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ABSTRACT The O-RAN architectural framework enables the application of AI/ML techniques for traffic
steering and load balancing. Indeed, an effective steering technique is crucial to avoiding ping-pong
and radio link failure. Limited observability and network complexity make it challenging to understand
individual user needs. Consequently, traffic steering methods struggle to make optimal decisions, resulting
in performance degradation due to unnecessary handovers. Motivated by this, we present an xApp for the
RAN intelligence controller (RIC) for user equipment (UE) steering to ensure an even load distribution
among cells while maintaining an acceptable throughput level. We propose an ML-aided traffic steering
technique. The proposed method comprises three phases: UE classification, downlink (DL) throughput
prediction, and a traffic steering (TS) technique. A support vector machine (SVM) is used for UE
classification, followed by cell throughput prediction using ensemble Long Short-Term Memory (E-LSTM).
The TS algorithm uses the information from the ML models to initiate handovers (HO). The SVM
model identifies UEs with low throughput, while the E-LSTM predicts cell DL throughput to provide
information about potential target cells for these UEs. Experimental results demonstrate that the proposed
method achieves an even load distribution of UEs in 60.25% of the cells with few handovers, while also
significantly improving UE throughput.

INDEX TERMS Bagging, DL throughput, load balancing, LSTM, O-RAN, supervised learning, SVM,
traffic steering, xApp.

I. INTRODUCTION

NETWORK resource demand is exponentially increas-
ing due to the number of emerging devices and

applications. Hence, mobile operators and service providers
are required to meet the demands of these users and
the different applications. The 5th generation (5G) is
designed to meet these demands and support verticals
and users with high bandwidth, low latency, and reli-
ability. To ensure that the entire network meets the
key performance indicators (KPIs), both the radio access
Network (RAN) and the core network must function to meet
these KPIs.
The demands on the network keep increasing, hence

a requirement for a more efficient RAN deployment and
management. One approach proposed is the implementation
of functional splitting as discussed in [1]. The core concept
of this approach is to disassociate the RAN functionalities

from the hardware and run them as software. As presented
by the authors in [2], cloud RAN (C-RAN) demonstrates
functional splitting aimed at lowering energy consumption
while increasing spectral efficiency by moving the baseband
units (BBUs) to a centralized location. The authors in [3]
proposed an improved version of the C-RAN. The objec-
tive of these architectural frameworks is to centralize the
baseband unit (BBU) in the cloud, separating them from the
Radio Frequency (RF) antenna units. Functional splitting is
also demonstrated in [4] where the authors presented virtual
RAN (vRAN). vRAN further provides a splitting possibility
of the BBU into the distributed unit (DU) and centralized
unit (CU) in a virtualized environment. The vRAN provided
a more traditional approach to implementing a centralized
RAN architecture. C-RAN and O-RAN [5] provide open
interface deployment possibilities where the interfaces are
not vendor-specific.
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The advent of AI/ML has changed the narrative of
network management and orchestration. Network operators
and service providers are developing networks that can be
effectively managed by implementing AI/ML techniques.
The O-RAN Alliance has proposed a noteworthy deployment
of RAN (Radio Access Network) utilizing AI/ML methods
[6]. They have introduced the Open RAN (O-RAN) architec-
ture, addressing functional splitting and the incorporation of
intelligence (AI/ML) for decision-making, ensuring flexibil-
ity, scalability, and open interfaces for interoperability. The
functional splitting provides the avenue for the implementa-
tion of AI/ML techniques in the architecture, as presented by
the O-RAN Alliance. The RAN intelligence controller (RIC)
in this architecture acts as the brain of the system, where
AI/ML models can be deployed for RAN management. These
models are implemented as software components (xApps) for
various functionalities. The deployment, management, and
challenges associated with these xApps are described by the
authors in [7], [8] and [9]. One major issue in the current
network is traffic management and resource allocation. The
complexity of assigning resources and maintaining the key
performance indicators (KPIs) rises, particularly due to the
diverse network demands.
Many propositions are made in the literature to address

TS problems. There are TS algorithms that are either cell-
centric or UE-centric. However, O-RAN has provided an
avenue where an intelligent model can assist the network in
TS decisions. Unlike the conventional cell-centric approach
where TS is done by the cells, a smart model provides
much insight into the network for better decision-making.
There are also some UE-centric methods as discussed in [10]
and [11]. These approaches run ML models on mobile
devices for cell selection. However, much consideration is
not given to the consumption presented by these approaches.
In [12], a knowledge transfer and federated learning method
is discussed for UE-centric traffic steering. UEs share models
which could lead to private data leakage, and local model
training also adds more computation on the user device.
Moreover, these methods do not give details of the load on
the cells. Approaches such as the one presented in [13], [14]
are load-aware and ensure even load distribution but the
average throughput guaranteed by the cell is unknown.
To address these challenges and test the use of xApp in

O-RAN, channel state information (CSI) is used in modeling
an ML-aided xApp for traffic management. The goal is
to reduce congestion without prediction, as presented by
the authors in [15]. After all, limited observability makes
it difficult to understand individual user needs. Instead of
treating a UE at a time, we want a centralized model that
scans the entire network. The model then gives us the
group of UEs with low throughput or poor link quality.
Hence, no extra computation is done at the UE level while
support is rendered to the RAN nodes for improved network
performance. The algorithm presented in this work is load-
aware and triggers HOs only when the load on the target cell
meets the load requirement. In our previous work [16], we

discussed the K-means clustering approach to cluster UEs
and then predicted the throughput using LSTM. However,
when there is noisy data, the model does not generate
an accurate cluster. We also observed that a single LSTM
performs well but the accuracy was around 85%. To tackle
these challenges, we present a two-tier machine learning
(ML) model designed to classify User Equipments (UEs) and
predict throughput within the traffic steering framework. The
UE classification model utilizes a Support Vector Machine
(SVM), while cell throughput prediction adopts an ensemble
Long Short-Term Memory (E-LSTM) technique. In this
context, all UEs are treated equally, and the classification
process relies on the individual throughput observed by each
UE. Our objective is to present an ML-aided traffic steering
technique using SVM and E-LSTM techniques to guarantee
optimal network performance.
The main contributions of this work are as follows:

• design an SVM classification model for user classifica-
tion. The classification method puts UEs into groups of
respective throughput based on a threshold, unlike most
classification methods where classification is based on
UE behaviors and activities.

• cell throughput prediction using E-LSTM to determine
the cells with the required throughput to support the
UE requirement. LSTM proves to be the preferred
prediction model in the literature but E-LSTM gives a
much better outcome. This prediction method does not
only consider traffic patterns but also the density of
UEs and the correspondent throughput.

• a steering algorithm to efficiently move UEs among
cells and to ensure load balancing and congestion
avoidance

Due to the high number of users expected in the network, we
present a classification method for the UEs. By classifying
users based on their network experience, we can prioritize
those with low throughput, ensuring fairness and better
resource allocation. Lack of detailed user feedback hinders
efficient resource allocation. Hence, classifying users based
on their reported throughput provides valuable insights into
their current network performance and allows for targeted
steering decisions. This enables us to understand individual
user experiences and make intelligent steering decisions,
effectively ensuring a better overall user experience.
Similarly, by predicting the impending changes in cell

throughput, the network can make more informed decisions
regarding handovers. This can help minimize the risk of
handovers to congested cells, leading to smoother transitions
and better user QoE (Quality of Experience). Due to traffic
variations, predicting cell throughput allows the steering
system to adapt dynamically, continuously improving UE
experience based on real-time information and ensuring an
acceptable load distribution in RAN nodes.
The structure of this paper is as follows. Section II

describes the related work, while Section III presents our
system model and problem formulation. We discuss the
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performance and evaluation in Section IV and, in Section V,
the conclusions.

II. RELATED WORK
A. USER CLASSIFICATION METHODS
User classification is crucial for mobile network management
and optimization. As presented by the authors in [17], users
can be classified based on Internet traffic and in-app usage.
They discuss an encrypted method of mobile app usage to
classify users based on their traffic consumption.
Most mobile user classifications are based on user behav-

ior and their activities as discussed by these authors [18],
[19], [20], [21]. For instance, Gabrielli et al. [22] present
city user classification based on behaviors and habits. They
suggest that call habits can help determine whether users
are residents or visitors. These classification methods are
implemented to understand the behavior patterns of UEs,
their areas of interest, the kind of apps they use, and the
traffic type they consume.
Unlike the methods mentioned above, which classify users

based on their phone applications, message types, traffic
volume (low or high), and residency status, the classification
method adopted for this work considers activities occurring
at different time instances and the throughput observed by
different UEs. This method treats all UEs equally, intending
to ensure they receive adequate throughput. This way, even
if a UE’s behavior changes, it will still be guaranteed an
acceptable throughput.

B. THROUGHPUT PREDICTION
Bui et al. [23] surveyed contemporary network performance
prediction techniques, emphasizing the significance of
throughput as crucial contextual network information. These
throughput prediction methods are generally categorized as
active and passive. Active methods necessitate UEs to be
in connected mode and transmit data packets, while passive
methods generate predictions with minimal or zero network
disruption [24].

Furthermore, active test methods may lead to excessive
network congestion due to increased sampling in dynamic
wireless environments like vehicular scenarios.
Yue et al. [25] conducted an extensive correlation analysis

among Radio Signals (RSs) describing Radio Frequency
(RF) parameters and labeled throughput. This study encom-
passed various use cases, including stationary, walking, local,
and highway driving scenarios. Their findings revealed a
nearly linear growth in measured throughput with increasing
RSRP, RSRQ, and CQI values. The study mainly concen-
trated on a random forest (RF) machine learning model to
predict available throughput per device. The predictive fea-
tures considered included RSRP, RSRQ, CQI, and historical
throughput. Notably, this proposed model is fully intrusive,
as it requires the UE to be in connected mode for data
collection, making replication of their model and results
challenging due to insufficient description. Specifically, the
study lacks details on the active tests conducted, such as the

selection of labeled throughput values during data collection.
Additionally, the authors did not provide insights into
how features were measured concerning their corresponding
labeled throughput values and their alignment in terms of
time resolution.
Yao et al. [26] introduced bandwidth maps, which utilize

past throughput experiences to predict current throughput
at specific locations. They applied their model in adaptive
video streaming and audio applications to gauge mean
opinion scores. Jomrich et al. [27] took a step further
by incorporating positioning data with a few RF metrics
to forecast throughput for moving vehicles. Leveraging
geolocation has advantages in understanding factors such as
path loss, cell load, and shadowing [26]. However, we have
decided not to consider geolocation as a feature in our study
for several reasons. Firstly, it carries the risk of bias towards
specific network settings within one location, which becomes
problematic with changes in network settings, topology,
and environmental conditions that could render the ML
model obsolete. Secondly, there is uncertainty regarding the
dimensions of the geographic area required for the ML
model. Thirdly, it entails an expensive training process since
data must be collected from various geographic locations
over extended periods. Finally, privacy is an issue of concern
when applying user data containing geolocation information.
The throughput prediction method without geolocational
information allows for better model generalization.
Raca et al. [28] developed a machine-learning model to

forecast future throughput based on RSRQ, CQI, SINR, and
historical throughput measurements. Their study explored
various machine learning model types, including RF, SVM,
and Neural Networks (NN), similar to the approach in [25].
Similarly, Schmid et al. [29] presented deep learning models
for throughput prediction using RNN. Deep learning tech-
niques for throughput prediction are also discussed by the
authors in [30], [31]. It is worth noting that most throughput
prediction methods in the literature consider mostly the
traffic pattern and area map, however, we only considered
the historic throughput reported by the individual UEs for
the prediction.

C. TRAFFIC STEERING METHODS
Providing connectivity to the users alone is not enough to
ensure the QoS is maintained for all the UEs. Resource
management is essential to maintain the key performance
indicators (KPI) in the O-RAN. The authors in [32] presented
an RL method to obtain a near-optimal traffic steering in
a heterogeneous network. The objective is to analyze the
performance of an RL agent in providing load distribution in
a Hetnet. Gijón et al. [33] proposed a traffic steering method
for QoE optimization. They presented an optimization
method to handle inter-frequency handovers (IFHOs) to
guarantee users an acceptable QoE.
Due to the high number of network devices and appli-

cations, most systems are designed to be energy efficient
to reduce energy consumption. Math et al. [34] proposed
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lightweight supervised ML techniques at the MEC to assist
radio resource heads (RRHs) in traffic distribution. One of
the objectives of these authors is to design an energy-efficient
traffic distribution system using ML. Similarly, the authors
in [35] discussed energy-efficient traffic steering. They
presented a steering technique that takes into consideration
the power source.
Kavehmadavani et al. [36] proposed a traffic steering

technique in the Near-real time RIC to manage URLLC and
eMBB traffic and to analyze their co-existence. An extension
of this work is discussed in [37] where LSTM is used in
traffic prediction to enhance traffic steering in the RIC.
Network management and operations are becoming

sophisticated due to the diverse network applications and
devices emerging recently. An increase in network devices
suggests the possibility of network congestion at certain
times in the network. Hence, HOs will be triggered to
ensure that UEs closer to a neighboring cell (target cell)
are receiving sufficient signal strength or based on any of
the principles described in [38] and [39]. Although HO can
guarantee UE an acceptable signal strength, signal strength
alone does not indicate that a UE is receiving adequate
throughput in a congested cell since interference affects
throughput [40]. One way to ease HO decisions in the
network is by having a prior understanding of the UEs
experiencing low throughput. The number of UEs in the cells
and the average predicted throughput of the cells will also
facilitate easy decision-making during HOs.
To that effect, we propose a classification method for

UEs in the cells. This method provides the network with a
synopsis of users and the throughput they are receiving. The
combination of both classification and throughput prediction
approaches is not discussed in the literature. Our preliminary
analysis includes an xApp deployment and an algorithm
for traffic steering and load balancing in the O-RAN
architecture. We execute user equipment (UE) classification
using SVM to distinguish UEs with lower throughput and
signal strength from the ones with higher signal strength
and throughput. We then present a cell throughput prediction
and handover execution to guarantee an even distribution of
users in the network.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this framework, we have the O-RU, O-DU, and O-CU,
which receive UE radio signals and process them. The UE
metrics are then sent through the E2 interface to the Non-RT
RIC for the ML model design and implementation.

A. NETWORK MODEL
According to the O-RAN Alliance specification for RAN
architecture, the RAN components could be separated or
bundled. The bundling of these entities determines the
interfaces that will be exposed between the Near RT-RIC
and the O-RAN components. In this experimental analysis,
the bundling of the O-CU-CP, O-CU-UP, O-DU, and O-RU

FIGURE 1. O-RAN deployment approach where UE information from the E2 nodes
are constantly sent to the database for ML application.

FIGURE 2. System model design and workflow.

is considered, depicting the testing deployment as shown in
Fig. 1.

B. WORKFLOW AND DATA GENERATION
Fig. 2 illustrates the workflow and data generation process.
The E2 nodes generate network traffic containing the
performance metrics of UEs, comprising both UE and cell
information. This information is transmitted from the E2
nodes through the E2 termination using a UDP socket via
the E2 interface. The E2 termination node is also connected
to a shared data layer (SDL) Neural Autonomic Transport
System (NATS). NATS is a publish/subscribe platform for
information exchange between services. It provides a secure
layer for data exchange between the xApp and the E2
termination. This allows xApps to receive and process data
they are subscribed to, whereas E2 termination receives only
the subscribed KPM sent by the xApp.
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FIGURE 3. This image illustrates the method adopted for our steering technique.

The received data undergoes processing and is utilized
for model training. The training and validation phases
of the model occur within the Service Management and
Orchestration (SMO) environment before the model is
deployed in the Near-Real-Time Radio Intelligent Controller
(Near-RT RIC) as an xApp. The xApp receives data for
both UE classification and throughput prediction and sub-
sequently produces outcomes, such as the generation of the
“HANDOVER REQUEST” message by the TS algorithm.
This message is then transmitted to the E2 nodes via NATS
and E2 termination. Therefore, this work is presented in
three parts:
• Triggering UE classification based on DL throughput
received.

• Predicting the average throughput of all cells
• Initiating handover for UEs that require new cells.

IV. PROPOSED MACHINE LEARNING MODELS AND
TRAFFIC STEERING ALGORITHM
E2 nodes generate cell and UE Information. The information
provides UE and cell association. Table I illustrates UE/cell
parameters and information that the xApp is subscribed
to receive from the E2 nodes. The information contains
physical resource block (PRB), DL throughput, channel
quality indicator (CQI), DL modulation and coding scheme
(MCS), the reference signal received power (RSRP), and
other parameters.
The methodology adopted in this work comprises three

phases. In Phase 1, we conduct UE classification based
on DL throughput. Phase 2 involves cell DL throughput
prediction, and the final phase, phase 3, introduces the
proposed traffic steering method.
As shown in Fig. 3, the classification method we applied is

an SVM to put UEs in groups based on throughput received.
The E-LSTM (Bagging) method predicts cell throughput
while we use the steering method to redistribute UEs.

A. SUPPORT VECTOR MACHINE (SVM)
SVM [41] is supervised machine learning for data clas-
sification using a hyperplane. SVM is an algorithm used
to maximize functions in association with data. SVM is

TABLE 1. UE and cell information parameters.

derived from [42], the concept of support vectors, denote
points closer to the decision boundary. These data points
are difficult to classify due to their position and closeness
to the boundary (hyperplane). SVM aims to determine the
hyperplane that maximizes the margin between the classes
in an N-dimensional space [42], [43].
Hyperplanes depend on the number of features that exist

in the dataset. The number of features determines the
number of hyperplanes that can be generated. To find the
hyperplane, SVM utilizes support vector classifiers (SVCs)
to help determine the hyperplane. When data is difficult to
separate, SVM transforms the data into higher dimensional
data to determine the SVC that separates the data. SVC is
determined by employing kernel functions. Kernel functions
convert low-dimensional data to high-dimensional data. The
versatility of the SVM is one key reason for its application
in this work since you have different kernel functions to
capture complex relationships in the data.
Due to the robustness provided by SVM in noisy data,

we are confident of the results obtained by the classification
since it is less sensitive to outliers. The reason for the choice
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of this ML model is further explained in Section V-I. We
perform a binary classification on our dataset X to obtain
� and �. UEs in � are denoted and referred to as satisfied
UEs since they have adequate throughput, and those in the
� class are the unsatisfied UEs.

B. DL CELL THROUGHPUT PREDICTION
Information about the throughput UEs are receiving from
cells is important. It provides a general overview of the
performance of cells, as throughput could be altered by
interference, cell congestion, and a low RSRP.
Therefore, predicting the DL throughput will aid in cell

selection and association. E-LSTM (Bagging) is discussed
in this work for DL throughput prediction. LSTM [44] is
a Recurrent Neural Network (RNN) technique. RNNs are
ML models used in handling sequential data where the
future depends on the past. The problem with RNN is the
vanishing or exploding of gradients over long dependencies
[45], [46]. Vital information is lost when gradients explode
or vanish, which makes RNN models perform poorly. LSTM
is proposed to address the long dependency issues of losing
important information over time in the RNN. LSTM applies
the constant error carousel (CEC) to save errors. The saved
errors enable LSTM to provide memory blocks for long
periods with input and output gates [47]. These gates decide
the type of information to save and the ones to forget, which
allows the model to save important information.
LSTM is used in the literature for throughput

prediction [16], [29], [48], [49]. The choice of LSTM is
mainly based on the time series data used for this application.
Based on the experimental analyses done by these authors,
single model LSTM outperforms most traditional approaches
and demonstrated that LSTM is robust to fluctuations mostly
in time series data, hence the motivation to propose the
ensemble method for performance improvement. A single
model under consideration has input xt that comprises
historical throughput with features like DL MCS and PCI,
RSRP, CQI, number of UEs, and the throughput. Conversely,
the output yt is the combination of the hidden and the cell
state as described in the architectural framework of LSTM
in [50], containing only the anticipated future throughput.
Bagging is an ensemble method of model definition where

models are combined to improve prediction accuracy. In
general, ensemble learning [51] methods are ML tech-
niques where a meta-learner is used to improve predictive
performance by combining other models. The principle
behind ensemble is to take decisions made by the different
or same models and either average or choose the maximum
number predicted (maximum voting) [52]. Bagging [53] per-
forms ensemble learning using bootstrap aggregating. This is
achieved by taking bootstrap samples of the data repeatedly.
The data is randomly sampled for all the predictors. The
average is computed for the resulting outcome from all the
predictors.
We take our dataset X to train our baseline LSTM models

in our experimental scenario. A bootstrap sample of our data

Algorithm 1 E-LSTM Model Using Ensemble Bagging
Technique
1: procedure E-LSTM(Xtrain, ytrain, base_models)
2: Initialization to store LSTM base models:
3: All_models = []
4: base_model = 10
5: for i = 1 to base_models do
6: Bootstrap sample of our data:
Xbootstrap, ybootstrap← resample(Xtrain, ytrain)

7: Build an LSTM base model
8: Train the LSTM model on the bootstrap sample:
Xbootstrap, ybootstrap

9: Add the trained LSTM model to All_models
10: end for
11: Create an ensemble LSTM model
12: Create a list to store base model outputs:
13: E_outputs = []
14: for base_model in list of All_models do
15: Generate predictions on the test set using the

base model
16: Add predicted outputs of base models (predii) to

E_outputs
17: end for
18: E − LSTM_model = meta_learner(E_outputs)
19: return E-LSTM_model
20:

21: During deployment, we aggregate the output from
the E-LSTM model

22: ye−lstm = E − LSTM_model(E_outputs)
23: ybagging−output = (1/Pr) ∗∑

ye−lstm
24: end procedure

is taken to train and validate our base models. We choose how
many base models we require for the E-LSTM technique.
This gives us a list of base models needed for our bagging
technique. The total number of base models base_models in
this scenario is 10. 10 models provide the highest prediction
accuracy but are not O-RAN compliant, as discussed in
Section V-C. These base models are saved in the all_models
for the ensemble method. The outputs predicted predi ( where
predi ∈ Pr, the total predicted) from the base models are used
for the E-LSTM model as illustrated in Algorithm 1. Each
model does a multi-step prediction, passing these predictions
through the meta_learner. The output of the meta_learner(E-
LSTM model) is also a multi-step prediction hence the need
for the aggregation for the final output ybagging−output

Where; ye−lstm is the output of our ensemble learning
predictions, Pr is the total predictions, and ybagging−output is
the final output.
Fig. 4 shows the bagging method described above. The

original data is bootstrapped into random samples where
different learners (ML prediction algorithms) are applied
to the different sample data. Parallel prediction is done
for all predictors, and the average is computed as the

3586 VOLUME 5, 2024



FIGURE 4. Ensemble bagging demonstrating the prediction method.

final prediction. The final prediction from the bagging
model presents the DL throughput for τ (same as the total
predictions steps Pr) timestamps.

Let’s take k a cell amongst the list of cells (K) and
its predicted throughput (thrpk). The throughput predicted
(thrpk) is determined as illustrated in eq. (2).

thrpk =
[
thrp(1), thrp(2), . . . , thrp(τ )

]
, k ∈ K (1)

where thrp(j) is the throughput predicted for time instance
j, where j is from 1 to τ . The predicted output thrpk
represents the throughput predicted by the meta model (E-
LSTM model) We then compute the average of this cell’s
throughput thrpav,k ( ybagging_output) as shown in eq. (2).

thrpav,k = 1/τ

τ∑

j=1

thrp(j) (2)

C. STEERING ALGORITHM FOR LOAD BALANCING
As mentioned earlier, this work is presented in three phases.
After the classification and the throughput prediction, we
present a steering algorithm. Traffic steering in the wireless
network involves UE HO among cells. To trigger HO some
underlying conditions are considered. These are the RSRP,
RSRP threshold, and hysteresis margin during mobility [38].
Since a higher RSRP value does not necessarily translate to a
higher throughput attained by a UE, it is essential to consider
the possible throughput attainable to avoid ping-pong, which
could lead to link failures. Hence, having an acceptable UE
distribution will positively impact the throughput received
by UEs since there will be low interference and fewer HOs
triggered.
The objective is to initiate Handover (HO) requests for

UEs with lower throughput, thereby ensuring a balanced

network. During UE steering, a crucial factor is comparing
the serving cell’s average throughput (thrpav,ksc) with the
potential target cell’s average throughput. However, it is
essential to acknowledge the impact of the RSRP value on
throughput [54].

Let us consider a UE x ∈ �, where � denotes all
UEs with low throughput identified by the classification
method. The first set of conditions is to check the RSRP
of the serving cell (rsrpsc), if it is below any of the target
cell’s RSRP (rsrptc), then the next stage is to check if the
average throughput predicted for the target cell thrpav,ktc is
greater than the throughput threshold Avthreshold. The final
condition to check is the total number of UEs in the target
cell. If the number of UEs in the target cell UEktc is less
than the threshold value μ for UEs, then the target cell (ktc)
is considered a potential candidate for HO.
In a system designed for its flexibility, if the initial set

of conditions is not satisfied, We analyze the second set of
conditions. The disparity in RSRP values between the target
and serving cells is checked, ensuring it falls within the
designated range δ. Furthermore, the predicted throughput of
the target cell must exceed the threshold Avthreshold, while
simultaneously accommodating UE values lower than μ as
in the first set of conditions. The target cell is considered
qualified to receive the UE if these conditions are satisfied.
If the first two conditions are not satisfied, the last set of
conditions are checked. The RSRP values and the average
predicted throughput values for both the serving and target
cells are compared. The difference in RSRP between the
target and the serving cell must not exceed δ as in the second
set of conditions. The difference between Avthreshold and
thrpav,ktc is computed and the value must fall within the range
ρ. However, flexibility is not granted to the total number of
UEs in the target cell. A list of UEs is then sent to the E2
nodes as a list of HO request messages [msg, msg,....]. A
detailed presentation of the various conditions and definitions
employed in this study is provided in Algorithm 2.

V. PERFORMANCE AND EVALUATION
An O-RAN system simulator is employed to evaluate our
xApp deployment. This simulator is a modified version to
the one used in our previous work [16] with respect to
the amount of traffic generated. The system simulator’s
architecture is detailed in Fig. 5. As shown in the figure,
the simulator highlights separate objects for each layer
(MAC/RLC/IP/Transport) specific to both gNBs and UEs.
A unique identifier called “MacNodeId” is assigned to each
object, allowing us to distinguish between different elements
in the network (UEs, gNBs, or relays if included in the
simulation). Three separate objects, PhyLayer, Channel, and
ItuChanneHet3D, are used consistently across all simula-
tions. These objects work together to define the scenario and
handle packet transmission: PhyLayer simulates the physical
layer behavior, Channel represents the communication chan-
nel, and ItuChanneHet3D provides a 3D model for signal
propagation
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Algorithm 2 Handover Request Message
INPUT: cells(K), thrpav, �
OUTPUT: List of HO request message [msg, msg,. . . ]
rsrptc ← [rsrp1, rsrp2, . . . , rsrp9]
δ← [0 : 10]
ρ ← [0 : 10000]
Avthreshold = average(�)

1: for all x ∈ � do
2: if rsrptc > rsrpsc then
3: if thrpav,ktc > Avthreshold then
4: if UEktc < μ then
5: msg← {x, ktc}
6: end if
7: end if
8: else if ||rsrptc − rsrpsc|| ∈ δ then
9: if thrpav,ktc ≥ Avthreshold then
10: if UEktc < μ then
11: msg← {x, ktc}
12: end if
13: end if
14: else if ||rsrptc − rsrpsc|| ∈ δ then
15: if ||thrpav,ktc − Avthreshold|| in ρ then
16: if UEktc < μ then
17: msg← {x, ktc}
18: end if
19: end if
20: else
21: end if
22: end for

• PhyLayer: the role of the Physical Layer is to transport
all the scheduling information from the Mac Layer to
the Channel.

• Channel: Utilizing scheduling data that includes trans-
mitter identities and allocated radio resources enables
the computation of Effective SINR for all active radio
links. Effective SINR, a condensed metric indicating
radio link quality, is derived following the methods
outlined in [55]. This information proves valuable for
measuring CQI/RI/PMI and aiding the system simulator
in determining packet reception accuracy.

• ItuChannelHet3D: This serves as a data structure to
represent the 3D propagation channel model proposed
in [56] for New Radio (NR) technology. It encapsulates
all the relevant information about the scenario, including
signal propagation characteristics for downlink (DL)
transmission from gNBs to UEs and uplink (UL) trans-
mission from UEs to gNBs. Key information includes
fading processes and geometric details like path loss,
angles of arrival (AoA) and departure (AoD), number
of antennas involved, and polarization. ItuChanneHet3D
captures this fading and geometric information using
two indices: msIndex for UEs and bsIndex for gNBs.
There’s a one-to-one correspondence between msIndex
and a UE’s MacNodeId, and between bsIndex and a
gNB’s MacNodeId.

The generation of data traffic is based on
[57, Ch. A.2.1.3.1], both full buffer traffic and CBR
(Constant Bit Rate) traffic types are supported in the system
simulator. Full buffer traffic is generated either at the
MAC (Medium Access Control ) layer of the gNB for
DL simulations or at the MAC layer of the UE for UL

FIGURE 5. Simulator Architecture.

simulations. In full buffer mode, a single large MAC packet
is created within the MAC buffer. Because there’s only one
large packet, performance metrics are gathered at the MAC
layer of the UE for DL simulations and at the MAC layer
of the gNB for UL simulations.
In contrast, non-full buffer traffic involves each UE or

BS generating multiple packets during the simulation. The
Transport Layer, IP Layer, and RLC (Radio link control)
Layer handle the header overhead for these generated
packets. Additionally, the RLC layer manages packet seg-
mentation based on the Radio Resource allocation provided
by the scheduler component of the MAC Layer.
This simulator operates by the guidelines for the Urban

Macro (UMa) scenario defined in 3GPP TR 38.901. The
considered release provides the specifications required to
generate cell and user information. The simulator adopts
the UE-RAN deployment method represented in Fig. 2. The
E2 nodes generate information about the UEs and the cells
(PCIs). The UEs are positioned randomly in the different
PCIs (cells). 570 UEs are dropped in 57 cells with equal
resource allocation and without prioritization. Each cell
operates on a 10MHz channel with 50 PRBs.
The information is generated for both PCIs and UEs

from the E2 nodes and received by the E2 termination. The
received information is converted to a JSON file by the E2
termination and sent to the shared data layer (SDL), the
NATS server. The E2 termination is subscribed to machine
learning information (ml-info) and publishes UE information
(ue-info) to the NATS. The xApp, on the other hand, is
subscribed to ue-info and publishes ml-info to the NATS
server. These components are executed in different docker
containers. This setup is used to generate data for both
training and validation. For clarity and simplicity, we divide
Section V into two subsections: training, validation, and
inference.

A. TRAINING AND VALIDATION OF MODELS
As we discussed initially, our proposed method has three
phases. For clarity, we will be sure to present the results
accordingly. The data received from the E2 interface is saved
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TABLE 2. The table below illustrates the minimum, maximum, average, and the
values used in the classification.

in CSV format. The simulator was run for about 48 hours
and we collected about 2GB of data.

1) UE CLASSIFICATION

Redundant data such as uplink throughput and uplink MCS
are excluded since they add no value in this case. An
SVM classification model is defined using DL Throughput,
MCS, CQI, and RSRP. During the training of the model,
we first labeled the data by giving the UEs two defined
classes. The classes are defined using Table 2. Each UE is
considered a full buffer hence, receives a large amount of
traffic. Let’s consider the relationship between the mentioned
parameters and the throughput. The signal strength (RSRP)
determines the signal-to-interference plus noise ratio (SINR).
SINR dictates the CQI experienced by the UEs and the
type of modulation to adopt. MCS decides the modulation
scheme to apply based on the SINR, a high SINR value
could trigger 64QAM and lower SINR a QSPK. The higher
the MCS, the more bits are transmitted and the higher
the throughput [58], [59]. Hence, the minimum and the
maximum values generated are registered and carefully
selected for the classification. From Table 2, UE x ∈ X
with RSRP (r), DL Throughput (m), DL MCS (t), and CQI
(g) values greater or equal to value used, then the UE is in
Class 1 and vice versa Class 0.
The data is then processed by removing redundancies and

outliers. The data is then normalized using the min-max
scaler. After the data preprocessing, the data is split into
training and validation data of 80% and 20% respectively.
We execute the classification of our data using an SVM
with a linear kernel. We employed different SVM kernels
for this classification, and the best for this data is the linear
kernel. Some features considered in the classification are
DL Throughput, DL MCS, CQI, and RSRP. Throughout
the training and evaluation phases, UEs are categorized
into two classes: Class 1 (same as �) denotes UEs with
sufficient throughput, while Class 0 (�) signifies those
with lower throughput. The ensuing classification results
for the model training are depicted below. The objective of
this classification method is to identify potential UEs for
HO. Random forest (RF) and K-Nearest Neighbor (KNN)
classification techniques are also trained on our dataset.
From the observation, the RF model has high precision in
classifying the Class 1 UEs, while SVM is slightly lower
and KNN has the lowest. In contrast, SVM has the highest

TABLE 3. Classification metrics of ML algorithms.

FIGURE 6. Throughput received by the two classes of UEs.

precision on low throughput UEs making it the choice for
the classification method as shown in Table 3. Based on
the above considerations, SVM is used for our classification
model. However, RF could also be a good fit.

2) DL THROUGHPUT PREDICTION AND TRAFFIC
STEERING

The data received from the E2 nodes are used for the
throughput prediction to decide potential target cells ktc
for UEs. The cell information is analyzed based on the
throughput each UE attached is receiving. Due to the
feature engineering applied during the classification method,
a correlation matrix is generated to determine the relationship
between the features of our data. Fig. 6 shows the correlation
matrix and the relationship between the various parameters of
UE information. To enhance model accuracy during training,
redundant features and parameters are eliminated. From the
correlation matrix, features such as the DL MCS and CQI
are highly correlated and are determining factors in the
throughput received by the UE. Due to the collinearity
between these two features, we dropped the CQI for the
training.
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TABLE 4. Simulation parameters.

FIGURE 7. Coefficient of determination.

To design the bagging technique for our model, we
establish a three-layer LSTM model. The first layer of the
model comprises 200 units, 100 units for the second layer,
and an output layer. The loss function applied is the root
mean squared error (RMSE), and the optimizer for the
individual models is adaptive moment estimation (Adam).
Table 4 summarizes all the parameters used in this work.

During training, the data is split into training and valida-
tion. 80% of the data for training and 20% for validation.
Data preprocessing is done just as in the classification
method presented above. The data dimension is reduced with
principal component analysis (PCA). These trained models
are used as the based models to perform the ensemble. In this
experiment, ten base models are deployed for the bagging
process. We conducted a comparative analysis between the
bagging method and a single model to evaluate performance.
Fig. 7 illustrates the prediction coefficients between the
single member and the ensemble method. The prediction
coefficient of the bagging technique remains consistently
high compared to that of the single models. The R2 score
demonstrates that the bagging technique outperforms the
single model.

B. INFERENCE MODE AND TESTING IN THE RIC
1) UE CLASSIFICATION IN DEPLOYMENT

The setup presented earlier for data collection (Section III-B)
is the same environment used for the inference test.

FIGURE 8. Group of UEs receiving acceptable throughput (Satisfied) and a group of
UEs receiving lower throughput (Unsatisfied).

The trained SVM model and that of bagging (E-LSTM)
are deployed in a microservice. The microservice (docker
container) is deployed in the Near-RT RIC where data is
exchanged between the docker container and the SDL. The
received UE and cell information through the SDL are used
for the UE classification and prediction of DL throughput.
As indicated in the introductory part of this section, the
subscription information for our xApp is CSI (ue-info/cell-
info). This information is received through the SDL (NATS).
The UE information received is used for the classification,
based on the levels of throughput they receive from the
cells, as depicted in Fig. 8. UE throughput can be affected
by various factors such as interference, low signal strength,
or the distance between the serving cell and the UE. The
classification output distinguishes groups of UEs with high
and low data rates.

2) THROUGHPUT ANALYSIS

In this part, we present the performance of our proposed
method to existing literature. We combine the SVM method,
the E-LSTM method, and the traffic steering algorithm. The
objective is to analyze the performance of our proposed
method, where we combine three different techniques.
In the first step, we analyze the performance of KNN,

RF, LSTM, and E-LSTM using the proposed method. In
the same experimental scenario, we deployed these three
models separately to predict the DL throughput for the cells
in our network. Fig. 9 shows the CDF distribution of the
four models deployed to predict the throughput of cells. In
the first quartile, RF, E-LSTM, and the single LSTM models
tend to be slightly similar in the amount of throughput the
UEs are observing. The single LSTM model demonstrated
some improvement to the KNN and RF models. The E-
LSTM proved to predict the throughput efficiently, which
accounts for a better overall CDF of the throughput than the
rest of the other models.
One point worth noting is that our experimental scenario is

stationary, with no UE mobility considered in this scenario.
The throughput received by users, therefore, does not vary
that much. Hence, if the throughput of a particular UE is
low, there will not be changes until the network condition
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FIGURE 9. CDF of Throughput received by the UEs by the different ML models.

FIGURE 10. CDF of Throughput received by the UEs.

changes, either by reducing the load on the cell or by
providing the UE with better channel conditions such as
interference reduction.
This work combines three methods and is compared

with the referenced signal strength (RSS) method described
in [60] and [61], a Hard Handover Algorithm with
Average RSRP Constraint (HHAARC) discussed in [62]
and Handover-Based load balancing method (HB) [13].
Fig. 10 illustrates the CDF of the throughput in our network
scenario after applying the different methods. The proposed
method shows a significant improvement in the throughput
the UEs are experiencing. The RSS and the HHAARC
methods showed similar performance metrics compared with
the Handover-Based method. The Handover-Based method
showed a much improved performance but our method
outperforms all the other three.
To assess the effectiveness of our model, we conducted a

comparative analysis of the average throughput distribution
among UEs across various cells. Fig. 11 illustrates the
average throughput generated by each cell using differ-
ent methods. Our proposed technique exhibited notably
higher average throughput per cell than the Handover-Based
method. Additionally, the Handover-Based method displayed
a significant average throughput compared to RSS and
HHAARC. Fig. 11 depicts the throughput improvement for
the individual cells.

FIGURE 11. This figure illustrates the average throughput generated per cell, which
is attainable by UEs. UEs in the cells can experience a minimum throughput around
the average generated by the cell.

FIGURE 12. User distribution after handovers triggered in the cells for the different
methods.

3) UE DISTRIBUTION ANALYSIS

UE distribution is done randomly in assigning UEs to cells.
Due to the random distribution of UEs, some cells have a
higher number of UEs than others. An evaluation of the
distribution of UEs in the individual cells is illustrated in
Fig. 12. The network has 570 UEs and 57 cells, and the
objective is to achieve an equitable distribution of these UEs
among the 57 cells. Our method achieved the most balanced
distribution, with the load evenly distributed across the cells,
as evidenced in Fig. 13. Conversely, other methods exhibit an
uneven UE distribution. For example, the Handover-Based,
HAARC, and RSS methods have cells accommodating
approximately 20, 18, and 18 UEs, respectively.
The proportion of cells with an average of 10 UEs rose

from 14.03% (simulator) to 60.25% (our method). Similarly,
the HAARC method also experienced a modest increase
compared to the original distribution, as depicted in Fig. 13.
Our proposed method ensures a well-balanced distribution
of UEs across the network, resulting in consistently high
throughput levels. This is one of the objectives of our
proposed method: to enhance UE distribution across cells
while simultaneously maximizing throughput.
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FIGURE 13. The graph shows by percentage the number of users attached to the
individual cells.

FIGURE 14. This graph presents the number of handovers triggered in the different
scenarios.

FIGURE 15. The PRB utilization per each cell.

4) HANDOVER AND PRB UTILIZATION ANALYSIS

Fig. 14 illustrates the handovers triggered by each method.
When considering the total number of handovers across all
four cases, the RSS and the HHAARC methods exhibited
the highest number of handovers, while the Handover-Based
method generated the fewest HO events. This highlights
the stringent nature of the Handover-Based method, which
employs a fixed threshold for handovers. However, this
approach did not significantly contribute to UE distribution,
with only slight improvements in throughput compared to the
other methods. In contrast, our method introduces a degree

FIGURE 16. O-RAN compliant delay analysis.

of flexibility by thoroughly evaluating the system before
considering a UE acceptable for handover.
We analyzed the resource utilization of all the presented

approaches under high-traffic conditions in Fig. 15. As
expected, due to the large number of UEs simulated in
this experiment resource consumption is generally high
across all approaches. In our approach, we observe minimal
fluctuations in resource utilization across cells, resulting in
an equitable distribution of resources. This contributes to the
fair distribution of throughput observed in Fig. 11, where all
cells maintain comparable performance levels.

C. INFERENCE DELAY ANALYSIS
The delay in transmitting information exchange is vital in
understanding the performance of a proposed model. In
this work, we combined multiple predictors to improve the
performance of the LSTM model. However, the inference
time increases as the number of models we have for the
bagging increases. The observation made is that when we
consider the accuracy of our predictions Fig. 7 and inference
latency, we could only support 5 LSTM models to be O-RAN
compliant as shown in Fig. 16. The delay metrics illustrate
the total time from the data received at the E2 interface
and the processing by the xApp. The base stations to be
processed by the xApp depend on the classification made by
the SVM model. Although 10 LSTM models (bagging) give
us the highest prediction accuracy, they exceed the delay
requirement of O-RAN. A good compromise is 5 models
highlighted in Fig. 16.

While Fig. 17 demonstrates that our method has higher
power consumption compared to others, this is due to its use
of two machine learning techniques (SVM and LSTM) for
UE classification and downlink (DL) throughput prediction.
These functionalities introduce additional computational
costs. The energy is computed using the linear model
presented in [63]. However, it’s important to note that
optimizing power consumption is not the primary focus of
this work. Future research will explore strategies to address
this aspect and potentially introduce trade-offs between
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FIGURE 17. Power utilization by the various methods considered in this work.

power efficiency and the benefits provided by the proposed
method.

VI. CONCLUSION
The O-RAN architecture unlocks numerous possibili-
ties for applying AI/ML techniques to enhance network
performance, particularly in optimizing UE throughput and
load balancing to meet network operator KPIs. One key
problem is the difficulty of making optimal traffic steering
decisions due to limitations in network observability mostly
in congested network areas. With this motivation, we
presented a two-tier ML-aided traffic steering method for
throughput optimization and load balancing. We employ the
SVM method for UE classification, identifying potential
candidates for handover (HO). This not only provides
valuable insights into user QoS and QoE but also aids
in resource allocation decisions. Understanding the average
cell throughput experienced by UEs is crucial for informed
handovers. Therefore, we use an ensemble Long Short-
Term Memory (E-LSTM) model to predict the throughput
a UE can expect in a cell before initiating handovers. This
prediction allows for proactive resource management and
improves overall network efficiency.
To achieve an even UE distribution throughout the network

while maintaining acceptable individual throughputs, we
present a traffic steering algorithm. This algorithm utilizes
the insights from UE classification and cell throughput
prediction to make informed decisions about handovers and
optimize network load. The proposed approach achieves an
acceptable and even distribution of UE throughput across
different cells. The percentage of cells hosting the ideal
number of UEs (10 in this case) significantly increases,
from 14.03% to 60.25%, successfully aligning with our
experimental goals.
Analyzing the inference delay provided insight into the

number of models needed for the bagging technique to
comply with O-RAN specifications.
The proposed method efficiently achieves load balancing

with a minimal number of HOs, minimizing potential disrup-
tions to user experience. This three-step approach, leveraging
AI/ML, demonstrates its effectiveness in enhancing network

performance through improved load balancing and UE
throughput optimization, ultimately contributing to better
network management and user experience.
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