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ABSTRACT The rapid advancements in wireless technologies have led to numerous research studies that
provide evidence of the successful utilization of wireless signals, particularly, WiFi signals for human
activity sensing in the indoor environment. As a promising technology, WiFi-based human sensing can
be utilized for a variety of applications such as smart healthcare, smart homes, security, industry, office
indoor environments etc., due to the availability of rich infrastructure. Furthermore, compared to other
radio frequency (RF) based systems such as radio detection and ranging (RADAR) and radio frequency
identification (RFID), WiFi is non-invasive, has low-cost, and provides ubiquitous coverage in the indoor
setup. However, due to the limited accuracy and high complexity of the model-based approaches for
human sensing, the systems empowered by the deep learning (DL) techniques have achieved remarkable
performance gains and showed more robustness in dealing with complicated human sensing tasks. The
article explores the physical layer parameters used in WiFi sensing such as received signal strength indicator
(RSSI) and channel state information (CSI), the estimated parameters such as angle-of-arrival (AoA)
and Doppler shift (DS) along with frequency modulated continuous wave (FMCW) RADAR technology.
Moreover, the preliminary signal processing stages that are applied to the received WiFi signals in the
DL assisted systems are discussed. This article provides a comprehensive literature survey on the recent
advances in DL-empowered WiFi sensing focusing on human activity recognition and movement tracking
followed by fall detection, single task-multi task classification, crowd monitoring and sensing, indoor
localization, gaits recognition, and pose estimation. Furthermore, the paper highlight the challenges in
the existing literature and discusses the possible future research directions in WiFi-based human sensing
assisted by DL techniques.

INDEX TERMS Deep learning, device-based sensing, device-free sensing, human activity recognition,
human pose estimation, indoor localization, machine learning, RF-sensing.

I. INTRODUCTION

THE WIDE range of emerging wireless technologies
has triggered significant advancement in the fields of

wireless communication, networking, and sensing. Within
this dynamic landscape, emerging radio frequency (RF)
sensing stands as a notable and innovative stride that has
the potential to redefine our perception and interaction with
the world around us. By utilizing the basic principles of
RF signals, RF-based human sensing systems are capable of
identifying humans, detecting falls, monitoring humans, and
more especially in the development of security, healthcare,

and smart home systems [1], [2]. RF systems use radio waves
to transmit and receive signals, and can be used for sensing
by capturing significant information about the presence and
movements of people within a defined space. This data
is obtained by analyzing how the radio waves change as
they interact with the humans in the surrounding. Unlike
traditional methods that rely on cameras or physical sensors,
RF-based sensing remains unaffected by visual obstructions,
illumination, or external disruptions [3]. This characteristic
offers benefit in scenarios where ensuring privacy, safety,
and avoiding the necessity of a direct line of sight (LoS) is
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of utmost significance [4]. Human sensing technology can be
either device-based and device-free. Device-based approach
utilize dedicated hardware or wearable devices such as
smartphones and motion capture systems to track movements
while device-free sensing relies on existing infrastructure or
ambient signals for human monitoring. One such technique
utilizes RF signals for human activities recognition to enable
non-intrusive monitoring in both LoS and non-line-of-sight
(NLoS) scenarios. However, these sensing methods present
unique advantages and challenges, which drive ongoing
research for integration into healthcare, security, smart
environments, and human-computer interaction.

A. DEVICE-BASED AND DEVICE-FREE SENSING
Within the realm of human-computer interaction and envi-
ronmental monitoring, two primary paradigms emerge such
as device-based human sensing and device-free sensing. The
former involves the deliberate deployment of specialized
sensors or devices designed to monitor and interpret human
actions and behaviors such as wearable fitness trackers [5],
motion sensors [6], pyroelectric infrared (PIR) sensors [7],
stretch sensors [8], acoustic-based sensors [9], [10], smart-
watches [11], [12], cameras [13], and medical monitoring
sensors [14] that track different parameters like heart rate,
steps taken, sleep patterns, and even skin temperature. On
the other hand, Device-free human sensing uses RF signals
to enables the observation and analysis of human behaviors,
movements, and presence without relying on specialized
sensors or wearable devices. This methodology takes advan-
tage of existing infrastructure such as ambient signals, WiFi
routers, and radio waves to detect alterations caused by
human activities and motions within the vicinity [3]. To sum
up, device-based sensing is remarkable for its accuracy in
measuring specific data points but it can be invasive and
expensive. On the other hand, device-free sensing though is
not as detailed in data collection but it provides solutions
that are respectful to privacy, is less intrusive, and could
be scale up more easily by using the infrastructure already
in place [15]. Choosing between these approaches depends
on the particular situation and finding the right balance
between accurate information and practical considerations.
Device-free sensing is advantageous in a situation where the
installation of physical sensors is challenging and to avoid
expensive system expansion for effective monitoring.

B. RF-SENSING TECHNOLOGIES
RF-based human sensing constitutes a dynamic field that
employs RF signals to comprehend and assess human
presence and behaviors. Development in RF hardware,
signal processing methods, and machine learning (ML)
algorithms have collectively contributed the advancement
to enhance accuracy, reliability, and real-time capabilities
along with seamless integration of RF-based human sensing
technologies. The deep learning (DL) has experienced
notable progress in recent years driven by the accessi-
bility of powerful computing resources such as GPUs,

breakthroughs in training algorithms as well as growing
interest across diverse domains [16]. The integration of RF-
based sensing with DL has brought a transformative impact
in contactless sensing and provide solutions to numerous
challenges [17], [18]. A sophisticated artificial neural
networks (ANN) characterized by multiple layers, commonly
referred to as deep neural networks (DNN), is employed
to extract vital information from extensive RF signals.
Generally, the DNN comprise multiple hidden layers and
follow iterative weight adjustments during data processing,
thereby improve their learning ability and identify complex
patterns to enhance their proficiency in extracting valuable
information from RF data. DL models are adaptable to
dynamic environments and improving the accuracy and
robustness of real-time sensing applications by continuously
updating their knowledge through learning from the RF
data [19]. Additionally, DL enables the fusion of RF
sensing with other sensing modalities such as cameras to
improve the accuracy and insights in complex scenarios [20].
Furthermore, RF signal has inherent non-linear characteris-
tics and DL models perform exceptionally in capturing these
non-linear relationships between input features and target
variables [21]. This nonlinearity is particularly crucial in RF
sensing where basic linear models may find it challenging
to comprehend the underlying patterns effectively.
Within the realm of RF sensing, sensing is done using

radio detection and ranging (RADAR), radio frequency
identification (RFID), and WiFi-based systems [22], [23].
RADAR utilizes radio waves to detect human movements
and gestures and is applicable in domains like security and
healthcare while RFID employs RF signals to recognize and
oversee individuals via tags or cards and its application spans
from access control to healthcare oversight. Meanwhile,
WiFi-based sensing utilizes WiFi signals to detect and
monitor human presence and collectively underscores the
potential to enable a thorough comprehension of human
behaviors and interactions. Expanding the discussion on RF-
based human sensing methods, we provided brief overviews
of RADAR, RFID, and WiFi-based sensing in the next
sections.

1) RADAR-BASED SENSING

A typical RADAR system involves a transmitter and receiver,
where an electromagnetic signal is transmitted by the
transmitter and collected by the receiver with a processing
capabilities to perform further data analysis. The RADAR
systems can be classified into active and passive system.
Both differs from each other in a sense, that active RADAR
uses the bounce signal off the objects while passive RADAR
analyzes disruptions in existing signals for detection. When
objects intercept the transmitted radio signal results in
scattering which propagates the information regarding the
range, velocity, trajectory, and identity. The well known
Doppler effect is utilized to measure the velocity by assessing
frequency shifts in the RADAR signal. Object identification
relies on micro-Doppler signatures, tiny modulations induced
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by slight movements in an object’s oscillating or rotating
parts. In human monitoring, these signatures reflect specific
patterns in torso, limb, and head movements during motion
unique to individuals and activities and serve automated clas-
sification and monitoring objectives effectively [24], [25].
Considerable research has been carried out in the area

of RADAR-based human activity recognition (HAR) by
utilizing DL approaches [26], [27], [28]. The authors in [29]
present a novel method for hand gesture recognition using
feature cubes encoded by three dimensional fast Fourier
transform (3D-FFT) using convolutional neural network
(CNN) architecture with specialized spatiotemporal convo-
lution blocks. The approach achieves recognition rates of
99.53% and 97.22% on the dataset validation and testing
stage, respectively, and surpasses the existing approaches.
FallWatch is an learning model that detect real-time falls
despite visual obstructions [30]. It employs trained CNN,
attention mechanism, recurrent neural network (RNN), and
long short-term memory (LSTM) fall detection from signal
collected through antenna array. FallWatch excels in detect-
ing falls across multiple individuals and settings, surpassing
the alternative approaches, and offering a unique solution
for elderly fall monitoring. Frequency-modulated continuous
wave (FMCW) RADAR provides exceptional benefits with
superior range and velocity resolution and is well-suited
for tasks like precise distance measurements, gesture recog-
nition, and effective object tracking [31], [32], [33], [34].
The authors in [35] employ FMCW RADAR for falls
detection achieving 95.5% accuracy in identifying six fall-
like movements using the dynamic range-Doppler trajectory
(DRDT) and a subspace K-nearest neighbor (KNN) classifier.
Similarly, a new preprocessing method is introduced in [36]
to tackle static interference and estimate range, velocity, and
angle features for gesture recognition using CNN.

2) RFID-BASED SENSING

Different from the traditional RFID applications concentrated
on object identification, RFID-based human sensing employs
RFID technology to monitor human presence and movements
within the vicinity. This method prioritizes human interac-
tions with the environment through strategically positioned
RFID tags or sensors. The system recognize the entry of indi-
viduals with RFID tags, enabling presence detection, location
tracking, motion analysis, and interactions with tagged
objects. Its applicability spans smart homes, healthcare, and
retail, fostering context-aware systems, occupancy moni-
toring, and personalized experiences derived from human
behavior. The RFID technology is utilised for automatic
identification in the context of the Internet-of-Things (IoT)
technology [37], [38], [39]. Recent advancements in wireless
sensing for tracking human activities have encountered
challenges such as direct contact or specialized hardware
requirements of RFID-based systems. The authors in [40]
introduce TACT, a contact-free approach utilizing common
RFID systems to detect and classify human activities and
achieves 93.5% precision in diverse scenarios by segmenting

FIGURE 1. WiFi-based human sensing [3].

and classifying phase values. The authors in [41] consider
an ambient framework for HAR using multivariate Gaussian
modeling and employs maximum likelihood estimation for
feature learning. Comprehensive experiments shows accurate
predictions, making it suitable for single as well as multi-
dwelling settings.
DL for RFID-based human sensing is explored in the liter-

ature such as the authors in [42] propose TagFree which is a
pioneer device-free RFID-based HAR system considering the
impact of multipath signal reception, correlations between
signal power, angles, and activities, and capturing angle data
while analyzing it through DL. TagFree is demonstrated by
an Impinj reader prototype and show superior performance
in multipath-rich environments. A passive RFID sensor tag
system employing RFMicron’s Magnus S chip is presented
in [43]. It measures RSSI and pressure changes in indoor
footwear during activities. Extracted features are used for
ML-based activity classification and achieve high accuracy
for different subjects. The authors in [44] introduce DeepTag
which is an advanced DL-based RFID framework which
extracts key features from phase data and uses a hybrid
architecture for signal analysis, adapting well to various
scenarios and demonstrating superiority in multipath-rich
settings. The back scatter RFID tag can be read by WiFi
device for sensing. However, tag needs to be deployed in the
close proximity of WiFi device to work robustly in NLoS
scenarios which limit their operating range.

3) WIFI-BASED SENSING

WiFi sensing is an emerging technology that uses WiFi
signal to perceive and interpret the surrounding environment
and offer numerous applications such as indoor localization,
HAR, environmental monitoring, pose estimation, and even
gesture identification. Fig. 1 illustrates the general frame-
work for WiFi based human sensing and its applications..
Nevertheless, striving to interpret WiFi signals and derive
substantive insights from them poses a major challenge.
Compared to RADAR and RFID-based sensing, WiFi-based
human sensing offers distinct advantages such as utilizing
existing infrastructure and reducing deployment complexity
and costs. Moreover, it provides higher resolution data
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due to higher frequency signals, enabling finer movement
tracking. Unlike RADAR technology, which is unable to
see through walls, WiFi-based sensing provides extensive
coverage with no blind spots. Additionally, WiFi affordability
and widespread availability enable WiFi sensing to detect
presence in the WiFi range. Similarly, as RFID deployments
are constrained by infrastructure limitations, WiFi sensing
utilizes the existing WiFi infrastructure with minor firmware
updates. Another advantage of WiFi over RFID is its superior
accuracy, attributed to its wider bandwidth and more sophis-
ticated signal processing capabilities, facilitating precise
sensing [45]. The widespread WiFi adoption enhances scala-
bility for smart environments, making it a versatile approach
for applications like smart homes and healthcare. WiFi-based
sensing capitalizes disruptions within the wireless channels
caused by human activities and movement within the vicinity
changes the signal propagation, manifesting as variations
in channel state information (CSI) [46]. This dynamic CSI
holds valuable insights into human motion and interactions.
Leveraging the WiFi signals from WiFi routers, Intel 5300
network interface cards (NIC) [47], and Atheros [48]
stands out for its cost-effectiveness and easy deployment.
These devices integrated into WiFi infrastructure utilizes
orthogonal frequency division multiplexing (OFDM) by
dividing the signals into subcarriers with independent data
transmissions [49]. Human presence disrupts subcarriers and
alters signal attributes captured by the CSI.
WiFi devices operating in 2.4GHz or 5GHz bands provides

balanced coverage and data rates for indoor and extended-
range user. Extracting patterns from OFDM subcarriers,
WiFi sensing identifies and categorizes human activities
for context-aware applications. Different from conventional
methods relying on received signal strength indicator (RSSI)
which struggles with noise and subtle movements, the
CSI approach exploits signal amplitude and phase details
to detect minute motions at sub-cm levels across various
frequency channels. This sophisticated technique encom-
passes data collection, signal processing, and classification
stages reminiscent of detection processes. The WiFi based
sensing methods includes model-based and learning based
approaches. Both approaches differs from each other in a
sense that the former methods rely on physical model based
signal propagation such as Fresnel Zone while the later
uses trained model to approximate function and classify the
input WiFi signal. The model-based approaches withstand
environmental changes, however, they often fail to achieve
significant performance improvements in case of the com-
plicated human activities in coarse-grained applications [46].
Furthermore, it is extremely challenging to determine
accurate mathematical to approximate correlations between
complex human actions and variations in WiFi signals.
Moreover, the model-based approaches suffers performance
degradation in NLoS scenarios. In this regard, WiseFi system
is proposed in [50], where the authors illustrate this limitation
and achieve a median recognition accuracy of just 74.3%
in case of the signal transmission through single wall. On

the other hand, the learning approaches perform well as it
enables processing of high dimensional data. Although a
substantial amount of work has been conducted in this field,
there is still significant room for further enhancement. This
article deeply explores the existing works in the domain
of WiFi-based human sensing employing sophisticated DL
approaches.

C. DEEP LEARNING FORWIFI-BASED SENSING
DL takes on a crucial role, granting significant benefits to
WiFi sensing [18]. DL-based WiFi sensing stands out from
other RF technologies such as RADAR and RFID due to its
use of the extensive and continuous signal data provided by
existing WiFi networks. This rich data stream enables more
precise detection of subtle human behaviors and enhances
the granularity of movement tracking. In comparison, other
RF methods are typically more specialized, and tailored
for specific applications that may not demand such com-
prehensive data collection. WiFi-based sensing with DL
enables accurate classification of specific body movements,
relying on unique WiFi signal changes linked to human
presence and activities [57]. The authors in [58] designed
WiFi CSI-based framework with CP factorization, graph
learning based optimized features, and used RNN for daily
activity detection that work well without requiring human
intervention. Different ML algorithms are applied on CSI
datasets for motion detection in [59] and the results show
that RNN provide superior performance in case of larger
datasets. The existing literature extensively employed DL
techniques for the HAR using WiFi signals for a diverse set
of tasks such as fall detection, classifying different activities,
monitoring human behavior, and identifying walking patterns
(gaits), etc., [60], [61], [62], [63], [64], [65]. SenseFi [57],
is an open-source benchmark and DL library for WiFi-based
human sensing evaluated for different datasets. Furthermore,
the authors in [66] presents the detailed investigation of DL
techniques on WiFi-based HAR using CSI.

D. LITERATURE SELECTION FOR THE SURVEY
For the comprehensive survey, an organized approach was
used to search for related research publications on WiFi
sensing. A range of reputable databases were meticulously
accessed, including Google Scholar, IEEE Xplore, ACM
Digital Library, Science Direct, Springer, and Archive. A
range of keywords including “RF human sensing,” “WiFi
sensing”, “DL”, “CSI”, “fall detection”, “pose estimation”,
“localization”, and “HAR” were employed to identify rel-
evant literature. The primary focus is to review the recent
research works on WiFi sensing with a specific temporal
constraint ensuring the inclusion of papers published in the
last five years to capture the most current developments in
the field. The source diversity was a key aspect, including
survey papers, high-impact journal articles from esteemed
journals like the IEEE IoT Journal, IEEE Transactions on
Mobile Computing, IEEE Transactions on Aerospace and
Electronic Systems, and conference papers from prestigious
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TABLE 1. How does this survey vary from other surveys on RF-sensing.LC, MC, and HC denotes low, medium, and high coverage, respectively, whileC andLR
denotes the DL coverage and the number of literature surveyed on the topic.

events such as CVF, ICCV, ICML, ICASSP, and CVPR. We
closely examined the literature to make sure it matches our
research goals and keywords. By continuously Web searching
over the databases, we ensured to identify the most up-to-
date literature which led to a compilation of this work.

E. CONTRIBUTIONS AND PAPER ORGANIZATION
Numerous recent surveys have addressed RF-based human
sensing, encompassing RADAR-based sensing [67], [68],
RFID-based sensing [69], [70], and WiFi-based sensing [52],
[53], [56], [71], [72]. However, these surveys provide
extensive insights into diverse techniques and applications.
This paper provides a literature review on WiFi-based
HAR, emphasizing the integration of DL approaches with
more comprehension and detailed analysis. Furthermore,
WiFi-based HAR using DL techniques is deeply analysis
with a specific emphasis on full-body-involved activities. It
addresses a pivotal aspect of human behavior analysis, cat-
egorizing existing research, methodologies, and applications
to enhance the understanding of leveraging WiFi signals for
complex human activity detection. Moreover, a systematic
presentation on the recent advancements, challenges, and
opportunities is highlighted to shed light on employing DL
techniques to improve accuracy, robustness, and real-world
applicability. This work provides a guideline for the research

community to advance research, innovation, development,
and recent insights into WiFi-based HAR. To the best of our
knowledge, this is the first survey that presents DL-aided
WiFi-based HAR, particularly concentrating on whole-body
activities. Table 1 provides a comparison of this work with
other related surveys published on the topics.
The main contributions of this survey are as follows.
• This survey offers an extensive review of WiFi-based
human behavior recognition through DL, highlighting
contributions from a wide range of recent research
works.

• This survey illustrates how DL effectively tracks
human movements via WiFi signals, showcasing diverse
methodologies and results.

• This survey presents studies that merge WiFi signals
and DL for human pose estimation (HPE), illuminating
the realm of contactless pose inference.

• This survey paper explores the existing challenges and
possible future research directions in the realm of WiFi-
based sensing.

As depicted graphically in Fig. 2, the rest of the paper
is organized as follows. Section II explores the RF-based
human sensing including the technical background, key
concepts of RF sensing including WiFi, and the employment
of DL for WiFi sensing followed by signal processing
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FIGURE 2. Paper structure and organization.

preliminaries. Section III provides a detailed overview of
existing works on DL for different WiFi based sensing tasks.
Section IV presents the challenges and the possible future
directions related to WiFi sensing. Finally, the paper is
summarized and concluded in Section V.

II. FROM RAW DATA TO LEARNING INPUT:
PARAMETERS AND PREPROCESSING FOR DEEP
LEARNING
For human activity detection, RF-based human sensing
devices utilize technical aspects of received RF signals. The
commonly used metric used for measuring signal properties
in RF sensing includes RSSI, CSI, FMCW, angle of arrival
(AoA), and Doppler shift (DS). This received raw signal
is preprocessed, transformed, and significant features are
extracted to decipher human actions accurately. These steps
enable the subsequent analysis and recognition of diverse
behaviors and play essential role in the initial stage of
translating RF signals into valuable insights about human
presence and motion. Generally, RSSI and CSI is utilized
in commodity devices like WiFi while FMCW is used by
RADAR and AoA and DS are estimated parameters.

A. KEY CONCEPTS FOR RF SENSING
In this section, we briefly discusses the physical layer
parameters such as RSSI and CSI followed by FMCW
RADAR technology, and other estimated parameters such as
AoA and DS used in RF-based human sensing.

1) RECEIVED SIGNAL STRENGTH INDICATOR (RSSI)

The RSSI serves as a fundamental metric akin to a measuring
instrument in RF sensing. It quantifies the amplitude of

wireless signals propagating across varying distances. It
finds extensive application in tasks such as localization
of individuals [73]. Within the domain of human sensing,
the proximity of an individual introduces signal attenuation
which leads to dynamic fluctuations in the RSSI values in
the sensing area. While readily accessible across numerous
WiFi devices, RSSI’s granularity remains limited, providing
a singular numerical representation of signal loss [74].
This constrained information content hampers its capacity
to discern a comprehensive spectrum of human activities.
Nonetheless, the RSSI remains a valuable tool in the realm of
RF human sensing, enabling insights into human movement
through RF signal analysis [75]. Moreover, the RSSI values
can exhibit variability even in the absence of movement
which poses challenges to their reliability in real-world
scenarios especially in fine-grained HAR.

2) CHANNEL STATE INFORMATION

The information regarding channel condition is a pivotal
factor in RF human sensing, providing a valuable avenue to
discern intricate human behaviors and motions by analyzing
shifts within the wireless channel caused by these actions.
Compared to metrics like RSSI, CSI offers a more detailed
view of the wireless signal. CSI is composed of complex
values that include both amplitude and phase information
across multiple OFDM subcarriers. These subcarriers capture
distinct multi-path fading effects and collectively create
a detailed picture of the wireless channel. The IEEE
802.11n standard provides CSI measurements for 52 and
128 subcarriers, each with bandwidths of 20MHz and
40MHz, respectively, while the emerging 802.11ac standard
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supports even wider bandwidths [52]. As individuals move
within WiFi or RF device coverage, their motion change
to the wireless channel condition which leads to variations
in the signal amplitude and phase across distinct subcar-
riers. Devices equipped with multiple-input-multiple-output
(MIMO) transmission capabilities can capture these varia-
tions to construct the CSI matrix. The CSI matrix captures
temporal and spatial changes due to human actions, enabling
recognition of subtle gestures, actions, and even breathing
patterns. DL techniques and pattern recognition algorithms
learn the intricate patterns within CSI data and enable the
identification and classification of specific human activities.
Similar to RSSI, CSI measurements can be acquired using
readily accessible WiFi devices such as Intel 5300 NIC [47],
and Atheros [48] with customized drivers. The applicability
of CSI-based human sensing spans security, healthcare,
and smart homes, offering notable accuracy and versatility.
Nevertheless, challenges exist such as advanced hardware,
complex signal processing, environmental influences, and
calibration requirements. In essence, CSI emerges as a robust
asset in WiFi-based human sensing providing huge data that
empowers precise and comprehensive HAR in diverse real-
world scenarios through accurate analysis based on DL and
advanced signal processing techniques.

3) FREQUENCY MODULATED CONTINUOUS WAVE

The FMCW is a vital technique in RF especially RADAR
based human sensing which involves the emission of
a continuous wave signal with a frequency sweep or
chirp that gradually increases or decreases. This signal
interacts with the environment and produces a frequency
beat arises from the difference between the transmitted
and received frequencies. This beat frequency carries cru-
cial distance-related information about objects, facilitating
accurate distance measurement [2]. FMCW excels in RF
sensing because changes in the beat frequency due to human
movements enable the detection and tracking of individuals’
positions [30], [31], [76], [77]. FMCW’s capacity to distin-
guish between various targets based on motion characteristics
allows simultaneous identification of multiple individuals.
Despite specialized hardware requirements, FMCW can
generate and analyze the modulated signal at both the
transmitter and receiver.

4) ANGLE OF ARRIVAL

The concept of AoA in RF-based provide a distinct approach
to understanding human movements which determine the
direction from which wireless signals reaches at the receiv-
ing antenna, offering insights into spatial orientation and
movement patterns. Analyzing signal angles from different
antennas make it possible to track activities such as walking,
gestures, and posture changes [78]. Commonly, an antenna
array captures signals from various directions where varia-
tions in the signal phase and intensity reveal arrival angles.
TAoA data for human activity insights is derived through
DL and signal processing. Advanced signal processing

algorithms are required in such systems because the envi-
ronmental factors such as signal reflection and interference
effect the AoA of the received signal. Essentially, AoA
enriches human sensing techniques and enables interpreting
movement patterns in real-world scenarios using specialized
hardware setups such as Texas Instruments FMCW RADAR
sensors [17].

5) DOPPLER SHIFT

DS also known as Doppler effect refers to the change in
frequency or wavelength of a wave due to the relative
motion between the source and the observer. The DS has a
significant role in RF sensing, offering a unique perspective
to observe human activities and movements. Emerging from
the changes in frequency caused by human motion in the
vicinity, the DS helps identify and track scenario-dependent
dynamics and imparts essential insights into movement
speed and direction. Analogous to signals emitted by a
transmitter and reflecting off the human body, any bodily
motion triggers DS. Importantly, moving towards the receiver
induces a positive frequency shift, while moving away causes
a negative frequency change which facilitates the tracking
the inference of motion patterns, covering activities like
walking, running, and even vital signs [79], [80], [81]. The
application of Doppler-based human sensing is especially
crucial in domains requiring accurate real-time motion
tracking, including security and healthcare applications.
Despite its significance, effectively utilizing DS demands
customized hardware setups and advanced signal processing
to precisely extract and interpret frequency alterations [82].

B. PRELIMINARY PROCESSING AND EMPLOYMENT
OFDEEP LEARNING IN WIFI-BASED HUMAN SENSING
Proceeding with attention directed toward the utilization
of WiFi signals for human sensing, this section primarily
focuses on CSI and RSSI. As a pivotal part of WiFi-based
human sensing, signal processing techniques convert the raw
signal data into valuable insights defining human activities.
These methods encompass denoising for cleaner CSI data,
signal transformation like Fourier and wavelet transforms
to unveil temporal and frequency patterns, and feature
extraction to distill these patterns for behavior recognition as
shown in Fig. 3. Together, these strategies enable a precise
understanding of human presence and motion in the WiFi
coverage area.

1) PREPROCESSING AND DENOISING

In WiFi-based human sensing, preprocessing of CSI data
is an essential phase that refines raw signal which involves
a sequence of operations intending to improve the quality
and reliability of collected CSI data. Initially the data
calibration is performed to rectify systematic errors and
ensure precise measurements. Subsequently, techniques like
filtering and smoothing are applied to counteract unwanted
interference, environmental fluctuations, and noise reduc-
tion [83], [84], [85]. The preprocessing phase also identifies
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FIGURE 3. An overview of the signal processing sequence.

and eliminates outliers and anomalies in the data to fur-
ther enhance the quality of the utilized dataset [86], [87].
Ultimately, preprocessing establishes a solid foundation for
subsequent signal processing and DL techniques.

2) SIGNAL TRANSFORMATION

After preprocessing of WiFi signals, the collected CSI data
requires signal transformation which is pivotal in reveal-
ing underlying patterns, temporal dynamics, and frequency
characteristics within the data to enable more profound
understanding of human activities and movements. One
notable technique is the Fourier transform (FT) which
translates the CSI data from the time domain to the frequency
domain, unveiling the distinct frequency components embed-
ded in the signal. This translation aids in identifying patterns
and periodicity tied to specific human actions like walking
and breathing. An additional powerful method is the wavelet
transform which differs from the FT and allows both
frequency and time localization [56], [88]. This capability is
particularly useful for capturing rapid changes and transient
events in the signal. Wavelet analysis furnishes a multi-
resolution representation of the CSI data and facilitates the
detection of both high- and low-frequency changes across
varying time intervals to enable the recognition of a diverse
array of human activities. Visual depictions like spectrograms
or heatmaps assist in discerning frequency patterns correlated
with human actions. However, in spite of the robust tech-
niques, proper parameter adjustment and function selection
are imperative to unveil pertinent information in the CSI
data.

3) FEATURE EXTRACTION

After noise removal, certain systems directly derive features
from the time-domain data, while others transform it into the
frequency domain using techniques like short-time Fourier
transform (STFT) or discrete wavelet transform (DWT)
to create spectrograms. After preprocessing and signal
transformation step, the features are extracted from the actual
data in the next phase. The transformed data is translated into
the representative features that encapsulate crucial insights
about human activities and movements, forming the basis
for subsequent analysis and classification. Feature extraction
methods aim to capture pertinent aspects of the data while
reducing noise and redundancy. Common techniques used
for feature extraction include statistical features such as
mean, standard deviation, skewness, and kurtosis which

shows the characteristics of data distribution [89]. Temporal
features analyze patterns within specific time intervals and
uncover rhythms and periodicity. Frequency-domain fea-
tures expose spectral components such as peak frequencies
and spectral bandwidth, aiding in distinguishing activities
with distinct frequency attributes. Time-frequency features
such as mel-frequency cepstral coefficients (MFCCs) com-
bine time and frequency information to capture nuanced
variations [90]. Principal component analysis (PCA) and
independent component analysis (ICA) are utilized for data
analysis and dimensionality reduction [91]. They are com-
monly applied in ML to preprocess data before employing
classification. The careful selection of relevant features
is pivotal for ensuring the precision and effectiveness of
subsequent analyses.

4) EMPLOYMENT OF DL MODELS FOR HUMAN SENSING

After applying the aforementioned signal processing steps on
the collected dataset for a particular environment and sensing
scenario, the DL model is trained to associate specific
signal patterns with corresponding human activities such as
walking, sitting, falling, pose estimation, localization etc.
Once properly trained on large data, the model is tested
on unseen data to evaluate the accuracy performance of the
model. The trained model is then deployed to accurately
predict and classify human activities by leveraging the
learned parameters from WiFi signal data. Additionally, the
DL models continuously learn and adapt to new patterns
over time through techniques such as transfer learning to
enhance the accuracy and robustness.

III. SURVEY OF WIFI-ENABLED HUMAN SENSING
LEVERAGING DEEP LEARNING
In the recent years, DL has emerged as a powerful tool
in various revolutionizing fields by replacing the traditional
model based approaches with learnable model for data
analysis and processing. Different DL architectures have
been utilized in the literature for WiFi-based human sensing
including multilayer Perceptron (MLP), CNN, simple RNN
(SRNN), LSTM, BiLSTM, GRU, residual network (ResNet),
autoencoder, transformer, and hybrid models. The hybrid
model are the combination of multiple standalone DL models
to enable efficient learning.
MLP: MLP comprises multiple interconnected layers of

neurons with weighted connections. The MLP layers includes
input layer, several hidden layers, and an output layer. Input
data is fed in to the input layer and passed through the hidden
layer employing nonlinear activation functions to process
input data. Each hidden layers follow the data weighting
and biasing before passing it to the output layer. This MLP
architecture is trained via back-propagation and can be used
for classification, regression, and feature learning.
CNN: CNN is feed forward neural network and process

2D grid data such images and matrix with correlated row
and columns to learn spatial features in the input data
by utilizing set of kernels for convolution [162]. CNNs

3602 VOLUME 5, 2024



TABLE 2. Deep learning techniques for WiFi based sensing.

[31]

uses supervised learning to extract features from the input
data autonomously without human assistance, making them
useful for applications like object identification and image
classification.
ResNet: ResNet is a type of CNN having skip connec-

tions or shortcuts allowing to bypass certain convolutional
layers. These connections empower ResNet to maintain high
efficiency and effectiveness in training utilizing hundreds of
layers. The core idea behind ResNet is to enable the training
of the networks by allowing gradients to flow through the
network without vanishing or exploding. ResNet utilizes
identity mappings as skip connections and perform element-
wise addition operations between these connections. ResNet
is effective in tasks such as image classification, object
detection, and segmentation.
SRNN: RNN models are exceptional at processing sequen-

tial data by utilizing their unique architecture to recall
previous inputs, thereby influencing output decisions. RNN
can do tasks that depend on the timing and sequence of data
points because of their intrinsic ability to update their states
continuously. Unlike other neural networks, which usually
interpret input data independently, RNNs dynamically handle
temporal dependencies [163]. The conventional simple RNN
(SRNN) exhibit vanishing gradient problem which are dealt
by other variants of RNN such as LSTM, BiLSTM, and
GRU.
LSTM: LSTM model comprises multiple cells and gates.

The cell remember the previous values and the three
gates such as input gate, output gate and a forget gate
regulate the data into and out of the cell. LSTM retain the
information across long sequences and effectively deal with
the tasks demanding comprehensive long-term contextual
learning [128].
GRU: Gated Recurrent Units (GRUs) is another variant

of RNNs which resemble LSTMs in operation but having a
simpler architecture which comprises two gates instead of
three, i.e., reset and update gate [164]. These gates empower
GRUs to strike a balance between retaining past information

and integrating new input, thereby simplifying the model
while still effectively handling short-term memory challenges
in sequences.
BiLSTM: BiLSTM is a modified version of LSTM which

utilises two LSTM layer in a bidirectional way. In BiLSTM,
the forward data flow is handled by one LSTM while the
additional LSTM enable backward data propagation to model
the two way sequential dependencies in the input data.
The output of the two LSTM is then combined either by
averaging, summing, or concatenating to generate the final
output.
Autoencoder: Autoencoders is a specific type of DNN

commonly used for unsupervised learning tasks involving
dimensionality reduction [165]. Autoencoders comprise two
main functions, i.e., encoder and decoder. The encoder
compress the input data and the decoder reconstruct the
original data from the compressed representation of the input
data. Notably, the hidden layers of autoencoders typically
have fewer nodes compared to the input layers, resulting in a
bottleneck phenomenon that encourages the network to learn
a concise representation of the input data. The autoencoder
applies to data compression, enhancement, sophisticated data
analysis, image processing, and noise reduction.
Transformer: The transformer is a powerful architecture

based on the attention mechanism, famous for its ability
to capture long-range dependencies in sequential data with
remarkable efficiency and reduced training time [151]. A
transformer comprises an encoder-decoder structure, where
both components have multiple identical layers. In the
encoder, each layer consists of two sub-layers: a multi-head
self-attention mechanism and a fully connected feed-forward
network, each followed by residual connection and layer
normalization. The decoder includes an additional sub-layer
for multi-head attention over the encoder output.
The brief discussion of these model is provided in the

following paras while the application to different sensing
scenario is listed in Table 2. In the next sections, we present
the detailed survey of the aforementioned DL technique
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applied to WiFi based human sensing in the state-of-the-art
literature.

A. HUMAN ACTIVITY RECOGNITION
WiFi-based HAR is an emerging and increasingly popular
approach in recent years which non-intrusively monitor
and analyze human behaviors across diverse environments.
With continuous advancements in signal processing, neu-
ral network models, and deployment of wireless device,
WiFi HAR shows great promise in applications such as
healthcare, smart environments, security, etc. It provides
robust healthcare monitoring through gait recognition and
improves eldercare safety by detecting fall. The domain of
indoor environments has advanced to incorporate motion
sensing and population monitoring, along with precise
indoor localization that is essential in huge complexes such
as airports and malls. Pose estimation assists treatment,
increases worker safety in factories or workplaces through
monitoring, and enhances online shopping experiences with
virtual try-on elements. These developments contribute to a
deeper understanding of human interactions and ultimately
enhance the overall quality of life. This section provides
a discussion on the advancements and comparison of the
state-of-the-art related to WiFi-based HAR including fall
detection, multi-activity classification, movement tracking,
indoor localization, gaits recognition, and HPE. Table 3
provides a comprehensive performance assessment of various
learning models for activity recognition in terms of activity
types, data collection sources and metrics, antenna systems,
and key performance indicators such as precision, false
alarm rate (FAR), accuracy, specificity, sensitivity, recall, and
F1-score.

1) FALL DETECTION

Human fall is a major problem among elderly citizens
worldwide which results in a considerable number of fatal-
ities, particularly for people aged 60 and above. According
to the World Health Organization (WHO), approximately
646,000 fall-related deaths occur globally and there are
around 37.3 million falls that are treated medically each
year [172]. It is projected that by 2030 the number of aged
people (60 years or above) will comprise one-sixth of the
global population. It became imperative to ensure timely
rescue for elderly individuals living alone which presents
a pressing public health challenge [173]. To address this
issue, traditional methods have been utilized in the literature
such as cameras, wearable sensors, and specialized RADAR
hardware to detect falls. However, WiFi-based solution have
gained popularity due to the widespread availability and
non-intrusive nature. Utilizing advanced technology such
ad MIMO-OFDM-based WiFi systems offers a promising
approach to detect falls without human intervention and
dependence on lighting condition requirements.
Extensive researchers has been carried out to improve

fall detection in real-world environments using DL algo-
rithms and WiFi based system. These efforts enhance the

capability to accurately distinguish falls and ensure the
safety of individuals, especially in challenging scenarios
where traditional methods have limited performance. Authors
in [155] proposed a DL method based on EfficientNet [156]
for fall detection utilizing CSI data collected from WiFi
signal and achieve over 96% accuracy. FallCNN is proposed
in [126] which is a CNN based learning framework for fall
detection utilizing CSI from WiFi signals. The proposed
scheme is capable of achieving an average accuracy of
95% in seven different indoor environments. Similarly, the
authors in [106] investigate fall detection in construction site
using different variants of LSTM and reported 99% accuracy
on the study case involving six workers and 360 activity
sets. The authors in [166] proposed WiFall which utilizes
WiFi CSI to detect human falls without requiring addi-
tional hardware, environmental setup, and wearable devices.
Extensive simulations shows that WiFall can accurately
detect falls for a single person in the coverage area. Using
a single class support vector machine (SVM) classifier, the
system achieves an accuracy of 90% with an average FAR
of 15% across all testing scenarios while employing the
random forest algorithm, WiFall achieves an average fall
detection precision of 94% with FAR of 13%. RT-Fall is
presented in [130] is a cost-effective indoor fall detection
system that utilizes fine-grained CSI including phase and
amplitude from commodity WiFi device and achieves real-
time contactless fall detection. The authors demonstrate that
the phase difference of CSI between two antennas is a
reliable signal for activity recognition which enable accurate
fall segmentation. Moreover, a sharp power profile decline
pattern in the time-frequency domain for falls is identified
which extracts new features to improve fall segmentation
and detection. Experimental results demonstrate that RT-Fall
outperforms the state-of-the-art approaches for four indoor
scenarios with an average increase of 14% in sensitivity and
10% in specificity.
Researchers strive to develop a fall detection system

with minimal environment dependency and do not requires
retraining with new data while operating in the new
environment. In this regard, the authors in [105] proposes
an adversarial data augmentation (ADA) for WiFi-based
domain-independent fall detection system. The CNN-ADA
and LSTM-ADA models are utilized and compared on
the FallDeFi dataset including five environments data. The
dataset is divided into 10 domains and the semantic distance
between the target and the source is measured using
Wasserstein distance parameter (p). It is reported that the
accuracy of CNN-ADA drop from 64.12% to 41.51% while
LSTM-ADA exhibits an opposite trend with performance
improvement from 40.20% to 66.03% with an increase
in p. However, both models shows poor performance for
real-world applications indicating further room for improve-
ment in accuracy and reliability. Similarly, the authors
in [174], [175] propose DeFall which utilizes speed and
acceleration patterns for fall detection and is capable of
working in different environments. The system estimates fall
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(Continued)

[166]

[130]

[105]

[127]

[92]

[167]

[111]

[121]

[108]

[129]

[107]

[110]

[168]

speed using WiFi signals in the offline stage and generates
representative templates using dynamic time warping (DTW)
algorithms and compare the real-time motion with templates

to detect falls in online stage. DeFall achieve a detection rate
of 96% and a false alarms less than 1.5% through a single
pair of WiFi transceiver tested in various scenarios. The
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TABLE 3. (Continued.) WiFi-based human activities recognition.

[169]

[170]

[171][171]

[124]

[150]

[151]

[152]

FallWatch system presented in [30], detects falls in open-air
and through the wall using autoencoder with CNN based
encoder and LSTM models based decoder. The FallWatch
detect falls effectively in a cross-person and cross-people
scenario by achieving precision, recall, and F1-score of
0.923, 0.917, and 0.920, respectively. The authors in [92] by
propose FallDar for fall detection which outperformed the
state-of-the-art approaches by simultaneously tackling the
environmental diversity, motion diversity, and user diversity
challenges. FallDar utilizes the body’s speed to handle
environmental diversity and ensure resilience to changing
conditions. FallDar uses DNN-based generative model for
efficient detection of different types of falls. For user
diversity, fall detection network is augmented with a user
identification network to extract independent user features
without requiring new user fall data. FallDar is implemented
on commercial WiFi devices and tested for over six months
in home and office environment trials, achieving FAR and
missed alarm rate (MAR) of 3.4% and 5.7%, respectively.
Similarly, the authors in [167] propose AFall which is a
model-based robust fall detection system that utilizes WiFi
CSI without requiring prior training for individuals. AFall
employs the MUSIC algorithm to model the relationship
between human falls and changes in AoA of the reflected
WiFi signal from the human body. By using two receivers
in orthogonal spatial layouts, AFall captures diverse AoA
information and maintains stable performance even with
slight environmental changes due to the independence of
AoA with the surroundings and subjects. AFall is evaluated

in five indoor environments and achieves an average accuracy
of 84.31% and an average F1 score of 84.56%. Despite
these advancements, the WiFi-based fall detection system is
still immature and requires further improvement in terms of
effectiveness and reliability.

2) FROM SINGLE-TASK TO MULTI-ACTIVITY
CLASSIFICATION

Professionals are developing WiFi-based multi-activity clas-
sification to enable natural human behavior recognition,
a promising technology with the potential to enhance
applications across these diverse domains such as healthcare,
industry, and smart homes. The authors in [76] utilize a
CNN with a rectified linear unit (ReLU) activation function
to estimate six different human activities. The experiment
involved generating signals in compliance with the IEEE
802.11ad standards using a 60 GHz channel and utilize the
DS information extracted from pilot subcarriers at the input
of CNN. The CNN performed impressively by achieving a
validation accuracy of 96%, demonstrating its proficiency in
accurate recognition of human activities and the substantial
reduction in the loss function value up to 0.1599 indicates
the network’s effectiveness in terms of error minimization
during training. The authors in [111] present a comparison
between ultra-wideband (UWB) and commodity WiFi setups
for passive LoS based HAR and evaluated the estimation
performance for five different human activities, i.e., sitting,
standing, lying down, standing from the floor, and walking
using a range of classifiers including CNN, DNN, Gaussian

3606 VOLUME 5, 2024



naive Bayes (GNB), KNN, and random forest. The channel
impulse response (CIR) samples is used as input to the
classifiers for UWB system while CSI data is utilized for
commodity WiFi system. Simulation results show that CIR-
aided UWB system gives an outstanding F1-score of 95.53%
and the WiFi CSI amplitude-based input data achieves
lower F1-score of 92.24% while the WiFi spectrogram-
based input data yields an F1-score of 80.89%. Additionally,
irrespective of whether the UWB or WiFi systems are
employed, the random forest classifier consistently out-
performs the other classifiers. However, UWB technology
presents increased complexity and diminished resilience in
NLoS scenarios compared to commodity WiFi systems. A
one-class support vector machine (OSVM) is used in [121]
which highlights the potential of WiFi-based CSI data for
precise multi-activity recognition in complex scenarios. The
system distinguishes between a range of human activities
including walking, running, sitting, standing, and greeting
as well as strenuous motions such as fighting and kicking.
The system achieves notable accuracy rates of 90.89% for
strenuous human motions and 84.43% for normal human
body movements. Similarly, the authors in [122] present a
CNN-attention bidirectional long short-term memory (CNN-
ABLSTM) based WiFi CSI passive sensing technique,
which outperforms the existing learning models in terms
of accuracy for multiple actions and multiple individuals.
In [112] seven distinct human activities are classified
using InceptionTime and LSTM-based classification models
applied to WiFI CSI data. Similarly, a hybrid DL network
CNN-gated recurrent unit-attention network (CNN-GRU-
AttNet) is tested on CSI-HAR and StanWiFi datasets. The
proposed scheme outperforms the traditional DL models with
an accuracy improvement of 4.62% compared to GRU, bidi-
rectional GRU (BiGRU), CNN, LSTM and BiLSTM [114].
The WiFi CSI data is translated into images and processed
by CNN based ImgFi in [131], showing 99.5% accuracy
for human gestures recognition. WiAReS is an innovative
device-free that accurately identify various activities [108]
by utilizing CNN to extract spatiotemporal features from CSI
measurements by capturing the spatial and temporal patterns
of human activities. For enhanced recognition accuracy,
WiAReS introduces a unique ensemble architecture that
combines multiple models including a multi-layer MLP, a
random forest, and an SVM. The CSI data is collected using
standard WiFi devices equipped with Atheros-CSI-Tool on
AR9590-based WiFi NICs for activities such as sitting down,
jumping, wave, pick up, walk, and run. Extensive experi-
ments were conducted in activity rooms and laboratories to
demonstrate the exceptional performance of WiAReS with an
overall accuracy of 98.1% and 99%, respectively. Similarly,
the authors in [31] use predictive approach with trajectory-
guided unsupervised learning (TGUL) for the recognition of
multiple human actions and demonstrate that the proposed
scheme achieves a mean average precision (mAP) of 91.7
in the fine-tuning setting for the intersection union threshold
of θ=0.1.

The existing research exhibits domain dependence sensing,
where a system performing well in one environment and
exhibits performance degradation when tested in another
environment. To overcome this, a robust system is needed to
accurately identify human activities in diverse environments.
Utilizing DL algorithms, the researchers aim to extract
activity-specific features from the signal while avoiding
environment-specific characteristics and ultimately design
a versatile scheme independent of the sensing domain.
In this regard, the authors in [129] investigate WiFi CSI
based framework to recognize 13 indoor human activities
using a single transmitter point (TP) and access point (AP).
Online filtering is used for smoother CSI curves, preserving
patterns, and a segmentation technique is utilized to isolates
primitive action patterns from MIMO signal. SVM-based
multi-classification with selected features enables activity
recognition regardless of location, orientation, and speed.
The results show that the SVM with feature selection per-
forms better than linear discriminant analysis. A WiFi-based
activity recognition system called WiSDAR is presented
in [107] which incorporates spatial diversity awareness and
achieves an accuracy rate of approximately 96% in detecting
various human activities including walking, falling, sitting,
running, picking, pushing, waving, and boxing. The proposed
WiSDAR addresses the accuracy degradation challenges that
arises when individuals pass through dead zones with ineffec-
tive signal coverage within the monitored environment. This
is accomplished by integrating spatial diversity techniques.
WiSDAR uses a DL model that combines CNNs and LSTM
to achieve enhanced HAR performance. The authors in [95]
use CNN and hybrid model of RNN and LSTM for HAR
and achieve an average testing accuracy of 97%. Similarly,
two DL models including attention-based bidirectional long
short term memory (ABiLSTM) and CNN-ABiLSTM are
utilized in [110] to recognize different human activi-
ties across diverse spatial environments. The experimental
results demonstrate that by employing a transfer learning
technique, these models deliver acceptable results when
applied to new environments with varying configurations.
The performance of WiSDAR for passive HAR is further
improved in [168] through the utilization of ABLSTM.
The ABLSTM utilizes a BiLSTM architecture to extract
meaningful features from sequential CSI measurements in
both forward and backward directions. To capture the varying
importance of these learned features, an attention mechanism
is incorporated that assigns different weights to each feature.
The experimental results demonstrate that the ABLSTM
achieves superior recognition performance compared to
benchmark schemes. Moreover, its robustness and general-
izability capable them to maintain high performance even
when trained in one environment and tested in a different
one. Another environment-independent (EI) approach is
presented in [169] which extract activity features independent
of the environment and subject. The proposed approach
employs a feature extractor, an activity recognizer, and
a domain discriminator, where the domain discriminator
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predicts the environment and encourages the feature extrac-
tor to generate environment/subject-independent features.
Experimental results on six testbeds validate the effectiveness
of the approach in transferable learning features. Similarly,
CSI-based Parallel convolutional networks-based location-
independent HAR system (CSI-PCNH) is proposed in [113]
which uses 3DCNN with channel attention mechanism
(CAM) and 2DCNN along with LSTM to recognize six dif-
ferent activities across various indoor locations and achieve
an accuracy of 91.7%. Eight different location-independent
human activities are recognized in [109] using CSI data
and Raspberry Pi 4 with an LSTM DL model, achieving
an overall accuracy of 97%. The authors in [170] proposed
a new approach called activity-related feature extraction,
enhancement, and matching network (AFEE-MatNet) which
combines activity-related feature extraction and enhancement
(AFEE) with a matching network (MatNet). AFEE focuses
on improving CSI quality by eliminating non-activity-related
features while preserving behavior-related information and
reducing feature signal size for faster training. MatNet learn
transferable features that can be applied across different
environments and effectively handle domain shift challenges.
Furthermore, the approach also incorporate a prediction
checking and correction mechanism to rectify classification
errors that arise from the expected human behavior transi-
tions. Experimental results demonstrate that AFEE-MatNet
outperform the existing HAR methods in terms of accuracy
and training time. Similarly, the authors in [171] propose
matching network with enhanced channel state information
(MatNet-eCSI) which uses one-shot learning approach for
HAR that is operable and can identify various activities in
different environments. It combines the correlation feature
matrix (CFM) and MatNet architecture comprising CNN
with ReLU activation and Max pooling. The CFM is
obtained by extracting activity-related information using
a linear recursive operation and subtracting it from the
received signal using an exponentially weighted moving
average (EWMA) approach to reduces the dimensions of
the original CSI matrix. MatNet utilizes the CFM and
employs the CNN along with the Bidirectional LSTM
model to produce the final output. Experimental results
demonstrate the exceptional performance of MatNet-eCSI
which surpasses the existing sensing methods with an aver-
age accuracy of 0.868 for one-shot learning. Additionally,
it offers the advantage of reduced training complexity
making it highly effective solution for HAR. Similarly,
the authors in [127] propose DeepSeg which employs a
CNN framework that transforms activity segmentation tasks
into classification task, showing a significant performance
improvement. The authors in [151] use vision transformers
such as vanilla ViT, SimpleViT, DeepViT, SwinTransformer,
and CaiT for CSI-based HAR on UT-HAR and NTU-Fi
HAR datasets. Similarly, cross-domain action recognition
using WiFi (CDFi) is introduced in [152] that utilizes
transformers for activity recognition with minimal CSI
samples and achieve enhanced performance compared to

the state-of-the-art techniques in both cross-user and cross-
scene scenarios. The authors in [124] integrate bi-directional
and attention mechanisms into the gated loop unit (BI-AT-
GRU) network to recognize diverse human actions. This
approach achieves recognition accuracy of 97.4% and 93.3%
across two distinct environments. Similarly, deep gated
recurrent unit (DGRU) model is introduced for non-intrusive
HAR in [123] which achieve 95% to 99% accuracy for
various daily human activities. Similarly, a novel dual-stream
convolution augmented human activity transformer (THAT)
is used in [150] to effectively captures spatial and temporal
features for various human activities and outperform existing
state-of-the-art models in both effectiveness and efficiency.

B. MOVEMENT TRACKING
Movement tracking is the process of monitoring and record-
ing the paths that objects or individuals follow over a
period of time. This technology has diverse applications,
such as sports analytic tracking, healthcare monitoring,
and security surveillance. Movement tracking may includes
crowd monitoring and motion sensing, localization, and gait
recognition.

1) CROWD MONITORING AND MOTION SENSING

Crowd analysis is a prominent research area and is applicable
in urban planning, crowd management, surveillance, health-
care, and prevention of accidents and casualties. Vision-based
methods for crowd analysis suffer from blind spots, high
deployment costs, computational complexity, poor lighting
issues, and privacy concerns. In contrast, WiFi-based crowd
monitoring offers low-cost, extensive coverage without blind
spots, low computation, and preserves public privacy. This
section provides a thorough literature review on WiFi-
based crowd counting and motion sensing. A novel idea is
presented in [176], which accurately calculates the time-up
and go (TUG) time for a subject rising from the rest. The
precise determination of TUG time depends on both the
aligned movements of the subject and the continuous analysis
of the reflected RF signals from the individual. TUG time is
a crucial parameter widely used in the healthcare domain. It
helps healthcare professionals to diagnose disease and find
its severity in an individual. The authors in [177] present
an in-depth review of AI-based crowd-counting methods in
healthcare, biotechnology, and in IoT. By using RNNs with
spatial-temporal matrices and grid partitioning, the paper [96]
addresses the scalability of WiFi crowd counting while
lowering error rates in campus tests. The study in [115]
aims to enhance real-time monitoring using bi-convolutional
LSTM, attention-based autoencoders, and semi-synthetic
datasets for improved WiFi-based crowd analysis.
The work in [157] demonstrates the simultaneous tasks

of crowd counting and localization estimation through ML
and WiFi CSI without necessitating user-device interaction.
In three different span of time, the experimental results
achieved a counting accuracy of up to 94% and local-
ization accuracy of 95% for k-fold cross-validation. This
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work is further explored in [158] and proposed Wi-CaL
which addresses the feasibility of a simultaneous crowd
estimation system capable of predicting crowd numbers and
locations using WiFi IoT CSI technology and ML techniques.
Instead of a conventional WiFi system, the author employed
Espressif system platform 32 (ESP32) nodes and their CSI
toolkit for medium-scale crowd counting and localization
to establish a novel CSI platform. The experimental results
show that the Wi-CaL achieved promising results. Using
ML evaluation, the proposed method achieves 0.35 median
absolute error (MAE) and 91.4% accuracy for 5 individuals
in a small room and 0.41 MAE and 98.1% accuracy
for 10 individuals in a medium-sized room. Compared to
the percentage of non-zero elements metric (PEM), Wi-
CaL outperformed with 0.41 MAE and 81.8% while PEM
scored 0.62 MAE and 66.5% accuracy in single-person
scenarios. The authors in [117] introduced CROSSCOUNT,
a precise human counting system, that uses recurrent neural
networks while addressing challenges like weak signals, data
collection complexity, and the absence of CSI data. The
system processes WiFi link intervals, surpassing received
signal strength (RSS)-based methods. Utilizing LSTM to
classify blockage patterns, CROSSCOUNT outperforms RF-
based systems in counting accuracy. Across diverse test
setups, it achieves 59% precise human count accuracy,
improving to 100% within a two-person difference case.
Similarly, the authors in [178] aim to count people within
buildings using external WiFi transceivers, relying solely
on WiFi RSSI measurements. It observes the inter-event
times that are related to signal dip events and remain
stable even behind walls. A method is introduced to derive
people count from these inter-event times, treating wireless
power measurements as a blend of renewal-type processes.
By leveraging concepts of the renewal process from the
literature, the probability mass function of inter-event times
is calculated to predict crucial people count information. The
results demonstrate the accurate estimation of people behind
walls without extensive prior calibrations. In [94], the authors
introduce WiCount, an innovative system, that utilizes DL
techniques to address complex multi-human environmental
sensing tasks using WiFi CSI (amplitude and phase).
WiCount employs a DNN model based on back-propagation
(BP) which comprises an input layer, two hidden layers, and
a softmax layer. WiCount is capable of accurately counting
up to five individuals. The system incorporates both offline
training and online testing phases. Initial findings indicate
that WiCount achieves an impressive average recognition
accuracy of 82.3% for scenarios involving up to five people
and outperforms traditional methods like SVM that operate
on conventional features.
The authors in [159] introduce a device-free crowd-

counting technique utilizing WiFi signals. By analyzing
the phase and energy of subcarriers in real-time CSI,
a DNN model is established to correlate these features
with crowd density to enable accurate crowd counting.
The method achieves a mean counting error of 0.11-0.14

with over 99% accuracy within medium crowds and 100%
accuracy within small crowds. This level of precision
satisfies the requirements of most crowd-aware applications,
accommodating varying crowd sizes within WiFi-covered
areas. The paper [179] introduces FreeCount, a device-
free crowd-counting method using WiFi routers. A novel
OpenWrt firmware is used to capture router CSI data and
enable accurate estimation of occupants using two routers.
Wavelet denoising, diverse feature calculation, and info-
theory selection enhance counting while transfer kernel
learning ensures temporal robustness. FreeCount achieves
96% accuracy with a promising practical implementation.
The paper [116] employs WiFi sensing and LSTM models to
predict event crowd counting. The study involves monitoring
an event in Brussels using privacy-preserving WiFi sensors
to gather crowd counts. These counts are transformed into
time series data which is then used for forecasting. The
research evaluates five LSTM models for crowd forecasting
and compares their performance to a random walk model.
The convolutional LSTM model stands out as the most
effective and concludes the effectiveness of this system for
accurate crowd monitoring.
IMep is proposed in [180], a system that operates without

devices and utilizes WiFi signals to count the steps of
multiple people. By utilizing CSI data, the authors developed
the multiplayer amplitude decomposition algorithm (MADA)
using block term decomposition (BTD). They also con-
structed the multiplayer stepping amplitude relation model
(MSARM). In contrast to traditional single-step measurement
methods, the study proposed a new moving energy method
(MEM) technique to enhance step counting accuracy, leading
to heightened precision in IMep’s results. Experimental
results demonstrated IMep’s capacity to accurately count
the steps of up to seven individuals simultaneously in real-
world scenarios. Remarkably, IMep achieved step counting
accuracy of 95.57%, 94.66%, and 89.94% in three different
environments while also displaying adaptability to envi-
ronmental changes. The authors in [181] propose WiStep,
a WiFi-based step-counting method, leveraging multipath
propagation. WiFi signals are modulated by the differential
movement speeds of limbs and torso during walking and
introduce distinct frequency components into received CSI.
The approach employs time-frequency analysis to segment
walking patterns, selecting sensitive subcarriers based on
amplitude variance, and applying wavelet decomposition for
faster processing. Step counting uses short-time energy of
coefficients with combined results from chosen subcarriers
for accuracy. WiStep accommodates in-place walking and
exhibits resilience across diverse scenarios, achieving step
counting accuracies of around 90% in experiments using
commodity WiFi devices. The authors in [182] introduce
Widar, a unique tracking system that utilizes WiFi signals
for accurately estimating movement speed, direction, and
locations of individuals at a precision of a few decimeters.
Unlike conventional statistical learning methods, Widar
establishes a geometric theoretical model to quantitatively
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TABLE 4. Whole body movement tracking.

[157], [158]

[117]

[94]

[159]

[179]

[183]

[184]

[99]

[118]

understand the connections between the dynamics of CSI
and the person’s motion characteristics. The results show a
remarkable performance, achieving accuracy at the decimeter
level, with median location errors of approximately 24 cm
(with initial positions) and 36 cm (without initial positions)
along with an average relative velocity error of 11%.
The authors in [185] introduce WiTraj, an innovative

device-less WiFi-based system for accurate indoor motion
tracking. It enhances Doppler-frequency-shift (DFS) esti-
mation by employing multiple angles to capture trajectory
accurately, distinguish between walking and stationary
actions, and improve tracking accuracy compared to existing
methods. Experimental results show a median tracking
error of less than 2.5% for room-sized trajectories. The
study in [183] introduces DeMan, an innovative method for
non-invasively detecting stationary and moving individuals
using standard WiFi devices. DeMan employs amplitude
and phase information from CSI for motion detection and
utilizes subtle chest movements due to human respiration to
identify stationary presence. DeMan achieves a remarkable
detection rate of around 95% for both stationary and moving
individuals with a 96% accuracy in identifying human-
free scenarios and outperforms the existing benchmarks
by approximately 30%. Similarly, the authors in [184]
introduce Wi-CR which is a CSI-based technique for
continuous action counting and recognition without requiring
specialized hardware. Wi-CR improves action detection
accuracy by identifying action start and end points, utilizing a

peak-finding algorithm for counting consecutive actions. Two
actions, walking and squats, are identified and distinguished.
It integrates DWT-based waveform feature extraction and
applies DTW and KNN for action recognition. Experimental
results demonstrate that Wi-CR achieves 95% accuracy in
action counting and 90% in action recognition. The authors
in [186] developed a cost-effective and device-free approach
that intelligently monitors human dynamics by estimating
the number of participants, human density, and walking
speed in a particular direction. The proposed technique
employs the statistical distribution of CSI measurements
to estimate the number of participants and density. At the
same time, walking speed and direction are determined using
a frequency-based mechanism. The experimental results
demonstrate that the proposed system achieves over 90%
accuracy in fine-grained human dynamics tracking – includ-
ing participant count, density, walking speed, and direction
across different indoor environments. Table 4 presents an
overview of the existing works on tracking activities as a
function of data sources, antenna systems, learning models,
and key performance indicators (KPIs).

2) INDOOR LOCALIZATION

The performance of global positioning system (GPS) is not
satisfactory in the indoor environment and WiFi fingerprint-
ing can be utilized due to the widespread availability of
WLAN in the indoor setup. However, the precision of indoor
positioning is hampered by issues of uncertain and unstable
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fingerprints for the WiFi signals. To this end, the authors
in [132] introduces FSTNet which is a DL framework to
enhance indoor positioning accuracy by understanding the
spatial-temporal relationship in the fingerprint data. The
framework introduces the concept of path fingerprints to
address uncertainty and instability in the fingerprint. It
employs a CNN to effectively capture local attributes within
path fingerprints and a fingerprint attention mechanism to
efficiently capture spatial characteristics for stable position-
ing data. The on-site experiments on FSTNet demonstrates its
ability to effectively capture temporal and spatial correlations
within RSS measurements and achieves 44% enhancement in
mean positioning error where 99.2% of errors being confined
within the range of 2m. The indoor localization mainly relies
on RSS and time of arrival (ToA) for fingerprinting. The
study in [187] compared the three localization methods,
i.e., multilateration, KNN, and minimum mean square error
(MMSE) using RSS in the indoor WiFi systems. The aim is
to assess their accuracy through simulations by correlating
the estimated positions with actual data, and revealing the
strengths and limitations of each approach via the network
simulator (NS-2). The authors in [133] introduce a WiFi-
based indoor localization system that leverages CNN for
classification tasks. Three distinct approaches are explored
such a custom architecture called WiFiNet, tailored for
the task, and the use of popular pre-trained networks with
transfer learning and feature extraction. Results shows that
effectiveness of WiFiNet in indoor localization for medium-
sized environments (30 positions, 113 access points) and
reduce the localization error by 33% with less processing
time compared to existing methods such as SVM.
The authors in [188] assess different learning models for

indoor positioning within an office setting by utilizing an
open source wireless infrastructure. The accuracy of esti-
mated two-dimensional (2D) positions is evaluated in terms
of root-mean-square error (RMSE) and R-squared metrics.
The methods include distance estimation via an RSSI-based
ML model, coupled with the Min-Max positioning algorithm,
independent RSSI-based models for individual coordinates,
and RSSI-based sequential prediction of the varying coordi-
nates. A comparative analysis is conducted and the results
reveal the superior performance of the distance prediction
model and Min-Max algorithm for fixed positions and sug-
gest the need for more precise sub-0.5 m measurements in
2D coordinate prediction. In [97], the authors proposed two
DL models, i.e., a convolutional mixture density recurrent
neural network and a variational autoencoder-based semi-
supervised model for accurate user location estimation using
limited labeled WiFi data. Validation experiments on real-
world datasets confirm their superior performance compared
to existing methods. The work in [189] presents a two-phase
semi-supervised localization method applicable to indoor
localization datasets. In the offline phase, the rank-based
iterative clustering (RBIC) algorithm is used to form clusters
with minimal distant points. RBIC acts as a clustering
ensemble generated based on ranked baseline algorithms

with clustering scores. In the online phase, user locations are
estimated via classifiers using dynamic signal strength data.
The system achieves high accuracy on the three benchmark
datasets, i.e., 94%-99% for JUIndoorLoc, 96%-99%, and
95%-98% for the second and third datasets, respectively.
ViFi is introduced in [190] which is an indoor positioning

system that merges the multi-wall multi-floor (MWMF)
model for virtual reference points with a deterministic
weighted k-Nearest Neighbors (WkNN) algorithm. ViFi
outperforms prior virtual fingerprinting methods by main-
taining high accuracy while reducing measurement time.
Guidelines for parameter selection are provided and future
research potential are discussed. The study in [98] presents a
robust approach for tracking and locating moving objects in
indoor the environments by using different classifier along
with Kalman filtering and smoothing. The Feko channel-
propagation emulator is used to simulate the RSSI maps in
the indoor setting divided into multiple zones to enable multi-
classification. A gradient-boosting decision-tree classifier
is trained on RSSIs while Kalman filter enables online
tracking and Kalman smoother facilitates offline localization.
Results demonstrate 73.1% highest localization accuracy and
the smallest average Euclidean-distance error of 1.33 m.
Similarly, FedPos is presented in [134] which utilizes a
federated transfer learning for WiFi CSI-based indoor local-
ization. The overall improvement of 5.22% in the average
accuracy is observed while the training time is reduced by
about 34.78% compared to traditional learning methods. The
authors in [149] evaluated the stacked autoencoder (SAE)
for for three RSSI based indoor localization datasets and
achieved an accuracy of 100% for building, 99.66% for
the floor, and 83.47% for zone location. The RS-DeepNet
is proposed in [125] for indoor localization with MAE of
4.81 m and 1.68m for two different indoor scenarios. A deep
supervised autoencoder (SAE) based DeepPos is presented
in [148] which achieve 1.9m improvement in MAE compared
to DeepFi proposed in [191]. Similarly, a transformer-based
indoor positioning system (TIPS) is presented in [153] that
utilizes self-attention on WiFi CSI and direction of arrival
(DoA) information to achieve distance error of up to 20cm,
outperforming state-of-the-art methods. Table 5 presents the
state-of-the-art on DL based indoor localization activities
with an emphasis on the experimental setups, type of learning
models, and the used KPIs such as positioning error, MMSE,
localization accuracy, median error, and Euclidean distance
error.

3) GAITS RECOGNITION

Human gait recognition identifies individuals from a distance
and has gained popularity with time. With increasing data
volume, the focus has shifted from traditional ML to
advanced DL based gate recognition. In this regard, a
brief review of DL techniques on gait identification using
CNNs, capsule networks, RNNs, autoencoders, deep belief
networks, and generative adversarial networks (GANs) is
presented in [192]. AutoFi is proposed in [93], which utilizes
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TABLE 5. WiFi-based indoor localization.

[132]

[187]

[133]

[188]

[97]

[189]

[98]

[190]

[134]

[125]

low-quality CSI samples and employ MLP model for human
gait recognition. In [136], the CSI data is preprocessed
and then passed through the CNN model to detect walking
direction, achieving an accuracy of 92.9%, 95.1%, and 89%
in three indoor environments and across different people.
The authors in [100] present Vi-WiFi-Gate which using
RNN along with an attention mechanism and provides
a gait recognition accuracy of 94.6% on over 1000 CSI
samples. The authors in [193] introduce GAITWAY, an
innovative system that identifies an individual’s gait through
walls using wireless radios. GAITWAY passively tracks
gait speed with standard WiFi transceivers and eliminates
the need for devices or restricted walkways. It detects
stable walking periods, extracts relevant speed features, and
identifies a person’s gait. Using a rich-scattering multipath
model, GAITWAY captures gait speed from over 10 m
behind the walls. Experiments with 5,000 gait instances
and various subjects demonstrate its accuracy and achieve
a median speed error of 0.12 m/s, stride length error of
3.36 cm, and strong recognition rates of up to 81.2%. This
establishes GAITWAY as both reliable and practical for use.
The use of commercial WiFi devices for human identification
has gained attention in applications such as smart homes
and intrusion detection. However, the existing methods are
prone to indoor noise and hence limited accuracy. The

authors in [99] introduces Wihi, a new approach that
employs DWT for noise removal, extracting human walking
patterns via statistical features, and utilizing an RNN-LSTM
model for accurate identification. Wihi’s prototype on WiFi
devices shows superior performance over existing methods
showcasing its potential for robust human identity identifi-
cation in noisy indoor environments. Human gait, a crucial
identifier, can now be captured from a distance using passive
sensors and applications in security and identification. While
conventional research relies on cameras and computer vision
for gait recognition, these methods struggle in low-light
conditions. The article [118] presents GaitFi which is a multi-
modal technique that combines WiFi signals and videos.
GaitFi employs CSI from WiFi along with camera-recorded
videos and employs a lightweight residual convolution
network (LRCN) to enhance gait information. By integrating
WiFi and visual features in a two-stream model while
training with triplet and classification loss, GaitFi achieves
impressive real-world results with an accuracy of 94.2% in
identifying 12 subjects and outperforming the WiFi only or
camera-based methods. The paper [194] presents WiFiU, an
approach that utilizes commercial WiFi devices to capture
intricate gait patterns for human recognition. By exploiting
the unique gait signatures in WiFi’s CSI, the method
generates spectrograms akin to Doppler RADARs through
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signal processing. Auto-correlation on the torso reflection
further refines the pattern characterization. Evaluated on a
dataset of 2,800 gait instances from 50 individuals in a 50m2

room, WiFiU achieves recognition accuracy of 79.28% (top-
1), 89.52% (top-2), and 93.05% (top-3). WiWho is presented
in [195] which is a WiFi-based framework for device-
free person identification in small groups. Utilizing WiFi
CSI, WiWho captures unique gait patterns to distinguish
individuals. Analyzing step and walk data within CSI,
WiWho achieves accurate identification without personal
devices while requiring a short walk. Evaluated with 20
volunteers across different locations, WiWho achieves 92%
and 80% identification accuracy for 2 and 6-people groups,
respectively. The study underscores that a 2-3m walk is
sufficient for successful identification to enable a person’s
recognition in smart spaces using WiFi.

C. POSE ESTIMATION
HPE plays a vital role in human-computer interaction and
can be applied to applications such as virtual reality and
exercise monitoring in a smart environment. The traditional
approaches rely on vision-based techniques which is not
applicable in NLoS scenarios. Therefore, RF-based methods
become an appealing alternative for pose estimation in
scenarios with no wearable sensors and LoS requirements.
Table 6 provides a comprehensive review of DL based
HPE shedding light on considered dimensions, experimental
setups, utilized learning models, and KPIs such as the
percentage of correct key points (PCK@α) with distance
threshold α, AP, prediction accuracy, and average joint
localization error. The PCK@5 in Table 6 measures the
proportion of key points where the distance between the
predicted key point and the true joint falls within 5% of
the subject’s size. In other words, it refers to the percentage
of keypoints where the predicted location is within 5%
of the subject’s size from the ground truth keypoints.
The authors in [138] introduced a real-time approach for
estimating the 2D poses of multiple people in an image.
The method employs part affinity fields (PAFs) to effectively
encode the limbs and orientations of humans, facilitating
precise key point association. Feature extraction is accom-
plished using the first ten layers of visual geometry group
(VGG-19) architecture which ensure favorable outcomes
compared to the prior research by efficiently detecting
the joints and associating connections among various body
parts. Similarly, the authors in [135] introduce a novel
approach for generating human pose images using wireless
signals rather than optical cameras. The proposed framework
combines data from multiple wireless devices capturing
WiFi signals with an initial optical image from a camera.
The wireless and vision data are then preprocessed before
being fed into a CNN plus Residual network for generating
human pose images. Experimental results indicate that this
approach outperforms existing WiFi-based methods in terms
of pose estimation accuracy and produces higher-quality
visuals.

The paper [102] investigates the performance of WiFi-
based HPE for single-person scenarios. An experiment is
conducted using a setup comprising a 3-antenna WiFi
transceiver to collect WiFi data. Simultaneously, a synchro-
nized camera records videos of individuals with annotated
key points are used for reference and a WiFi single-
person pose network (WiSPPN) is proposed which is a
fully connected CNN, designed to estimate single-person
pose based on the collected CSI data and its corresponding
annotations. The results demonstrate that WiSPPN achieves
comparable accuracy to camera-based methods for single
HPE. Similarly, the authors in [77] introduce a novel
approach using the teacher-student network model for 2D
human poses estimation in challenging scenarios involving
walls and occlusion. The method utilizes synchronized visual
data and signal reflections to address these difficulties. The
teacher network [138] plays a vital role in the proposed
approach with the employment of CNN with the ReLu acti-
vation function. Notably, despite not being explicitly trained
for wall-related scenarios, the proposed model demonstrates
impressive capabilities in estimating 2D human poses in
such conditions. It achieves an acceptable average precision
(AP) of 85.0%, which comparable with the teacher network
having AP of 93.3%. The work in [103] proposes WiSPE,
a 2D static HPE system based on commercial of-the-shelf
(COTS) WiFi and utilizes 2D AoA imaging, resembling
a camera, to estimate human pose accurately. The system
incorporates the environment background filter (Env-Filter)
algorithm to mitigate static environmental factors in the
images and employs a teacher-student network (RNN and
openpose) to correlate 2D AoA images with human skeleton
joints. The results showed an average prediction accuracy of
95.2% in PCK@50 for each skeleton joint, surpassing other
benchmarks and achieve a prediction accuracy of 73.1% in
PCK@10.
The evolving attentive spatial-frequency network

(EASFN) is introduced in [140], which combines static
spatial and dynamic frequency information from dilated
CSI sequences and utilize it for 2D HPE. The model
includes an evolving attention module to focus on specific
features and leads to a significant performance improvement
of 16% in PCK @20 over the state-of-the-art method
and proved to be effective for accurate HPE. The [160]
study presents a multimodal HPE network (MHPEN) which
is a unified network for 2D HPE, combining a teacher
network (Alphapose) using visual data and a student network
(PerUnet) utilizing WiFi CSI data. The WiFi-based HPE
is focused by PerUnet which leverages the power of a
multi-head attention mechanism and Unet-like architecture
is used to effectively combine fine-grained pose features and
contextual information from WiFi CSI. This integration leads
to highly accurate HPE results. Additionally, the authors
propose the attention-based denoising (ABD) method which
effectively overcomes the limitations of traditional filters and
facilitates the extraction of pose features from the CSI data.
Extensive experiments are conducted, demonstrating that
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TABLE 6. Pose estimation literature.

PerUnet achieves competitive performance in WiFi-based
HPE evaluated on the Wi-Pose dataset. A novel architecture
named CSI-former is introduced in [139] which integrates
multi-head attention into a WiFi-based pose estimation
network (PEN). The attention-based performer feature
extraction (PAFE) and CNN-based encoder/decoder focus
on information-rich CSI inputs which make the proposed

method more promising over other HPE approaches.
Experimental results on the Wi-Pose dataset demonstrate
that CSI-former significantly enhances HPE performance
with a PCK@5 accuracy of 0.5505 and surpasses the
existing ResNet with PCK@5 accuracy of 0.5231. Similarly,
a domain adaption algorithm called AdaPose is proposed
in [196] for weakly supervised WiFi-based HPE which
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emphasizes consistent human poses to address environmental
dynamics. in this regard, the CNN model and mapping
consistency loss are utilized. The article [141] estimates head
pose using CNN model WiFi CSI information including
phase, amplitude, and frequency domain information such
as phase, amplitude, and frequency domain information. The
authors in [101] proposed an approach for reconstructing
human skeletal motion through WiFi micro-Doppler
signatures which enable practical human activity tracking
with a 17-key point skeleton model. The method employs a
CNN-RNN architecture to effectively learn temporal-spatial
dependencies from clean micro-Doppler signatures. A pose
optimization mechanism is applied to estimate the initial
skeleton state and control error growth. Extensive testing
in diverse environments with multiple subjects is performed
using a single-receiver RADAR system. Furthermore, it is
observed that the mean absolute error of 29.4mm is achieved
for all key point positions. Similarly, MetaFi is presented for
HPE in metaverse avatars simulation [197] which employs
a customized DNN that is capable of achieving 95.23%
accuracy at PCK@50 which is further improved to 97.30%
in MetaFi++ [154].
A TGUL approach for 3D HPE is presented in [31]

which employs a DNN with 9-residual block encoder for
spatio-temporal convolutional features and a 3-residual block
decoder for spatial de-convolution. Based on comparative
analysis, predictive learning outperforms contrastive learning
due to its ability to capture and utilize relevant information,
resulting in consistent performance improvements over
supervised baselines during fine-tuning. The authors in [161]
introduce fast RFPose, a mmWave RADAR-based 3D HPE
model which utilizes the human localization network (HLN)
and the PEN network. HLN is responsible for predicting
human positions in the RF heatmap and cropping the relevant
regions while PEN estimates the 3D human poses based on
these cropped areas. Extensive quantitative and qualitative
analysis confirm the efficacy of Fast RFPose, demonstrating
its ability to achieve accurate 3D HPE with remarkable
processing speed. Furthermore, the trained Fast RFPose
model is successfully deployed on a laptop with a central
processing unit (CPU) underscoring its practical applicability
in real-world settings. WiPose is an innovative 3D human
pose construction framework that utilizes commercial WiFi
devices to reconstruct accurate human skeletons in a chal-
lenging real-world scenario [119]. The DL model (CNN
with LSTM) encodes prior knowledge of the human skeleton
to ensure estimated joints adhere to the body’s skeletal
structure. Additionally, WiPose achieves cross-environment
generalization by using a 3D velocity profile as input and
effectively distinguishing posture-related features from static
objects in the environment. Experimental results from real-
world WiFi sensing testbed shows that WiPose achieves an
average joint localization error of 2.83 cm and outperforms
the state-of-the-art posture construction model designed for
dedicated RADAR sensors by 35% accuracy. However, this
method can only estimate the pose of a single human in

a static position. GoPose is a 3D HPE system that utilizes
WiFi signals from household devices [120]. By leveraging
the 2D AoA spectrum of WiFi signals reflected off the human
body and employing DL techniques such as CNN and LSTM
models, the system achieves accurate pose estimation and
tracking. Notably, it enables environment-independent pose
estimation and exhibits an impressive accuracy of 4.7 cm
across diverse scenarios including NLoS conditions and
tracking unseen activities. This innovative technology holds
significant potential for various applications requiring precise
HPE. Wi-Mose utilizes the fusion of amplitude and phase of
CSI data to create CSI images and enable the reconstruction
of 3D poses of moving individuals while providing both
pose and position information [104]. The system employs a
residual network to extract pose-related features from these
CSI images and a key-point regression network then converts
these features into key-point coordinates. During training,
synchronized visual data is used to supervise the WiFi
data. The experimental results demonstrate Wi-Mose’s effec-
tiveness in accurately localizing key points and achieving
mean-per-joint position error (P-MPJPE) values of 29.7 mm
and 37.8 mm in LoS and NLoS scenarios, respectively.
The authors in [147] introduce “Winect”, which estimates
3D human poses from environment-independent free-form
activities through the ResNet-18 model. The authors in [142]
developed a correlated knowledge distillation (CKD) system
using WiFi and USRP to detect human postures and
movements while preserving privacy. CKD combined RF sig-
nals and camera images for a hybrid framework and used two
parallel approaches (image and radio signal classification) for
knowledge distillation. By leveraging correlated multimodal
information between teacher and student networks, the
CKD model achieved accurate inference without relying
on images or video data. Experiments on the SDR-based
testbed confirmed the feasibility and potential impact of this
framework including the leverage of pre-trained networks
with limited data. Similarly, the authors in [143] introduce
Winect, an innovative 3D human pose tracking system that
utilizes commodity WiFi devices to monitor 3D free-form
activities. The method estimates a 3D skeleton pose with
essential body joints to effectively track varied movements
by integrating signal separation techniques and modeling
joint motions. The system identifies moving limbs through
the 2D AoA from human body reflections, untangles these
signals for each limb, and constructs a comprehensive 3D
skeleton by capturing the inherent correlation between limb
motions and joint movements. The proposed system achieves
an overall localization error of 4.6 cm, with joint localization
errors ranging from 4.1 cm to 5.1 cm, showcasing Winect’s
ability to achieve cm-level precision in tracking diverse
activities even in challenging scenarios, including non-line-
of-sight situations. Similarly, [144], [145] propose Wi-Mesh
which utilizes WiFi signals for creating a 3D human mesh.
By capitalizing on the advancements in WiFi technology,
the proposed system visualizes human body shapes and
movements to construct a detailed 3D mesh. This is achieved
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by estimating the 2D AoA of WiFi signal reflections and
essentially enables WiFi devices to perceive their surround-
ings. The process involves isolating human body images
from the WiFi signal reflections and utilizing DL models
to transform these images into a 3D mesh representation.
Through rigorous experimentation across various indoor
settings, Wi-Mesh demonstrates encouraging performance
with an average error of 2.58 cm for vertices locations
and 2.24 cm in joint positioning. WiLink is another WiFi-
based 3D indoor HPE system that intelligently utilizes
existing WiFi links for accurate HPE [146]. By classifying
links as noise-dominated, most-effective, and redundant, the
dynamic link selection (DLS) mechanism is introduced to
adaptively choose the most-effective links by maximizing
importance and minimizing redundancy. The selected CSI
samples are fed into a DNN with residual blocks and fully
connected layers for precise HPE. The P-MPJPE results
(32.31 mm for training subjects and 40.30 mm for untrained
subjects) demonstrate WiLink’s cross-subject generalization.
Similarly, the authors in [137] introduce a novel approach
that utilizes WiFi signals and DL to estimate dense human
pose correspondence. The DNN converts WiFi CSI into
UV coordinates and is capable of achieving accurate pose
estimations for 24 human regions. The proposed method
incorporates a modality translation network and WiFi-
DEnsePose RCNN to transform CSI into UV maps. Transfer
Learning with a teacher network is used to further enhance
the model performance. The results demonstrate that the
WiFi-based model is more effective in estimating multiple
subjects than the image-based methods. However, limitations
exist, such as potential biases with rare body poses in the
training data and challenges in handling multiple subjects
in one capture. Nonetheless, the approach shows promising
applications in HPE using readily available WiFi signals.

IV. CHALLENGES AND FUTURE DIRECTION
WiFi-based human sensing has received comprehensive
attention in the existing literature and has demonstrated
impressive accomplishments. On the other hand, DL is an
effective tool that enhances the performance of WiFi sensing
but still there exist enduring challenges that need to be
addressed to fully exploit DL in future research. In this
section, we present the challenges related to DL-based WiFi
sensing and the potential strategic foresight.

A. PHYSICAL ENVIRONMENT VARIABILITY
In WiFi-based human sensing, there is a frequently under-
estimated but significant challenge related to environmental
changes such as rearranging furniture, adding obstructions,
human presence, closing doors, etc. Despite their seemingly
common nature, these environmental alterations disrupt the
consistency between the received data, like human activities,
gestures, and locations, and the established reference data is
used for sensing. For example, moving furniture or closing a
door can unexpectedly change the behavior of WiFi signals
and may cause unexpected reflections and distortion. As a

result, these changes can lead to misunderstandings about
human behavior and affect the overall performance of the
sensing system [198]. To tackle this challenge, there is
a need to create adaptive algorithms and DL techniques
that can quickly adapt to these environmental shifts to
ensure the reliability and robustness in real world dynamic
situations.

B. MULTI-USER SENSING IN MULTI-MODAL SCENARIO
Most of the literature on WiFi sensing considers single-
user scenarios. However, detecting and distinguishing the
activities of multiple users simultaneously using commodity
WiFi presents a significant challenge. This is particularly
evident when trying to differentiate users based solely on
the WiFi signal data since standard WiFi systems do not
inherently provide user identification features. This challenge
is further complicated by issues like signal interference and
the blending of signals when several users are active at
once. Additionally, it is crucial to prioritize data privacy as
handling data collected from the activities of multiple users
requires careful consideration to avoid violating their privacy
rights. To advance this technology, sophisticated algorithms
and signal processing techniques must be developed to
accurately identify individual user activities while also
preserving their privacy. This challenge remains complex
and ongoing in the field of multi-user activity sensing using
standard WiFi technology [199], [200]. On the other hand,
the existence and availability of multiple technologies with
different standards, principles, and operating frequencies is
more ambitious in the era of future IoT. Most of the literature
on sensing focuses on a single RF mode while the WiFi
signals can be jointly utilized with other RF modes such
as FMCW radar operating in higher frequency bands such
as mm wave and terahertz, or even the sub-GHz LoRa
signals [67]. It is an exciting future research direction to
utilize and train DL on multi-stream data to enable multi-user
sensing in multi-modal setups.

C. EFFICIENT DEEP LEARNING MODEL OR EDGE
INTELLIGENCE FOR WIFI-BASED SENSING
Despite its strong sides, DL algorithms used in WiFi
sensing face significant challenges. Firstly, the computational
demands of complex DL models can hinder their real-time
implementation on resource-constrained embedded devices,
limiting their practicality in diverse scenarios. Secondly,
gathering the extensive labeled datasets needed for training
can be arduous and expensive, especially in situations where
data collection is difficult. Additionally, DL algorithms
often require substantial memory and storage resources,
posing issues for devices with limited memory capacity.
Furthermore, these models may lack transparency and
interpretability, which is crucial in handling sensitive WiFi
data. Addressing these limitations is vital for the widespread
adoption of DL-based WiFi sensing systems, making the
exploration of memory-efficient techniques and optimization
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methods a compelling avenue for research and progress in
HAR [201].

D. HYBRID RF-VLC-BASED SENSING
Despite the advantage, there exist some challenges in
RF-based systems such as spectrum congestion and
interference issues. Therefore, high-frequency bands such as
mmWaves are used for WiFi-based indoor localization and
showed improved localization performance through spatial
beam signal-to-noise ratios for RSSI fingerprinting [202].
Considering the energy consumption of RF-based systems,
visible light offers several advantages such as spectrum avail-
ability, enhanced security, cost-effective implementation, and
high energy efficiency [203]. Visible light communication
(VLC) and localization have been extensively explored
in literature [204], [205], [206]. However, despite these
advantages, the visible light-based system requires LoS and
results in limited performance in NLoS scenario [207].
Therefore, the heterogeneous deployment of WiFi technology
and visible light can be a promising solution in the
indoor environment as both are capable of improving the
system performance by complementing each other [208].
Utilizing DL in such heterogeneous deployment for HAR,
fall detection, HPE, motion sensing etc., can be one of the
promising future research directions.

E. RECONFIGURABILITY AND MULTIPATH EFFECT FOR
SMART INDOOR ENVIRONMENT
The multipath effect is a significant factor in WiFi-based
human sensing that deserves close attention from researchers
in the field. Multipaths occur when WiFi signals take
multiple paths to reach a receiver influenced by reflections,
diffraction, and scattering in indoor environments. In human
sensing applications, this phenomenon presents notable
challenges. As people move in a space, they can affect
WiFi signal propagation by acting as signal reflectors. This
can lead to unpredictable variations in signal strength and
phase, potentially causing inaccuracies in detecting human
presence and activities. Additionally, multipath interference
can make it difficult to distinguish between multiple indi-
viduals nearby, affecting the system’s ability to accurately
track and identify users. To address the multipath effect
in WiFi-based human sensing, innovative signal process-
ing techniques, and advanced algorithms mitigate signal
interference and improve system reliability. To enable a
smart indoor environment, the reconfigurable intelligent
surface (RIS) is considered a promising solution to improve
the quality of the received signal by avoiding blockages,
capacity, coverage, and energy efficiency [209]. However,
RIS is mostly analyzed in the literature to improve the
performance of wireless networks while there exist some
works that consider the deployment of RIS for integrated
sensing and communication through RF networks [210].
However, as mentioned in [211], the quality of received
CSI is affected by RIS and can be considered to extend
the capability of WiFi-based sensing in the indoor setup.

Considering the joint use of DL and RIS in the smart indoor
environment, we highlight the potential future research
direction stated as follows.

1) DATASET GENERATION AND AVAILABILITY FOR
RIS-ENABLED WIFI SENSING

In the context of WiFi-based sensing, creating standardized
open datasets specifically designed for WiFi-based human
sensing can make it easier and more cost-effective for
researchers and developers to obtain labeled training data.
Based on experimental data the performance of RIS-enabled
WiFi sensing is an interesting future research direction.
Keeping in view the importance of reproducible research,
the dataset should be openly available so that new concepts
and models in the area of ML are tested and compared with
the existing ones.

2) AUTOMATED DATA LABELING IN RIS-ENABLED WIFI
SENSING

Exploring automatic labeling methods using non-RF tech-
nologies, such as video or infrared sensors, offers a novel
way to improve the efficiency and accuracy of data collection
which is crucial in overcoming a key obstacle in developing
robust WiFi sensing systems. Additionally, the concept of
sensing with information fusion, which involves combining
data from various sensors and sources, shows great potential
for enhancing the reliability and precision of WiFi-based
HAR. This approach can help address some of the challenges
related to noisy signal data. While considering sensing with
information fusion, using RIS as a sensing element is one of
the promising future aspects of WiFi-based sensing. The DL
model utilized in RIS-enabled WiFi sensing usually requires
huge labeled data for training to learn and classify different
features. However, automated data along with an efficient
DL model needs to be designed to learn the unlabelled data
to avoid the significant overhead in the data acquisition.

3) MULTIPLE RIS FOR MULTI-MODEL SENSING IN
INDOOR WIFI SENSING

Utilizing RIS in the indoor system can improve the sensing
capability of the RF system by utilizing improved CSI
through the LoS link. As demonstrated in [212] RIS can
play a vital role and its presence leads to achieving high
accuracy in the recognition of human postures while in [213]
a single RIS is proposed to enable a favorable propagation
environment for RADAR sensing in the indoor environment.
However, considering multiple path signals from multiple
RIS in a multi-modal scenario can be interesting to explore
in the future. Similarly, instead of single-user multi-user
sensing capabilities while considering the impact of passive
and active RIS needs to be analyzed. The location of RIS
plays a vital role, therefore, optimal deployment of RIS can
be explored for performance enhancement.

F. HITL BASED LEARNING MODEL FOR SENSING
A range of DL models are used for WiFi based human
activity prediction. However, achieving optimal accuracy
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remains a primary goal for these models. One promising
future research direction for WiFi-based human sensing is
to improve the learning capabilities of DL models through
Human-in-the-Loop” (HITL) methodologies. By integrating
human feedback and interaction directly into the DL models
enable them to adjust to various environments and user
behaviors dynamically [214]. This approach capitalizes on
real-time human inputs to correct and refine sensing outputs,
thereby boosting system performance in complex real-world
scenarios [215], [216]. For instance, users might validate
or correct identified activities using a mobile application,
allowing the system to learn from these interactions and
update its models accordingly. This iterative process not
only enhances model accuracy but also customizes the
sensing experience to better fit individual user patterns
and preferences. Moreover, the concept of HITL can be
applied to various challenges in WiFi-based human sensing
such as variability encountered in physical environments
by empowering systems to adapt to changing conditions
based on user feedback. In scenarios involving multiple
users and modes, HITL can play a crucial role in managing
and distinguishing signals from different users, enhancing
the system’s capability to handle complex environments.
Additionally, the integration of HITL with DL or edge
intelligence can optimize processing and reduce latency,
making real-time adjustments more feasible. HITL also
stands to improve reconfigurability and mitigate multipath
effects in smart environments by leveraging user inputs to
fine-tune system responses.

V. CONCLUSION
This study presents a comprehensive survey of recent
research on human activity sensing via WiFi, leveraging
DL algorithms. This study reveals the emerging trend of
integrating DL with RF sensing has led to substantial
progress. DL is a valuable technique to enhance the precision
and range of device-free RF sensing. Researchers have
effectively utilized DL to detect new phenomena that were
previously not observed in the literature through traditional
approaches. This survey briefly highlights the fundamental
physical layer parameters used in RF sensing including RSSI,
and CSI. Furthermore, the estimated parameters such as AoA
and DS as well as FMCW technology followed by signal
processing techniques is explored. Furthermore, we provided
a detailed review on WiFi based human activity sensing
such as motion detection, fall detection, crowd sensing,
multi-activity classification, step sensing, HPE, localization,
and gaits calculation assisted by DL techniques. Finally,
the paper highlights the current limitations in WiFi-based
sensing methods and presents the challenges that need to be
addressed in the future. Based on the identified challenges,
future research directions are suggested related to WiFi
sensing to facilitate the reader’s extending the research in
the field.
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