τ,ν

for the output of the

Zak-OTFS receiver (matched to transmit TC filter) is given
by (75) when the transmit radar pulse s(t) is either a Type-1
(or a Type-2) Zak-OTFS pulsone for any l, k ∈ {0, . . . ,M−
1} × {0, . . . ,N − 1}.

We have hence shown that in the crystalline regime, a
Type-1 and Type-2 Zak-OTFS based setup (with receive TC
filter matched to transmitter) has an identical SNR curve to
the radar matched filter, when using a Type-1 (or a Type-2)
Zak-OTFS pulsone as the radar pulse.
Remark 10: Claim 1 demonstrates two key properties of

the Zak-OTFS pulses (pulsones) in a single target channel.

• In the crystalline regime, the SNR curve |rτ,ν |2
σ 2
τ,ν

for

a Type-1 and Type-2 Zak-OTFS receiver (matched to
transmitter) is the same as the SNR curve for the optimal
radar matched filter.

• This SNR curve is the same for all input Zak-OTFS
pulsones, i.e., l, k ∈ {0, . . . ,M − 1} × {0, . . . ,N − 1}.

These results imply that a time and frequency windowing
based Zak-OTFS receiver can be directly applied for radar
sensing with negligible loss in SNR performance, and with
the same delay-Doppler resolution.
This also demonstrates the channel predictability prop-

erty [8], [9] of Type-1 and Type-2 Zak-OTFS, where every
input pulse (and the corresponding symbol) undergoes a
similar transformation due to the doubly dispersive channel.

FIGURE 5. Delay cut of SNR curve for rectangular windows with (M,N) = (32, 32),
for transmit radar signal φg1

τl ,νk (t). (a) For (l, k ) = (0, 0). (b) For (l, k ) = (M/2,N/2).

We now compare the SNR curves for the radar approach
and the Type-1 and Type-2 Zak-OTFS approach, for rect-
angular windows with (M,N) = (32, 32). We consider
the target location (τ◦, ν◦) = (0.2T,−0.25�f ). Figure 5(a)
shows the results for a Type-1 pulsone with (l, k) = (0, 0).
It can be noted that all three SNR curves are nearly identical
and only differ in the sidelobes where the SNR values are
very small. The zoomed-in plot shows that the peak SNR of
Zak-OTFS receiver is only 0.3 dB less than the optimal value.
The results also show that the crystalline approximation is
very accurate, even for modest values of M,N.

Figure 5(b) shows the results for Type-1 pulsone with
(l, k) = (16, 16). In this case, it can be noted that all three
SNR curves are identical. Since the crystalline approximation
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does not depend on (l, k), this results illustrates that the
actual SNR curves vary slightly around the crystalline
approximation for different transmit radar pulses. The varia-
tions are negligible as can be noted from Figure 5(a) which
presents the worst case.

VIII. IMPLEMENTATION OF THE OPTIMAL ZAK-OTFS
RECEIVER FOR SPARSE DOUBLY DISPERSIVE
CHANNELS
In this section, we present our implementations of the
optimal Zak-OTFS receiver for doubly dispersive channels.
The first approach implements the optimal TC filter (h ∗σ
gTx)†(τ, ν), and we show that this requires radar matched
filter processing and computing ambiguity functions with
respect to Zak-OTFS transmit pulses. We propose a second
implementation that uses the receive TC filter (gTx)†(τ, ν)
that is matched to transmitter and hence only requires time
and frequency windowing. We show that the two approaches
converge in the crystalline regime. We show that the second
implementation is a DD domain rake receiver that coherently
combines the multi-path components of the received DD
domain signal.

A. CRYSTALLINE REGIME RELATIONSHIP BETWEEN
THE OPTIMAL TC FILTER OUTPUT AND TYPE-1 TYPE-2
ZAK-OTFS OUTPUT
Recall from (8) that the Zak-OTFS received signal in the
DD domain is ydd(τ, ν) = hdd ∗σ xdd(τ, ν) + ndd(τ, ν). Let
rdd(τ, ν) := hdd ∗σ xdd(τ, ν) denote the signal component of
ydd(τ, ν).
In this section, we use the following notation to distinguish

between the optimal TC filter approach and time-frequency
windowing based Zak-OTFS approach.

• We use (·)optdd (τ, ν) to denote the DD domain func-
tions/processes corresponding to the optimal receive TC
filter (h ∗σ gTx(τ, ν))†.

• We use (·)tfdd(τ, ν) to denote the DD domain func-
tions/processes corresponding to the receive TC filter
(gTx(τ, ν))† that is matched to the transmit TC filter.

For example, yoptdd (τ, ν) = roptdd (τ, ν)+ noptdd (τ, ν) denotes the
output signal from the optimal TC filter and ytfdd(τ, ν) =
rtfdd(τ, ν)+ ntfdd(τ, ν) denotes the received signal output after
the receiver time-frequency windowing block in Figure 1.

We first present preliminary results required for the main
theorem.
Note that for WA � �f , Rα(τ ) ≈ Rα(τ )ej2πντ for ν ∈

[−�f ,�f ] (by applying Lemma 3 in Appendix F). A similar
result can be obtained for Rβ(ν) when WB � T using the
same arguments used in Lemma 3. Hence the following
assumption about the crystalline regime is justified, and we
use it to derive Lemma 2.
Assumption 1: For a transmit TC filter that is of either

Type-1 or Type-2, in the crystalline regime, we assume
that Rα(τ ) ≈ ej2πν

′τRα(τ ) and Rβ(ν) ≈ ej2πτ
′νRβ(ν) for∣∣τ ′∣∣ ≤ T and

∣∣ν′∣∣ ≤ �f .

Lemma 2: Let a(τ, ν) be a complex valued DD function
such that |a(τ, ν)| > 0 only if |τ | ≤ T, |ν| ≤ �f . Then in
the crystalline regime,

a ∗σ
(
gTx

)† ∗σ gTx(τ, ν) ≈ add(τ, ν) (80)
(
gTx

)† ∗σ gTx ∗σ a(τ, ν) ≈ add(τ, ν) (81)
(
gTx

)† ∗σ a ∗σ gTx(τ, ν) ≈ add(τ, ν) (82)

under Assumption 1, where

add(τ, ν) := ej2πντ
(
a(τ, ν)e−j2πντ �Rα(τ )Rβ(ν)

)
(83)

and gTx(τ, ν) is either a Type-1 or a Type-2 TC filter.
Proof: See Appendix F.
Remark 11: The twisted convolution operation ∗σ is not

commutative and hence the order of operations cannot be
exchanged. In Lemma 2, we have shown that the crystalline
regime limit is a special case, where exchange of operations
is allowed for (80)-(82). We will now use this property to
provide a practical implementation (see Figure 1) of optimal
Zak-OTFS receiver using time-frequency windowing based
TC filters and Zak domain sampling.
We now present the main theorem about the crystalline

regime relationship between the optimal output yoptdd (τ, ν)

and the Type-1, Type-2 output ytfdd(τ, ν) as the following
theorem.
Theorem 8: For a transmit TC filter that is of either Type-

1 or Type-2, in the crystalline regime, the two output signals
yoptdd (τ, ν) and y

tf
dd(τ, ν) are related as follows:

• The noise-free signal components satisfy

roptdd (τ, ν) ≈ h† ∗σ rtfdd(τ, ν) (84)

• The noise Gaussian processes noptdd (τ, ν) and ntfdd(τ, ν)
are identically distributed.

Proof: See Appendix F.
We present a comparison of the two approaches before

discussing implementation. We consider the Normalized
Mean Square Error (NMSE) between the noise-free received
symbols of the two approaches as

∑M−1
l=0

∑N−1
k=0

∣∣∣roptdd [l, k] − h† ∗σ rtfdd[l, k]
∣∣∣
2

∑M−1
l=0

∑N−1
k=0

∣∣h† ∗σ rtfdd[l, k]
∣∣2

(85)

We use numerical simulation for the comparison as
follows. We consider a two path channel where the first path
has a delay 0 and Doppler shift 0. For the second path,
the delay is chosen to be a uniform random variable on
interval [0,T/3) and Doppler shift is chosen to be a uniform
random variable on interval [ −�f /3,�f /3). These values
have been chosen to model typical mobile wireless channels,
where the channel spreads are small in comparison to the
grid dimensions (but can be up to one-third). Note that the
crystalline regime conditions hold for these values. For path
1, the path gain is chosen to be a complex Gaussian random
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TABLE 3. Simulation parameters.

FIGURE 6. NMSE of the received signals between the optimal Zak-OTFS receiver
and the crystalline approximation.

variable with zero mean and unit variance, whereas for path
2, the variance is 1/2. The rest of the simulation parameters
are given in Table 3.
Figure 6 presents the NMSE results as an empirical

distribution function obtained over channel realizations. It
can be seen from the NMSE values are very small for both
rectangular and RRC windows. These results indicate that
the crystalline approximation approach is nearly identical
to the optimal implementation, and that the performance
gap is negligible. The NMSE values are much smaller for
RRC windows as expected, since they have larger supports
compared to rectangular windows.
We now present the optimal receiver implementations

corresponding to the two approaches, for sparse doubly
dispersive channels. This involves sampling the DD domain
signals yoptdd (τ, ν) and y

tf
dd(τ, ν) to obtain sufficient statistics.

B. OPTIMAL RECEIVER IMPLEMENTATION FOR A
SPARSE DOUBLY DISPERSIVE CHANNEL
Consider the sparse path channel with DD response h(τ, ν) =∑P−1

p=0 hpδ(τ − τlp)δ(ν − νkp). The Zak-OTFS output for
(τl, νk) corresponding to the optimal TC filter gRx(τ, ν) :=
(h ∗σ gTx(τ, ν))† is equivalent to correlation of the receive
signal y(t) with the optimal receive pulse

1

T

(
φh∗σ gTxτl,νk

(t)
)∗ = 1

T

P−1∑

p=0

h∗
pe

−j2πνkp
(
t−τlp

)(
φg

Tx

τl,νk
(t − τlp)

)∗
.

FIGURE 7. Block Diagram for Implementation of the Optimal Receiver.

Hence proceeding similarly as in Section VII-A, the
optimal Zak-OTFS receiver output is

yoptdd [l, k] = 1

T

P−1∑

p=0

h∗
pXy,φg

Tx
τl,νk

(
τlp , νkp

)
. (86)

Figure 7 provides an implementation block diagram of
this receiver.
Remark 12: From (86), the optimal Zak-OTFS receiver

output sampled at (τl, νk) is obtained by maximal ratio
combining (i.e., according to the conjugates h∗

p of the path
gains) the ambiguity function samples X

y,φg
Tx
τl,νk

(τlp , νkp). As

noted in the previous section, these samples can be obtained

by radar matched filter processing of y(t) treating φg
Tx

τl,νk(t)
as the radar pulse.
Remark 13: Note that in (86) the DD domain sampling is

on the integer grid points, as seen from the LHS. However,
to evaluate these DD samples in practice, the RHS shows
that the ambiguity function needs to be sampled at path
locations which will in general be fractional.

C. CRYSTALLINE REGIME IMPLEMENTATION USING
TYPE-1 AND TYPE-2 ZAK-OTFS
We can apply Theorem 8 to obtain a time-frequency
windowing based receiver as follows:

ȳoptdd (τ, ν) = h† ∗σ ytfdd(τ, ν) (87)

=
P−1∑

p=0

h∗
pe

−j2πνkp τ ytfdd
(
τ + τlp , ν + νkp

)
(88)

Note that this approach is a DD domain rake receiver as
illustrated in Figure 8(a). The multi-path components are
being coherently combined to yield the final output.
The sufficient statistics ȳoptdd [l, k] from this time-frequency

windowing receiver are obtained by sampling at (τl, νk) as
follows:

ȳoptdd [l, k] :=
P−1∑

p=0

h∗
pe

−j2πνkp τl ytfdd
(
τl + τlp , νk + νkp

)
(89)

=
P−1∑

p=0

h∗
pe

−j2πνkp τlZ
y(g

Tx)
†

(
τl + τlp , νl + νkp

)
(90)

ȳoptdd [l, k] has the same noise-free signal component as the
optimal receiver output yoptdd [l, k] in the crystalline regime,
from Theorem 8. Moreover, the noise components n̄optdd [l, k]

VOLUME 5, 2024 4477



GOPALAM et al.: OPTIMAL Zak-OTFS RECEIVER AND ITS RELATION TO THE RADAR MATCHED FILTER

FIGURE 8. Optimal Crystalline Regime Implementation using Type-1 and Type-2
Zak-OTFS Receiver.

and noptdd [l, k] have an identical distribution from Theorem 8.
This shows that they also form the sufficient statistics for
ML detection. An implementation block diagram for this
receiver is shown in Figure 8(b).
Remark 14: From (90), in the crystalline regime, the

optimal Zak-OTFS receiver output for (l, k) can be obtained
by maximal ratio combining (i.e., according to (90)) the Zak-
OTFS output samples Z

y(gTx)†
(τl + τlp , νl + νkp) using the

receive TC filter (gTx)†(τ, ν), when the transmit TC filter is
of either Type-1 or Type-2.
This proposed Zak-OTFS implementation is a delay-

Doppler rake receiver, where a symbol ȳopt[l, k] is obtained
by coherently combining the samples Z

y(gTx)†
(τl+τlp , νl+νkp)

corresponding to each path p = 0, . . . ,P− 1 according to a
maximum ratio combining criterion.

D. OPTIMAL RECEIVER IMPLEMENTATION
CHALLENGES
In the crystalline regime, we have shown that it is possible
to obtain the sufficient statistics for Zak-OTFS using time
and frequency windowing based TC filter implementations.
Under this proposed Zak-OTFS implementation, a symbol
ȳopt[l, k] is obtained by coherently combining the samples
Z
y(gTx)†

(τl + τlp , νl + νkp) corresponding to each path p =
0, . . . ,P − 1 according to a maximum ratio combining
criterion. Hence, each of the MN output symbols ȳopt[l, k]
requires combining P DD domain samples.
In the case where the path DD parameters are integer

valued and line up with the DD transmission grid, the
sufficient statistics can be computed from the samples taken
on the integer points as in (25), and fractional samples are not
required. However in general, when the path parameters are
non-integer valued, samples taken between the grid points
are required to compute the sufficient statistics, under this
time-frequency based TC filter implementation.

Hence, finer sampling (i.e., oversampling) between the
grid points is required to get accurate measurements of output
sample values corresponding to path locations (τl+ τlp , νk +
νkp), which increases the receiver complexity. This is also the
case for the optimal radar matched filtering implementation,
see Remark 13. This also means that obtaining more
measurements by sampling between the grid points can
potentially yield more capacity. Early investigations into
such fractional sampling based receiver architectures were
considered for MC-OTFS [16], [17].
The other challenges are channel estimation to obtain

channel information regarding the path parameters to get
h(τ, ν), and a computationally efficient algorithm for
performing ML detection. These challenges have been
considered before, for the case of integer sampling on
transmission grid. For channel estimation, sparse Bayesian
learning based models were proposed to estimate the Doppler
shifts from the received OTFS pilot symbols [18], [19], [20].
For OTFS ML detection, message passing based detectors
have been proposed [4], [21], [22], [23], [24], [25].

IX. CONCLUSION
The conclusions of the paper are as follows:

• We have shown that a Zak-OTFS receiver is equiva-
lent to a correlation demodulator (in Theorem 1) in
Section III-A. We have also formulated the concept of a
DD domain matched TC filter and derived its structure
(in Theorem 2) in Section III-B.

• We have shown that a TC filtered white noise process is
a Gaussian process in the DD domain and also derived
its DD domain covariance function (in Theorem 3) in
Section IV-A. We have also derived a DD domain input-
output relationship for TC filtered noise processes (in
Remark 6) in Section IV-C.

• For doubly dispersive channels, we have defined a
optimal receive TC filter that is matched to the twisted
convolution of the channel with the transmit TC filter
(in Section V). We have shown that this optimal receive
TC filter, sampled at the DD grid points is the optimal
Zak-OTFS receiver that recovers sufficient statistics for
maximum likelihood detection of the data symbols (in
Theorem 5).

• We have derived the effective channel response of
Type-1 and Type-2 Zak-OTFS implementations, where
the receiver is matched to the transmit TC filter in
Section VI. We have also derived the limiting effective
channel response for the crystalline regime limit.

• We have derived the crystalline regime SNR curve for
the radar matched filter approach that uses a Type-
1 (or a Type-2) Zak-OTFS transmit radar pulse (in
Theorem 7) in Section VII-C. We have shown that a
Zak-OTFS receiver approach that is matched to the
transmitter, has an identical crystalline regime SNR
curve for radar sensing (in Claim 1) in Section VII-D.

• We have derived the crystalline regime relationship
between the outputs of the optimal Zak-OTFS receiver
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(that is matched to both the channel and the transmitter)
and the Zak-OTFS receiver that is only matched to the
transmitter, in Theorem 8 in Section VIII-A.

• We have presented two implementations of the optimal
Zak-OTFS receiver in Section VIII. The first imple-
mentation of the optimal Zak-OTFS receiver requires
radar matched filter processing and involves computing
ambiguity functions with respect to Zak-OTFS transmit
pulsones. The second implementation is a DD domain
rake receiver, that requires only time and frequency
windowing and discrete Zak transform computations.

APPENDIX A
PROOFS OF THEOREM 1 AND THEOREM 2
Proof of Theorem 1: From the definition of Zak transform
in (26), we obtain

Zyg(τ, ν) :=
∫
yg(t)ψτ,ν(t)dt

By definition of yg(t) in (11), we obtain

Zyg(τ, ν)

=
∫ ∫∫

g
(
τ ′, ν′)y

(
t − τ ′)ej2πν′(t−τ ′)dτ ′dν′ψτ,ν(t)dt

By defining t′ := t − τ ′ and substituting t = t′ + τ ′, we get

Zyg(τ, ν)

=
∫
y
(
t′
) ∫∫

g
(
τ ′, ν′)ej2πν′t′ψτ,ν

(
t′ + τ ′)dτ ′dν′dt′

Now by substituting g(τ ′, ν′) = g̃(−τ ′, ν′)ej2πν′τ ′
from (29),

and by defining τ ′′ := −τ ′, we obtain

Zyg(τ, ν)

=
∫
y
(
t′
) ∫∫

g̃
(
τ ′′, ν′)ψτ,ν

(
t′ − τ ′′)ej2πν′(t−τ ′′)dτ ′′dν′dt′

=
∫
y
(
t′
)
g̃ ∗σ ψτ,ν

(
t′
)
dt′

which completes the proof.
Proof of Theorem 2: Note that by choosing gRx(τ, ν) =

(gTx(τ, ν))†, g̃Rx(τ, ν) = (gTx(τ,−ν))∗. Also note
ψτl,νk(t) = 1

T (φτl,νk(t))
∗ from (27). Hence by Definition 3,

we obtain that ψ g̃Rx
τl,νk(t) = 1

T (g
Tx(τ,−ν))∗ ∗σ φ∗

τl,νk
(t) which

can be evaluated as
∫∫ (

gTx(τ ′,−ν′)
)∗φ∗

τl,νk

(
t − τ ′)

T
ej2πν

′(t−τ ′)dτ ′dν′

By replacing ν′ with −ν′′, we obtain
(∫∫

gTx
(
τ ′, ν′′)φτl,νk

(
t − τ ′)

T
ej2πν

′′(t−τ ′)dτ ′dν′′
)∗

Hence from (11), ψ g̃Rx
τl,νk(t) = 1

T (g
Tx ∗σ φτl,νk(t))∗. This

proves the theorem from (35).

APPENDIX B
PROOF OF THEOREM 3
Proof of Theorem 3.1: Consider the band-limited Gaussian
sinc process

nW(t) :=
∑

i∈Z
Xiκ

(W)
i (t) (91)

where Xi’s are i.i.d Gaussian random variables with zero
mean and variance N0, and the sinc function κ

(W)
i (t) :=√

2Wsinc(2Wt − i) is bandlimited on [ − W,W] in the
frequency domain. The white noise process n(t) is the
limit of the Gaussian sinc process limW→∞ nW(t), since
E[nW(t1)nW(t2)] = 2N0Wsinc(2W(t1 − t2)) which tends to
N0δ(t1 − t2) as W → ∞, for all t1, t2 ∈ R.

We will show that for any W > 0, the TC filtered Gaussian
sinc process ZngW

(τ, ν) is a zero mean Gaussian process,
which completes the proof. From Theorem 1, note that

ZngW
(τ, ν) =

∫
nW(t)ψ

g̃
τ,ν(t)dt =

∑

i∈Z
Xiai(τ, ν) (92)

where ai(τ, ν) := ∫
κ
(W)
i (t)ψ g̃

τ,ν(t)dt.
Provided

∑
i∈Z |ai(τ, ν)|2 < ∞ for all (τ, ν) ∈ R

2,
any finite vector [ZngW

(τk, νk)]Kk=0 is jointly Gaussian dis-
tributed (and equivalently ZngW

(τ, ν) is a Gaussian process),
using the arguments of [14, Th. 3.6.10]. Note that since
E[|ZngW

(τ, ν)|2] = N0
∑

i∈Z |ai(τ, ν)|2, it is sufficient to
show that variance of ZngW

(τ, ν) is finite for all (τ, ν), which
we do so as follows. From (92) and from the fact that
E[nW(t1)n∗

W(t2)] = 2N0Wsinc(2W(t1 − t2)), we get

E

[∣∣∣ZngW
(τ, ν)

∣∣∣
2
]

= E

[∣∣∣∣
∫
nW(t)ψ

g̃(t)dt

∣∣∣∣
2
]

= 2N0W
∫∫

sinc
(
2W

(
t − t′

))(
ψ g̃
τ,ν(t)

)∗
ψ g̃
τ,ν

(
t′
)
dtdt′

= 2N0W
∫

sinc
(
2Wt′′

) ∫
ψ g̃
τ,ν

(
t′
)(
ψ g̃
τ,ν

(
t′ + t′′

))∗
dt′dt′′

= 2N0W
∫

sinc
(
2Wt′′

)R
ψ
g̃
τ,ν

(−t′′)dt′′

where Rs(τ ) represents the auto-correlation function of s(t).
We apply Plancherel’s theorem to get

E

[∣∣∣ZngW
(τ, ν)

∣∣∣
2
]

= N0

∫ W

−W

∣∣∣� g̃
τ,ν(−f )

∣∣∣
2
df

≤ N0

∫ ∣∣∣� g̃
τ,ν(f )

∣∣∣
2
df

where �
g̃
τ,ν(f ) is the Fourier transform of ψ g̃

τ,ν(t). Now

by Parseval’s theorem, E[|ZngW
(τ, ν)|2] ≤ N0

∫ ∣∣∣ψ g̃
τ,ν(t)

∣∣∣
2
dt,

which completes the proof by square integrability of
ψ
g̃
τ,ν(t).
Proof of Theorem 3.2: Note that Zng(τ, ν) =∫
n(t)ψ g̃

τ,ν(t)dt from Theorem 1. Hence, the covariance
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function CZng
(τ, ν|τ ′, ν′)

=
∫∫

E
[
n(t)n∗(t′

)]
ψ g̃
τ,ν(t)

(
ψ
g̃
τ ′,ν′

(
t′
))∗

dtdt′

Now since E[n(t)n∗(t′)] = N0δ(t − t′) and since
(ψ

g̃
τ ′,ν′(t′))∗ = 1

T φ
g†

τ,ν(t′) from (37) of Theorem 2, we obtain

CZng

(
τ, ν|τ ′, ν′) = N0

T

∫
ψ g̃
τ,ν(t)φ

g†

τ ′,ν′(t)dt.

Note that
∫
s(t)ψ g̃

τ,ν(t)dt = Zsg(τ, ν) = g ∗σ Zs(τ, ν) from

Theorem 1. Hence,
∫
ψ
g̃
τ,ν(t)φ

g†

τ ′,ν′(t)dt = g ∗σ Z
φ
g†

τ ′,ν′
(τ, ν)

= g ∗σ g† ∗σ Zφτ ′,ν′ (τ, ν) which completes the proof.

APPENDIX C
PROOF OF THEOREM 5
Proof of Theorem 5: From Theorem 1, the Zak-OTFS
receiver outputs for a receive TC filter gRx(τ, ν) are

ZygRx (τl, νk) =
∫
y(t)ψ g̃Rx

τl,νk
(t)dt

Since gRx(τ, ν) = (h∗σ gTx(τ, ν))†, using (37) of Theorem 2,

we obtain that ψ g̃Rx
τl,νk(t) = 1

T (φ
h∗σ gTx
τl,νk (t))∗. Hence,

ZygRx (τl, νk) = 1

T

∫
y(t)

(
φh∗σ gTxτl,νk

(t)
)∗
dt = 1

T
yopt[l, k].

provide sufficient statistics for ML detection.

APPENDIX D
PROOFS OF THEOREM 6 AND LEMMA 1
Proof of Theorem 6: Note that for Type-1 implementa-
tion, hdd(τ, ν) := gRx2 ∗σ h ∗σ gTx1 (τ, ν), where the TC
filters gRx2 (τ, ν) = αRx(τ )βRx(ν)ej2πντ and gTx1 (τ, ν) =
αTx(τ )βTx(ν).
We evaluate h ∗σ gTx1 (τ, ν) as

h ∗σ gTx1 (τ, ν) =
∫∫

h
(
τ ′, ν′)

αTx
(
τ − τ ′)βTx

(
ν − ν′)ej2πν′(τ−τ ′)dτ ′dν′

(93)

Using this, we evaluate hdd(τ, ν) = gRx2 ∗σ (h ∗σ gTx1 )(τ, ν)

as

hdd(τ, ν) =
∫∫

h
(
τ ′, ν′)ej2πν′(τ−τ ′)

(∫
αRx(τ◦)αTx

(
τ − τ◦ − τ ′)e−j2πτ◦ν′

dτ◦
)

︸ ︷︷ ︸
Integral-1(∫

βRx(ν◦)βTx
(
ν − ν◦ − ν′)ej2πν◦τdν◦

)

︸ ︷︷ ︸
Integral-2

dτ ′dν′

(94)

By denoting αRx(τ ) := (αRx(−τ))∗ and defining t :=
τ − τ◦ − τ ′, we evaluate Integral-1 as

−
(∫

αTx(t)
(
αRx(t − (τ − τ ′))

)∗
ej2πν

′(t−(τ−τ ′))dt

)

= −XαTx,αRx
(
τ − τ ′,−ν′) = −YATx,(ARx)∗

(
τ − τ ′,−ν′)

where the final step is due to the fact that αTx and ATx are
a Fourier pair, and so are αRx and (ARx)∗.
By denoting βRx(ν) := (βRx(−ν))∗ and by defining f :=

ν − ν◦ − ν′, we evaluate Integral-2 as

−
(∫

βTx(f )
(
βRx

(
f − (

ν − ν′)))∗
e−j2πτ(f−(ν−ν′))df

)

= −YβTx,βRx
(−τ, ν − ν′)ej2πτ(ν−ν′)

= −XBTx,(BRx)
∗
(−τ, ν − ν′)ej2πτ(ν−ν′)

where the final step is due to the fact that βTx and BTx are
a Fourier pair, and so are βRx and (BRx)∗.

The proof for Type-1 Zak-OTFS is complete now by
substituting Integral-1 and Integral-2 into (94). The result for
Type-2 Zak-OTFS can be obtained by evaluating the twisted
convolutions and then using same arguments.
Proof of Lemma 1: We first show that YA1(τ, ν) is

0.5-Hölder continuous along ν. For ε > 0, note that by
Cauchy-Schwarz inequality,

∣∣YA1(τ, ν)− YA1(τ, ν + ε)
∣∣2

=
∣∣∣∣
∫
A1(f )

(
A∗

1(f − ν)− A∗
1(f − ν − ε)

)
ej2π f τdf

∣∣∣∣
2

≤
∫

|A1(f )|2df
∫ ∣∣(A∗

1(f − ν)− A∗
1(f − ν − ε)

)∣∣2df

=
(∫

|A1(f )|2df
)(

2Re
(RA1(0)− RA1(ε)

))

where Re(·) represents the real part of a complex number.
Since A1(f ) is square integrable and by Lipschitz conti-

nuity of RA1(·), we obtain that YA1,A1(τ, ν) is 0.5-Hölder
continuous, i.e., ∃KA1 > 0 such that

∣∣YA1(τ, ν)− YA1(τ, ν + ε)
∣∣ ≤ KA1

√|ε|, ∀ε ∈ R

Hence we have
∣∣∣YA1

(
τW,

ν

W

)
− YA1(τW, 0)

∣∣∣ ≤ KA1

√|ν|/W,

∀W > 1. Now since YA1(τW,
ν′
W ) = YAW (τ, ν′), we obtain

∣∣YAW (τ, ν)− YAW (τ, 0)
∣∣ ≤ KA1

√|ν|/W (95)

Note that from (44) that YAW (0, ν) is the inverse Fourier
transform of |AW(f )|2 and equals RαW (τ ). This completes
the proof.
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APPENDIX E
PROOF OF THEOREM 7
Proof of Theorem 7: For Type-1 pulsone, note from (74)
that

∣∣Xs,s(τ, ν)
∣∣2 equals

T2

⎛

⎝
1∑

n=−1

1∑

n′=−1

Rα(τ + nT)R∗
α

(
τ + n′T

)
e−j2πνk(n−n′)T

⎞

⎠

⎛

⎝
1∑

m=−1

1∑

m′=−1

Rβ(ν + m�f ) R∗
β

(
ν + m′�f

)

ej2πτl(m−m′)�f

⎞

⎠

Since WA � �f and WB � T , note that Rα(τ+nT)R∗
α(τ+

n′T) ≈ 0 for n �= n′ and Rβ(ν +m�f ) R∗
β(ν +m′�f ) ≈ 0

for m �= m′. Hence,
∣∣Xs,s(τ, ν)

∣∣2

T2
≈

1∑

n=−1

|Rα(τ + nT)|2
1∑

m=−1

∣∣Rβ(ν + m�f )
∣∣2

(96)

Since σ 2
τ,ν = N0Xs,s(0, 0), note from (74) that

σ 2
τ,ν

N0T
≈

1∑

n=−1

Rα(nT)e
−j2πνknT

1∑

m=−1

Rβ(m�f ) e
−j2πτlm�f

Since WA � �f and WB � T Rα(τ ) ≈ 0,∀τ :|τ | > T and
Rβ(ν) ≈ 0,∀ν:|ν| > �f . Hence, σ 2

τ,ν ≈ N0TRα(0)Rβ(0).
Hence from (72) and (96), it follows that the Theorem

holds when the radar transmit pulse is a Type-1 pulsone.
The proof follows from similar arguments for a Type-2

pulsone.

APPENDIX F
LEMMA 3 AND PROOFS OF LEMMA 2 AND THEOREM 8
Lemma 3: Consider a family of window functions

{AW(f )}W≥1, where AW(f ) :=
√

1
WA1(

f
W ), formed from a

prototype unit window A1(f ) that has unit support. AW(f )
is the scaled window that has support W with the same
energy and shape as A1(f ). Then the error εW(τ, ν) :=∣∣ej2πντRαW (τ )− RαW (τ )

∣∣ satisfies

max
τ∈R

εW(τ, ν) ≤ KA1

�f

W
. (97)

for some constant KA1 > 0.
Proof: Note that the error can be expressed as εW(τ, ν) =∣∣RαW (τ ) sin(πντ)

∣∣. Since | sin(x)| ≤ |x|, we obtain

max
ν∈[−�f ,�f ]

εW(τ, ν) <
∣∣RαW (τ )π�f τ

∣∣

Note that since RαW (τ ) is the inverse Fourier transform

of 1
W

∣∣∣A( fW )
∣∣∣
2
, it follows that RαW (τ ) = Rα1(Wτ). Hence,

max
τ∈R

εW(τ, ν) ≤ �f

W
max
τ ′∈R

∣∣πτ ′Rα1

(
τ ′)∣∣

Note that limτ→∞ τRα1(τ ) must be finite, since oth-
erwise Rα1(τ ) would not be square integrable. Hence,
maxτ ′

∣∣πτ ′Rα1(τ
′)
∣∣ must be finite and can be taken to be

the constant KA1 .
Proof of Lemma 2: It can be shown that (gTx)† ∗σ

gTx(τ, ν)= ej2πντRα(τ )XB(−τ, ν) for a Type-1 TC filter and
(gTx)† ∗σ gTx(τ, ν) = ej2πντRβ(ν)YA(τ,−ν) for a Type-2
TC filter. Hence in the crystalline regime, we can take

(
gTx

)† ∗σ gTx(τ, ν) ≈ ej2πντRα(τ )Rβ(ν) (98)

Hence, a ∗σ (gTx)† ∗σ gTx(τ, ν) = ej2πντ
∫∫

h(τ ′, ν′)
e−j2πντ ′Rα(τ − τ ′)Rβ(ν − ν′)dτ ′dν′. (80) now follows by
replacing Rβ(ν − ν′) with ej2πτ

′(ν−ν′)Rβ(ν − ν′), using
Assumption 1.

Similarly, (gTx)† ∗σ gTx ∗σ a(τ, ν) ≈ ej2πντ
∫∫

a(τ ′, ν′)
e−j2πν′τ ′

e−j2πν′(τ−τ ′)Rα(τ − τ ′)Rβ(ν − ν′)dτ ′dν′. (81) fol-
lows by replacing e−j2πν′(τ−τ ′)Rα(τ − τ ′) with Rα(τ − τ ′),
using Assumption 1.

For (82), note that it is equivalent to Corollary 3.
Proof of Theorem 8: Since for the optimal TC filter case,

the receive TC filter is (h ∗σ gTx)†(τ, ν) and the transmit
TC filter is gTx(τ, ν), from (9), we obtain hoptdd (τ, ν) =
(h ∗σ gTx)† ∗σ h ∗σ gTx(τ, ν) = (gTx)† ∗σ h† ∗σ h ∗σ
gTx(τ, ν). Similarly for the time-frequency windowing case,
htfdd(τ, ν) = (gTx)† ∗σ h ∗σ gTx(τ, ν). Hence by using
Lemma 2,

hoptdd (τ, ν) ≈ h† ∗σ h ∗σ
(
gTx

)† ∗σ gTx(τ, ν)
≈ h† ∗σ

(
gTx

)† ∗σ h ∗σ gTx(τ, ν)
= h† ∗σ htfdd(τ, ν) (99)

Now since roptdd (τ, ν) := hoptdd ∗σ xdd(τ, ν) and rtfdd(τ, ν) :=
htfdd ∗σ xdd(τ, ν), it is clear that

roptdd (τ, ν) ≈ h† ∗σ rtfdd(τ, ν) (100)

We will now show that the covariance functions of the two
noise Gaussian processes noptdd (τ, ν) and h

†∗σ ntfdd(τ, ν) are the
same. This completes the proof since for a Gaussian process,
the mean and the covariance function fully characterize the
distributions (see [14, Th. 3.6.3]).
Consider the noise covariance function of zero mean

Gaussian process noptdd (τ, ν) := (h ∗σ gTx)† ∗σ Zn(τ, ν).
From (53) of Remark 6, we have

Cnoptdd

(
τ, ν|τ ′, ν′)

= (
h ∗σ gTx

)† ∗σ h ∗σ gTx ∗σ CZn

(
τ, ν|τ ′, ν′)

= hoptdd ∗σ CZn

(
τ, ν|τ ′, ν′) (101)

Similarly, the noise covariance function for h† ∗σ
ntfdd(τ, ν) := h† ∗σ (gTx)† ∗σ Zn(τ, ν) is given by

Ch†∗σ ntfdd
(
τ, ν|τ ′, ν′)

= h† ∗σ
(
gTx

)† ∗σ gTx ∗σ h ∗σ CZn

(
τ, ν|τ ′, ν′)

≈ h† ∗σ htfdd ∗σ CZn

(
τ, ν|τ ′, ν′) (102)
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from Lemma 2. Hence, the covariance functions are identical
by (99) and (101).
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