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ABSTRACT 6G networks are envisioned to deliver a large diversity of applications and meet stringent
Quality of Service (QoS) requirements. Hence, integrated Terrestrial and Non-Terrestrial Network (TN-
NTNs,) are anticipated to be key enabling technologies. However, the integration of TN-NTNs, faces
a number of challenges that could be addressed through network virtualization technologies, such as
Software-Defined Networking (SDN), Network Function Virtualization (NFV), and Network Slicing (NS).
In this survey, we provide a comprehensive review of the adaptation of these networking paradigms in 6G
networks. We begin with a brief overview of Non-Terrestrial Network (NTN) and virtualization techniques.
Then, we highlight the integral role of Artificial Intelligence (AI) in improving network virtualization by
summarizing major research areas where AI models are applied. Building on this foundation, we identify
the main issues arising from the use of SDN, NFV, and NS in integrated TN-NTNs,, and propose a
taxonomy of integrated TN-NTNs, virtualization offering a thorough review of relevant contributions.
The taxonomy is built on a four-level classification that indicates — for each study — the level of TN-
NTNs, integration, the virtualization technology used, the problem addressed, the type of the study, and
the proposed solution, which can be based on conventional or AI-enabled methods. Finally, we discuss
open issues and give insights on future research directions for the advancement of integrated TN-NTNs,
virtualization in the 6G era.

INDEX TERMS 6G, AI, integrated terrestrial and non-terrestrial networks, NFV, network slicing, network
virtualization, SDN.

I. INTRODUCTION

SINCE the 1980s, mobile networks have been evolving
rapidly with the development of a new generation

roughly every ten years. The first generation (1G) used
analog networks to provide voice calls, followed by the intro-
duction of digitization in second generation (2G), allowing
both voice communication and data services. Then, the third
generation (3G) emerged to offer new services such as video
calling and Internet access. Around a decade later, the fourth
generation (4G) revolutionized our daily lives with the rise
of smart devices, mobile-oriented applications and social
media. To achieve high data rates, multiple technologies
were employed in 4G Long-Term Evolution (LTE) networks,
including Multiple-Input and Multiple-Output (MIMO)

antennas and Orthogonal Frequency-Division Multiplexing
(ODFM) [1]. Subsequently, fifth generation (5G) networks
enabled various applications such as high-definition video
streaming, Virtual Reality (VR) applications, Internet of
Things (IoT), remote healthcare, and industrial automa-
tion. These services are classified into three categories of
use cases as identified by the ITU Radiocommunication
(ITU-R); namely enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communications (URLLC),
and massive Machine-Type Communications (mMTC) [2].
Technologies including network densification, massive
MIMO, and NS were employed to cope with the
increasing number of connected devices and support new
services.
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While 5G networks are still being deployed and com-
mercialized, researchers are already shifting their focus to
the next generation. 6G networks are envisioned to have
enhanced capabilities compared to 5G, particularly in terms
of Key Performance Indicator (KPI). Higher data rates,
lower latency, increased reliability and security, as well as
massive connectivity are expected. For example, peak data
rates of 100-200 Gb/s are anticipated in 6G, compared
to a few tens of Gb/s for 5G [3]. A reduced latency is
also envisaged going from one ms in 5G to 0.1 ms in 6G.
Additionally, reliability is estimated to reach seven nines
(99.99999 %) in 6G compared to five nines (99.999 %)

for 5G. Furthermore, other key capabilities of 6G are
envisioned by Huawei’s researchers in their book “6G: The
Next Horizon” [4], including better spectral, energy, and
cost efficiency, very high localization and sensing accuracy,
and higher intelligence. These capabilities are needed in
6G networks to provide different services. Specifically, six
categories of application scenarios are envisaged, according
to the ITU-R IMT 2030 vision [3]. On the one hand, the three
5G use cases are extended; (i) Immersive Communication
is an extended version of eMBB, providing rich and
interactive immersive video experience to end-users. (ii)
Hyper Reliable and Low-Latency Communication is an
enhanced version of URLLC, supporting applications with
stricter reliability and latency requirements, such as remote
surgery. (iii) Massive Communication extends mMTC to
offer connectivity to a massive number of devices with
reduced energy consumption. On the other hand, three new
usage scenarios are defined; (i) Ubiquitous Connectivity
improves the connectivity with NTN for remote areas,
bridging the digital divide. (ii) AI and Communication
enables AI applications and distributed computing such
as autonomous driving and collaboration between devices.
(iii) Integrated Sensing and Communication provides wide
area multi-dimensional sensing for use cases, including
navigation, detection, and tracking.
In order to support the large variety of applications and

satisfy the target KPI of 6G networks, six categories of key
enabling technologies are discussed in [4]. (i) New Spectrum,
including the millimetre Wave (mmWave), Terahertz (THz),
and optical bands, is necessary to serve applications requiring
ultra-high data rates, such as VR and holographic applica-
tions. (ii) Joint Sensing and Communication (JSAC) enables
higher accuracy and resolution by incorporating sensing
features into communication systems. (iii) AI technologies
play an integral role in 6G networks [5]. This can be
examined from two perspectives: networking for AI, where
6G networks will be designed and optimized to natively
accommodate AI applications, and AI for networking where
AI techniques are employed to optimize the network’s oper-
ation and management including intelligent Radio Access
Network (RAN) slicing [6]. (iv) Native Trustworthiness
is another significant aspect, as 6G is expected to be
human-centric, where network security and data privacy are
critical features. (v) Green Communications and Sustainable

FIGURE 1. Illustration of 6G integrated TN-NTNs, virtualization architecture for
futuristic cognitive cities.

Networking are essential in 6G as energy efficiency becomes
critical with the expanding networks. (vi) Integrated TN-
NTNs, are key 6G enablers advocating for cost-effective,
seamless global connectivity and bridging the digital divide.
In addition to the aforementioned technologies, the ITU-R
IMT 2030 vision considers RAN slicing and Digital Twin
(DT) as technology enablers to improve the performance and
efficiency of 6G networks [3].
In this work, we focus on the integration of TN-NTNs, in

the 6G era, specifically with respect to the aspects of network
virtualization. In fact, the integration of Non-Terrestrial (NT)
platforms in 6G networks introduces multiple challenges,
particularly in terms of network management, network
interoperability, and QoS requirements assurance. This is
mainly due to the large-scale and heterogeneous network
topology, the dynamic environment, and the limited onboard
resources of network nodes, such as satellites, High-altitude
Platform Station (HAPS), and Unmanned Aerial Vehicle
(UAV). In this context, network virtualization technologies,
including SDN, NFV, and NS, can be adopted to tackle
these issues. On the one hand, SDN promotes network
programmability and reconfigurability, by decoupling the
data/control planes, and logically centralizing the network
control logic using SDN controllers [7]. This simplifies the
network management and orchestration in heterogeneous
TN-NTNs,. Particularly, it facilitates resource allocation and
service provisioning across multiple administrative domains
in integrated networks. On the other hand, NFV improves
network flexibility and reduces deployment costs through the
separation of Network Function (NF) from the underlying
hardware, and the creation of Virtual Network Function
(VNF) [8]. These VNF are software-based instances of
NF, capable of running on commodity hardware. This
enables the deployment of NF on different terrestrial and
non-terrestrial platforms, without the need for dedicated
hardware equipment. Additionally, updating and introduc-
ing new services is simplified in NFV-enabled networks.
This is particularly important for NTN nodes. Moreover,
NS provides multi-tenant software-oriented networks and
offers optimized solutions for various market scenarios with
different performance requirements. NS enables multiple
virtual customized networks to operate on shared physi-
cal infrastructure [9]. In Fig. 1, we present an example
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TABLE 1. Summary and comparison of related surveys (“�”: topic covered, “∂”: topic partially covered, “×”: topic not covered).

of 6G integrated TN-NTNs, virtualization architecture for
futuristic cognitive cities. In particular, NTN are used to
complement Terrestrial Network (TN) to meet increased
demands and support diversified services. The integrated
segments form the network infrastructure required to offer
the desired 6G applications. These applications are mapped
to service requirements, which define the network slices.
For instance, smart residential area, smart transportation,
and smart health have different QoS requirements and can
be considered as network slices in cognitive cities. These
slices are established through the virtualization of TN-
NTNs, infrastructure by implementing the concepts of SDN,
NFV, and NS. The network intelligence and management is
responsible for network planning and operation. It includes
the NFV Management and Orchestration (MANO), the SDN
control structure, the slice MANO and the service man-
agement. The network resources and slices life-cycles are
managed by the slice MANO to ensure resource efficiency

and QoS requirements assurance. By introducing various
AI models, the network acquires predictive and proactive
capabilities that facilitate its management and enhance
its performance. Therefore, employing these networking
paradigms in next-generation networks will enable seamless
TN-NTNs, integration, efficient network management, and
enhanced network performance.
This survey offers a comprehensive review on the appli-

cation of network virtualization approaches in 6G integrated
TN-NTNs,. We consider three NTN segments; specifi-
cally, Satellite-Terrestrial (S-T), Aerial-Terrestrial (A-T), and
Satellite-Aerial-Terrestrial (S-A-T). Each of these segments
involves the integration of different NTN platforms having
various characteristics. In addition, this survey covers the
three main virtualization technologies; namely, SDN, NFV,
and NS. The implementation of these technologies in
each segment face different challenges requiring distinct
innovative solutions. In Table 1, we provide a summary of
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the main related surveys, and a comparison in terms of
the covered topics. Firstly, surveys in [10], [11], [12], [13]
provide a global overview of NTN, taking into account the
unique characteristics of three segments. They present the
NTN integration with TN from different aspects, including
architectures, use cases, network management, performance
analysis, and network optimization. Secondly, [9], [14], [15],
[16] present comprehensive reviews on network virtual-
ization and softwarization, particularly concepts of SDN,
NFV, and NS, detailing their architectures, key principles,
enabling technologies, and use cases. Hence, these works
focus on either integrated TN-NTNs, or on virtualiza-
tion technologies independently. Thirdly, studies presented
in [17], [18], [19] review research efforts combining network
virtualization technologies with NTN. Researchers in [17]
and [19] focus on SDN/NFV and NS in 5G, respectively,
in the context of UAV networks. In contrast, the authors
of [18] discuss the SDN paradigm in satellite networks
(S-T segment). Therefore, although the aforementioned
surveys [17], [18], [19] combine NTN with virtualization
techniques, they either consider only one NTN segment,
or cover a specific virtualization technology. The main
contributions of this work can be summarized as follows:

• We give an overview on NTN, and the challenges of
their integration in 6G, as well as a background on
network virtualization and its enablers, i.e., SDN, NFV,
and NS.

• We highlight the role of AI models in network virtual-
ization, and summarize the major research areas where
AI algorithms are usually used in SDN, NFV, and NS.

• We outline the main challenges associated with the
adaptation of SDN, NFV, and NS technologies in
integrated TN-NTNs,.

• We propose a taxonomy of integrated TN-NTNs, vir-
tualization, in which we comprehensively review and
categorize the relevant contributions based on a four-
level classification.

• We identify several open issues, and give insights on
future research directions.

The remainder of this paper is organized as follows.
Section II gives an overview on NTN, indicating their unique
characteristics, the key drivers, the application scenarios, and
the challenges of their integration in 6G. In Section III,
we explain the fundamentals of network virtualization and
its leading enabling technologies, i.e., SDN, NFV, and NS.
Section IV highlights the role of AI models in network
virtualization, discussing the motivation, and the primary
research areas where AI algorithms are often used in
SDN, NFV, and NS. Section V describes the proposed
taxonomy based on a four-level classification, and gives a
brief overview of the most prevalent challenges facing the
implementation of virtualization technologies in integrated
TN-NTNs,. Sections VI–VIII are dedicated to reviewing
the relevant contributions on the application of virtual-
ization technologies in integrated networks. Subsequently,

Section IX provides a summary and insights gained from
the surveyed works. In Section X, we identify several
open issues, and discuss potential research directions for
advancing the adaptation of virtualization technologies in
next-generation networks. Finally, Section XI concludes the
paper.

II. OVERVIEW ON NTNS
In this section, we provide an overview on NTN, highlighting
the unique characteristics of NTN platforms, including
satellites, HAPS and UAV. We also present the key drivers,
application scenarios, and challenges of NTN integration in
6G.

A. CHARACTERISTICS OF NTNS
Non-Terrestrial Networks (NTNs) are composed of two
types of platforms; namely, aerial platforms including
UAV and HAPS, and spaceborne platforms including Non-
Geostationary Earth Orbit (NGEO) (Low Earth Orbit (LEO),
Medium Earth Orbit (MEO)) and Geostationary Earth Orbit
(GEO) satellites. Table 2 provides a comparison between
different NT platforms in terms of altitude, mobility, prop-
agation delay, coverage, and energy supply. NT nodes are
accessed through earth gateway stations, that connect them
to end-users and the core network. The end-users are Very
Small Aperture Terminal (VSAT), which can be specific
satellite terminals or 3rd Generation Partnership Project
(3GPP) User Equipment (UE). In TN-NTNs, architectures,
two types of links can be identified: service links and feeder
links. The service link is established when terrestrial or NT
platforms provide services to NT nodes or end-users. In
contrast, the feeder link connects NT nodes to terrestrial
gateways [10], [20].
NT nodes can play a variety of roles when integrated

into the functioning of TN to serve a particular application,
as illustrated in Fig. 2. In general, the NT node can be a
user, a relay, or a Base Station (BS) [10], [12]. First, in
the case where it acts as a user, the NT platform is served
through Terrestrial BS (TBS). For example, a UAV can be
served directly by a TBS or by a satellite relaying data
from a terrestrial gateway as shown in Fig. 2 (a). Second,
the NT platform, with a transparent payload, can act as a
relay for two goals. On the one hand, the NT node can
enable connectivity by relaying data from TBS to end-users,
as illustrated in Fig. 2 (b). On the other hand, it can offer
backhaul services by connecting a TBS to the core network
through feeder links as depicted in Fig. 2 (c). Third, the NT
node can play the role of a BS serving terrestrial UE or NT
platforms as indicated in Fig. 2 (d). Hence, the NT should
support regenerative payload with sufficient computing and
processing capabilities.
As a result of the high altitude and mobility of NT

nodes, NTN are distinct from conventional TN by a number
of key features. They differ mainly in terms of signal
propagation, coverage and handovers, Doppler effect, and
platform deployment [10], [12], [22], [23]. NT nodes,
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TABLE 2. Comparison of the characteristics of NTN platforms [10], [11], [21], [22], [23].

FIGURE 2. Different roles of NTN platforms in integrated TN-NTN.

especially GEO and MEO satellites, are located at large
distances from terrestrial end-users. Thus, NTN communica-
tions suffer from longer propagation delays and higher path

loss compared to their terrestrial counterparts. Such features
of NTN present a bottleneck for applications where low or
even ultra-low latency is a critical requirement. Moreover,
as shown in Table 2, NT nodes have different coverage
areas leading to different frequencies of handovers [24]. For
instance, NGEO satellites have variable coverage, resulting
in periodic and frequent handovers, while GEO satellites
have large and stable coverage. Specifically, because of
their mobility, NGEO satellites are characterized by their
visibility window, defined as the time period during which a
specific ground area is covered by the satellite. Meanwhile,
handovers occur in TN during the movement of users
between cells, due to the small and fixed coverage of
TBS. Furthermore, although Doppler effects exist in both
types of networks (TN and NTN), the Doppler shifts
induced by the high mobility of NT platforms in NTN,
primarily LEO satellites, are greater than those caused by
user mobility in TN. Finally, deploying TN is an expensive
and long-term investment. This makes it an unfavourable
option in certain cases, including remote areas connectiv-
ity. In such scenarios, using NTN can be an appealing
alternative where aerial platforms can be deployed quickly
and temporarily at economical rates. Additionally, although
satellites have costly and long-term deployment, they offer
vast coverage areas compared to aerial and terrestrial
nodes.

B. INTEGRATION OF NTNS IN 6G
The integration of TN and NTN gave birth to a new paradigm
of networks characterized by a three-layered architecture
composed of ground, air, and space segments. Such networks
are referred to as integrated TN-NTNs,, Space-Air-Ground
Integrated Network (SAGIN), or Ground-Air-Space (GAS)
integrated networks. Each SAGIN segment has its own
benefits and limitations, which are summarized in Table 3.
Numerous applications with different QoS requirements will
be supported by 6G networks. Because of their distinct
characteristics from TN, NTN can complement 6G TN to
meet the needs of various use cases. In essence, service
ubiquity, continuity, and scalability are the main key drivers
for TN-NTNs, integration [4], [10], [12], [23]:

• Service ubiquity: airborne and space platforms can
cost-efficiently deliver ubiquitous services, by covering
remote and rural locations. This expands the coverage
of 6G networks.
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TABLE 3. Benefits and limitations of SAGIN segments [11], [22], [25].

• Service continuity: NTN nodes offer continuous services
for IoT devices or onboard mobile vehicles to enhance
6G service reliability.

• Service scalability: NTN facilitate 6G service scalability
with broadcast and multicast capabilities. This ensures
streaming content delivery to wide regions and data
offloading to network edges.

The efficient integration of the three segments is expected
to enable a wide range of use cases, particularly in the 6G
era. In [12], six categories of 6G integrated TN-NTNs, use
cases are envisioned:

• Ubiquitous Internet can be achieved by integrating
NTN access points, such as satellites and airborne
platforms, into the terrestrial Internet. This pro-
motes Internet services availability everywhere on the
planet.

• Pervasive intelligence is enabled by AI for networking
and networking for AI. In fact, space/air nodes can
provide a global dataset to improve the performance of
AI-based solutions. They also can serve as computing
and storage units, facilitating AI-based network man-
agement through edge AI.

• JSAC services are key enabling technologies of 6G
networks. The NTN platforms can offer reliable Line-
of-Sight (LoS) links and information on the device’s
location and orientation in a 3D fashion. This improves
the accuracy of sensing and localization measurements
and allows context-aware communications.

• Beyond Visual LoS (BVLOS) connected UAVs can be
supported by integrated terrestrial and satellite networks
to expand the control and reachability of UAVs beyond
a visual LoS. This would result in improvements in the
reliability, throughput, and coverage of aerial networks.

• Aerial Interactive telepresence allows virtual human
presence via UAVs in scenarios, where physical human
presence can be dangerous or costly. This can be
improved via Augmented Reality (AR) technology
to offer haptic interactions in a 3D environment
and through TN-NTNs, integration for seamless
connectivity.

• Convergence of networking and computing can be
attained through NT nodes which can provide com-
puting services and perform coordination between

network edge units in order to achieve computing-aware
networking.

Nonetheless, the integration of NTN into 6G networks
faces several challenges. On the one hand, network manage-
ment is highly complex, and flexible network reconfiguration
is difficult [11], [25]. This is due to the large number
of diverse devices present in integrated TN-NTNs,. These
equipment differ in terms of configuration and control
interfaces, as well as hardware and software specifications.
On the other hand, network interoperability is limited,
especially in the context of integrated TN-NTNs,. This lim-
itation arises from the vertically integrated stacks, provided
by the operators in current communication systems [26].
QoS requirements assurance is another issue in the 6G
era, where integrated TN-NTNs, are expected to provide a
wide variety of services. These applications have different
requirements in terms of latency, reliability, and throughput.
Hence, efficient and dynamic resource allocation should be
carried out to ensure QoS provisioning for each service [25].
Besides, the mobility of NTN platforms results in variation of
resource availability and a high frequency of handovers. This
requires 3D mobility management strategies and dynamic
resource allocation [25], [26]. Additionally, as integrated
networks feature dynamic topologies, open links, and mobile
nodes, enabling high levels of security is a challenging
task [11]. Aside from conventional security techniques,
secure communications based on quantum technologies can
improve network security and data privacy [27]. Moreover,
multiple business actors can be included in integrated TN-
NTNs, service delivery. Thus, new business models should
be developed to identify the roles of each party and the
relationships between different entities [28].

III. BACKGROUND ON NETWORK VIRTUALIZATION
The 3GPP have included the definition of standardized
open network interfaces in the Next Generation Radio
Access Network (NG-RAN) architecture, since Release-
15 [29]. This promotes Open-RAN deployment and enables
interoperability and flexibility for future mobile networks.
Additionally, the Service-based Architecture (SBA) was
defined for 5G networks where a functionality is realized
by a set of network functions providing different services.
This type of architecture is also expected in 6G networks
which provides a modular framework that is future-proofed
and service-oriented. The SBA allows services from separate
vendors to be combined into one product, enabling network
slicing. The architecture is supported by network virtual-
ization techniques and AI models. This section covers the
fundamentals of network virtualization, where we present its
basic concepts and its main enabling technologies, including
SDN, NFV, and NS.

A. NETWORK VIRTUALIZATION AND SOFTWARIZATION
Network virtualization and softwarization are two innovative
paradigms introduced in 5G networks to enable network
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reconfigurability, programmability, and flexibility by separat-
ing the network functionalities and the underlying hardware.
Network softwarization: Softwarization defines the con-

cept where network functionalities run on software rather
than hardware, severing the software-hardware coupling. As
a result, updating existing functions or adding new services
is realized by updating the software, which increases the
network flexibility, and reduces the capital expenditures
(CAPEX) and operating expenses (OPEX) [16], [30].
Network virtualization: Virtualization in networking is the

concept of creating virtual instances, defined by abstracted
software-based representations, of the network entities and
network hardware and software resources. This allows the
software to run on commodity hardware rather than specific
equipment [9], [16], [30]. Network virtualization is based
on three main principles; namely abstraction, co-existence,
and isolation [6]. The abstraction creates virtual instances
of network components, including nodes and links and
network resources masking the physical infrastructure’s
specifics. The co-existence allows multiple virtual networks
to share the same physical infrastructure. The isolation
ensures the independent functioning of the various virtual
networks that share the same physical infrastructure [6], [31].
Network virtualization offers simplified network manage-
ment and scalability, flexible service provisioning, and
efficient resource utilization. It also provides service-centric
networking and guarantees QoS requirements. Virtualization
can be realized on different levels, including node, link,
resource and network levels.

B. ENABLING TECHNOLOGIES
Implementing network softwarization and virtualization in
next-generation networks requires multiple enabling tech-
nologies, including SDN, NFV, and NS, as well as cloud
and edge computing [6], [9], [16], [30], [31]. In this survey,
we focus on the use of the first three main technologies, i.e.,
SDN, NFV, and NS in integrated TN-NTNs,. We refer the
reader to [12], [32], [33], [34] for details on the adaptation
of cloud computing and Mobile Edge Computing (MEC) in
integrated networks.

1) SOFTWARE-DEFINED NETWORKING (SDN)

Conventional networks have inflexible decentralized archi-
tecture due to the coupling of the data and control planes. In
contrast, SDN is a networking paradigm that separates the
two planes and implements the network control logic in a
logically centralized fashion. To promote network flexibility,
programmability, and reconfigurability, SDN is based on four
key concepts [7], [14]:

• Separation of the control and data planes.
• Logical centralization of the control logic in external
SDN controller.

• Flow-based packet forwarding decisions.
• Network programmability through software applications
that run on top of the controller.

FIGURE 3. Illustration of SDN architecture.

We note that logically centralized network control does
not imply its physical centralization. Additionally, SDN can
be identified as a network architecture with three planes,
as illustrated in Fig. 3. (i) The data plane includes the
network infrastructure and southbound interfaces [14]. With
the aforementioned SDN principles, networking devices in
the physical infrastructure become simple packet-forwarding
devices without any intelligence. In order to control and com-
municate with these data plane elements, the SDN controller
uses southbound interfaces defined as standard and open
Application Programming Interface (API). This highlights
the data/control planes decoupling. Multiple southbound API
can be found in the literature, notably OpenFlow [35],
which is the most used protocol in SDN architectures. (ii)
The control plane is composed of network hypervisors,
the SDN controller, and northbound interfaces [7], [14].
Network hypervisors enable the virtualization of the SDN
architecture, allowing multi-tenancy and slicing of the
OpenFlow-based infrastructure. The SDN controller, also
known as the Network Operating System (NOS), is the key
component in the SDN paradigm. It is a software platform
running on commodity hardware offering abstractions and
THE necessary resources for developers to simplify the
programming of data plane devices. By logically centralizing
the network intelligence, the NOS offers a global view of
the network and solves issues of traditional networks in
terms of flexibility, reconfiguration, and programmability.
Northbound interfaces are API that enable the abstrac-
tion of the instructions employed by southbound API for
programming of forwarding elements. They are provided
by the SDN controller for application developers in the
management plane. (iii) The management plane contains
network applications that define the control logic, which
will be enforced by the control plane and executed by
the data plane [14]. Network applications in the SDN
architecture can be divided into five categories; namely traffic
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FIGURE 4. Illustration of NFV architecture [36].

engineering, applications related to mobile and wireless
networks, network monitoring and measurement, security-
oriented applications, and data centers networking.
Therefore, in SDN architecture, a network policy is

defined by the management plane, enforced by the control
plane, and executed by the data plane. For example, in
order to send packets from source S to destination D, the
network application in the management plane should select
the routing path and command the NOS in the control plane
to set corresponding forwarding rules that will be used by
data plane devices to route packets from S to D [14].

2) NETWORK FUNCTION VIRTUALIZATION (NFV)

For deployment of NF such as firewalls, Intrusion Detection
System (IDS), and Network Address Translator (NAT),
conventional networks utilize middleboxes — which are
hardware equipment designed for specific purposes. This
results in inflexible networks in which the implementation
of a new network function is expensive and time-consuming.
NFV is based on the idea of separating the NF from the
underlying hardware on which they are running [8], [15].
Various virtualization approaches can be used to create
and implement the VNF. This includes not only Virtual
Machine (VM) but also other technologies such as containers
and unikernels. As a result, the CAPEX and OPEX are
significantly reduced, and new services can be deployed with
higher flexibility and shorter time to market [9]. In [36],
the European Telecommunications Standards Institute (ETSI)
describes the NFV architecture containing four main blocks
as shown in Fig. 4: (i) the Network Function Virtualization
Infrastructure (NFVI) composed of the physical and virtual
resources needed for the NFV implementation, (ii) the VNF
which are the software-based implementation of the NF
and the Element Management (EM) responsible for the
fault, accounting, configuration, performance, and security
management functionalities for the VNF, (iii) the Operations
Support Systems (OSS) and Business Support Systems (BSS)
that offer management and orchestration for the operator’s
legacy systems, (iv) the NFV MANO which ensures the VNF
provision and manages the life cycle of the resources and the

VNF [9], [15]. In particular, the NFV MANO block includes
the NFV Orchestrator (NFVO), VNF Manager (VNFM),
and Virtualised Infrastructure Manager (VIM). The NFVO
manages the lifecycle of network services and orchestrates
the NFVI resources across the VIM. Meanwhile, the VNFM
and VIM manage the VNF instances lifecycles and the NFVI
resources, respectively.

3) NETWORK SLICING (NS)

In 2015, The Next Generation Mobile Networks (NGMN)
Alliance introduced network slicing in 5G networks as
part of their 5G white paper [37]. NS enables multiple
virtual networks to operate on shared physical infrastructure,
providing multi-tenant software-oriented networks [9]. It is
defined by the 3GPP as a technology that allows operators
to build customized networks to offer optimized solutions
for various market scenarios with different performance
requirements [9], [38]. NS is based on several key principles,
including automation, isolation, customization, elasticity,
programmability, end-to-end (E2E) property, and hierarchical
abstraction, defined as follows [9], [16], [39]:

• Automation permits third parties to request the creation
of a slice with the needed Service Level Agreement
(SLA) defining the desired requirements without manual
intervention or fixed contractual agreements, offering
on-demand NS configuration.

• Isolation guarantees that each tenant obtains the desired
performance and security requirements by properly
specifying the level of resource separation.

• Customization ensures efficient utilization of the
resources allocated for each tenant, in order to satisfy
their service requirements.

• Elasticity assures that, with varying network parameters,
the resource allocation of each network slice can
meet the specified service requirements under varying
network conditions.

• Programmability permits third parties to manage the
resources allocated to their slice using open API, which
enables the automation, customization, and elasticity
properties of the NS.

• End-to-end (E2E) is a NS property that facilitates
service delivery from service providers to end-users
by unifying different network layers and heterogeneous
technologies.

• Hierarchical abstraction offers different levels of
abstraction by repeating the resource abstraction in a
hierarchical manner, allowing multiple network slice
services to be built on top of each other.

The principles of NS are implemented through its three-
layered architecture, which is described by the NGMN
alliance in [40]. The three layers are the service instance
layer, the network slice instance layer, and the resource
layer, as illustrated in Fig. 5. The service instance layer
comprises services offered by either the network operator or
by third parties, such as application providers and verticals,
where each service is defined by a service instance. The
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FIGURE 5. Network slicing architecture by NGMN [40].

network slice instance layer includes network slice instances.
Each instance refers to a set of network functions and
resources that form a complete logical network customized
to satisfy specific performance requirements demanded by
service instances. A network slice instance is created by
the network operator using the network slice blueprint and
it can be shared by several service instances. Additionally,
it can include a number greater or equal to zero of sub-
network instances, which can be shared by other network
slices. A sub-network instance is a collection of network
functions and resources that do not necessarily constitute a
complete logical network. Finally, the resource layer contains
network functions and physical/logical resources offered by
the network infrastructure.
The 5G/6G NS can be based on different architecture

configurations. While some advocate for a two-domain
structure including the Core Network (CN) and the RAN,
others adopt a three-domain architecture where the transport
network is linking the RAN to the CN. In this work,
we consider the second network architecture where the
NS can be carried out in three domains [16], [41], [42].
CN Slicing involves virtualization, isolation, and customiza-
tion of main core network functions such as the User
Plane Function (UPF), the Session Management Function
(SMF), the Policy Control Function (PCF) and the Access
and Mobility Management Function (AMF) [9], [43], [44].
These functions can be either shared among multiple
network slices to reduce management complexity, or they
can be dedicated to particular slices based on specific
requirements. Using the NFV technology, these functions
can be implemented as VNF. Hence, the main objectives
in CN slicing include the optimization of VNF embedding,
Service Function Chaining (SFC) provisioning, and virtual
resource allocation to deliver different services for multiple
slices. Transport Network Slicing revolves around virtual-
ization, isolation, and customization of transport domain
resources, which is composed of the physical infrastructure
(routers, switches, gateways, links, etc) responsible for
data transmission [19], [41]. The SDN paradigm can be

employed to facilitate transport network slicing, performing
resource allocation and path splitting and reconfiguration
to satisfy QoS requirements of various slices. RAN Slicing
refers to virtualization, isolation, and customization of radio
access components such as base stations, antennas, and
other radio equipment that provide wireless connectivity
to end-users [19], [41]. Since computation and storage are
moving towards the edge network in 5G/6G, the RAN
not only includes communication (networking) resources
but also computing and caching resources. Thus, RAN
slicing involves management and orchestration of different
resources, as well as device/user association meeting QoS
requirements and adapting to network changes.
Although certain use cases may not require NS, deploying

E2E NS is essential to deliver a variety of 6G applications,
particularly large-scale services that are implemented in
public networks. This involves the creation and management
of complete slices dedicated to a specific service from the
core network passing by the transport network to the radio
access network [42], [45]. E2E slice admission control, E2E
slice resource management and orchestration, and E2E slice
lifecycle management are the main building blocks of E2E
NS. Moreover, to achieve the co-existence of various network
slices providing multiple services with different performance
requirements, network management, and orchestration is
another major component in NS [9], [39], [46]. It can be
divided into two layers: the service management layer
and the network slice control layer [9]. While the lat-
ter deals with resource management and network slice
management and orchestration, the former handles service
operations, including abstraction, admission control, and
creation. Additionally, the key enabling technologies of NS
include hypervisors, virtual machines, containers, SDN and
NFV, as well as cloud and edge computing [9], [46].

IV. OVERVIEW ON AI IN NETWORK VIRTUALIZATION
As a key enabler of 6G, AI is expected to play a major role in
the advancement of next-generation networks. In this section,
we present an introduction to the applications of AI in the
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realm of network virtualization. In particular, we discuss the
rationale behind the use of AI models in 6G networks where
conventional approaches are not able to offer the required
levels of efficiency and optimality. We also give an overview
of AI techniques, including supervised, unsupervised, and
reinforcement learning. Additionally, we briefly highlight the
primary research areas where AI algorithms are often used
in the context of virtualization technologies, namely SDN,
NFV, and NS.

A. MOTIVATION
With large numbers of users, diversified applications, and
integrated topologies, 6G networks become substantially
larger, more dynamic, and heterogeneous. This increases
the complexity of realizing efficient network virtualiza-
tion, network management, resource allocation, and traffic
prediction. Consequently, conventional methods can no
longer provide the necessary efficiency and optimality
required for proper network operation [42], [47]. In fact,
traditional approaches are typically model-based, which
imposes several limitations. First, they require a priori knowl-
edge of the network traffic, which is not suitable for highly
dynamic networks [47], [48]. Second, they are intractable
and computationally demanding for large-scale networks.
Third, they may provide sub-optimal solutions depending
on the statistical models’ accuracy [42]. Meanwhile, AI-
based methods present improved solutions that are more
suitable for future 6G networks compared to traditional
techniques [47], [48], [49], [50], [51], [52]. They can provide
model-free algorithms with low computational complexity
after offline training. This not only solves the issues
of conventional approaches but also introduces network
management automation and improves network performance.

B. OVERVIEW ON AI
AI is a discipline of computer science that seeks to develop
intelligent machines and systems capable of thinking and
acting like humans. These smart machines would have the
ability to carry out tasks such as learning, decision-making,
and perception, which usually involve human intellect. AI
is a broad field that includes both learning-based and non-
learning-based approaches [53], [54]. On the one hand,
non-learning methods, such as rule-based systems, solve
problems using well-defined rules provided by the program-
mers. This allows them to excel at solving explicit problems
without relying on a data-based learning process. However,
they perform poorly when dealing with sophisticated, less-
structured tasks like speech and image recognition. On the
other hand, learning-based AI techniques rely on algorithms
that learn patterns from data and improve over time without
explicit programming. Consequently, they can learn how
to accomplish a certain task autonomously, allowing them
to thrive in the face of complex problems. Learning-
based methods involve Machine Learning (ML) algorithms,
which have recently drawn the attention of researchers from
numerous domains, including finance, biology, and robotics.

FIGURE 6. Classification of ML algorithms.

In the field of wireless communications, ML algo-
rithms have been adopted to solve a variety of problems
such as resource management, network optimization,
channel prediction, traffic forecasting, and network secu-
rity [55], [56]. In particular, supervised and unsupervised
learning algorithms have shown supremacy in terms of
prediction and classification problems, which promotes
proactive decision-making and resource allocation [41], [57].
Additionally, Reinforcement Learning (RL) techniques are
efficient for decision-making tasks in dynamic environments,
which facilitate network and resource management and
orchestration [58]. Moreover, Federated Learning (FL) solves
the issues of data privacy and reduces communication costs
by promoting distributed learning [41], [58].
ML is a sub-field of AI where the machine is trained

to learn patterns in provided data without explicit program-
ming in order to solve a specific problem [53], [59]. ML
algorithms can be classified based on different factors, as
illustrated in Fig. 6. Considering the model’s architecture
and complexity, ML approaches are typically categorized
as shallow and Deep Learning (DL) models. On the one
hand, shallow ML techniques rely on simple architectures
and require manual feature engineering to facilitate their
learning. While they can be advantageous in specific situa-
tions with limited complexity and scarce data, they exhibit
poor performance when faced with complex problems.
Examples of shallow models include linear regression,
shallow neural networks, and decision trees. On the other
hand, DL is a subfield of ML that involves training artificial
neural networks to solve sophisticated problems. These
Deep Neural Network (DNN) are composed of multiple
layers of interconnected neurons. These neurons process
data hierarchically by extracting higher-level features in
each layer to generate the final output. DL models have
demonstrated outstanding performance in complicated tasks
such as image and speech recognition, natural language
processing, and gameplay. However, they usually require
large training datasets and high computational resources.
Commonly used DNN architectures include Convolutional
Neural Network (CNN) for computer vision, Recurrent
Neural Network (RNN) for sequential data processing tasks,
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TABLE 4. AI applications in network virtualization.

and Generative Adversarial Network (GAN) for new data
generation [60].
Another classification of ML algorithms involves the

learning approach which the model adopts to learn from the
data. Four main categories can be distinguished:
Supervised learning: The algorithm is trained on a labeled

dataset, known as the training set, where data points
are annotated with the target values. The supervised ML
algorithm learns a mapping function between the input data
points and their target outputs. The function then can predict
the output labels for previously unseen inputs. Supervised
learning algorithms are typically used for classification
and regression problems. Examples of such models include
linear regression, logistic regression, Support Vector Machine
(SVM), decision trees, and neural networks [59], [61].
Unsupervised learning: The algorithm is trained on an

unlabeled dataset, where inputs are provided without target
outputs. The unsupervised ML algorithm learns to identify
the hidden patterns and structures in the data. Unsupervised
approaches are employed for different purposes, such as
clustering, dimensionality reduction, and data visualization.
Such methods comprise K-means, hierarchical clustering,
Principal Component Analysis (PCA), and Locally Linear
Embedding (LLE) [59], [61].
Semi-supervised learning: This method combines both

supervised and unsupervised learning by training the model
on a dataset that contains both labeled and unlabeled data.
Semi-supervised techniques are beneficial when labeled data
is limited or costly to collect [61].
Reinforcement learning: RL algorithms learn through the

interaction with the environment. Based on the knowledge it
gathers from observing its environment, an agent learns to
select the actions that will maximize a certain reward. The
objective is to learn a policy maximizing long-term rewards.
Q-learning, State–Action–Reward–State–Action (SARSA),
and Actor-Critic are examples of RL algorithms that are
commonly utilized for decision-making in dynamic environ-
ments [62].

In the aforementioned ML techniques, data is collected in
a single location, and centralized learning is conducted to
train the model. Federated Learning (FL) presents a paradigm
shift in ML that promotes distributed learning [63]. It enables
the distributed devices to train local models using their own
data, and only the learned features are sent to a central entity
for aggregation. This solves privacy preservation issues and
reduces data transfer expenses.

C. AI APPLICATIONS IN NETWORK VIRTUALIZATION
AI is expected to become an intrinsic and embedded
feature in future networks. It is envisioned to deeply
integrate into every aspect of 6G networks, including network
virtualization [4], [6]. In particular, ML algorithms show
great potential in solving SDN, NFV, and NS issues, where
traditional methods are no longer efficient in dynamic,
heterogeneous, and large-scale networks. Several surveys are
reported in the literature reviewing the applications of AI
techniques in virtualization [42], [47], [51], [57], [64], [65],
[66], [67], [68]. Here, we briefly highlight the main research
directions where ML algorithms are commonly used in the
context of SDN, NFV, and NS, as summarized in Table 4.

1) AI APPLICATIONS IN SDN

In the context of SDN-based networks, unsupervised and
supervised learning techniques can be used to solve the
Controller Placement Problem (CPP). Methods such as
K-means, neural networks, and decision trees can predict
the optimal locations of the SDN controller using traffic
distribution [65], [69]. Moreover, RL algorithms can be
employed in routing optimization, where the controller,
which is responsible for traffic flow control and routing,
can be considered as an agent in a decision-making RL
algorithm. It interacts with the environment described by
the network status and learns to select the routing paths
that optimize specified metrics; namely packet loss rate,
and energy efficiency [57], [70]. Additionally, supervised
learning models, including LSTM, linear regression, and
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Naive Bayes, among others, are combined with heuris-
tic algorithms to offer dynamic routing. Consequently,
network performance metrics such as delay and Quality
of Experience (QoE) are optimized. Traffic prediction and
classification, resource management, and network security
issues can be addressed and optimized by applying ML
algorithms [57], [65], [66].

2) AI APPLICATIONS IN NFV

In NFV-enabled networks, AI models are utilized for NFV
management and orchestration [58], [98], [99], [100], VNF
and SFC deployment [72], [79], [80], [81], as well as
network security [106]. In particular, the SFC and VNF
embedding problem involves the mapping, configuration and
placement of VNF at suitable hosting locations for service
provision. These problems can be formulated as a decision-
making task where RL and Deep RL (DRL) agents can be
used to obtain optimal VNF placement and configuration
strategies [74]. This enables automated and dynamic SFC
and VNF deployment, which improves resource utilization
efficiency and service delivery.

3) AI APPLICATIONS IN NS

The applications of AI in NS include slice admission
control [67], [83], slice traffic prediction [47], [89], slice
resource management and orchestration [68], [82], [101],
E2E NS [84], [85], and network security [41], [104]. Slice
admission control is a decision-making task, where the algo-
rithm decides whether to accept or deny a new slice request
in multi-tenancy networks, taking into account resource
availability and QoS requirements [42], [68]. To improve
network efficiency and provide slice admission automation,
RL and Deep RL (DRL) approaches are used. They
learn optimal admission strategies to optimize a specified
objective, such as profit maximization, resource utilization
enhancement, and utility maximization. Meanwhile, ML
algorithms can enable automatic, intelligent, and proactive
E2E NS. Specifically, reinforcement, deep, and federated
learning can be adopted for E2E slice admission control,
E2E slice resource management and orchestration, and E2E
slice lifecycle management.

4) COMMON AI APPLICATIONS

Applying AI approaches in traffic prediction and classifica-
tion, resource management and orchestration, and network
security is common to the three virtualization technologies.
On the one hand, traffic prediction and classification is
mainly considered in SDN for proactive and efficient
resource management and optimized routing. It is used
in NS to enhance slice resource utilization and lifecycle
management, minimize SLA violations and ensure fairness
in terms of resource allocation to each slice. Classification
methods, including decision tree, random forest, and SVM,
as well as DNN — particularly RNN and CNN — are
employed to identify and classify different types of network
traffic flows. Meanwhile, regression ML algorithms such as

linear regression and Long Short-Term Memory (LSTM)
are adopted to predict future network traffic [6], [42],
[47], [65], [66]. On the other hand, AI-based resource
management and orchestration is adopted in SDN, NFV,
and NS, offering efficient resource utilization, dynamic
resource allocation, and optimized network performance.
Various ML algorithms can be utilized in this context.
For instance, graph neural networks, LSTM, and k-nearest
neighbors are used for NFV resource prediction, whereas
model-free RL and DRL approaches are adopted to dynam-
ically optimize VNF resource allocation and automate VNF
management functionalities [58]. Also, since the SDN and
slice resource allocation problems can be considered as
optimization problems, they can be solved by model-free
RL or DRL algorithms, offering efficient, adaptive, and
intelligent resource management [42], [47]. Moreover, the
utilization of AI models such as DNN and RL agents
can improve network security by autonomously and proac-
tively detecting and mitigating cyber-attacks and malicious
activities in based-virtualization networks [41], [50], [67].
ML-based classification algorithms, including SVM and
random forests, can identify and detect malicious activities
such as Distributed Denial of Service (DDoS) attacks by
analyzing the network traffic. In SDN-enabled networks, the
controller can automatically identify the appropriate strate-
gies for network protection in real-time, using RL [65], [66].
In addition, IDS can employ ML algorithms such as Hidden
Markov Models for attack prediction to proactively protect
the network.

V. TAXONOMY OF VIRTUALIZATION IN INTEGRATED
TN-NTNS
In this section, we provide a comprehensive taxonomy
of virtualization in integrated TN-NTNs,. In addition, we
present a brief summary of the main challenges associated
with the adaptation of SDN, NFV, and NS technologies in
these networks.
As shown in Fig. 7, the taxonomy offers a structured

framework to categorize and organize the works reported
in the literature. Using a four-level classification, this
taxonomy serves as a guide for comprehending the scope
of documented research on the subject matter. The first
categorization is based on the level of TN-NTNs, integration,
resulting in three categories: the S-T, Aerial-Terrestrial (A-
T), and S-A-T segments. Each level of integration encompass
different types of NTN platforms with various features. In
the S-T segment, GEO and NGEO satellites are combined
with TN offering global connectivity. In the A-T segment,
aerial platforms are integrated with TN to flexibly meet the
increasing user demands. Meanwhile, the S-A-T segment
combines space, air and ground nodes to deliver various
6G applications. Consequently, researchers implement virtu-
alization technologies while taking into account the unique
characteristics of each segment. The next classification
level involves the primary virtualization technology on
which the reported work focuses, yielding three types of
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FIGURE 7. Taxonomy of Virtualization in Integrated Terrestrial and Non-Terrestrial Networks.

networks: SDN-, NFV-, and NS-based networks. Then,
we concentrate on the type of studies conducted by the
authors. They either examine architectural considerations

and experimental implementations or tackle the virtualization
issues employing conventional or AI-enabled methods. As
a result, the contributions are divided into three classes:
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TABLE 5. Summary of main virtualization challenges in integrated TN-NTNs.

architectural and experimental implementations, traditional
approaches, and AI-based approaches. Lastly, the reported
works are further classified according to the category of
the addressed problem, associated with the adaptation of
virtualization technologies in integrated networks.
The development of virtualization technologies in inte-

grated TN-NTNs, is confronted with multiple difficulties.
In Table 5, we outline the most prevalent challenges and
their respective categories, as well as the most com-
mon optimization objectives and evaluation metrics. For
SDN-enabled networks, CPP, routing optimization, satellite
handover management, and resource allocation are the
primary concerns. The main focus in NFV-enabled networks

is on VNF Placement (VNF-P) and SFC embedding. In
NS-based networks, the issues pertain to user association
and RAN resource management. Although the obstacles
mentioned are specific to each virtualization technology, the
implementation of SDN, NFV, and NS approaches in inte-
grated networks presents common challenges. This includes
traffic scheduling and offloading, as well as network security
and resilience. These problems are typically formulated
as graph-based optimization problems since the integrated
TN-NTNs, are generally modeled as a graph describing
their topology. The graph nodes represent the network
components such as end-users, controllers, switches, satellite
gateways, etc. The graph edges are the communications links
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connecting these components. Compared to TN, these
problems become more complex because of the dynamic
environment, the large-scale topology, and the limited on-
board resources of NTN platforms. Additionally, these
challenges can be jointly considered with the satellite gate-
way placement and the UAV positioning problems. While
this enhances the network’s performance, it further increases
the complexity of the problems. Consequently, these issues
are often classified as NP-hard with multiple constraints.
Researchers attempted to solve them by employing both
conventional optimization techniques and AI algorithms to
cope with the characteristics of these networks.

VI. VIRTUALIZATION IN THE S-T SEGMENT
The integration of GEO and NGEO satellites with TN
offers global connectivity and bridges the digital divide. To
enable seamless S-T integration, virtualization technologies
are employed while considering the unique characteristics
of these spaceborne platforms. In this section, we review
the numerous efforts that have been conducted to tackle the
challenges arising from the application of SDN, NFV, and
NS technologies in S-T networks.

A. SDN-ENABLED NETWORKS
Researchers have recently been dedicating their efforts to
developing SDN-enabled integrated S-T networks. They
explored key architectural considerations and experimental
implementations. In addition, they tackled obstacles asso-
ciated with the implementation of SDN concepts using
conventional or AI-enabled methodologies.

1) ARCHITECTURES AND EXPERIMENTAL
IMPLEMENTATIONS

The SDN paradigm was first introduced into satellite
networks in [111] to improve efficiency and flexibility.
Several works have focused on the characterization of
SDN-based S-T networks for specific use-case scenarios.
For example, the authors of [107] propose an SDN-
enabled architecture for post-disaster communication. They
model the network as a graph-based meta-model to solve
networking problems. In [108], an architecture that com-
bines SDN with Information-Centric Networking (ICN)
is proposed for multimedia broadcast communications.
Heuristic caching schemes are designed for efficient content
retrieval based on a multi-controller structure. Another
application-oriented SDN-based architecture is developed
in [114] and [121] for broadband communications. The
authors of [114] present a flexible and reconfigurable
broadband satellite network architecture. They also pro-
pose an optimized resource management strategy using
a time-evolving resource graph. In [121], a cloud-based
architecture for SDN/NFV-enabled integrated S-T networks
is introduced, with a detailed analysis of its functionalities.
Additionally, the researchers in [113] introduce the Software-
Defined Space and Terrestrial Integrated Network (SD-STIN)
to promote ubiquitous global connectivity by combining

SDN and MEC technologies. They discuss the issues of
the proposed architecture, involving mobility management,
resource allocation, and security.
Meanwhile, other efforts were concentrated on the imple-

mentation aspects of SDN-based integrated S-T networks,
utilizing simulation tools. For instance, the OpenFlow
protocol was used in [112] to implement and validate a
prototype of the proposed SD framework. The authors also
provide two QoS-based heuristic algorithms for routing and
bandwidth allocation in delay-tolerant networks. Moreover,
to study the feasibility of the Heterogeneous Network
(HetNet) architecture in [109], the EmuStack emulation
platform was utilized to assess the proof-of-concept pro-
totype. Enabled by SDN and NFV, HetNet is a flexible
network architecture based on ICN and locator/ID split
concepts. It offers routing scalability, heterogeneous network
convergence, mobility support, and efficient content delivery.
The network simulator NS3 and the OpenFlow protocol are
extended in [110] to implement the proposed SDN-based
network and evaluate the designed routing algorithm. This
integrated S-T architecture comprises hierarchical controllers
for heterogeneous resource management. Additionally, the
feasibility of the OpenFlow protocol in S-T networks was
studied in [119] using a terrestrial SDN controller. The
authors employ the Linktropy mini2 emulator to emulate
the S-T channel and the Trema framework to design the
OpenFlow controller. The Mininet environment is a widely
used simulation tool to develop SDN-enabled networks. The
researchers in [120] combine the Mininet environment, the
POX SDN controller, and the OpenFlow protocol. They study
the network performance of the proposed S-T network in
massive multimedia content delivery applications. For S-T
mobile backhaul networks, the authors of [118] implement
an SDN-based laboratory testbed. To enable SDN-based
traffic engineering applications, they use a Ryu SDN con-
troller, OpenSAND, and OpenFlow. In [28], an SDN-based
S-T network architecture is proposed with an implemen-
tation roadmap using extended OpenFlow. Furthermore,
the Virtual Network Embedding (VNE) problem is taken
into account when designing SDN-based S-T networks
in [115], [116], [117]. In [115], Ryu controller and Mininet
are employed for VNE algorithm evaluation in highly
dynamic LEO S-T backhaul networks. Also, a dynamic VNE
algorithm is validated in [116] through laboratory testbed
implementation using the STK toolkit, Ryu controller, and
OpenFlow.

2) TRADITIONAL APPROACHES

Controller placement problem: Acting as the brain of SDN-
based networks, the controller provides logically centralized
intelligence, enabling network flexibility and facilitating its
management. Hence, the CPP emerges as a key issue requir-
ing the strategic positioning of the SDN controllers [258].
The CPP can be categorized based on the SDN controller
structure, which involves three configurations:
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• Single controller configuration: the entire network relies
on a single centralized SDN controller, enabling simpli-
fied implementation and reduced complexity. However,
it is not suitable for large-scale networks because of
single-point failure and scalability limitations.

• Distributed multi-controller configuration: alleviates the
limitations of a single controller by deploying multiple
SDN controllers within the network. The distributed
controllers work cooperatively to manage their respec-
tive sub-networks. This enhances fault tolerance and
adaptability at the cost of increased complexity and
coordination overhead.

• Hierarchical multi-controller configuration: extends the
previous approach by organizing the distributed con-
trollers into a hierarchical structure. Higher-level
controllers oversee the network by coordinating between
lower-level controllers, improving scalability and flex-
ibility.

Moreover, the CPP can be addressed in a static or dynamic
manner [123]. In static CPP, controller locations are opti-
mized once during the initial network design and are not
altered throughout its lifetime. This assumes time-invariant
network conditions leading to adaptability and scalability
issues, especially in highly dynamic NTN. Meanwhile, the
dynamic CPP continuously adjusts the Controller Placement
(CP) based on the changing network topology, traffic
patterns, and service requirements. This results in adaptive,
scalable, and optimized CP. Due to the incompatibility of
terrestrial CPP solutions, efforts have been dedicated to
resolving this problem in S-T networks using multi-controller
and hierarchical multi-controller configurations.
On the one hand, the works in [127], [128], [129], [130],

[131], [132] focus on designing CP techniques in networks
with multi-controller structure while considering different
types of CPP. In [127], the static CPP is formulated as
a joint optimization of the average control path reliability
and the controller to gateway latency. It is solved using a
heuristic greedy algorithm, producing near-optimal solutions.
In addition, the dynamic CPP is studied in [129] and [132]
with the objectives of average flow setup time minimization
and traffic load minimization, respectively. The authors
of [129] solve the CPP using the Python Gurobi framework
and show that their solution outperforms the static technique
in LEO constellation-based networks. Meanwhile, in [132],
two online algorithms are designed to solve the dynamic
CPP using a regularization framework. The approximate
algorithm offers global optimal solutions, whereas the
heuristic approach is proposed for large-scale networks.
On the other hand, the efforts reported in [122], [123],

[124], [125], [126] address the CPP using hierarchical
multi-controller configuration. The static CPP is studied
in [122] with the objective of joint cost minimization and
stability enhancement. A slave controller selection strategy is
proposed and validated in terms of switch-to-controller and
controller-to-controller delays. Besides, the dynamic CPP

with hierarchical control is examined in [124], [125], [126],
[133]. The authors of [124] propose the dynamic controller
placement and adjustment algorithm, minimizing the cost of
controller deployment and management. The NS3 simulation
results show that their algorithm presents improved load
balancing compared to the solutions in [123], [130]. In
addition, an adaptive controller placement and assignment
algorithm minimizing the management cost is designed
in [125]. The algorithm is built on the control relation graph
technique, and it outperforms existing works [129], [130].
With the goal of networking response latency minimization,
the CPP is modeled as a capacitated facility location
problem in [126]. The on-demand dynamic approximation
algorithm is proposed to obtain an approximate solution
satisfying the dynamic demands. Moreover, the authors
of [123] investigate both the static and dynamic CPP to
minimize the cost of controller deployment and assignment.
They design a heuristic algorithm based on the Particle
Swarm Optimization (PSO) method. Meanwhile, a Simulated
Annealing (SA)-based dynamic CP scheme is proposed
in [133]. The algorithm aims to minimize both delay and
controller load for SDN-enabled S-T networks.
In integrated S-T networks, the CPP can be jointly

considered with the satellite gateway placement problem.
This results in a multi-objective optimization problem. The
Joint Controller and Gateway Placement problem (JCGPP) is
considered in [130] and [131], with the objective of network
reliability maximization. The problem in [130] is solved
using the proposed simulated annealing and clustering hybrid
algorithm. This solution provides approximate optimal
results with lower computational complexity compared to the
enumeration algorithms. Meanwhile, the JCGPP in [131] is
solved using two meta-heuristic algorithms, namely a double
SA algorithm, and a genetic algorithm-based approach. The
results show that they outperform the solution in [130] in
accuracy and computational complexity.
Routing algorithms: Due to the large-scale and dynamic

topology, routing algorithms designed for TN are inefficient
in the S-T segment. Thus, developing routing mechanisms
that adapt to these characteristics is crucial in S-T integration.
In SDN-based routing, the controller plays an integral role
as the central entity responsible for controlling and selecting
paths to route traffic flows. Hence, routing schemes can be
classified according to the control structure.
Routing algorithms in SDN-enabled S-T networks with

single control structures are reported in [134], [135], [136],
[137], [138], [139], [140]. A congestion-aware load bal-
ancing routing algorithm is proposed in [134] to optimally
distribute traffic load and minimize link congestion. The
proposed scheme outperforms Dijkstra’s and Explicit Load
Balancing techniques in terms of latency, packet drop rate,
and throughput. Another work that focuses on load balancing
optimization is reported in [135]. It mitigates the problems
of load imbalance and congestion through a Multi-Path
TCP (MPTCP)-based load balancing-aware routing method.
The MPTCP routing technique is also used in [136], [139]
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while satisfying different optimization objectives. Moreover,
in [139], the network utility is maximized, and two algo-
rithms are developed based on SDN cooperated MPTCP.
These methods select and adjust sub-flow routes while
avoiding other sub-flow bottlenecks and adapting to the
load dynamics. The joint cost minimization and traffic flow
maximization are considered in [136]. The proposed segment
control-based MPTCP path selection algorithm combines
segment control technology with the SDN paradigm. This
reduces the network delay and enhances the transmission
reliability and efficiency, as shown by the experimental
results. The authors of [137] employ segment routing
in SDN-enabled CubeSat networks while minimizing the
link cost. They propose an online segment routing-based
algorithm to compute routes in a near-optimal manner. In
addition, link cost minimization is also considered in [138]
for large-scale LEO S-T networks. The Depth First Search
(DFS) technique and Dijkstra’s algorithm are combined to
design a dynamic routing algorithm that outperforms the DFS
in delay and packet drop rate. The software-defined multicast
routing is studied in [140] for large-scale multimedia
LEO satellite networks. With the goal of bandwidth-saving
maximization, the authors build a multicast routing algorithm
based on a Multi-Layer Rectilinear Steiner Tree (ML-RST).
Furthermore, the works in [141], [142], [143], [144],

[145] study routing optimization in networks with multi-
controller structures. A dynamic routing algorithm is
introduced in [141] for LEO satellite networks. The authors
maximize the path utility to obtain optimal routes, consid-
ering the effect of the Inter-Satellite Link (ISL) attributes
on link quality. The focus of [142] is to optimize the
QoS requirements in the design of a routing algorithm
based on Bresenham’s and Dijkstra’s techniques. Also,
in [143], researchers propose an E2E service-oriented
fragment-aware routing algorithm for LEO S-T networks.
They optimize the load balancing, latency, and wave-
length fragments and employ a heuristic approach based
on an ant colony. In [145], the joint network overhead
minimization and transmission reliability maximization are
considered. The proposed multi-path selection algorithm
relies on a PSO based heuristic approach. Moreover, the
authors of [146] design a load-balanced routing scheme
in S-T networks with hierarchical multi-controller struc-
ture. They employ a distributed heuristics-based approach
to minimize the signaling overhead. Latency and packet
drop rate are the metrics they use to assess their
solution.
Satellite handover management: In integrated S-T

networks, satellite handover management is a key issue
because of the dynamic topology. The strategies can be
categorized based on the handover link [147]:

• Satellite handover refers to the transfer of the connection
from one satellite to another.

• Spotbeam handover takes place between the multiple
beams of the same satellite.

• ISL handover occurs when links between satellites in
neighboring orbits are temporarily lost, resulting in the
handover of the current connections relying on these
ISL.

Most research on handover management in SDN-based S-T
networks focuses on satellite handover [147], [149], [150],
[151]. In [147], a potential game-based handover strategy
is proposed to maximize the utility of mobile terminals in
LEO S-T networks. The authors of [149] develop a seamless
handover algorithm with the goal of selecting the UE-satellite
link with the highest Received Signal Strength Indicator
(RSSI). Compared to the hard and hybrid handover schemes
in [259] and [260], the seamless handover demonstrates
increased throughput, reduced handover latency, and a higher
level of user QoE. Meanwhile, researchers in [150] and [151]
concentrate on the problem of flow table management during
handovers in SDN-based S-T networks. They designed a
heuristic timeout strategy-based mobility management algo-
rithm aiming to minimize the handover drop-flow. Besides,
the traffic gateway handover is considered in [148], where
the traffic is reallocated between the satellite gateways. A
handover control strategy is developed based on the Smart
Gateway Diversity (SGD) management logic. The scheme
minimizes the number of reallocated groups of user beams
and demonstrates improved throughput and Signal-to-Noise
Ratio (SNR) quality.
Other research directions: Another area of research in

integrated TN-NTNs, virtualization is traffic scheduling and
offloading. While scheduling involves orchestrating data
transmissions, offloading refers to the redirection of tasks and
traffic between network nodes. Computation offloading and
data traffic offloading are two categories of the offloading
problem. Researchers in [155] tackle the issue of data
traffic offloading and spectrum management in SDN-enabled
S-T networks. They propose a scheme based on auction
theory that maximizes the utility of the satellite and the
Mobile Network Operator (MNO) for multicast multimedia
communications. In addition, network security is examined
in [152], where the authors propose a two-step secure
dynamic access method in a hierarchical multi-controller
architecture. Network resilience is improved through traffic
engineering for S-T backhaul networks in [154] and [153].
The available terrestrial and satellite capacity allocation is
optimized to maximize network utility.

3) AI-BASED APPROACHES

The combination of AI techniques and SDN in the S-T
segment is aimed at solving networking issues, including
CPP, resource management, routing, and security. In [156],
the JCGPP is solved using an AI-based approach in a
multi-controller S-T network architecture. A SA partition-
based K-means algorithm is designed to maximize network
reliability. Compared to enumeration algorithms and exist-
ing work in [130], the AI-based method shows better
performance in terms of latency and network reliability.
Also, a multi-agent deep Q-learning technique is employed
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to design a dynamic CP scheme in [157]. The joint
optimization of flow setup delay, load balance, and switching
cost yields the optimal controller locations and controller-
switch assignments. The results demonstrate the superiority
of the DRL-based approach over K-means in delay, load
balance, and switch number. Moreover, AI-based routing
algorithms for SDN-enabled S-T networks are examined
in [158] and [159]. A dynamic congestion control mechanism
based on Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) is proposed in [158] to improve adaptability for
massive data delivery applications. It achieves reduced delay
and enhanced content delivery rate and throughput compared
to the delay-based path-specified congestion control protocol.
Additionally, the authors of [159] propose an ensemble
Support Vector Regression (SVR)-based QoS-aware dynamic
routing strategy. Compared to the algorithms in [112], this
solution shows improvements in delay, packet loss rate, and
throughput while ensuring better QoS.
Because of their high performance in classification tasks,

AI models are used for attack detection to enhance network
security in SDN-based S-T networks. In [161], SVM is
adopted to detect DDoS attacks considering the time-variance
of satellite networks. Based on Mininet simulations, the
proposed technique outperforms traditional approaches in
terms of detection accuracy, false alarm rate, and F1 score.
Meanwhile, ML classifiers are combined with a FL frame-
work in [162] to classify the traffic and detect attacks
while improving data privacy. The OpenMined-based FL
security solution is implemented, and experimental trials
show improved accuracy, F1-score, precision, and recall.
Resource management is another challenge in SDN-

enabled S-T networks. We can distinguish between two types
of resource management. The first category pertains to the
control plane, which mainly focuses on the allocation of
network hypervisor computing resources [57]. The second
category deals with the independent or joint management
of data plane resources, including networking, computing,
and caching (storage). The literature particularly covers data
plane resource management in SDN-enabled integrated TN-
NTNs,. In this regard, AI-based approaches are showing
promising results because of their efficient decision-making,
especially in dynamic environments. For instance, a deep
Q-learning resource allocation algorithm is proposed in [160]
to maximize network utility. The proposed scheme jointly
and dynamically allocates the three types of resources,
showing increased network utility per resource.

B. NFV-ENABLED NETWORKS
Combining NFV with integrated S-T networks offers effi-
cient resource utilization, flexible NF deployment, and
improved service provisioning. NFV-enabled integrated
S-T networks are based on different network architec-
tures. This includes SDN/NFV-enabled S-T networks that
adopt both SDN and NFV paradigms [163], [168], [261].
S-T edge/cloud computing networks are also used where

NFV is combined with mobile edge and cloud comput-
ing [169], [170]. Considering such architectures, researchers
focus on tackling the issues of VNF placement, SFC
deployment, and virtual resource management.

1) TRADITIONAL APPROACHES

VNF placement problem: The virtualization of NF signif-
icantly impacts the scalability, reliability, and deployment
costs of network services. Hence, the VNF-P is pivotal
to ensuring efficient resource utilization, optimized traffic
routing, and diversified service provisioning. The problem
is typically formulated as a Linear Programming (LP),
Integer Linear Programming (ILP), and Mixed Integer
Linear Programming (MILP) problem. The VNF-P problem
becomes more complex in integrated S-T networks due to
their dynamic, time-variant, and large-scale topology. As a
result, terrestrial VNF-P solutions are inapplicable in the
S-T segment. This has prompted efforts to find optimal
solutions in these highly mobile networks [168], [169]. A
dynamic heuristic-based VNF-P strategy is proposed in [165]
for E2E delay minimization in terrestrial and LEO CubeSats
networks. Formulated as an ILP, the problem is solved using
three heuristic-based algorithms, including SA, Tabu Search,
and genetic local search algorithms. The service provisioning
delay minimization is also considered in [168]. The authors
propose a dynamic security VNF deployment strategy, using
Tabu Search, in SDN/NFV-enabled S-T networks. Further, a
dynamic distributed VNF-P algorithm is developed in [169]
for satellite edge cloud networks serving IoT users. The
scheme jointly minimizes the bandwidth cost and the service
E2E delay and combines the Viterbi algorithm with a path
selection scheme. The two techniques are used to search
for VNF-P strategies for user requests on satellite edge
servers and on cloud data center servers. Adopting similar
edge/cloud computing architecture, the authors in [170] aim
to dynamically allocate network resources for VNF-P. Using
potential game theory, they propose a VNF-P strategy based
on a decentralized technique to maximize the overall network
payoff. The scheme demonstrates minimized service delay,
bandwidth cost, and energy consumption compared to the
Viterbi and greedy algorithms.
While these studies focus only on solving the VNF-P

problem, others advocate the joint optimization of VNF-
P and Flow Routing (VNF-PR). In [163], a time-evolving
graph is used to describe the network topology, capturing
its time-variance. The VNF-PR is considered as a multi-slot
ILP problem minimizing the network cost. The time-
slot decoupled algorithm is proposed as a heuristic-based
solution. In addition, the authors of [166] propose a VNF-PR
algorithm for resource utilization minimization, leveraging
user service information. Considering different architectures,
they implement two location-aware resource allocation-
based VNF-PR algorithms. Moreover, researchers examine
the VNF-PR for NFV-based space information networks
in [164] and [167], with two optimization objectives. The
authors of [164] formulate a convex optimization problem
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TABLE 6. SDN-enabled integrated S-T networks: architectures and experimental implementations.

to maximize the network flow while satisfying the SFC
constraints. They propose a group sparse-based algorithm
that can obtain optimal solutions with lower complexity com-
pared to conventional convex optimization techniques. The
researchers in [167] develop a QoS-aware VNF-PR strategy
that maximizes the number of completed missions under
SFC constraints. Furthermore, the VNF-P problem is jointly
considered with the virtual link mapping problem in [171]. A
dynamic heuristic-based VNE algorithm is designed, jointly
maximizing service revenue and minimizing the costs of
power consumption and VNF deployment. Compared with
existing works, the method shows improved average service
revenue, reduced power consumption, and deployment costs.
SFC embedding: Network service providers and infras-

tructure providers utilize the concept of SFC to deliver
customized services satisfying specific QoS require-
ments [262]. To do so, multiple VNF, also known as Service
Function (SF), are invoked following a predefined order
imposed by the SFC. Thereby directing the network traffic
through the ordered SF to deliver a specific service. The

objective of SFC embedding is to determine the optimal SF
placement and establish the appropriate connections to build
the chain while meeting the SFC constraints and ensuring
optimized network performance.
Recently, researchers have been dedicating their efforts

to designing SFC embedding schemes that are suitable for
the S-T segment. For instance, the authors of [174] design
a multiple SFC embedding scheme for ultra-dense LEO
S-T networks. The goal is to minimize the service delivery
latency while considering the SFC competition and resource
sharing. They formulate the problem as a non-cooperative
game and propose three algorithms based on potential games.
The E2E delay minimization is also studied in [173] in
the context of multi-domain SFC. The authors consider that
the required SF are distributed across multiple administra-
tive domains. They propose a multi-domain SFC mapping
algorithm based on a heuristic approach and combined
with a cooperative inter-domain path calculation technique.
Additionally, an SFC mapping approach based on the con-
cepts of SF multiplexing and SFC merging is introduced for
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TABLE 7. SDN-enabled integrated S-T networks: traditional and AI-based approaches.

S-T hybrid cloud networks in [175] and [176]. With the goal
of resource consumption minimization, the proposed SFC
mapping scheme is implemented as a proof-of-concept in
the HetNet architecture [109]. Lastly, a load balancing-aware

SFC deployment strategy is proposed in [172]. The objective
is to minimize the VNF migration cost while balancing the
load of service chains. The optimization problem is modeled
as a hidden Markov model and solved using the MLB-Viterbi
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TABLE 8. SDN-enabled integrated S-T networks: traditional and AI-based approaches (Cont.).

algorithm. The proposed solution outperforms existing
work in terms of satellite node load rate and migration
cost.
Virtual resource management: Optimizing virtual resource

allocation in NFV-based networks is crucial in guaranteeing
optimal network performance and efficient resource utiliza-
tion while satisfying QoS requirements [179]. In integrated
S-T networks, the task becomes more challenging because
of the dynamic and heterogeneous environment [177]. A
joint MEC caching placement and power allocation scheme
is proposed in [179] for MEC-enabled S-T networks.
The designed technique is based on the Mayfly algo-
rithm and jointly maximizes revenue and minimizes power
consumption. The results show that it outperforms the
greedy and the PSO methods. The authors of [177]
develop a resource management strategy based on the idea
of user intent while optimizing the resource distribution
in SDN/NFV-enabled satellite networks. The intent-driven
resource management mechanism follows a decomposition
process to obtain optimal resource allocation policies.
Moreover, the researchers in [178] and [180] incorporate
VNF orchestration in the design of resource management
algorithms. In [180], they tackle the communication resource
consumption minimization problem using the Dantzig-Wolfe
decomposition, branch-and-bound algorithm, and column
generation method. Then, in [178], they address the satellite-
to-satellite resource consumption minimization problem by
adopting the same approach.

2) AI-BASED APPROACHES

Adopting AI techniques in NFV-enabled integrated S-T
networks is still in its infancy. The authors of [181] propose
two SFC orchestration schemes aimed at maximizing service
acceptance and satellite load fairness. A load-aware heuristic
algorithm and a Graph Attention Network (GAT)-based
hierarchical RL approach are proposed. They evaluate their
solutions in terms of service acceptance, satellite load
fairness, and robustness of dynamic LEO satellite networks.

C. NS-ENABLED NETWORKS
Incorporating NS in integrated S-T networks allows operators
to ensure efficient resource utilization and enhanced network
performance [263], [264]. Nonetheless, adopting NS in the
S-T segment is still in its infancy, as research efforts in this
area are limited and mainly investigate the issues of traffic
scheduling and resource management, employing traditional
or AI-enabled methodologies.

1) TRADITIONAL APPROACHES

In [182] and [183], traffic scheduling and offloading
are simultaneously studied for NS-based integrated S-T
networks. The authors of [182] design a hybrid satellite-LTE
downlink data scheduler. The algorithm derives the service
priorities in the same URLLC slice while optimizing network
reliability and latency. Additionally, computation offloading
and scheduling are examined for edge computing-based
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TABLE 9. NFV-enabled integrated S-T networks: traditional and AI-based approaches.

satellite networks in [183]. A multi-objective optimization
of latency, E2E transmission power attenuation, and compu-
tational power is formulated. The problem is solved using
two heuristic algorithms, namely the Multi-objective Tabu
Search (MOTS) and the golden-section technique. While
the former determines the offloading scheme for different
slices, the latter computes the sliced edge computing-
based satellite network scheduling technique for different
users. Simulations validate the strategy in terms of latency,
transmission power, and computational power. Moreover,
core NS is considered in [185], where the authors
propose an on-demand resource allocation method for
VNF and SFC provisioning. They formulate the slicing
problem as a MILP problem for resource consumption

minimization and solve it using the AIMMS optimization
framework.
RAN resource management is another major challenge in

NS-based networks, and it involves two categories [82]:

• RAN resource reservation (inter-slice resource manage-
ment), where network resources are allocated to each
network slice based on their specific service demands
and requirements.

• RAN resource orchestration (intra-slice resource man-
agement), where the reserved resources are managed
and allocated to end-users in each slice.

The inter-slice RAN resource reservation is examined
in [184] for S-T network slice planning. Compared to TN,
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TABLE 10. NS-based integrated S-T networks: traditional and AI-based approaches.

network planning is more complex in the S-T segment
due to the frequent handovers caused by satellite mobility.
The slice planning problem is modeled as VNE and
satellite handover management problems. Considering the
optimization of latency, transmission, and computational
power, four handover-based VNE schemes are designed.
The proposed mechanisms are implemented using shortest-
path algorithms in an SDN-enabled network. They are also
evaluated in terms of the number of handovers, cost, latency,
and throughput.

2) AI-BASED APPROACHES

In NS-based networks, AI models are mainly employed to
solve issues related to resource management. For instance,
intra-slice RAN resource management is considered as a
case study in [186]. The efficiency of AI models, including
CNN and DRL, in addressing NS issues for highly dynamic
S-T networks is demonstrated. With the goal of slice cost
minimization, the available radio resources are optimally
allocated to the end-users while meeting the QoS and
slice isolation constraints. Additionally, the RAN resource
orchestration of the 5G eMBB slice is studied in [188]
with the objective of providing eMBB services to train
passengers via an S-T network. Considering the different
QoS levels required to satisfy the users’ demands, the
packet delivery latency is minimized to obtain the optimal
strategy for each slice. Two algorithms are designed based on
queuing theory and neural networks to solve the optimization
problem. Moreover, the authors of [187] formulate the
problem of joint RAN resource reservation and orchestration
as Joint Slicing and Scheduling of spectrum Resources
(JRSS) in S-T vehicular networks. They use stochastic
optimization to model the problem, minimizing the long-
term system cost. They also develop a two-layered RL-based

JRSS technique by decomposing the problem into two
sub-problems: resource slicing and resource scheduling.
Compared to existing algorithms, the proposed solution
shows reduced system cost and bandwidth consumption
while meeting QoS constraints.
Meanwhile, a NS framework with a dynamic ML-based

user association strategy is introduced in [189]. The proposed
scheme utilizes an ML-based ant colony optimization algo-
rithm, minimizing the delay and link cost. The scheme
classifies user requests and assigns the appropriate slice
to each user. Compared to the shortest delay and best-
fit slicing schemes, the ML-based method offers efficient
resource management with an increased user acceptance
ratio.
Tables 6, 7, 8, 9, and 10 give a summary of research

efforts on the adaptation of SDN, NFV and NS technologies
in integrated S-T networks.

VII. VIRTUALIZATION IN THE A-T SEGMENT
Aerial platforms, including UAV and HAPS are integrated
with TN to meet the constantly changing user demands in
a flexible and cost-efficient manner. Virtualization technolo-
gies are used to enhance the agility of A-T networks and
support diverse application scenarios. This section presents
the literature on the implementation of SDN, NFV, and NS
in the A-T segment. In particular, it discusses the associated
challenges stemming from the distinct features of these
airborne nodes.

A. SDN-ENABLED NETWORKS
The network programmability offered by the SDN paradigm
prompted researchers to investigate the introduction of the
SDN paradigm in integrated A-T networks, with an emphasis
on UAV-assisted networks [265]. While a number of studies
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examined the critical architectural considerations and exper-
imental implementations, others tackled the arising issues,
including routing optimization, resource management, traffic
offloading, and network security, employing conventional or
AI-enabled techniques.

1) ARCHITECTURES AND EXPERIMENTAL
IMPLEMENTATIONS

Researchers proposed various SDN-enabled A-T network
architectures for mobile and WiFi connectivity applica-
tions [190], [191], [192], [197], [198], [200]. The authors
of [191] consider the scenario that UAV could serve as access
points or handover links for ground UE moving between
macro cells. They propose an SDN-UAV architecture to
deploy shifting policies and network management, where
the macro BS on the ground acts as a controller and
UAV operate as SDN switches. In [192], the proposed
architecture SkyCore relocates the BS’s Evolved Packet Core
(EPC) entity to run on the UAV. The EPC functionalities
are defined as lightweight SDN applications to eliminate
distributed interfaces and reduce function complexity. To
further enhance the network performance, a software-defined
hierarchical multi-controller UAV architecture is proposed
in [197] for mobile connectivity, where the UAV serve
as backhaul BS. Additionally, the authors of [200] design
an SDN-based framework for UAV mesh networks taking
into account the UAV’ location and energy constraints and
propose a traffic load balancing path selection algorithm.
Moreover, several architectures proposed mixed ground and
UAV controller structure [190], [198]. In [198], UAV not
only serve as data plane forwarding devices but also as SDN
controllers which can be placed either on the ground or
aerial platforms. In this architecture, the UAV controller is
responsible for controlling the location and battery storage
of UAV, while the SDN controller is responsible for network
management. Researchers in [190] propose a Temporospatial
SDN (TS-SDN) architecture, by which the future network
state could be predicted based on knowledge of the dynamic
nature and physical relations between UAV and ground
stations.
Meanwhile, post-disaster applications are considered

in [193], [194]. An SDN architecture is proposed to deliver
a life video surveillance service for disaster recovery
combining aerial and terrestrial networks, using UAV relays
and a UAV global controller in [193]. Based on a ground
controller, an SDN system is proposed in [194] to predict
aerial gateway link outages by analyzing the aircraft’ location
and link performance. The UAV serve as gateways for
connecting disjointed networks in post-disaster and military
scenarios. For the vehicular networks scenario, the authors
of [196] propose an SDN-enabled three-tier architecture
where the communication between ground vehicles, UAV,
and BS enables a real-time road traffic navigation strategy.
The ground vehicles and the UAV, acting as SDN switches,
provide instantaneous road traffic information to the SDN
controllers to suggest the best shortest time path planning

for the ground vehicles. Meanwhile, using hierarchical
multi-controller, researchers in [199] design an SDN-based
UAV-assisted infrastructure-less architecture for vehicular
ad-hoc networks where the UAV are used to assist emergency
vehicles in road incidents. They introduce a monitoring
platform to analyze the UAV information with a load-
balancing algorithm. In addition, an agricultural application
is targeted in the design of a cloud-based softwarization
architecture for UAV and Wireless Sensor Network (WSN)
in [195]. The UAV controller, WSN controller, orches-
tration, and application layers, are implemented into the
cloud.
Furthermore, architectures for UAV swarms have been

proposed in [201], [202], [203]. An SDN architecture for
battlefield UAV swarms is proposed in [201]. Each UAV
in the swarm can act as a master or a slave in the swarm
by switching on and off the onboard functions. The SDN
controller estimates the topology and calculates a multi-
path solution meeting QoS requirements. The architecture
introduced in [202] is also designed for military UAV
swarms. It includes one controller UAV node, a set of relay
UAV nodes, and a set of independent nodes. The controller is
responsible for setting up routing table rules for all nodes and
managing the topology network. Another SDN-based swarm
architecture is studied in [203] providing security features.
Securing the Ad-hoc On-Demand Distance Vector (AODV)
routing protocol is the primary action to prevent routing
attacks. The SDN controller becomes a source of credentials
and a building block for public critical infrastructure for
protection.

2) TRADITIONAL APPROACHES

Routing optimization: In the context of SDN-based inte-
grated A-T networks, routing algorithms are developed
considering different controller configurations. Firstly, the
single controller structure is adopted in [206], [207], [208]
to achieve different objectives. Targeting the joint through-
put, delay, and load balancing optimization, the authors
of [206] design a priority-based ad-hoc routing scheme
employing Dijkstra’s and Ford-Fulkerson’s algorithms. The
results show that the proposed scheme outperforms other
ad-hoc routing algorithms in throughput, delay, and packet
delivery ratio. Meanwhile, the E2E delay is minimized
in [207], [208]. A resilient multi-path routing algorithm
is proposed, combining the Vertex Splitting method and
Dijkstra’s algorithm for vehicular applications. Secondly,
the authors of [209] consider the multi-controller config-
uration in their airborne backbone network architecture.
With the goal of reliability and bandwidth utilization
maximization, they developed a reliable multi-path routing
scheme based on segment routing. Thirdly, the hierar-
chical multi-controller structure is employed in [205] for
SDN-based flying ad-hoc sensor networks. Targeting delay
minimization and reliability maximization, an ant colony-
based traffic-differentiated routing algorithm is designed and
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validated in terms of throughput, delay, and packet-dropping
ratio.
Resource management: In integrated A-T networks,

researchers focus on optimal data plane resource allocation
in UAV-assisted networks where the UAV act as forwarding
devices managed by the SDN controller [210], [211]. For
instance, a hybrid cloud/edge computing resource allocation
algorithm based on a SA technique and a greedy algorithm
is designed in [211]. The controller allocates the computing
resources to the UAV for the processing of its applications.
The hybrid approach allows the controller to select the
optimal server, which can be located on-board at the UAV or
at cloud/edge servers. The algorithm minimizes the average
application latency and the UAV energy consumption while
satisfying the QoS requirements. Moreover, the authors
of [210] exploit the SDN controller’s capabilities to jointly
optimize the resource allocation, user association, and 3D
UAV placement. They maximize the overall users data rate
utility for UAV-assisted cellular networks. They propose
a distributed alternating maximization iterative resource
allocation scheme based on Successive Convex Optimization
(SCO) and modified Alternating Direction Method of
Multipliers (ADMM) techniques.
Traffic scheduling and offloading: SDN-enabled integrated

UAV-terrestrial networks offers the opportunity to offload
traffic and tasks from one network node to another in a
flexible manner [212], [213], [214]. The authors of [213]
propose a data traffic offloading scheme aiming to offload
the data of cellular subscribers from the licensed UAV link to
the unlicensed WiFi link in SDN-based UAV-WiFi networks.
Based on heuristics and convex optimization techniques,
they design a data offloading algorithm minimizing the
queuing delay of cellular subscribers and meeting the delay
requirements of WiFi subscribers. Additionally, the UAV
charging is considered with data offloading in [214] with
the goal of network utility maximization. An SDN–enabled
location-aware opportunistic data offloading and UAV charg-
ing mechanism is developed aiming to avoid congested paths
and extend the UAV flight time. Meanwhile, researchers
in [212] examine the issue of computation offloading.
They design a dynamic game theory-based computation
offloading mechanism for SDN/MEC-enabled UAV-based
vehicular networks. Targeting the minimization of energy
consumption and execution time of computing tasks, vehic-
ular users offload them to the flying UAV, which can either
execute the computation tasks or offload them to edge
servers.
Other research directions: The CPP is studied in [204] for

SDN-enabled aeronautical networks. Based on a hierarchical
multi-controller structure, two dynamic placement schemes
are proposed with the objective of maximum controller
load ratio minimization. The first algorithm optimally places
the controllers using an enumeration technique and assigns
the switches based on the fastest shortest-path method.
The second CPP scheme dynamically optimizes the con-
trollers’ placement and switches assignment using a genetic

algorithm. Network security is another issue that has been
examined in the literature where the authors of [215] develop
an SDN-based topology deception scheme to mitigate the
target selection attack and protect key UAV in UAV-assisted
WSN. Thanks to centralized control, the mechanism deceives
the attackers by creating a virtual topology using honeypot
drones, impairing their judgment.

3) AI-BASED APPROACHES

Thanks to their ability to adapt to highly dynamic environ-
ments, RL models are employed to design dynamic resource
management and routing mechanisms for SDN-based UAV-
terrestrial networks. On the one hand, the authors of [217]
propose a data plane resource allocation algorithm based
on deep Q-learning in SDN-enabled ad-hoc UAV networks.
They minimize the number of active UAV to optimally allo-
cate WiFi channels to end-users while maintaining desired
QoS and optimizing UE coverage and energy efficiency.
They also validate the proposed solution through testbed
experiments taking into account the QoS satisfaction, UE
coverage, and power consumption as performance metrics.
On the other hand, a dynamic single-path routing strategy,
named the Air-to-ground Intelligent Information Pushing
Optimization (AIIPO) algorithm, is developed in [216].
The AIIPO is based on a deep Q-learning model that
solves the optimization problem of throughput maximization,
while adapting to network changes in IoT data collection
UAV networks. The simulation results show that AIIPO
outperforms benchmark methods with respect to throughput
and computation complexity. Moreover, the K-means clus-
tering model is combined with the Autoregressive Integrated
Moving Average (ARIMA) algorithm in [218] to improve the
security of data dissemination in SDN-enabled UAV-based
IoT networks. K-means and ARIMA are employed with a
blockchain technique to secure data transmission from IoT
devices to UAV to SDN controllers by detecting eavesdrop-
ping and malicious data and mitigating cyber-attacks on the
controllers.

B. NFV-ENABLED NETWORKS

Adapting the NFV technology further enhances the flex-
ibility and agility provided by the integrated A-T networks
with reduced deployment costs [17]. Only a few works have
been reported in the literature discussing the use of NFV
in the A-T segment with a focus on UAV-based networks.
They provide insights on architecture and implementation
considerations and propose potential solutions to issues
related to VNF placement and SFC deployment.

1) ARCHITECTURES AND EXPERIMENTAL
IMPLEMENTATIONS

In [219], an NFV-enabled UAV-based system is proposed
to deliver different services in an ad-hoc communication
network. The feasibility of the system is tested using a
prototype and the results show that using lightweight VNF
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increases the flexibility and cost efficiency of network
service deployment over resource-limited UAV. Another
architecture combining NFV, SDN, and MEC technologies
is designed in [220] for Flying Ad-hoc Network (FANET)
to provide massive connectivity to devices and mobile users.
With the objective of sum-rate maximization, the authors pro-
pose a NOMA-based multiple-access mechanism and a relay
selection algorithm based on VNF migration. Moreover, the
Virtualized Environment for Multi-UAV Network Emulation
(VENUE) is designed in [222] to offer an ecosystem to
implement, prototype, and validate the development of multi-
UAV services. The framework is based on Linux containers
and the NS3 simulator, taking into account the specific
features of UAV-based networks. Furthermore, the authors
introduce an NFV/MEC-based UAV architecture with a
security management framework in [221] to investigate
network security. They also develop a security VNF-P
algorithm optimizing security orchestration and resource
utilization.

2) TRADITIONAL APPROACHES

Challenges related to SFC deployment are addressed
in [223], [224], [225]. On the one hand, the SFC migration
problem, defined as the re-mapping of the ordered VNF
to the network resources under the SFC constraints, is
studied in [224] for dynamic MEC-based networks. The
authors formulate the problem as an integer programming
problem with the objective of long-term cost and latency
minimization. Using Lyapunov optimization, they propose a
dynamic topology-aware min-latency SFC migration algo-
rithm offering a balanced cost-latency trade-off. On the
other hand, the SFC deployment is optimized in [225]
for UAV edge computing networks. A heuristic two-stage
SFC deployment strategy is designed to simultaneously
maximize the revenue and minimize the task completion
time. Additionally, the SFC planning problem is formulated
as a joint VNF-P and traffic routing problem in [223].
The authors employ the Integer Non-linear Programming
(INLP) formulation and propose a heuristic approach to solve
the problem of maximizing revenue while minimizing the
costs for vehicular integrated networks. They also introduce
a novel metric, aggregation ratio, to capture the trade-
off between communication and computing resource costs.
Besides, network resilience is examined in [226] in UAV-
based NFV/MEC-enabled networks. The authors study the
resilience of service chains, composed of multiple VNF, by
designing a quantitative modeling approach to observe the
system’s behavior and identify potential resilience bottle-
necks.

3) AI-BASED APPROACHES

Only a handful of studies consider the use of AI-based
approaches in NFV-enabled A-T networks. For example, the
authors of [227] propose a hierarchical DRL-based scheme
for the joint design of UAV trajectory and VNF-P. In their
hybrid method, they employ DDPG and deep Q-network

to account for both continuous and discrete actions. The
algorithm jointly minimizes the average delay and maximizes
the energy efficiency. Considering both single- and multi-
agent scenarios, they evaluate their solutions in terms of
service latency and energy efficiency. In addition, the joint
VNF-P and UAV deployment is considered in [229]. An
online DRL-based algorithm is designed for MEC-enabled
UAV networks. It optimizes the cost, energy consumption
and the number of accepted requests under latency and
resource constraints. The authors of [228] also consider MEC
in UAV-terrestrial networks. They propose an asynchronous
federated Deep Q-Network VNF-P algorithm. The scheme
aims to minimize the energy consumption and the average
Age of Information (AoI).

C. NS-ENABLED NETWORKS
NS in the A-T segment is still in its infancy, with most
research focusing on networks employing UAV or drones
as aerial platforms for the terrestrial network extension
to provide 5G slices (eMBB, URLLC, mMTC) to end-
users [234], [266]. Integrated UAV-Terrestrial networks can
benefit from NS technologies to increase reliability, enhance
security, and improve energy efficiency [267]. A NS
framework named AirSlice is proposed in [268] for 5G
UAV communications. Following the 3GPP standardization,
AirSlice is designed to support traffic differentiation based on
QoS requirements, and a proof of concept implementation is
validated, offering URLLC services in a realistic setup. The
major issues of NS in UAV-based networks include mainly
RAN resource management and UAV slicing. To enhance
network performance and efficiency, UAV deployment is
typically optimized in conjunction with these problems. Such
challenges can be addressed through conventional or AI-
based approaches.

1) TRADITIONAL APPROACHES

To optimally customize network slices sharing the same
infrastructure, the resource management problem is usu-
ally considered jointly with UAV deployment and slicing
in integrated UAV-Terrestrial networks. For example, the
authors of [232] propose a RAN resource orchestration
algorithm, the repeatedly energy-efficient and fair service
coverage (RE2FS) scheme. RE2FS jointly optimizes the
UAV trajectory, its transmission power, and the slice access
requests acceptance, to physically configure the UAV eMBB
slices. Based on the successive convex approximation (SCA)
method, the RE2FS aims to minimize the UAV transmit
power and maximize the data rates of the payload eMBB
slice ground users. Moreover, the joint RAN resource reser-
vation and UAV deployment are considered in [231], where
the UAV is optimally deployed to serve eMBB slice users and
mMTC slice devices. A binary-search-based RAN resource
reservation and UAV deployment algorithm is proposed
with the goal of BB users’ average rate maximization.
Using an SDN/NFV architecture, the authors of [230] study
RAN slicing, including RAN inter-and intra-slice resource
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TABLE 11. SDN- and NFV-enabled integrated A-T networks: architectures and experimental implementations.

management, jointly with UAV placement and UAV-device
association in multi-Drone Small Cell (DSC) networks. The
integrated DSC-terrestrial network provides connectivity to
two types of devices. Mobile user and IoT machine-type
devices have different QoS requirements. The authors design
a clique-based joint UAV deployment and resource slicing
algorithm that minimizes the radio resource consumption
with two-level partitioning.

2) AI-BASED APPROACHES

In [235], [236], AI techniques are utilized for RAN inter-
slice resource management in the A-T segment to achieve
different objectives. On the one hand, the management and
slicing of radio resources are examined in [236] for UAV-
aided vehicular communications. To maximize bandwidth
efficiency, the authors develop an LSTM-based resource

3716 VOLUME 5, 2024



TABLE 12. SDN-enabled integrated A-T networks: traditional and AI-based approaches.

allocation algorithm. The ML model is employed for the
prediction of vehicles and UAV mobility. Compared to
other ML-based methods, the proposed solution shows
improved average bandwidth efficiency. On the other hand,
the researchers in [235] consider the slicing of three types
of resources, i.e., computing, networking, and storage, in
a multi-dimensional manner. They investigate the scenario
of autonomous vehicles supported by SDN/MEC-enabled
networks. The UAV are required to meet the QoS of URLLC
and eMBB slices for driving services and passengers eMBB
services, respectively. Targeting slice embedding energy con-
sumption minimization, the authors propose an LSTM-based
survivable resource slice embedding algorithm. Simulation
results demonstrate that this technique offers improved slice
request acceptance, recovery ratios, and reduced energy
consumption. Meanwhile, computation offloading in MEC-
enabled UAV-terrestrial networks is examined in [234], to
support 5G URLLC slices. A computing resource manage-
ment scheme is designed to optimize power consumption,
delay, and loss probability. The algorithm leverages the
superiority of RL approaches in the decision-making
process.

Furthermore, UAV slicing is another major challenge in
NS-based integrated networks. In particular, UAV-assisted
networks usually rely on remotely controlled UAV to deliver
connectivity services. Consequently, NS requires the creation
of a minimum of two slices [269]:

• UAV control slice is used to control the movements of
the UAV. It usually has similar characteristics as the
URLLC slice.

• UAV payload slice is utilized to provide diversified
communication services, including mobile broadband
connectivity and machine-type communications.

Using AI models, the authors of [233] address the problem
of inter-slice RAN resource management in UAV slicing.
They consider the URLLC and eMBB slices dedicated for
UAV control and payload, respectively. With the objective of
optimizing UAV energy consumption and service coverage
fairness, they propose an updated version of the RE2FS
algorithm, which they introduced in [232]. Their method
involves employing an Echo State Network (ESN) based
approach and a DNN for user location prediction and channel
estimation, respectively.
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TABLE 13. NFV-enabled integrated A-T networks: traditional and AI-based approaches.

TABLE 14. NS-based integrated A-T networks: traditional and AI-based approaches.

Tables 11, 12, 13, and 14 give a summary of relevant
works reported in the literature investigating SDN-, NFV-,
and NS-enabled integrated A-T networks.

VIII. VIRTUALIZATION IN THE S-A-T SEGMENT
The integration of satellite, aerial, and terrestrial networks
harnesses the capabilities of the different platforms to support
a variety of 6G applications. SDN and NFV paradigms are
adopted to improve network flexibility and efficiency. They
are also combined with AI techniques to offer intelligent
network management [270]. Although the virtualization
of the S-A-T networks offers seamless and ubiquitous
connectivity, it increases the complexity of the related

problems. In this section, we review the existing research
that has been dedicated to addressing the issues of SDN,
NFV, and NS in the S-A-T segment.

A. SDN-ENABLED NETWORKS

The SDN paradigm facilitates the integration of
the satellite, aerial, and terrestrial segments, produc-
ing a three-layered network architecture as introduced
in [237], [238], [239]. Nonetheless, the large-scale, dynamic,
and heterogeneous characteristics of these networks result in
more complex SDN-related problems compared to terrestrial
and other integrated networks. Few works have been reported
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in the literature addressing such issues, including CPP,
routing optimization, and resource management in the S-A-T
segment employing conventional methods and AI-based
techniques.

1) ARCHITECTURES AND EXPERIMENTAL
IMPLEMENTATIONS

The authors of [238] propose a hybrid SDN-based archi-
tecture for QoS and security-aware routing, where both
SDN and traditional network protocols are adopted for
Vehicle-to-Everything communication. Using a hierarchical
controller configuration, they introduce the routing service
composition layer. This layer composes E2E paths with
the aim of route reliability maximization while satisfying
QoS and security requirements. Vehicular communications
are also considered in the design of an SDN-based SAGIN
architecture in [25]. Using hierarchical multi-controller
configuration, the proposed framework adopts SDN and
NS technologies to support both vehicular and legacy
services in isolated network slices. Another multi-layered
architecture is presented in [237], where the main controller
at the ground station performs cross-domain orchestration to
improve network efficiency. Meanwhile, researchers in [239]
adopt the SDN paradigm, MEC, and AI technologies
to build an integrated aeronautical federation framework.
Deploying the controller on HAPS, the proposed framework
enables aeronautical applications such as aeronautical edge
computing and aircraft in-cabin connectivity and sens-
ing. In [240], the authors propose the Software-defined
Space-Air-Ground Integrated Moving Cells (SAGECELL)
framework for ultra-dense networks supporting multiple
applications. The architecture is validated through a case
study of eMBB services, and simulation results show
improved throughput performance.

2) TRADITIONAL APPROACHES

The routing issue is studied in [242] and [241] using a single
controller configuration. On the one hand, an intelligent flow
forwarding scheme combining multi-path routing and multi-
protocol mechanism is proposed in [242]. With the goal of
path reliability maximization, the algorithm offers enhanced
resilience and security, compared to conventional routing
strategies. On the other hand, the authors of [241] design
a dynamic transmission control technique for SDN-enabled
S-A-T networks. The proposed method is based on queueing
game theory with the objective of system social welfare
maximization. It presents improved performance in terms
of throughput and service value delay, as shown by the
simulations.

3) AI-BASED APPROACHES

As SDN-related issues become more complicated in the
S-A-T segment, solutions based on conventional techniques
become inefficient. Hence, researchers turn to AI models.
First, a controller deployment scheme with a hierarchical
multi-controller structure is designed in [243]. Adopting

K-means clustering, the authors divide the network into
multiple sub-networks, each with a local secondary con-
troller. They formulate the multi-objective optimization of
delay and controller load balance, and solve it using
the Genetic algorithm to determine the optimal controller
deployment scheme. Next, resource management is inves-
tigated in [244], with the goal of the joint optimization
of user request acceptance rate and long-term revenue
rate. A distributed hierarchical hybrid DRL-based resource
allocation scheme is designed, where the RL agents are
deployed on the hierarchical controllers. It outperforms the
conventional and centralized approaches in terms of average
revenue and service success rate. Meanwhile, the problem
of traffic scheduling in the S-A-T segment is examined
in [245], with the objective of flow maximization. The
authors develop an RL-based traffic scheduling algorithm
for single controller SAGIN, where Q-learning is used to
optimize the scheduling decision-making process. The results
demonstrate its superiority over existing algorithms in terms
of load balancing and network capacity utilization.

B. NFV-ENABLED NETWORKS

Because of the unique characteristics of these next-
generation networks, the adoption of NFV technology in
integrated S-A-T networks is still in its early stages, with
only a handful of studies focusing on VNF placement and
SFC deployment.

1) TRADITIONAL APPROACHES

The VNF-P problem is studied in [246] and [247] with
different optimization objectives. The authors of [246] aim to
maximize the total profit of the service provider. Considering
the delay and cost of VNF migration, they jointly formulate
the VNF-P and the VNF scheduling problems as a MILP
problem. Then, they propose two dynamic Tabu search-
based VNF mapping and scheduling schemes. In [247],
the resource utilization is maximized while meeting the
SFC requests delay constraint. A resource-efficient and
delay-aware VNF-P scheme is designed based on graph
matching theory. Furthermore, the SFC deployment issue is
investigated in [248], [249], [250]. In [250], the deployment
delay is minimized, and a delay-aware SFC mapping scheme
is designed based on the k-shortest path algorithm for delay-
sensitive applications. The authors of [249] maximize the
number of completed tasks while satisfying the deployment,
flow, and resource constraints. Employing the reconfigurable
time expansion graph representation, they design an SFC
deployment algorithm based on matching game theory.
Moreover, the number of completed missions is jointly opti-
mized with the cost of computing and bandwidth resources
in [248]. The authors propose an NFV-based bidirectional
mission offloading framework to enhance network flexibility.
They design an SFC embedding scheme to validate their
framework for computation-intensive and delay-sensitive
applications.
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TABLE 15. SDN-enabled integrated S-A-T networks: architectures and experimental implementations.

TABLE 16. SDN-enabled integrated S-A-T networks: traditional and AI-based approaches.

2) AI-BASED APPROACHES

The research efforts utilizing AI-based methods in NFV-
enabled S-A-T networks are scarce. Researchers in [251]
propose a hybrid DRL and greedy algorithm-based VNF-P
scheme. They aim service energy consumption minimization
in MEC-enabled SAGIN. They validate their approach using
metrics such as energy consumption, average delay, request
acceptance ratio.

C. NS-ENABLED NETWORKS

Due to the dynamic, large-scale, and heterogeneous nature
of integrated S-A-T networks, employing NS paradigm
to improve resource management efficiency and overall
performance is a challenging task [256], [257], [271], [272].
The research works in this area are limited to a few studies
on resource slicing and management adopting traditional and
AI-based methods.

1) TRADITIONAL APPROACHES

Dynamic RAN resource management is examined in [252]
and [253], considering different use case scenarios. On
the one hand, the authors of [252] focus on user asso-
ciation jointly with intra-slice RAN resource allocation
for edge computing and SDN-based networks. They aim

to maximize the aggregate transport capacity capturing
the overall network performance. They design a dynamic
resource orchestration and user selection algorithm based
on derived scaling laws describing the network behavior
in function of its size. On the other hand, joint spectrum
resource reservation and UAV deployment is examined
for SAGIN vehicular communications in [253]. A service-
aware dynamic resource slicing scheme based on Lyapunov
optimization is proposed, with the objective of long-term
revenue and system stability maximization. The algorithm
carries out the service request admission and scheduling, the
UAV deployment, as well as the resource slicing to serve
the different network slices.

2) AI-BASED APPROACHES

The inter-slice RAN resource management problem is
solved using AI techniques in [254] and [255] with the
objective of the maximization of network utility, and the
joint optimization of throughput, service delay, and coverage
area, respectively. In [254], a distributed dynamic resource
slicing scheme is proposed to reserve the processing and
transmission resources to network slices. The algorithm
combines a graph neural network-based DL model and an
online ADMM decomposition technique to obtain optimal
resource slicing in MEC-enabled SAGIN. Compared to
existing algorithms, the proposed solution improves user
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TABLE 17. NFV-enabled integrated S-A-T networks: traditional and AI-based approaches.

TABLE 18. NS-based integrated S-A-T networks: traditional and AI-based approaches.

service completion time, network utility, and reliability.
Meanwhile, the authors of [255] develop a dynamic RAN
slicing algorithm that can conduct not only dynamic inter-
and intra-slice power resources allocation but also dynamic
user association and optimal virtual UAV positioning. To
achieve the Pareto optimality of the formulated multi-
objective optimization problem, their proposed algorithm
is based on a joint central and distributed MADDPG
approach. Compared to benchmarks, the proposed solution
shows increased throughput and reduced average delay.
Furthermore, network security and resiliency are studied
in [256], [257]. The authors of [256] review the role of DL
in the privacy preservation of sliced integrated networks.
Meanwhile, the researchers in [257] look into the resilience
of NS in the S-A-T segment and propose a resilient multi-
domain slicing framework for S-A-T edge computing IoT
networks.
Tables 15, 16, 17, and 18 summarize the contributions

examining the application of SDN, NFV, and NS in
integrated S-A-T networks.

IX. SUMMARY & LESSONS LEARNED
In previous sections, we provided a taxonomy of integrated
TN-NTNs, virtualization where we categorized the relevant
contributions using a four-level classification. Specifically,
we indicated for each study the level of TN-NTNs, inte-
gration, the used virtualization technology, the addressed
problem, the type of the study, and the proposed solution,
which can be based on conventional or AI-enabled methods.
A number of insights could be acquired through the review
and analysis of the documented research works.
From the perspective of the level of TN-NTNs, integration,

varying degrees of research interest have been shown in the
implementation of virtualization technologies in the three
integrated segments. On the one hand, the S-T segment has
received significant attention, compared to the other two
segments. This is owing to the satellites’ large coverage
area, their broadcast/multicast capabilities, and the recent
technological advancements in the satellite industry. On the
other hand, documented studies have investigated virtualized
integrated A-T networks are comparatively fewer. This is
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primarily due to the low reliability and limited capacity
of the UAV and the immaturity of HAPS technology.
In particular, the virtualization of HAPS-based networks
is still in its infancy due to the nascent state of the
associated technologies. In contrast, there is an emphasis on
the adaptation of virtualization techniques in UAV-assisted
networks because of their flexible deployment and diverse
application scenarios. Meanwhile, incorporating network
virtualization enablers in the S-A-T segment is still in
its early stages. This is because the related problems are
significantly more complicated compared to terrestrial and
other integrated networks, and their complexity increases
as the networks become larger and more dynamic. In
addition, the deployment of UAV can be jointly studied
with other issues in integrated A-T and S-A-T networks.
This results in optimized resource utilization and improved
network performance. Nonetheless, it further complicates
the implementation of virtualization approaches in these
segments.
In terms of the application of virtualization technologies,

researchers have largely focused on SDN-enabled networks
in the three segments. Studies typically investigate key
architectural considerations by proposing multiple designs
of integrated networks based on the concepts of SDN.
Following the SDN data/control plane separation and central-
ization of the network logic; various use case scenarios have
been explored, considering different controller structures, and
several experimental implementations have been provided.
Some researchers have also attempted to solve a number
of issues that have emerged as a result of the introduction
of SDN in next-generation networks. The CPP, the routing
optimization, and the satellite handover management are the
main problems that have been studied in SDN-enabled S-T
networks. Conversely, in SDN-based A-T networks, resource
management, traffic offloading, and routing optimization
have primarily been researched, whereas the CPP is seldom
examined. On the other hand, contributions employing SDN
in the S-A-T segment are limited and mostly concentrate
on architectural perspectives. Compared to SDN-enabled
networks, the research on the adaptation of NFV is restricted
in the three network segments. However, unlike the works
on SDN-based networks, the studied NFV-enabled integrated
networks can be based on architectures where both SDN
and NFV paradigms are adopted. The core challenges that
have been addressed include VNF placement, SFC embed-
ding, and virtual resource management. Additionally, a few
insights on architectures and experimental implementations
have been provided in the A-T segment. As for the adaptation
of NS, the contributions are considerably scarce compared
to SDN and NFV. The primary issues that have been tackled
are RAN resource management and device/user association,
taking into account the three segments. UAV slicing has also
been explored as a special case in NS-based integrated A-T
networks. Moreover, although virtualization technologies
can enhance network performance and efficiency, security
and resiliency remain key challenges in the integration

of TN-NTNs,. Traffic scheduling and offloading present
other common challenges that have been investigated in the
virtualization of TN-NTNs,.
Researchers tend to utilize traditional methods to solve

the various problems associated with the introduction of
SDN, NFV, and NS in integrated TN-NTNs,. In particular,
optimization techniques based on heuristic and meta-
heuristic approaches have been widely used to deal with the
majority of the aforementioned problems. This includes CPP,
routing, handover management, VNF-P, and RAN resource
allocation. Game theory is another approach that has been
adopted to optimize handover and VNF-P mechanisms. In
addition, routing and resource management issues have been
addressed using shortest-path algorithms and approaches
based on queuing theory, respectively. Nonetheless, a few
efforts have been dedicated to the application of AI
algorithms, especially in SDN and NS-based networks. In
contrast, AI-powered solutions in NFV-enabled networks
are scarce. The predominant techniques employed in TN-
NTNs, virtualization are RL approaches. In fact, RL agents
have been used to solve CPP, resource allocation, and
routing problems. Additionally, clustering algorithms and
ML classifiers have been utilized in the design of CP
and routing schemes in SDN-enabled networks. Besides,
DRL approaches have been adopted to handle VNF and
SFC deployment issues in NFV-based networks. Meanwhile,
DNN and LSTM models have been used to tackle resource
allocation problems in NS-based integrated networks.

X. OPEN ISSUES AND RESEARCH DIRECTIONS
In this section, we highlight several open issues and
discuss potential research directions for the advancement
of integrated TN-NTNs, virtualization. The primary chal-
lenges facing the adaptation of virtualization technologies
in next-generation networks involve coping with NTN char-
acteristics, dealing with multi-domain network architecture,
and ensuring network security and resiliency. Besides,
because of the unique peculiarities of NTN platforms, the
development of specialized simulation tools is necessary to
design, optimize, and evaluate communication systems in
integrated TN-NTNs,. Moreover, since AI is expected to
play a major role in the establishment of 6G networks,
overcoming the obstacles arising from the introduction of
AI algorithms becomes another open issue. Additionally,
emerging innovations such as DT, blockchain, and quantum
communications could be leveraged and combined with
virtualization technologies to enhance the efficiency and
security of next-generation networks.

A. COPING WITH THE CHARACTERISTICS OF NTNS
Due to the unique characteristics of NTN, the imple-
mentation of virtualization technologies in next-generation
networks faces several difficulties. These features mainly
include the dynamic environment, the large-scale topology,
and the limited resources on board NTN platforms. On the
one hand, the high mobility of network nodes increases
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the complexity of network management and operation.
These mobile nodes can follow either predictable patterns,
such as satellites moving according to their predefined
orbits, or unpredictable patterns, such as UAV, which can
exhibit varying flying trajectories. This results in unstable
connectivity, frequent handovers, and service interruption.
Hence, novel mobility and handover management strategies
are crucial to guarantee QoS requirements and seam-
less connectivity [28], [265], [272]. In SDN/NFV-enabled
networks, continuous flow rules computation, forwarding
tables updates, and NFV service reconfiguration are nec-
essary to avoid disruptions and assure service continuity.
Besides, the high mobility and frequent handovers yield
variations in network resource availability. This affects the
provisioning of network slices where the resources reserved
for one slice may no longer be accessible, causing failure to
meet QoS constraints. Therefore, adaptive NS schemes are
needed, and developing dynamic resource reservation and
orchestration is imperative [186], [257], [273]. On the other
hand, scalability issues emerge as the number of network
nodes and end-users grows. Mega-constellations of NGEO
satellites and HAPS, as well as large UAV swarms, can
cause network performance degradation. Hence, efficient
scalable network management procedures and hierarchical
architectures should be designed to alleviate the scalability
problem [18], [265]. In particular, the physically centralized
single controller structure is inadequate for SDN-enabled
integrated TN-NTNs,. This is due not only to the single
controller’s restricted computing powers in comparison to
the network’s scale but also to the high latency and increased
control overhead caused by this type of control structure.
As a result, a logically distributed hierarchical control
structure is required to satisfy the growing service demands
of these large-scale networks [28], [263], [274]. Another
scalability challenge involves the placement of VNF and
the embedding of SFC in NFV-based networks. Specifically,
the complexity of these optimization problems escalates
because of the large size of the network and the limited
resources of NTN platforms [223]. Therefore, designing suit-
able network architectures and effective network operation
and management algorithms is important to overcome the
scalability obstacles. Furthermore, the limited resources on
board NTN platforms introduce constraints on the network’s
ability to cope with its dynamic large-scale topology. The
restricted communication, computing, and caching resources
can impose limitations on the NTN nodes’ functionalities,
such as collecting network information, processing data,
and executing complex algorithms. In addition, multiple
connectivity interruptions and limited service duration can
be caused by the energy depletion of satellite and aerial
nodes, relying on batteries and solar power [220], [272].
The energy constraints can result in service discontinuity
and network failure, especially in UAV-assisted networks,
where the energy supplies are used for connectivity and
flight purposes. Thus, it is critical to develop energy-efficient
lightweight schemes taking into account the limited resources

and characteristics of the different nodes in integrated TN-
NTNs,.

B. DEALING WITH MULTI-DOMAIN NETWORK
ARCHITECTURE
A multi-domain multi-tenant architecture is created by
virtualizing integrated TN-NTNs, using SDN, NFV, and
NS. This introduces a number of challenges stemming
from the essential seamless orchestration and management
of multi-dimensional resources across multiple network
domains, while catering to the needs of diverse tenants.
In this multi-domain architecture, network resources are
owned by numerous service and infrastructure providers
across different administrative domains [41]. For instance,
space, airborne, and terrestrial platforms are managed and
operated by different entities, including traditional terres-
trial telecommunication companies, and aerospace agencies.
Cloud services and edge computing infrastructure providers
are also major stakeholders, as next-generation networks
rely significantly on technologies requiring unprecedented
computational capabilities. Besides, the heterogeneity of
the underlying network equipment supported by a vari-
ety of communication standards and technologies further
complicates the issue and limits the network interop-
erability [25], [265]. Consequently, it becomes necessary
not only to provide a unified methodology to abstract
the network resources offered by various providers but
also to promote the standardization of the protocols and
interfaces. This facilitate the exchange of these resources and
the seamless integration of different network components
in virtualized integrated 6G networks [41], [109], [257],
[275]. The next challenge imposed by such architecture
is the design of efficient cross-domain coordination and
collaboration mechanisms between the different entities.
Developing efficient and cost-effective schemes to share
and orchestrate resources across various domains, while
meeting the stringent requirements of diverse services is
necessary to create customized network slices in multi-
domain networks. Moreover, the availability of network
resources is directly affected by the dynamic topology of
6G networks, necessitating a dynamic SLA decomposition
across the different domains [257]. However, ensuring the
SLA in this multi-domain architecture is difficult. It demands
the implementation of innovative cross-domain orchestration
and coordination approaches capable of adapting to the
characteristics of NTN. Furthermore, through NS, the multi-
domain integrated TN-NTNs, architectures offer tailored
services to multiple tenants, by enabling the creation of
various network slices on top of the shared infrastructure.
This raises a number of obstacles; notably in terms of
the properties of slice isolation, elasticity, and scalabil-
ity [109], [276]. It is challenging to ensure an isolated,
elastic, and scalable allocation of network resources for each
tenant, due to the large-scale topology, the high mobility, and
the constantly changing user demands. Thus, it is essential
to design NS strategies capable of maintaining high levels of
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QoS satisfaction for each network slice, while dealing with
6G network features.

C. ENSURING NETWORK SECURITY AND RESILIENCY
Compared to TN, the unique characteristics of integrated
TN-NTNs, complicate the task of ensuring network secu-
rity, resiliency, and data privacy. In fact, the large-scale,
dynamic, and heterogeneous topology combined with the
limited onboard resources imposes numerous challenges.
First, a crucial security challenge is the vulnerability
of data transmission, due to the wireless and broadcast
nature of communication links in integrated TN-NTNs,.
Jamming, eavesdropping, disruption, and falsification of
data are potential threats in this scenario [18], [113], [265].
Notably, in SDN-enabled networks, the communications
between the data and control planes can be susceptible
to such menaces, which can compromise the network
nodes [18], [113]. Additionally, hijacking and unauthorized
access to NT platforms, including satellites, HAPS, and
UAV are other significant vulnerabilities [218], [265], [277].
Hence, lightweight, low-complexity solutions for physical
layer security are of paramount importance. Novel techniques
for anti-jamming, encryption, authentication, and intrusion
detection are necessary to safeguard data transmission in
highly dynamic networks. Also, blockchain and quantum
communication can be leveraged to protect the data and
secure satellites’ optical links, respectively. Second, since
the SDN paradigm offers the centralization of the control
logic, the security of SDN controllers is another important
concern [112], [274], [278]. On the level of the control
plane, cyber-attacks and malicious activities, such as con-
trollers’ unauthorized access and hijacking, DDoS and target
selection attacks, and software vulnerabilities, can be fatal
where the attacker can gain access to the entire network.
Thus, it is necessary to design security protocols to ensure
the protection of SDN controllers, especially if they are
deployed on NTN nodes. AI models can be employed for
attack detection and mitigation, while blockchain techniques
can be used to ensure the trustworthiness and integrity of
the network entities. Besides, the optimal orchestration and
placement of security VNF, such as virtual IDS, firewalls,
and proxies can aid in the mitigation of cyber-attacks on
the network [106], [221]. However, the virtualization of
network functions as VNF in NFV-enabled networks can
increase their vulnerability because of software flaws [113].
Moreover, the slicing of a shared underlying infrastructure
introduces other security and data privacy challenges, in
NS-based integrated TN-NTNs,. Since multiple tenants can
share the same physical network node to deploy their virtual
networks, an attacker can exploit one slice to gain access to
another slice and exhaust its resources [41], [256]. Another
security concern in sliced networks is data leakage during the
communication between end-users and network slices. This
type of communication involves the exchange of sensitive
user information such as location, device type, and user
demands. The interception and tampering of such data can

result in the users’ association with an exposed network
slice. Therefore, efficient security policies should be enforced
including traditional and AI-enabled authentication and slice
access control measures. In addition, the multi-domain
architecture of integrated networks requires the development
of efficient mechanisms to seamlessly orchestrate security
protocols across the different domains in [274]. Furthermore,
network resiliency is a major issue in integrated TN-NTNs,
due to the network characteristics. The large communication
ranges of satellites and the high dynamicity of UAV-
assisted networks, in particular, render the TN-NTNs, more
susceptible to failures and interruptions [257]. For sliced
networks, robust NS solutions that can countermeasure
various types of network failures are necessary to sustain
network performance and ensure service continuity during
the slices’ life cycles.

D. DESIGNING DEDICATED SIMULATIONS TOOLS
The network performance evaluation phase is mandatory
before deploying new network architectures and imple-
menting novel protocols in a real-world environment. As
a result, it is vital to test and validate communication
systems using simulation tools and experimental imple-
mentations. However, this can be a challenging task in
integrated TN-NTNs, because existing network simula-
tors lack the adaptability to NTN characteristics. Also,
real-life experimental evaluation of NTN platforms is dif-
ficult [18], [113], [222]. Field trials using NTN platforms
such as satellites, HAPS, and UAV can involve significant
expenses, safety risks, and regulatory constraints. This limits
scale and frequency of these trials. In addition, existing
simulation tools are not suitable for these networks since
they are built for TN and do not capture the specificities
of NT nodes. In particular, the current simulation tools that
incorporate virtualization technologies and protocols need
to be extended. Additionally, novel tools need to be built
to include the constraints imposed by the use of satellites,
HAPS, and UAV. For example, the well-known OpenFlow
protocol used in SDN-enabled networks should be extended.
The development of novel extensions capable of dealing with
the NTN features is also required [273], [274]. Nonetheless,
few efforts have recently been directed at the design of
specialized simulation tools for next-generation networks.
For instance, a virtualized environment emulation framework
(VENUE) is introduced in [222] to facilitate the validation
and prototyping of NFV-enabled UAV-assisted networks.
In addition, extensions for the network simulator NS3 and
the OpenFlow protocol are proposed in [110] and [28] to
implement SDN-based S-T networks architectures and eval-
uate routing algorithms and network management strategies.
However, such studies are still in their early stages, and fur-
ther research is necessary. Meanwhile, theoretical modeling
can be utilized to understand the network behavior and
evaluate the performance of the proposed architectures and
algorithms [274].
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E. APPLYING AI ALGORITHMS
AI will play a critical role in the development of 6G
networks. Particularly, it can solve multiple complex prob-
lems in network virtualization as discussed before. It can also
enhance network performance through prediction and pattern
recognition, as well as enable autonomous network planning
and operation [17]. Nonetheless, using AI algorithms in
next-generation networks raises a number of issues that can
be observed from two aspects. On the one hand, issues
caused by the inherent characteristics of AI models can
complicate its implementation in 6G networks. Supervised
and unsupervised learning, used for prediction and classi-
fication problems, require large realistic training datasets,
causing data collection and analysis challenges. Meanwhile,
RL algorithms, used for decision-making tasks, struggle
to solve complex optimization problems with numerous
constraints [186]. Another concern with using AI in 6G
networks is algorithm selection, as there is no one-size-
fits-all solution. Different factors should be considered in
choosing a suitable AI technique to address a particular
network problem [257]. This includes the type of problem,
the needed resources to execute the algorithm, and the
desired level of performance. Thus, it is necessary to
conduct an analysis that examines the cost-benefit trade-
off between the selected AI model and its anticipated
performance. On the other hand, applying AI in integrated
TN-NTNs, is a challenging task due to the unique features
of SAGIN including the highly dynamic environment, the
large-scale topology, and the limited on-board resources.
The high mobility of NT platforms introduces increased
dynamicity to the network topology. This results in the need
for designing adaptive algorithms with continuous updating
capable of obtaining optimized strategies at different time
slots for resource allocation, device/user association, routing,
controller placement, etc. Supervised and unsupervised ML
techniques lack the resilience to adapt to such a dynamic
environment [18], [186], [257]. This is mainly due to their
dependence on the training dataset, where the real dataset
may be statistically different and constantly changing.
Consequently, it causes degradation in the ML algorithm
performance. RL can be a solution for this issue, since
the RL agents can continuously learn new optimal policies
adapting to the dynamic environment in a dataset-free
fashion [58]. Nevertheless, the use of RL in integrated TN-
NTNs, raises multiple challenges [279], [280], [281], [282].
This includes the sample efficiency issue, which refers to
the algorithm’s ability to achieve good performance with
a minimal number of interactions with the environment.
Specifically, in the TN-NTNs, dynamic environment, RL
agents require a greater number of trials to learn effectively,
impacting the sample efficiency. Consequently, the model
convergence and learning speed are affected. Another issue
involves the use of distributed multi-agent RL, which
is typically employed to combat scalability problems in
TN-NTNs,. However, the coordination between different
agents is crucial for the effective implementation of these

techniques, leading to additional obstacles. Furthermore,
the large-scale topology of 6G networks increases the
dimensionality of the state space for RL agents, imposing
another challenge on the learning and optimization process
of these AI models. This network characteristic brings
additional obstacles in the application of AI methods
regarding algorithmic complexity, feature extraction, and
massive data collection and analysis [257]. Moreover, AI
models are expected to deliver high performance in order to
satisfy the needs of this expanding network with increased
demands, diverse services, and stringent QoS requirements.
Nevertheless, the limited resources on board NT nodes
further complicate this task where the satellites, HAPS, and
UAV may not have sufficient resources in terms of energy,
computing, and storage necessary for the implementation of
powerful AI solutions [18], [186], [283], [284]. Therefore,
the development of low-complexity, lightweight, and energy-
efficient AI algorithms is required in 6G networks.

F. LEVERAGING OTHER EMERGING TECHNOLOGIES
Virtualization technologies can be combined with other
emerging innovations — such as DT, blockchain, and
quantum communications — to improve the performance
and security of next-generation networks.
Multiple definitions can be found in the literature

describing the DT paradigm. One way to characterize DT
is by viewing them as replications of physical entities
(objects, people, environments, etc.). Specifically, virtual
representations of the physical assets are accurately created,
and uni/bi-directional communication links are established,
enabling the interaction between the two sides [285].
Powered by AI, DT can optimize and enhance the
performance of next-generation networks. DT can monitor
the network status, analyze its operation, and predict failures
in a real-time manner, using a closed loop between the
physical and digital versions of the network [285]. In
the context of SDN/NFV-enabled integrated TN-NTNs,,
DT can further enable network virtualization, and improve
the adaptability to highly dynamic topologies. Additionally,
DT can provide network operators with real-time insights
into their network performance. They can be built in the
SDN controller to enable proactive dynamic and intelligent
network control [286]. Moreover, DT can be used to
create simulation and emulation environments, especially
for networks incorporating NT platforms, to test and
validate different applications instead of relying on the
physical infrastructure, which can either be costly and/or
dangerous [18]. For instance, using physical satellites to
design, optimize, and test satellite-assisted networks can
be very expensive and require interactions with satellite
infrastructure providers. Meanwhile, DT of such networks
can be built, allowing researchers to flexibly and easily
conduct their experiments and apply their modifications.
Similarly, deploying actual UAV during the development
and optimization stages of UAV-based networks can be
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both dangerous and costly. Hence, DT can aid in design-
ing, validating, and ensuring the safety of UAV-assisted
networks. End-user virtualization is another approach for
implementing DT in virtualized networks where it can be
utilized to describe the state and service requirements of
end-users [6]. While technologies such as SDN, NFV, and
NS focus on the virtualization of network infrastructure
and resources, DT of end-users enable the virtualization
of end-users providing significant real-time end-user data
that can boost the network’s decision-making, manage-
ment, and simulation capabilities. Furthermore, NS and
DT technologies can enable service-centric and user-centric
networking, respectively. While NS creates customized slices
for different services, enabling service-centric management
in 6G networks, DT could be used to characterize end-users,
allowing user-centric management in 6G networks [6]. In
fact, after the creation of service-tailored slices, the data
provided by the DT of individual end-users in each slice can
be exploited to enable user-oriented decision-making. This
improves intra-slice network management, thereby increasing
the granularity and adaptability of network management,
particularly in highly dynamic environments with diverse
end-users.
Blockchain is a groundbreaking innovation that has revo-

lutionized data storage, sharing, and verification. Originally
developed for crypto-currencies, it is defined as a distributed
and transparent ledger that ensures secure recording of
transactions and assets [18], [287]. Blockchain can play a
pivotal role in improving the security, privacy, and reliability
of next-generation networks. In particular, for integrated TN-
NTNs, that use NT platforms, it is crucial to ensure the
security and privacy of the exchanged critical data between
network nodes, especially that it is wirelessly transmitted.
In addition, the decentralized consensus mechanism of
blockchain can enhance the trustworthiness of the network
entities across different domains. It can verify the integrity
of network data and node access control, and aid in cyber-
attacks and malicious activity detection [17], [18], [277].
Moreover, SDN-enabled integrated TN-NTNs, can benefit
from blockchain by securing distributed SDN controllers and
verifying OpenFlow tables [22]. Sliced networks also can
employ blockchain to support authenticated slice brokering
and trustworthy infrastructure sharing between the MNO.
This can be realized by offering traceable and transparent
slice ledgers that can autonomously track the slice sharing
and leasing behaviors [22].
Quantum technologies, including communication, com-

puting, and sensing, are reshaping multiple fields,
such as cyber-security, high-performance computing, and
networking. In particular, quantum communication is trans-
forming the way information is transmitted [288]. While
classical communications rely on the classical zero and
one bits, quantum communications leverage the principle
of quantum physics to transmit quantum bits, known as
qubits [27]. This would inherently result in secure and
efficient data transmission where cyber-attacks and malicious

activities can be effortlessly detected and mitigated, ren-
dering it appropriate for integrated TN-NTNs, [12], [17].
Moreover, the SDN paradigm can be combined with quantum
communications in future networks to enhance quantum
resource management and task administration [27]. The SDN
controller can continuously monitor the quantum parameters,
including the secret key rate of the Quantum key Distribution
(QKD) protocol and the quantum bit error rate.

XI. CONCLUSION
To support the large variety of applications and satisfy
the target KPI of 6G networks, integrated TN-NTNs, are
envisioned as 6G key enabling technologies. However, the
TN-NTNs, integration faces several issues that can be
solved using network virtualization technologies such as
SDN, NFV, and NS. This survey provided a comprehensive
review on the adaptation of these networking paradigms in
next-generation networks. We commenced by covering the
fundamentals of NTN and virtualization techniques. Then,
we brought attention to the intersection of AI and network
virtualization, summarizing the major research areas where
AI models play a pivotal role in enhancing SDN, NFV,
and NS. After that, the survey highlighted the prevalent
problems emerging from the adaptation of these tech-
niques in integrated TN-NTNs,. We proposed a taxonomy
of integrated TN-NTNs, virtualization based on a four-
level classification. This taxonomy offers a structured and
comprehensive review of relevant contributions, providing
a synthesis of virtualization in integrated networks from
different perspectives. Moreover, we summarized the insights
acquired through the review and analysis of the docu-
mented works. Particularly, we discussed how research works
focused on virtualization in the S-T segment, with limited
efforts in the other segments. Additionally, we highlighted
how SDN technology gained more attention compared to
NFV and NS. We also explained how researchers tended
to employ conventional methods such as heuristics, whereas
AI-based approaches are scarce. Lastly, we identified several
open issues and explored future research directions for the
advancement of integrated TN-NTNs, virtualization in the
6G era. We conclude that adopting network virtualization
technologies in 6G integrated TN-NTNs, offers efficient
network management and improved network performance.
Nonetheless, numerous research gaps should be addressed
and further investigations are required to realize the full
potential of these technologies.
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