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ABSTRACT This paper proposes to explore the Radio Frequency Fingerprint (RFF) identification with
a virtual database generator. RFF is a unique signature created in the emitter transmission chain by
the hardware impairments. These impairments may be used as a secure identifier as they cannot be
easily replicated for spoofing purposes. In recent years, the RFF identification relies mainly on Deep
Learning (DL), and large databases are consequently needed to improve identification in different
environmental conditions. In this paper, we introduce the so-called RiFyFi_VDG, referring to Radio
Frequency Fingerprint Virtual Database Generator, and explore individually the impairment impact on
the classification accuracy to highlight the most relevant impairment. Different transmission scenarios are
then explored, such as the impact of the data type (being a preamble or a payload) and the data size.
Design rules of real databases are finally drawn for the different scenarios. We found out that the power
amplifier imperfections play the biggest role in RFF accuracy and that average accuracy levels of 94%
can be reached when combining the various hardware impairments at the transmitter.

INDEX TERMS Radio frequency fingerprint, deep learning, database, RF impairments models.

I. INTRODUCTION

INRECENT years, the massive introduction of low-power
Internet of Things (IoT) devices increases the sensitivity

of wireless networks to attacks. Hence, secure authentication
has been the topic of many researches [1], particularly the
Radio Frequency Fingerprint (RFF) identification has been
largely studied [2], [3], [4], [5].

The purpose of RFF is to uniquely identify a device by
recognizing defects in the signals it emits. This identification
is based on the singularity of the hardware, the transmitter
component impairments create unique electromagnetic dis-
tortions in the transmitted signal [6], and those distortions
are used to differentiate devices. This identification solution
addresses some security issues of IoT and can be used for

non-spoofing authentication [7]. In most telecommunication
standards, identification methods are based on the meta-
data communication protocol that gives an address to
enable the authentication, for example, the Media Access
Control (MAC) address, but those solutions can be coun-
terfeited [8]. The RFF identification can be combined
with a MAC address identification to improve and ensure
identification without spoofing. For example, the RFF must
correspond to the MAC address to validate authentication.
The RFF identification can be useful in different applica-
tion contexts such as authentication in low-power network
devices [7], or cyber defense to recognize the attacker or
intrusion [9], or monitoring the behavior of a suspicious
device.
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To identify a device thanks to its RFF, most related
works use the signal in the time domain and classification
methods to discriminate among the different potential emitter
candidates. The State of the Art (SoA) proposes two families
of classification methods, the first one is called model-
based or parametric method, and the second is the Deep
Learning (DL) based solution. The parametric methods use
some features that describe the RFF [6], [10], [11]. This
method requires RFF knowledge to choose and compute
some feature estimators used for classification. The quality
of the estimators can hinder the accuracy of parametric RFF
methods.
Recently, with the explosion of the use of DL, many

research works have been focused on this second family
of classification solutions. The supervised DL techniques
use labeled signals from different transmitters during the
training phase and learn how to recognize the source of the
different signals. Many DL architectures exist, in particular
Convolutional Neural Network (CNN) is used to extract and
classify RFFs [12], [13], [14], [15], [16].
While DL techniques present promising results, there

is a strong need for a large and robust database [2].
In the literature, databases are composed of raw signals
from different devices captured with one or many Software
Defined Radio (SDR). Each signal in the database is labeled
to its emitter. During the learning phase, the network has
to learn the RFF in the signals to estimate the labels
and improve the classification. However, ensuring RFF
learning requires an unbiased database [17]. A bias is created
when a systematic error is introduced during the database
creation. For example, a systematic error can be a different
power at emission for each transmitter, a static propagation
channel due to the static location of emitters during signal
capture [13], [18], a MAC address in data, or the quality of
emitters in the sense of the amount of distortion induced by
the device hardware. These biases could impact positively
or negatively the identification, by helping or distracting the
network to classify.
Most existing RFF identification works use experimental

data to explore RFF identification [13], [14], [18]. However,
these works are limited by the lack of flexibility of their
database and by the bias added involuntarily in data. As
a consequence, they cannot explore RFF identification in
many dimensions, they focus their work on one aspect
and it is difficult to combine or compare the different
contributions because the databases are not comparable.
Few works are based on a virtual database and those
that consider all impairments are rare. Zhang et al. [19]
propose global modeling but they do not provide access and
flexibility to create a new database. To address those issues
we propose a new database generator based on a virtual
model of both impairments and transmission scenarios. The
Radio Frequency Fingerprint Virtual Database Generator
(RiFyFi_VDG) allows exploring RFF identification and
studying the impact of the quality of the device in a
countermeasure context.

FIGURE 1. Transmission frame in wireless communications.

FIGURE 2. Transmission and reception chain.

The core contributions of this paper are as follows:
• We present, RiFyFi_VDG [20], an open-source Virtual
Database Generator based on both a RFF baseband
model composed of four impairments and differ-
ent scenarios of transmission. An open-source RFF
Identification Framework called RiFyFi_IdF is also
proposed for the evaluation.

• We model the transmitter quality, and study each
impairment independently in order to define the limit
dispersion to classify devices.

• We study all impairments together in different trans-
mission contexts in function of transmitters quality and
then highlight the most significant impairments for RFF
identification.

• We study the impact on classification performance
of the size of the database in different transmission
contexts.

The rest of this paper is organized as follows. In Section II,
transmission and RFF models are presented, with a focus
on their intricacies and pitfalls in an RFF identification
context, and some related works are introduced. Section III
introduces the RiFyFi_IdF and the transmission models in
particular RFF models used in RiFyFi_VDG to create the
virtual databases. Then Section IV describes precisely the
database creation and scenario used in this paper. Then,
Section V presents the individual effect of the impairments.
Finally, Section VI presents the interest of a virtual database
in different transmission contexts. The conclusion of the
paper is in Section VII.

II. DATABASE CHALLENGES FOR RFF IDENTIFICATION
A. RF TRANSMISSION AND RFF MODELS
1) RF TRANSMISSION

Before the transmission, the source information data is con-
verted into symbol sequences. Most wireless communication
protocols generate symbol frames composed of three parts
as detailed in Figure 1. The symbol sequences are composed
of three different parts: the preamble (Pre) which contains
synchronization information that is always the same for all
the packets, the MAC addresses (MAC) of the emitter and the
payload data (Pay). The symbol sequences are converted into
IQ samples and transmitted via the RF chain (Tx, Figure 2).
A Digital Analog Converter (DAC) transforms the signal into
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the analog domain to yield x(t). The Local Oscillator (LO)
modulates it at carrier frequency fc, and the Power Amplifier
(PA) amplifies the signal, creating xant(t) for transmission
via the antenna.

2) RFF DEFINITION AND ISSUES

The RFF of a transmitter is a unique signature created by
the hardware components of the transmission chain. This is
neither controlled nor done on purpose, but it is the result
of small flaws in the manufacturing process. This signature
called the RFF of the transmitter Tx, is denoted FrffTx and
could be used in wireless communications to identify the
device which has emitted the signals. The emitted signal can
be modeled by:

xant(t) = FRFFTx(x(t)), (1)

xant(t) = FPA ◦ FLO(x(t)), (2)

where ◦ represents the function composition operator, with
h(x) = g ◦ f (x) denoting h(x) = g(f (x)), which expresses
the successive processing of the transmission chain and
its underlying stages each creating a distortion function.
Furthermore, F(·) represents a component behavior, includ-
ing its distortion. The nested functions of (2) show the
impact of each component and the difficulty of extracting
features and modeling the transmission with RFFs. The LO
adds distortions related to frequency called Carrier Frequency
Offset (CFO), gain and phase called IQ imbalance and Phase
Noise (PN), and the PA impacts the gain.
In Figure 2, the channel block represents the wireless com-

munication environment defined by the noise, interference
signals, and the multi-path and fading channels that could
impact the signal. The propagation channel is modeled by
Fchannel. The red block Rx represents the receiver with its
components (not detailed in the model) and its distortion
function called the RFF of the receiver, but investigating its
impact is beyond the scope of this paper. The received signal
xidf can thus be expressed as:

xidf(t) = FRFFRx ◦ Fchannel ◦ FRFFTx(x(t)). (3)

In an experimental study, Fchannel changes in the function
of the position and the relative position of transmitters and
receiver(s) and the noise level; these also influence the
received power. All of these disturbances make difficult
the Tx RFF identification. This issue is largely studied in the
SoA and will be called channel or environmental condition
impact in the rest of the paper. The environmental conditions
represent an important bias in database construction for RFF
identification DL solutions.
In conclusion, the database challenges are multiple

because of the large design space with many communication
protocols and the type and number of transmitters. The next
subsection presents the related works where the community
explores the large design space of databases for RFF, such
as the communication standard, the type of devices (emitters
and receiver(s)), the part of the signal used to identify, the

environmental condition of transmission and the data pre-
processing such as transformation, slicing, and multi-packets.

B. RELATED WORKS
Recently, the number of contributions on RFF identification
has increased [2], mainly due to the number of applica-
tions such as authentication for security in IoT systems.
The different applications lead to different identification
scenarios. For example, Guo et al. [7] use the term “1
to 1 authentication” to verify if the RFF of a device
matches its MAC address. A second context defines a list of
authorized devices and unauthorized devices, only based on
the RFF or by combining RFF and address. Hanna et al. [34]
formulate the problem of recognizing authorized transmitters
and rejecting new transmitters.
In the literature, two families of RFF identification

methods are investigated: parametric and DL techniques. The
parametric method uses feature extractors combined with
a classic machine-learning solution. This method exploits
the intrinsic and unique nature of the impairments to
identify the device. For example, PARADIS [6] uses IQ
samples and defines different metrics: the IQ origin offset
the frequency error and SYNC correlation, to characterize
the “radiometric” signature of a device. The use of such
parametric methods is strongly limited by the knowledge
about the transmission chain, protocol, modulation, and the
superposition of impairments.
Recently, the number of RFF identifications by classifica-

tion methods has exploded with the advent of DL [7], [13].
In particular, supervised DL is massively used in RFF
classification, as it automatically learns how to classify
radio transmitters by recognizing complex patterns from
labeled signals. DL techniques include CNN [14], [15],
[35], [36], Long Short-Term Memory (LSTM) [16], [37],
Recurrent Neural Network (RNN) [12] and transformers
architectures [16], [25], [38]. CNNs are the most popular
solution and different architectures have been explored such
as AlexNet-inspired with 12M parameters, distributed on 8
convolutional layers and 3 fully connected layers, or CNNs
with less layers, but more parameters [14], [15]. Numerous
CNN are used for RFF without real comparison between
them [2], [35], [36] except in [12].
DL solutions achieve good results, but the classification

accuracy of such methods dramatically depends on the
database used to train the network. Therefore, there is
a strong need for large and robust databases composed
of raw labeled signals [2] from different transmitters to
ensure RFF recognition in many environmental conditions.
Since 2019, the SoA on RFF identification with DL has
increased and presents different databases to experiment
RFF identification. A selection of recent papers on RFF
identification is presented in Table 1. These databases are
separated into two types: experimental-based and simulation-
based as shown in Table 1. They are created for different
wireless protocols which depend on the author’s research
affinities, presented in column 5 in Table 1 such as
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TABLE 1. Summary table of databases used for RFF identification.

WiFi [14], [15], [28] and LoRa [25], [39]. Column 4 “Is
data public?” gives information on public access and column
6 “Numbers of emitters” and 7 give respectively information
about the number of emitters and additional information or
contribution of the paper. The nature of the signals and
the frame structure impact the results analysis deducted by
the authors and it is therefore difficult to compare different
works. For example, [15], [25] uses only the preamble data
while in ORACLE [14] the frame consists of a MAC address
field with always the same address and a random payload.
Jian et al. propose to slice the signals containing the MAC
address to be resilient to MAC address spoofing [36].
Databases can be separated into two types: experimental-

based and model-based. In the literature, experimental
signals are mostly created with IoT Device Under Test
(DUTs) or Software Defined Radio (SDR) platforms for both
transmitters and receivers. The work of Zhang et al. [19]
shows that the transmitter and receiver type is important
in RFF identification because the capacity to discriminate

two devices is linked to the RFF difference between two
devices. For example, a Universal Software Radio Peripheral
(USRP) X310, a high-hand quality device, is produced with
low variability components, resulting in minimal RF front-
end variations between two devices. Sankhe et al. [15]
show that X310 is more difficult to separate, compared to
B210. Moreover, [10] studies the receiver impact on the
classification capacity, a receiver could be sensitive to one
emitter. To avoid some classification problems as channel
or receiver impacts, some authors propose to pre-process
data before using the neural network, [15] proposes an
under-complete demodulation that aims at removing only the
channel effect from raw IQ samples, without compensating
the device imperfections. The pre-processing used in RFF
identification are synchronization, domain transform, or
equalization [11], and some authors add a CFO compensation
because the CFO is sensitive to temperature variation and
reduces the system stability [25], [33]. The next subsections
present different families of databases used in the SoA of
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RFF identification. First, the real databases are introduced
private and public databases, and finally, we focus on virtual
databases.

1) REAL PRIVATE DATABASE

The largest existing database for RFF identification was
created by DARPA in 2020. This database, used by authors
from Northeastern University in Boston, is a private one and
is used in many papers [12], [13], [15], [24], [36]. This
database is composed of two datasets, one with WiFi signals,
with 5117 DUTs, and an average of 166 transmissions for
each device. The second dataset is composed of ADS-B
signals from 5000 DUTs and an average of 76 transmissions
for each device [12]. This database offers the possibility
to train the network with a large number of devices.
Unfortunately, this database is only available to researchers
with U.S. government sponsors.
Peng et al. [23], [40] designed a large RFF database

for ZigBee standard. They use 54 DUTs as transmitters
and one USRP as a receiver to create the database. They
performed ten measurements for each ZigBee device at
different locations with line-of-sight transmissions. Their
database is only used for their work.
Exploring RFF identification needs a database adapted to

the scenario with metadata. Thus for many papers in the
literature, the authors create their own database, with few
devices [21], [22], [25], [27] but they never give an open
access to their database. Consequently, the reproducibility of
experimental results is not possible.

2) REAL AND PUBLIC DATABASE

The University of Boston creates its own databases for
experiments in papers [14], [15], [22]. First, they created
a database with 5 USRPs B210 transmitters with different
distances varying between 2 and 50 ft [22]. Then in 2019,
they created the ORACLE database with 20 USRPs X310
transmitters [14]. They suggested introducing software-
controlled impairments at the transmitter side to enhance
identification robustness. This recommendation arises from
the fact that the X310 transmitters are produced with low
variability components, resulting in minimal RF front-end
variations between the two devices.
Hanna et al. proposed a new public database for RFF [28]

called WiSig. WiSig is constructed with many signals
and with information on how signals have been captured
as transmitter location and the type of transmitter used
(Atheros). They provide a large-scale WiFi dataset captured
by 41 USRPs with 20 MHz bandwidth from different
references. The signals come from 174 WiFi transmitters
over four different days of captures performed over a month.
The authors have created different databases with many
transmitters (150), many receivers (32), and many signals
(1000 for each transmitter). They present WiSig as a RFF
database to explore the identification in a static environment
with different types of transmitters and different numbers of
transmitter/receiver/signal/days.

In the same way, Al-Shawabka et al. present in [13]
a public database for RFF. This database is composed of
4 datasets, each of them is composed of 20 transmitters,
12 B210 and 8 X310, and one fixed receiver. They first
explore the best pre-processing and then they explore the
impact of antenna and channel with both wired and wireless
communications in an anechoic chamber.
Morin et al. [17] work on unbiased database creation,

they leverage FIT/CorteXlab anechoic chamber to capture
signals and control the propagation environment as well
as the interference profile, which enables the full control
of the generated datasets. To increase channel variations
and to reduce the possibility for the receiver to learn
from the channel properties, the MultiRx setup is proposed
where they merge the signals observed from several devices
acting alternatively as identification receivers. However,
this combination of signals creates confusion between the
channel effect and receiver effect, which cannot be studied
separately.
Jagannath et al. present in 2022 [29] a new public dataset

that includes emissions from 10 COTS IoT emitters (2
laptops and 8 commercial chips) that are captured with a
USRP X300 device. The dataset is split into two: Day1 and
Day2 each of which is recorded in a different time frame,
location, and testbed setup to enable critical generalization
test of the trained DL model.
Elmaghbub proposes different WiFi datasets [31], [32]

composed of 50 Pycom devices. They create outdoor and
indoor scenarios and wired and wireless scenarios on
different days, and static or dynamic propagation channels.
They captured the first two minutes of transmissions using
the USRP B210 at a sample rate of 45 MSps. The captured
signals were then digitally down-converted to the baseband
and stored as I/Q samples on a computer. To avoid any
data dependency on the identity of the WiFi transmitter, all
transmitters were configured to broadcast the same packets,
which include the same spoofed MAC address and a payload
of zero-bytes.

3) VIRTUAL AND PUBLIC DATABASE

Soltani et al. [12] propose to simulate 10 virtual transmitters
to create a custom dataset and study the impact of multi-
plying the number of channels seen by the network during
the training phase. However, they decided to model only IQ
mismatch because of the complexity of modeling many RF
impairments.
Zhang et al. present [33], a model-based database with 4

impairments models. They work on a comprehensive study of
RF impairments modeling to address the need for the design
of a robust RFF identification protocol. Their model includes
LO imperfections, IQ gain and phase imbalance, and PA non-
linearities. They study the impact of individual and overall
impairments in different configurations and define a robust
RFF identification protocol when RF impairments cannot be
reconfigurable or customized to help the identification. Their
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work focuses on the estimation and calibration of the CFO
and the calibration of the IQ imbalance of the receiver.

C. DATABASE CHALLENGES
As a conclusion, the design space of RFF database is largely
explored by the community. However, it is difficult to design
a good training database related to an application context.
In most cases, the data environment context of the training
set will be different from the test set, making it difficult
to identify transmitters in the test. Real databases cannot
provide the flexibility, reproducibility, and exhaustivity we
need to understand and ensure that the network is currently
learning the RFF, and creating a real database is a long
process. Virtual databases are therefore really useful to
study RFF identification scenarios and design a robust RFF
identification protocols [33]. However, the main disadvantage
of virtual databases is a common weakness of digital
twins or modeling, which is the veracity of the choice of
models. Zhang et al. [33] propose to combine relevant SoA
impairment models to create a virtual transmission chain
with impairments. However the authors only give access to
the final database [12], [33], the community misses therefore
a generic virtual database generator. This work addresses
the need for the design of a robust database to perform
RFF identification with DL. We propose a virtual database
generator that creates a database based on the scenario
description to study the DL RFF identification process in
different scenarios and explore database design space such
as the number of signals.

III. RIFYFI SYSTEM OVERVIEW
A. RIFYFI IDENTIFICATION FRAMEWORK
In this section, we present our flexible framework for RFF
identification coded in Julia language. Julia [41] is a high-
level language, efficient in abstraction and execution, with
many DL and telecom libraries [42]. The framework is
composed of i) a virtual database generator, RiFyFi_VDG,
which allows flexible exploration of many RFF scenarios
and ii) a classification stage based on DL. The classification
part is trained before being used as a classifier. The global
framework presented in Figure 3 offers flexibility to use
different classifiers in the classification stage or to use
different virtual or real databases. With the virtual database
generator, the framework takes as input the description of the
database, called scenario parameters: number of signals per
transmitter, the number of transmitters, size of the sequences,
transmission context, and the information about network and
training: the name of the architecture network, the number
of training iteration called epoch.
The flexibility of databases created by the generator offers

the possibility to explore transmission contexts such as frame
symbols, RFF parameters, and environmental conditions such
as channels. The SoA shows some difficulties with channel
variation [13] and concludes with the need to have a robust
system for channel variation. The application context will
determine the properties of a system that can be defined

FIGURE 3. Framework flow.

FIGURE 4. DL classification in framework.

as robust. For applications where the time window between
training and identification is narrow, generalization is not
expected to be a problem as the channel will remain
static, especially when considering motionless devices. On
the contrary, an application with motion devices requires
more generalization to be able to classify devices in
different locations. The framework can help to define the
metaparameters for database design.

B. RFF IDENTIFICATION WITH DEEP LEARNING
In recent years, DL has been massively used for classification
for RFF as it could learn automatically how to classify
transmitter [12], [13], [14], [15]. Figure 4 describes the
classification procedure in the framework. This stage takes
as an input the database and the name of the architecture
network. The database has been previously created, labeled,
and split in Training and Test set. During the training part,
the network takes signals from the training set grouped in
batches as input. The labels of the signals in the batch are
predicted and compared with the true labels using cross-
entropy as the loss function to apply the back-propagation.
This process is repeated for each batch and each epoch. At
the end of the training, the framework saves the network
status in .bson file and saves the performance evolution
during the training phase in a .csv file.

The network is considered as an independent block from
the database with fixed inputs and outputs. The input size
depends on the size of the raw input signal. The output
depends on the number of classifying devices, the outputs of
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the network are the probability of belonging to a class. From
these probabilities, the classification prediction is done.
To evaluate the network classification performance, two

metrics are used: the F1 score and the accuracy. The accuracy
is calculated by counting the number of correct predictions
out of the total number of classifications. The F1 score is
calculated on the batch sequences as follows:

F1 = E
c∈C

(
2

1
P(c) + 1

R(c)

)
,

with

⎧⎨
⎩P(c) = tp(c)

tp(c)+fp(c)
R(c) = tp(c)

tp(c)+fn(c)
(4)

where E [ · ] stands for the expectancy operator applied here
on all the classes c ∈ C. P(c) is called the precision for the
class c and is a function of the number of true positives
tp(c) and false positives fp(c). R(c) is the recall for the class
c and is function of tp(c) and the false negatives fn(c). The
F1 score is interesting when the dataset is not balanced. In
our case, the F1 score is very close to the accuracy value
because the dataset is completely balanced.

C. PROPOSED VIRTUAL DATABASE AND RADIO
MODELS
The RiFyFi_VDG creates virtual databases to allow the
exploration of impairments, database design, and learning
models. Creating a virtual database requires wireless commu-
nication models, hardware impairments models, and wireless
propagation channel models. This section describes models
implemented in this generator.

1) SYMBOLS

First of all, the wireless communication model between an
emitter and a receiver requires creating a signal for trans-
mission. We consider that the binary sequence is modulated
by QAM symbols and then followed by an Orthogonal
Frequency-Division Multiplexing (OFDM) modulation with
subcarrier-based pilot insertion. OFDM modulation is mas-
sively used in standard communication, particularly in the
RFF database as it is shown in Table 1 and the signal
varies greatly in amplitude which makes it interesting for
the analysis of non-linear imperfections. While this paper
mainly focuses on an OFDM transmission similar to a WiFi
communication system, we have implemented and studied a
single carrier transmission case to present the flexibility of
the RiFyFi_VDG in which the binary sequence is modulated
by QAM symbols, followed by single carrier frequency
modulation.

2) TRANSMITTER IMPAIRMENT MODELS

In this section, the objective is to detail the impairment
models behind (2). The impairments modeling is described
in Figure 5 and is based on SoA models. We consider
here a classic Zero Intermediate Frequency or homodyne

FIGURE 5. Transmitter chain architecture and impairments.

modulation stage with I/Q modulation. The signal is mul-
tiplied by a carrier frequency generated from a LO and
different impairments occur in the transmission chain. As
Zhang et al. [33] this study is focused on the main features:
CFO impairments, gain and phase IQ imbalance, Phase Noise
(PN), and Power Amplifier (PA) nonlinearity. The model of
each impairment is described hereafter.
Before the LO, the analytical signal is modeled as:

x(t) = xI(t) + jxQ(t), (5)

where xI and xQ represent the real part and imaginary part
of the complex signal x. All complex variables will be
underlined in the rest of the paper. The LO allows modulating
the signal to a carrier frequency noted fc, this modulation
may create three different impairments. The first one is called
CFO, then the LO is polluted by a phase noise and an
imbalance between the two branches, called IQ imbalance.
CFO impairments: The LO modulates the signal at the

ideal carrier frequency, fc. However, CFO impairments
introduce a frequency offset �f , resulting in the effective
carrier frequency, f0, noted as:

f0 = fc + �f . (6)

For brevity, the models are expressed in terms of angular
frequency with ω∗ = 2π f∗. and the modulated signal xmix(t)
is expressed in terms of gain and phase error by:

xmix(t) = xI(t) cos((ωc + �ω)t) − xQ(t) sin((ωc + �ω)t),

(7)

which can be equivalently written as:

xmix(t) = x(t)ej(ωc+�ω)t, (8)

xmix(t) = �(xmix(t)), (9)

where � stands for the real part of the complex number.
IQ imbalance impairments: In the presence of imbalance,

the LO can be expressed according to Figure 5 in the form:

XLO(t) = gI cos(ω0t + θ) + jgQ cos
(
ω0t + π

2
− θ

)
,

XLO(t) = gI cos(ω0t + θ) + jgQ sin(ω0t − θ), (10)
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where θ is the phase impairment considering balanced, and
gI and gQ the gain impairments. The expression can be
simplified as done by Valkama et al. [43]:

XLO(t) = K1e
−jω0t + K2e

jω0t,

where K1 = gIe−jθ + gQejθ

2
, K2 = gIejθ − gQe−jθ

2
. (11)

The signal xmix(t) at the output of the LO in the presence
of IQ imbalance could be expressed:

xmix(t) = x(t) × XLO(t),

= x(t)K1e
−jω0t + x(t)K2e

jω0t. (12)

In our model, as it is often done in the SoA, a balanced IQ
mismatch is considered with gI = gQ = g

2 .
Phase noise impairments: The PN has been modeled in

the literature with different models, like Gaussian, Wiener
or Lorentz and we focus on the Wiener model as it is
a commonly used case in the literature to model free
oscillator [19]. The LO PN φ(t) may be modeled [44]:

φ(t) = √
cB(t), (13)

where B(t) denotes a standard Wiener process and parameter
c describes the LO quality called diffusion rate [44]. B(t)
is defined as B(t2) − B(t1) with t1 and t2 correspond to the
duration that forms the noise of variance

√
t2 − t1N (0, 1).

In the rest of the paper, we consider the digital Wiener PN
model parameterized by its state noise variance σ 2

ξ [45].
Considering all impairments described from now, the

output of the LO that is xmix(t) = FLO(x(t)), could be
expressed by:

xmix(t) = x(t)K1e
−j(ω0t+φ(t)) + x(t)K2e

j(ω0t+φ(t)). (14)

Power amplifier impairments without memory: At the end
of the transmission chain, the PA amplifies a low-power
signal to a higher-power one. To model the memoryless
nonlinear effect of the power amplifier in our system, the
Saleh model used in SoA [33] is chosen. The non-linearity
is modeled as amplitude/amplitude (AM/AM) denoted A(t)
and amplitude/phase (AM/PM) distortions denoted ξ(t).

A(t) = αAM|xmix(t)|
1 + βAM|xmix(t)|2

,

ξ(t) = αPM|xmix(t)|2
1 + βPM|xmix(t)|2

, (15)

where |.| denoted L1 norm. αAM, αPM, βAM, βPM are the
parameters of Saleh model [33].

Finally, the signal xPA(t) after the PA is modeled as:

xPA(t) = A(t)ej(∠xmix(t)+ξ(t)), (16)

where ∠ represent the angle of xmix(t).
Power amplifier impairments with memory: The power

amplifier can be modeled by memory model, the signal
xPAM(t) after the PA is modeled as [46]:

xPAM(t) =
P∑
p=1
p odd

fp(t) ∗ (|xmix(t)|p−1|xmix(t)|), (17)

where P is the nonlinearity order of the model and fp(t)
denotes the pth-order response of the polynomial model.

3) NOTES ON IMPACT OF CARRIER FREQUENCY

The models proposed and used in our database generator are
carrier frequency independent, but the parameterization of
the model will depend on the carrier frequency. For example,
the CFO depends on the carrier frequency following:

�Fmax = ppm

106
fc, 19

where ppm corresponds to the oscillator precision in part
per million. For instance, a precise oscillator (Temperature
Compensated X Oscillator, or an oscillator whose frequency
is controlled by digital/analog compensation) at 0.13 ppm
as chosen in the paper corresponds to a CFO of 300 Hz at
2.4 GHz. All these models are implemented in RiFyFi, the
value of each parameter as well as the similarities between
devices is discussed in the next sections.

4) CHANNEL MODELS

The channel models implemented in our database generator
are multipath fading channel models. Two different models
are specified with different delay profiles. The models are
the Extended Vehicular A (EVA) model and the Extended
Typical Urban model (ETU) [45]. EVA model represents a
medium delay spread environment while the ETU model is
a low delay spread environment. The signal obtained after
the channel is modeled as:

xchannel(t) = xPA ∗ h(t) + n(t), (18)

where ∗ is the convolution operator, h(t) represents the
propagation channel and, n(t) is a Gaussian additive white
noise of 30 dB.

IV. PRACTICAL USE: FROM MODEL TO SCENARIOS
A. DATABASE GENERATION PARAMETERS
In this section, the implementation and use of the
RiFyFi_VDG are characterized, to create interesting
databases to analyze. The generator offers the possibility
to explore easily RFF identification scenarios, thanks to
parametrization.
For all database creations, it is possible to choose:

• the number of transmitters NTx,
• the similarities or dissimilarities between RFF emitters,
• the number of signals per device Nsignals, in the database
and used to train our network,

• the size of a signal ChunkSize
• the transmission symbols scenario
• the modulation
• the fingerprint scenario
• the channel scenario

As the SoA shows, the RFF identification conditions
are multiples such as the frame of data used to identify
the transmitter [36], the level of noise [24], the number
of signals, the number of propagation channel views, the
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FIGURE 6. Parametric database generator chain.

number of transmitters and the quality of them. Therefore,
exploring these different scenarios with a single framework
seems interesting and could help in designing a real database.
In RiFyFi, a signal scenario consists of key parameters

that can be separated into 3 aspects: symbol generation,
RFF, and propagation channel. The first one, the symbol,
represents the part of the signal used for identification:
Preamble, MAC address, or Payload (Pre, MAC, Pay). This
is represented by the Symbols block in Figure 6. Then, it
is possible to choose the type of modulation between at
least three possibilities, OFDM, single carrier, or LoRa.
Then, the RFF block defines the transmitter impairments
considered: CFO, PN, PA, IQ imbalance, or all impairments.
After the transmitter model description, the channel block
defines environmental conditions, such as noise or channel
model. Finally, it is possible to add a receiver model with its
own RFF. Note that in this paper the impact of the receiver
will not be explored and is left for future studies. In the end,
a large matrix of IQ samples of size (ChunkSize, 2, Nsignals×
NTx) is created and passes through a shaping block where
data is shuffled and split to create, training and test sets.
Then the database and the labels are saved in 4 CSV files to
be used by the network. The labels matrix is composed of 2
dimensions (NTx,Nsignals). The matrix contains only 0 and 1.
The 1 allows us to attribute the signal to the corresponding
transmitter.
In the context of this work, is followed the conventional

approach found in the literature, which involves feeding the
network with complex IQ signals, as it is done in [14]
and [18].

B. SYMBOLS SCENARIO AND MODULATION
A signal is a sequence of ChunkSize complex IQ samples.
In this paper 256 IQ samples are considered corresponding
to the input size of the network [28], [30]. The baseline of
the signal is created with OFDM symbols composed of 548
IQ samples with an FFT size of 512 and a cyclic prefix
size of 36. This database generator can simulate different
scenarios: Preamble, MAC address, and Payload.
Creating a Preambule-based database requires generating

the same sequence of symbols for all emitters. It can be a
specific data sequence or a special sequence such as Zadoff-
Chu sequences. The second possibility is to generate a unique
sequence for each transmitter. This scenario is close to a
MAC address scenario where the signal contains the MAC

address. The last possibility is to generate different sequences
for each transmission, this scenario is called Payload where
the identification can only be done through payload.
To simulate these scenarios, the generator creates a

sequence called a burst composed of 64 signals of 256 IQ
samples, this burst is repeated to complete the Nsignals. The
preamble is the same for each burst and each transmitter. In
the MAC address scenario, a different burst is defined for
each transmitter. Finally, in the Payload scenario, all bursts
are different.

C. FINGERPRINT SCENARIO
Contrary to the symbols scenario, the fingerprint scenarios
are not all realistic, but they offer exploration possibilities.
First of all, it is possible to activate one or multiple
impairments, to combine their effects. Seven scenarios are
created and explored:

• CFO: only CFO impairment
• Imbalance: only gain and phase IQ imbalance impair-
ment

• PN: only PN impairment
• PA: PA impairment with Saleh model
• PA_memory: PA with measured memory model
• All_impairments: CFO, imbalance, PA with Saleh
model and PN.

All scenarios are studied in this paper. First, in Section V
impairments are independently studied, and then the most
realistic scenario is addressed: All_impairments.
The impairment models described in Section III-C2 are

parametric models. Each impairment is defined by one
or multiple parameters. The gap between the values of
an impairment parameter for two transmitters determines
the RFF similarity between two transmitters. Other papers
propose to create a grid to make sure that the space between
two impairment values is sufficient. In Zhang paper [33],
the impairments follow a uniform random distribution within
an interval. This paper presents the study of the impact
of the space between two impairment values with different
similarity percentages around a mean value.

D. DL NETWORK
The flexible nature of the framework offers the possibility
to explore different network architectures or other classifi-
cation solutions. In this paper, the exploration of network
architecture to determine the best for various impairments is
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FIGURE 7. Deep Learning architecture.

not undertaken. The network chosen in this paper has been
proposed and studied for RFF identification in [15], which is
one of the first contributions on RFF with DL solution and
public database. It is a CNN inspired by AlexNet, with 4
convolutional layers, each layer is composed of two blocks of
128 filters size 7×1 and 5×1 and a max-pooling stage. The
chosen activation function is ReLu and the optimizer is Adam
with γ learning rate. The batch size has been empirically
explore and set as 64. After the 4 convolutional layers, the
CNN has 3 fully connected layers with 256 nodes, 128 and
the number of classes (in this case 6 classes). After the two
first fully connected layers a dropout layer is added with dr ∈
[0; 1]. In input, the network takes complex baseband signals
without pre-processing. These signals are split into two raws
I and Q, and the input size N corresponds to ChunkSize. For
N = 256 as done in [28], [30], this architecture is presented
in Figure 7 and has 1,232,774 parameters. In Figure 7, the
notation corresponds to NFiltersCL(a, b) for Convolutional
Layers with (a,b) the size of the filter, and MP 2 for the
Maxpooling 2.
The next section presents an exhaustive investigation of

the individual impact of impairments with the network
introduced in [15] aimed to reveal the most discriminant
impairments for this network. The selection of an [15]-like
network is based on several studies indicating that networks
composed of convolutional and fully connected layers
have demonstrated strong performance in RFF classification
tasks [12], [15], [22], [24]. Conversely, it is important to note
that other architectures such as transformers [25] or Tangled
Program Graph [30] have also shown reliable performance.

V. INVESTIGATION OF THE INDIVIDUAL IMPACT OF
IMPAIRMENTS
In this section, impairments are separately studied with
different confidence intervals around a fixed mean value,
inspired by the SoA [33] and defined in Table 2. In [12],
Soltani et al. propose to create 10 virtual transmitters,
and they vary the amplitude imbalance from 1 to 5.5 dB
with steps of 0.5 dB and phase imbalance from 1◦ to
82◦ with steps of 9◦. This simulation seems not realistic.
Zhang et al. [33] set the range of gain and phase imbalances
to [−1 1] dB and [−5 5] degree, which seem to be more
realistic values. For the PA they used the values presented
in Table 2 which vary within ±5%. In this paper, different

TABLE 2. Mean value chosen for impairment parameters.

TABLE 3. Mean F1 score evolution during training phase for different CFO
impairments, γ = 10−4, 2 transmitters and 900 signals per transmitters for train.

intervals are explored. The confidence interval is a metric
to model the quality of transmitters. The RFF identification
complexity depends on the similarities between the RFF
transmitters. For a given number of transmitters, a large
interval reduces the similarity between two transmitters.
However a small interval increases the RFF similarity, and,
therefore, it makes the identification difficult. For this study,
some learning parameters are empirically adjusted upstream
for each impairment in order to compare them in favorable
situations. The parameters are specifically the dropout and
the learning rate. For this study, we chose the number of
transmitters as a function of the number of impairment
parameters we have to explore, 2 transmitters are not enough
to explore 2 or 4 parameters. The results presented in this
section are obtained by means of 5 different seeds, the
different colors in the tables evaluated the performance.

A. CFO
To study the CFO impairment, we set the mean value at
300 Hz and create different similarities with p% for two
transmitters with the following CFO values:

�fTx1 = �̄f (1 − p%), (19)

�fTx2 = �̄f (1 + p%), (20)

with p = 5%, 2%, 1% and 0.5%. The CFO values of
both transmitters for each similarity scenario p are given in
Appendix (Table 17).
Figure 8 presents the F1 score evolution during the

training phase and Table 3 summarizes the results with the
mean F1 score obtained on the training set and test set at
different epochs. For the next impairments, and for the sake
of conciseness we only use tables to present results.
Results are obtained with a learning rate γ = 10−4 and

no dropout and they show that narrowing the impairment
interval between two transmitters increases the network’s
difficulty in learning how to distinguish between these
transmitters. Nevertheless, this is compounded by the fact
that numerous studies have demonstrated the instability of
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FIGURE 8. Evolution of the F1 score of the different CFO impairments values, 2
transmitters and 900 signals per transmitters for train.

TABLE 4. Mean F1 score evolution during training phase for different IQ imbalance
impairments, γ = 10−4.

the CFO, which further exacerbates the situation we will not
focus on this. The study of CFO highlights the link between
RFF transmitters similarity scenario and the capacity of the
network to separate transmitters.

B. IQ IMBALANCE
As done with the CFO, we explore different similarity
configurations for IQ imbalance, defined by gQ, gI and θ

with gQ = −gI and θ ∈ {θmin, θmax} with 4 transmitters.

gQTx1 = gQTx3 = ḡQ(1 − p%) (21)

gQTx2 = gQTx4 = ḡQ(1 + p%) (22)

θTx1 = θTx2 = θmax (23)

θTx3 = θTx4 = θmin (24)

The two impairments, gain and phase have been explored
together by testing all combinations, with p equal 10%, 5%,
3% and 1% and the ensemble {θmin, θmax} takes {0◦, 5◦},
{1◦, 4◦} and {2◦, 3◦}. Table 18 in the Appendix presents
gain and phase values for each transmitter. The results are
obtained without dropout and a learning rate at 10−4.
Table 4 presents F1 score values at different times for

the different impairment combinations. Comparing the first
rows of results with a 10% similarity scenario shows that

TABLE 5. Confusion Matrix for test data for IQ imbalance impairment, g: 10% and
[2; 3] combination.

TABLE 6. Confusion Matrix for test data for IQ imbalance impairment, g: 1% and
[2; 3] combination.

increasing the phase similarity from {0◦, 5◦} to {1◦, 4◦}
increases the number of epochs required for the network
to converge. Moreover for {2◦, 3◦}, the performance in test
falls down even a after long training. Then, comparing the
first row of the 10% similarity scenario and the first row
of the 3% one shows a slight difference in F1 score value
at the same time. Moreover in combination with {2◦, 3◦}
and gain over 3%, results show an over-learning on training
data as it stops around 50% on Test data. The analysis of
the confusion matrix in Table 5, under 10% and {2◦, 3◦}
similarity conditions, reveals an effective classification of
Tx1 with 89% of correct classification. However, it exhibits
confusion between Tx1 and Tx3, as well as Tx2 and Tx4. In
summary, a 1◦ gap between two transmitters is insufficient
for a clear differentiation.
When the IQ imbalance gain is set below 1%, during

training, the network tends to over-learn and stops at around
50%. This is confirmed by the confusion matrix in Table 6,
which highlights a classification issue, as the network only
seems to recognize two classes.
The study of IQ imbalance shows a decrease in con-

vergence speed when the similarity between impairments
decreases for the gain and phase with a limit for recognizing
devices at 1% for gain and at 1◦ difference for phase.

C. PHASE NOISE
The PN is a particular impairment because, as it is a noise, it
is difficult to find the specific difference between transmitters
only based on PN. To study the PN, different PN values
(between 10−7 and 10−4) are set for 4 different transmitters
and experiments have been done with different learning rates
and dropout. However, the results are always bad: a F1 score
around 25% is achieved on the test set, even after a large
number of epochs. This result shows that the network is not
able to separate the transmitters. To conclude, the PN is not
a relevant impairment to separate transmitters.

D. PA MODEL
To study the PA effect, two types of model introduced in
Section III-C2 are used. The first one is the Saleh model, and
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TABLE 7. Mean F1 score evolution during training phase for different Power
Amplifier impairments, γ = 10−5 dr = 0.25.

the second is the memory model based on coefficients from
real measurements. This memory model (MM) is presented
by [47]. The memory model contains around 100 emitters
models but we extract 2 groups of 4 PA models to better
stress the impact of closed PA configurations “MM close”
and distinct PA configurations “MM far”. For the Saleh
model, the different parameters are presented in Table 19 of
the Appendix for different impairment similarities expressed
as:
For αAM and αPM ,

αTxi = αTxi+2 = α(1 − p%) with i = 1, (25)

αTxi = αTxi+2 = α(1 + p%) with i = 2. (26)

For βAM and βPM ,

βTxi = βTxi+1 = β(1 + p%) with i = 1, (27)

βTxi = βTxi+1 = β(1 − p%) with i = 3. (28)

Different experiments are done and present instability of
the network during the training phase. To reduce this problem
the dropout is put at 0.25 and the learning rate is decreased
at 10−5. Table 7 presents the F1 score value during training
for the train dataset and test dataset. This shows a decrease in
convergence speed when the similarity between impairments
increases and for p ≤ 0.5% the network overlearns on
training data. The use of the memory model allows us
to show the flexibility of our framework in particular the
interest of the generator is to use any RFF parametric models.
Finally, it shows that the results obtained with the Saleh
model are realistic in terms of convergence speed.

E. CONCLUSION OF INDIVIDUAL IMPAIRMENT EFFECTS
The investigation of the individual impact of impairment
reveals the link between the RFF impairments similarity and
the capacity of the network to classify several devices. The
impairments are not all relevant, in particular, the PA and
IQ imbalance seems to be interesting. This study shows
the importance of tuning learning parameters to adapt the
network to the data. Moreover the network seems to converge
faster for the CFO and IQ imbalance.

VI. CONGLOMERATE SCENARIOS STUDY
In this section, different transmission scenarios with all
impairments are studied with NTx = 6 transmitters and p%
interval, for IQ imbalance, CFO and PA (Saleh model). For
the PN two variances of state noise center around 10−7and

TABLE 8. Mean F1 score evolution during training phase for preamble and different
similarity scenarios, γ = 10−4 dr = 0.

10−4 are explored. The values chosen for each parameter
of the 6 transmitters are calculated following (31), Table 20
in Appendix presents the parameter values calculated for
p = 5% similarity. Except for θ , the parameter values PpTxk
for device k ∈ [1,NTx] are computed as:

PpTXk = Ppmin + k

(
Ppmax − Ppmin

)
NTx

, (29)

with Ppmin = Mean Value(1 − p%), (30)

Ppmax = Mean Value(1 + p%), (31)

with Ppmin the minimum of the impairment parameter in
the p% similarities scenario and Ppmax the maximum. Four
different similarity scenarios are studied in this paper, 5%,
3%, 2% and 1%. For θ parameters, PpTXk follows (31) but
Ppmin and P

p
max depend of the similarity scenario. For p = 5%

and 3%, we set:

Ppmin = 0◦ Ppmax = 5◦, (32)

while for p = 2% and 1%, we set:

Ppmin = 1◦ Ppmax = 4◦. (33)

A. PREAMBLE SCENARIO
1) HOW CLOSE CAN THE RFF OF 6 DEVICES BE?

This section addresses the convergence speed of the CNN
in preamble scenarios with all impairments and different
contexts. The databases are composed of 6 emitters with
1000 WiFi-like signals per emitters, with OFDM modulation.
Each database is split into 90% and 10% to create training
and test sets, respectively. Table 8 presents the F1 score
values during training for both training and test sets, for the
different similarity scenarios. The training is ended when
the network obtains an F1 score of 98% on the training
set. First, at 5% similarity, two state noise variances of
the PN scenarios are studied, 10−7 and 10−4. The results
indicate that increasing the state noise variance enhance
both classification and generalization challenges due to the
additional noise introduced to the signal. At 30 epochs
the network as reached 98% for test in 10−7 scenario,
but for 10−4 the network obtain only 93% on test. The
results are interesting and present good performance for
both PN scenarios with the worst result in the test for
10−4 as the first study shows the PN was not relevant but
could disturb the network by adding noise and making the
identification difficult. For the rest of the paper, phase noise
is set around 10−7.
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TABLE 9. Mean F1 score evolution during training phase for Preamble and different
similarity scenarios, γ = 10−5 dr = 0.25, PN=10−7.

FIGURE 9. F1 score obtained in test in function of the number of signals used to
train the network when training has reached 98% of F1 score, in Preambule scenario
with γ = 10−4 dr = 0.

Then different similarity scenarios: 5%, 3%, 2% and 1%
are compared. The network has no difficulty in classifying
the 6 transmitters in the 5% scenario. As the similarity
increases, the network needs more time to learn and classify
the devices. The complexity of the classification problem
increases as device impairments become closely situated,
making it more challenging for the network to distinguish
between them. To solve this issue it is possible to change
some learning parameters such as the learning rate and add
dropout to avoid overfiting, as it is presented in Table 9.
In the 2% similarity scenario, these changes improve the
F1 score in the test but not enough. Furthermore, in the
case of the 1% similarity scenario, the test F1 score remains
at approximately 18%, close to random value 1/NTx. This
suggests that the network struggles to learn RFF due to the
proximity of impairments and just overfits on the training set.
We propose to increase and explore the number of signals
per transmitter required to improve the performance of the
network and avoid overfitting. Figure 9 presents the F1 score
obtained in test as a function of the number of signals in the
training dataset. The network obtains an F1 score of 80%
in the test when 9000 signals per transmitter are used in the
training dataset for a 1% similarity. The number of required
signals to train the network increases with the similarity
between devices. It is thus more difficult for the network to
separate and classify them. This reveals a countermeasure
to RFF identification by using emitters with very similar
impairments.
The Preamble scenario over-fits on the data: for another

preamble used in the test, the network obtained around
F1 score of 25% and is not able to identify the RFF in other
data contexts. However, if the identification application uses

TABLE 10. Mean F1 score evolution during training phase for preamble and different
similarity scenarios for single carrier modulation, γ = 10−4 dr = 0.

TABLE 11. F1 score obtained in test when training has reached 98% for different
RFF at 10%, γ = 10−5 dr = 0.25.

only the preamble to identify the device, over-learning in
those conditions gives the guarantee that the neural network
will perform in this situation.

2) HOW ABOUT THE IMPACT OF SIGNAL MODULATIONS?

This subsection addresses the diversity of signal modulations
by considering single carrier frequency modulation. For this,
a QAM sequence is upsampled and filtered by a square
root raised cosine filter with a roll-off of 0.33. The QAM
sequence is the same for all transceivers (in preamble mode)
and set to have the same length as the OFDM sequences.
The results presented in Table 10 are very close to the

results presented in the previous Table 8. The convergence
speed is comparable to the convergence speed obtain with
OFDM and decrease when the similarity between devices
increase. It is important to notice that our simulator read-
ily accommodates additional modulation schemes or even
standard-compatible signals. It paves the way for specialized
analysis focused on standards or applications beyond the
scope of this paper.

3) WHAT IS THE MOST RELEVANT FEATURE ?

To study the most relevant impairment, we choose to use
the 1% similarity scenario and increase to 10% one after
one the interval for one impairment. At 10% in the previous
section, all individual impairments allow separating trans-
mitters. Here we study the co-existence of all impairments
and explore how they interfere together and impact the
classification accuracy. Table 11 presents the results obtained
in test when the network has reached 98% F1-score on train
set for different situation. The best performances are obtained
when the PA is set to 10% and reveals the importance of
PA in RFF identification.

4) DOES THE DYNAMIC CFO IMPACT THE
CLASSIFICATION ?

The previous result highlights the most relevant features
and Table 11 shows that the CFO is not really impacting
in our context. In Section sssec:III-C.3, we presented and
chose a precise oscillator: an oscillator with a compensation
system with 0.13 ppm, and fixed value. In this condition,
the CFO does not impact the classification. However, the
state of the art extensively covers this topic and leads to
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FIGURE 10. F1 score obtained in test in function of the CFO dispersion values δf for two different �̄f , and 6 transmitters.

the conclusion that the CFO has a significant impact on
RFF identification [19], [32], [48], [49]. Considering this
point, we propose a simulation to study the impact of the
dynamic CFO on the classification. First, two different mean
values �̄f of the CFO are chosen: 300 Hz and 2400 Hz,
corresponding to around 0.1 ppm and 1 ppm respectively,
both at 2.4 GHz. In these two scenarios, we consider different
dispersion scenarios called δf , which corresponds to the CFO
difference between 2 devices and that is expressed as:

�fTxi+1 = �fTxi + δf , (34)

where �fTxi and �fTxi+1 correspond to the CFO impairment
for transmitters i and i+ 1 during the training phase.

Figure 10 presents the F1 score obtained in the test when
the CFO has shifted between the training phase and test
phase for different dispersion scenarios. This shift, called
frequency variation, and noted νf , can model the impact of
a temperature variation and is expressed as:

�fTestTxi = �fTrainTxi ± νf , (35)

where �fTestTxi and �fTrainTxi correspond to the CFO value
of transmitter i during the training or test phase.
The first part of Figure 10 concerns a mean CFO value

at 300 Hz with three dispersion values: 10 Hz, 100 Hz and
500 Hz between each transmitter. For a dispersion δf of
10 Hz, the result shows that an important CFO variation
such as νf = ±1000 Hz, in red, between the training
and the test set, affects the classification accuracy but the
network is still able to classify many signals (around 75%).
In other words, the CFO is too weak to be a relevant
impairment for the network. For δf = 500 Hz, the results are
different. For a νf = 500 Hz or 1000 Hz, accuracy falls down,
which means that the network associates the transmitter to
a particular CFO value. This reveals the importance of the
CFO dispersion in this scenario to classify the transmitters.
In other words for 500 Hz dispersion, the CFO is a relevant
impairment for the network. In this case, a CFO variation
due to temperature can affect dramatically the identification.

TABLE 12. Channel study γ = 10−5 dr = 0.25, for 6 transmitters, 900 signals pers
transmitter and per channel for training.

Finally, for �̄f = 2400 Hz, the conclusions are the same
that the ones done with �̄f = 300 Hz. For δf = 1000 Hz,
the orange bar, which corresponds to νf = 500 Hz, has
reached 50%. This occurs because the network’s decision
boundary is positioned midway between two CFO values.
As a result, 50% of the sequences are correctly classified,
while the other 50% are classified into the nearest class.
In the rest of the paper, we keep the parameterization of
a precise oscillator: 0.13ppm (temperature compensated X
oscillator, or an oscillator whose frequency is controlled by
digital/analog compensation).

5) HOW THE CHANNEL CAN IMPACT THE
CLASSIFICATION ACCURACY?

We propose to compare 3 training situations:
1) Static environment without a multipath channel, a SNR

of 30dB,
2) Static environment with a multipath channel for each

transmitter and a SNR of 30dB,
3) Dynamic environment with several and different

multipath channels for training and test with a SNR
of 30dB.

For the first scenario featuring a static environment without
a multipath channel, where only noise is taken into account.
The performance of the network is evaluated on the same
scenario with 30 dB of noise. The results presented in
Table 12 are obtained with the test dataset when the training
has reached 98% of accuracy for 3 different similarities.
In the second situation, the database corresponds to a

wireless transmission with a fixed static multipath channel
for each transmitter. The performance of the network trained
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TABLE 13. Mean F1 score during training phase for 5% similarity and 12 devices
and 6 devices with γ = 10−4 dr = 0.

TABLE 14. Confusion matrix for test data in MAC scenario without spoofing.

with this database is evaluated in two situations, with the
same static channel and with 100 different static channels for
each transmitter. Finally, in the third situation, the training
is done on multiple (10) multipath propagation channels and
tested with 100 different static channels for each transmitter.
The results obtained show the channel sensitivity. In

particular, the third row with static training and dynamic
testing scenario shows that the network learns the channel,
this result has been already shown in the literature. The
last row demonstrates that exposing the network to various
propagation channel conditions during training enhances
its robustness to channel effects. In conclusion, a network
trained with a static channel database cannot guarantee a
generic capacity to detect the transmitters in other channel
situations. In other words, a training database has to be
according to the testing scenario space to guarantee good
genericity. A more precise study of channel impact has been
proposed in [50].

6) HOW DOES THE NUMBER OF TRANSMITTERS
IMPACT THE CLASSIFICATION ?

The number of transmitters is multiplied by two and the
RFF impairment values are computed in 5% intervals around
the mean values. In this situation, the network required on
average 250 epochs to achieve 98% of accuracy in training.
Compared with the 6 transmitters situation, the network
requires more epochs to converge because the complexity of
the problem has increased.

B. MAC ADDRESS SCENARIO
In this section, we study the classification of 6 transmitters
where the sequence emitted by the transmitter (training and
test sets) contains a different MAC address per transmitter.
After 6 epochs the network has reached 99% F1 score on the
training set and 98% on the test set for the 5% similarities
and 1% similarities scenario with a learning rate at 10−4 and
no dropout. The confusion matrix given in Table 14 presents
the result of classification in the test without MAC spoofing.
Table 15 is obtained when the Tx1 spoofed the MAC address
of Tx3. The spoofing represents a real risk in cybersecurity,
it’s possible to use the MAC address of another device to
be identified as this device by an authentication system.

TABLE 15. Confusion Matrix for test data in MAC scenario with Tx1 spoofed MAC
address from Tx3.

FIGURE 11. F1 score obtained in test in function of the number of signals used to
train the network when training has reached 98% of F1 score.

In the MAC address scenario, the address in the signal
is the strongest signature and prevents the network from
focusing on RFF, the learning system and the network only
learn the MAC address to identify the device, in this situation
the identification system will not be robust to spoofing. To
tackle such issues, the virtual database allows exploring the
scenario to determine a way to secure the transmission by
slicing the signal [36].

C. PAYLOAD SCENARIO
The Payload scenario is the most difficult one because all
data are different. In this section, the number of signals
required to obtain robust RFF learning in the Payload
scenario is studied.
Such a scenario represents non-correlated data and is

complex for the network, for example with 900 signals at 5%
similarity the F1 score in the test stays around 30% compared
to the Preamble situation where the network achieves 98%
in the test. In the Payload scenario, the network overfits
on training data, to avoid this issue the number of signals
used in the train is explored. The results are obtained with
a learning rate at 10−4 and no dropout. Figure 11 presents
the F1 score obtained in the Test set when the network has
reached 98% of the F1 score on the training set, obtained
for 2 different similarity scenarios. In blue, we represent the
5% similarity scenario database, and yellow represents the
10% similarity scenario. Table 16 completes the results by
adding the time of training to reach 98% of the F1 score.
Figure 11 shows a great improvement of the F1 score in

the test when the number of signals is increased. However,
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TABLE 16. Time required for the network to reach 98% of F1 score on training data,
in payload context, on GPU architecture.

.

TABLE 17. CFO values for different similarity scenarios.

TABLE 18. Gain and phase impairments values for different IQ imbalance.

Table 16 presents the time required to achieve the different
training and the time convergence speed increase because
of the number of data seen in an epoch. The number of
signals and the time of training can represent some limit
depending on the application context. For example, in cyber
defense, the quantity of data can be limited by the difficulty
of capturing data and the time to train the network can be
limited by the need of short reaction time.

VII. CONCLUSION
This paper introduces a virtual database generator based on
wireless transmission and RFF models included in a flexible
framework for RFF identification. This work proposes
an exploration of database design for RFF identification
with DL considering the similarity between the RFF of
transmitters, the transmission scenario, and the number of
signals.
Our analysis showed the impact of similarity between

RFF transmitters on the network convergence speed and
the F1 score performance in a preamble context. For a 2%
similarity, decreasing the learning rate and adding dropout
helped the network to improve the classification in the test
from 30% to 45%. Moreover increasing the number of
signals permitted to achieve 65% of accuracy. The CFO
analysis is correlated with the SoA for a 500 Hz dispersion
between transmitters the network focuses the training on
this impairment. However, for 100 Hz dispersion between
transmitters, the network does not focus the training on the
CFO, so for a CFO variation of 1000 Hz the classification
accuracy is affected but still around 75%.
A very large number of signals per transmitter is needed

when the RFF similarities are strong between transmitters
or in a Payload context consequently having similar RFF
devices can be a countermeasure to avoid RFF identification.

TABLE 19. Values of impairments for different PA impairments.

TABLE 20. Values of impairments for different all impairments.

The virtual database generator can help to pre-assess the
needed database design with many flexibility as it was shown
by changing the OFDM modulation by a single carrier
modulation. The authors commit to release this generator
as an open-source tool immediately after acceptance of the
paper [20].

APPENDIX
Below are presented the tables of all the parameters used in
the various scenarios.
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