
Received 5 May 2024; accepted 19 May 2024. Date of publication 31 May 2024; date of current version 20 June 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3406489

Security of Topology Discovery Service in SDN:
Vulnerabilities and Countermeasures

SANAZ SOLTANI , ALI AMANLOU , MOHAMMAD SHOJAFAR (Senior Member, IEEE),
AND RAHIM TAFAZOLLI (Senior Member, IEEE)

5G/6GIC, Institute for Communication Systems, University of Surrey, GU2 7XH Guildford, U.K.

CORRESPONDING AUTHOR: MOHAMMAD SHOJAFAR (e-mail: m.shojafar@surrey.ac.uk)

This work was supported in part by the U.K. Department for Science, Innovation, and Technology under Project 5G MoDE (Mobile oRAN for highly Dense

Environments).

ABSTRACT Software-Defined Network (SDN) controller needs comprehensive visibility of the whole
network to provide effective routing and forwarding decisions in the data layer. However, the topology
discovery service in the SDN controller is vulnerable to the Topology Poisoning Attack (TPA), which
targets corrupting the controller’s view on the connected devices (e.g., switches or hosts) to the network and
inter-switch link connections. The attack could cause dramatic impacts on the network’s forwarding policy
by changing the traffic path and even opening doors for Man-in-the-Middle (MitM) and Denial of Service
(DoS) attacks. Recent studies presented sophisticated types of TPA, which could successfully bypass several
well-known defence mechanisms for SDN. However, the scientific literature lacks a comprehensive review
and survey of existing TPAs against topology discovery services and corresponding defence mechanisms.
This paper provides a thorough survey to review and analyse existing threats against topology discovery
services and a security assessment of the current countermeasures. For this aim, first, we propose a
taxonomy for TPAs and categorise the attacks based on different parameters, including the attack aim,
exploited vulnerability, location of the adversary, and communication channel. In addition, we provide a
detailed root cause analysis per attack. Second, we perform a security assessment on the state-of-the-art
security measurements that mitigate the risk of TPAs in SDN and discuss the advantages and disadvantages
of each defence concerning the detection capability. Finally, we figure out several open security issues
and outline possible future research directions to motivate security research on SDN. The rapid growth
of the SDN market and the evolution of mobile networks, including components like the RAN Intelligent
Controller (RIC) acting like SDN controller, highlight the critical need for SDN security in the future.

INDEX TERMS Software-defined network, SDN security, topology discovery service, topology poisoning
attack.

I. INTRODUCTION

THEDEVELOPMENT of Software Defined Networking
(SDN) started in 1996 by conducting several different

projects and moved forward through the Stanford Ethan
project in 2006 [1], [2]. The project aimed to create a
logically centralised controller and a flow-based network
focusing on access control security policy [3]. Organizations
and businesses adjust their network configurations to keep
up with the dynamic flow of information across different
locations on the Internet. The complex nature of traditional
networks poses challenges for data centres in implementing

new services and connecting with various organizations. This
is where SDN comes in handy.
The advent of SDN represents a revolutionary evolution

in network architecture. In the traditional networking model,
control and data forwarding functions were closely integrated
within hardware network devices such as switches, routers,
and load balancers, leading to rigid, static networks that
required manual configurations for even minor changes.
Adapting these networks to meet the dynamic demands of
modern applications was a cumbersome and time-consuming
task. SDN, on the other hand, introduces the concept of

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3410 VOLUME 5, 2024

HTTPS://ORCID.ORG/0000-0002-6724-3969
HTTPS://ORCID.ORG/0000-0001-6408-2509
HTTPS://ORCID.ORG/0000-0003-3284-5086
HTTPS://ORCID.ORG/0000-0002-6062-8639

softwarization by decoupling the control plane (i.e., network
management and decision-making) from the data plane
(i.e., switches) [3]. This decoupling empowers network
administrators to configure and manage network behaviour
through software, freeing them from the constraints of
proprietary hardware. SDN offers an unprecedented level
of flexibility and programmability, enabling networks to
adapt in real-time to the evolving demands of modern
applications and services. This transformation allows for
swift network provisioning, dynamic traffic optimization,
and rapid response to changing requirements, fundamentally
altering the way we design and manage networks.
However, SDN principles amplify the importance of

security due to its centralized control, creating a single
point of failure that must be safeguarded against attacks.
SDN’s dynamic, programmable nature introduces new attack
vectors, making it essential to protect against potential
vulnerabilities that can compromise network traffic and con-
figurations. Additionally, the automation and agility inherent
in SDN can lead to rapid network changes, necessitating
stringent security measures to prevent misconfigurations and
unauthorized access, which can disrupt network operations
and compromise data integrity. Two critical factors under-
score the importance of SDN security.
Firstly, the rapid growth of the SDN market has made

it a lucrative target for malicious actors seeking to exploit
vulnerabilities in these dynamic and programmable networks.
With the adoption of SDN, a large number of enterprises
will benefit from its advantages, and according to the report
in [4], the SDN market value was estimated at USD 24.64
billion in 2022, USD 28.37 billion in 2023, growing 15.58%
to reach USD 78.52 billion by 2030. Therefore, the security
of the SDN networks becomes crucial for many businesses
since the attack can impact many of them. Consequently,
SDN security should be seriously analyzed because the
cost of an attack can be very high. According to a recent
study by IBM, the average cost of a data breach reached a
record high of USD 4.45 million in 2023—2.3% increase
from the previous year’s cost of USD 4.35 million, as
reported in [5]. Moreover, it represents a noteworthy 15.3%
surge from the average cost of USD 3.86 million reported
in 2020, according to data from [6]. Consequently, the
imperative for a meticulous and comprehensive analysis
of SDN security protocols becomes evident, driven by
the potentially exorbitant expenses resulting from security
breaches in the SDN realm.
Secondly, the evolution of mobile networks towards

softwarization further accentuates the significance of SDN
security. Mobile networks have become an integral part of
daily life for billions of users. The latest mobile network
generations, including 5G and the highly anticipated 6G,
are designed with a strong emphasis on SDN principles [7].
This shift highlights the mobile network’s move toward
becoming more software-driven. An excellent example of
this transformation can be seen in the introduction of
the Open Radio Access Network (Open RAN). In the

context of Open RAN, the RIC plays a crucial role by
essentially acting as the SDN controller within the network’s
architecture [8]. The transformation of mobile networks
towards softwarization, coupled with the widespread reliance
of billions of users on these networks, underscores the critical
importance of SDN security. Any vulnerabilities in SDN
have the potential to significantly impact the daily activities
of these billions of users. As mobile networks increasingly
depend on software-defined principles to operate efficiently
and provide advanced services, safeguarding the integrity and
security of these networks becomes paramount to ensure the
uninterrupted and secure experiences of users worldwide.
The crucial question is whether the SDN could address

the network security and privacy concerns and provide the
required defence against various network attacks. Recent
research shows that the SDN’s programmability significantly
improves the designing and development of software-based
security defence, such as firewalls and Intrusion Detection
Systems (IDS), against various network attacks. However,
there are still many security gaps and vulnerabilities which
could dramatically impact the network availability and
performance. Numerous security threats to the SDN archi-
tecture have been outlined and explored in existing literature.
Among these, the most critical attacks are those that target
the control mechanism in SDN. If such an attack is successful
in taking control of the entire network, it can lead to the
unauthorized extraction of information or the execution of
other harmful activities [9]. The adversary could damage
or crash the SDN controller by compromising the critical
assets. Network topology information is identified as the
main asset in SDN, which needs to be protected against
the Topology Poisoning Attack (TPA) [9]. In this attack,
the adversary poisons the controller’s perception regarding
network-connected devices (e.g., switches or hosts) and
inter-switch link connections. The attack could significantly
impact the controller in traffic routing and forwarding
decisions by changing the traffic path, providing the fertile
ground to launch a Man-in-the-Middle (MitM) or Denial of
Service (DoS) attack. Moreover, it could cause malfunction-
ing of topology-dependent applications and services, such
as mobility management, load balancing, and congestion
management, which can have several consequences such as
poor Quality of Service (QoS) or Quality of Experience
(QoE) to state a few [10].
The root cause of TPA is mainly attributed to several

security vulnerabilities in the topology discovery service
in the SDN controller, managed by two critical modules,
namely, Host Tracking Service (HTS) and Link Discovery
Service (LDS). There are some essential vulnerabilities of
LDS [11], which could provide a range of attacks that have
been categorised as Link Fabrication attacks (LFA) [12].
In LFA, the adversary intends to add a fabricated link
between two switches. The adversary uses the security
vulnerabilities of the OpenFlow Discovery Protocol (OFDP)
to attack the network since the SDN controller leverages
this protocol to obtain the topology information. The second

VOLUME 5, 2024 3411

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

type of attack in TPA is categorised as an Identifier
Binding Attack (IBA), resulting from the vulnerabilities
in the HTS module. In this attack, the adversary hijacks
the network identifier of the victim host, such as location
information, IP address, or MAC address. Several defences
have been proposed in the literature to mitigate LFA and IBA
risks [12], [13], [14]. However, recent studies proposed the
more sophisticated LFA and IBA, which could successfully
bypass the mentioned defence systems.
The security of the SDN environment is essential for most

businesses since the attacks could severely impact many of
them and might cause revenue loss and reputation damage for
the companies. Consequently, TPA and its root cause need
to be seriously analysed because the cost of an attack can be
very high [4]. Motivated by the mentioned considerations,
we study a detailed analysis of all TPA threats against the
SDN controller and the corresponding detection techniques
used in the existing defence system.
Survey Organization: The structure of this study is illus-

trated in Fig. 1. Initially, in Section II, we discuss the related
survey papers that studied the security aspect of topology dis-
covery service and highlight our contributions. In Section III,
we present a description of security in SDN architecture
and provide an overview of the topology discovery service.
The state-of-the-art Link Fabrication Attack and Identifier
Binding Attacks are discussed and categorised in Sections V
and VI, respectively. In Section VIII, the paper delves into
the discussion of secured discovery protocols, emphasizing
their role and significance in the context of the research. In
Section IX, the paper explores real-world scenarios of TPAs
in the industry, providing insights into practical implications
and challenges. Challenges, open issues, and future research
directions are addressed in Section X of the paper. Finally,
we present the conclusion and future works in Section XI.

II. RELATED HIGH-LEVEL ARTICLES AND THE SCOPE
OF THIS SURVEY
In this section, we embark on a thorough examination of
existing surveys relevant to our paper’s topic, aiming to provide
readers with a comprehensive understanding of the broader
literature landscape. We analyze the topics covered in these
studies and critically assess their limitations. Transitioning
from this review, we outline the scope of our own survey,
detailing its objectives, methodologies, and target audience.
Finally, we highlight the unique insights our survey offers,
emphasizing its significant impact on scholarly discourse and
its potential to advance understanding in the field.

A. SURVEYS ON SDN SECURITY
This is the first study that provides a comprehensive technical
security analysis of existing threats and countermeasures
regarding topology discovery service in SDN to the best
of our knowledge. The survey in [9] provides a partial
review of a few existing threats against topology discovery
services, including some related security countermeasures in
the literature. However, our survey paper analyses all existing

FIGURE 1. Structure of the paper.

topology poisoning attacks and current defences from various
security aspects and provides a detailed root cause analysis
per attack. Table 1 provides a comparison of our survey with
the surveys in [15], [9], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25] regarding covered topics.

3412 VOLUME 5, 2024

TABLE 1. Comparison of existing survey papers about SDN security. Notations: �: detailed discussion. ��: partial discussion (i.e., at least one specialized section is presented
but lacks a thorough examination). �: not supported.

InTable 1,weutilize a notation system to categorize the level
of discussion corresponding to the subjects presented in our
table. Specifically, we employ the following notation scheme:
Solid Circle indicates a detailed discussion of the subject,
offering thorough examination and analysis of the subject
presented. Part Solid Circle denotes a partial discussion, where
at least one specialized section in the paper is presented, but
the examination may lack full depth or comprehensiveness.
Whole Circle signifies that the subject is not supported and
does not have any accompanying discussion or analysis. A
quickglance atTable 1 reveals that our survey comprehensively
covers all topics, as all circles are solid.
Kim et al.’s proposed study [15] aims to explore the

security implications of SDN architecture. First, they provide
an overview of SDN architecture and SDN security. The paper
discusses the overview of topology discovery service in SDN,
including host tracking and link discovery services, but the
coverage is incomplete. They focus on how attackers can
infiltrate different layers of SDN and the defensive strategies
used to counter such attacks. To achieve this goal, they
review reputable literature from conferences and journals.
Their analysis results in the development of a classification for
SDN attacks, considering their direction of infiltration, root
causes, affected components, and common attack patterns.
Furthermore, they assess existing defence mechanisms

suggested by researchers to mitigate these attacks. Through
their meticulous examination of both attacks and defences,
they highlight the vulnerabilities inherent in SDN architec-
ture and pinpoint areas requiring further scrutiny from the
security research community in future investigations [15].
The paper covers various aspects of SDN security; however,
its breadth of coverage appears to have led to a lack of
focus on specific areas such as topology discovery service
and its security implications. By attempting to address all
facets of SDN security, the paper may have sacrificed depth
in certain areas. Consequently, the discussion on topology
discovery service and its security is relatively brief and lacks
the necessary attention to detail. This broad approach to SDN
security coverage may have inadvertently detracted from a
more thorough examination of individual components like
topology discovery service.
The study proposed by Bhuiyan et al. [16] provides

an overview of SDN architecture, SDN security, and

Topology Discovery Service. It partially discusses host
tracking and link discovery services. The paper delves
into a thorough examination of attacks on SDN control
planes, categorizing them and structuring the classification
based on distinct attack surfaces: the Northbound Interface
(NBI), Southbound Interface (SBI), SDN Controller, and
interconnections between SDN controllers in a multi-
controller setting. This systematic classification furnishes
a well-organized comprehension of diverse attack vectors
prevalent in SDN environments. Furthermore, the paper
introduces a taxonomical representation of the identified
attacks, establishing a systematic framework that aids in
the analysis and understanding of their characteristics.
This taxonomical approach provides a lucid and orga-
nized perspective on the attacks, facilitating researchers
and practitioners in discerning relationships between dif-
ferent attack types. In addition to attack classification, the
research extends to detailed countermeasure taxonomies
aligned with the attack taxonomy. The paper delineates
corresponding countermeasures for each attack category,
offering practical guidance for implementing effective secu-
rity measures in SDN environments. These countermeasure
taxonomies serve as invaluable tools for securing SDN
systems against potential threats. The paper concludes with a
comprehensive research gap analysis, pinpointing limitations
and research needs in SDN security. By shedding light
on these gaps, the research contributes valuable insights
for future researchers, enabling them to identify potential
research directions and address current shortcomings in the
field [16].
The proposed survey paper by Rahouti et al. [17] con-

tributes by exploring SDN architecture layers, focusing on
operations and functionalities. It underscores the importance
of understanding security threats and using real-world use
cases to motivate awareness. The paper provides a brief
and insufficient overview of Topology Discovery Service in
SDN, as well as host tracking and link discovery services.
The study analyzes recent SDN-enabled applications in
emerging areas like the Internet of Things (IoT), 5G, and
Blockchain, emphasizing security enhancements. It provides
an up-to-date overview of security challenges, reviews
existing solutions categorized by SDN planes, and extracts
practical implications. The paper then discusses future

VOLUME 5, 2024 3413

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

research directions and open challenges, offering a forward-
looking perspective for SDN-enabled systems’ resilience and
security [17].

Jimenez et al. [18] examined the SDN architecture and
primary security concerns in it and then suggested ways
to detect or mitigate them. Subsequently, they delved
into the current security features and methods utilized in
addressing these issues, pinpointing unresolved matters that
could serve as foundations for future SDN security research
initiatives [18]. Al-Heety et al. [19] proposed an in-depth
examination of previous studies, categorizing them based
on wireless communication, particularly in the context of
Vehicular Ad-hoc Network (VANET). The study begins
by providing a concise overview of the VANET structure,
SDN controller, and its security, outlining their layers and
infrastructure details. Following that, it delves into SDN-
VANET applications in various wireless communication
realms, including the IoT and VANET. The focus is on
scrutinizing and comparing SDN-VANET works across
multiple parameters. The paper not only analyzes open issues
and research directions encountered during the integration
of VANET with SDN but also sheds light on current
and emerging technologies with real-world applications in
vehicular networks. By addressing challenges in VANET
infrastructure, the survey serves as a catalyst for enhancing
the resilience of future SDN-VANET architectures, specif-
ically in areas like routing protocol, latency, connectivity,
and security [19]. However, it’s important to note that the
paper falls short of addressing the security aspects of SDN
on its own, let alone delving into the security of the topology
discovery service. Additionally, it should be highlighted that
the survey lacks up-to-date information, which could impact
its comprehensiveness in capturing the latest advancements
and challenges in the field.
Marin et al. [20] systematically analyzed the security

defences against topology attacks in current practices. Their
investigation revealed six vulnerabilities in TopoGuard,
TopoGuard+, Stealthy Probing-Based Verification (SPV),
and SecureBinder. The researchers not only proposed and
executed attacks against TopoGuard/TopoGuard+ but also
presented compelling evidence of vulnerabilities in SPV and
SecureBinder. Additionally, they identified significant secu-
rity flaws in the topology services of Floodlight, a prominent
SDN controller. Following responsible disclosure principles,
the team notified Floodlight about the vulnerabilities they
discovered. The researchers went further to introduce and
practically demonstrate two innovative attacks—Topology
Freezing and Reverse Loop—that could seriously impair
the controller’s network perspective. Recognizing that fully
eliminating these attacks would necessitate major changes in
the Floodlight controller, they suggested practical measures
to mitigate such threats. Drawing from their findings, the
study discusses potential ways to enhance existing topology
countermeasures for better defence against link fabrication
and host location hijacking attacks [20]. The paper, however,
is not an up-to-date survey as it does not delve into newly

discovered vulnerabilities or discuss recently implemented
countermeasures. The paper fails to comprehensively discuss
SDN architecture and the host tracking and link discovery
services are entirely omitted. Notably, there is no focus
on machine learning in their analysis. Additionally, the
information provided in the paper is constrained by a limited
bibliography, potentially limiting the breadth and depth of
the coverage of relevant research in the field.
The proposed paper by Abdou et al. [21] outlines five

control functions crucial for the effective operation of a
realistic production network in delivering essential network
services. Explores potential threats and defence mechanisms
specific to these functions within Layer 2 networks, Layer
3 networks, and SDNs. Introduces a fresh evaluation
framework for an unbiased comparison of security in both
network paradigms, utilizing two threat models to specify
the attacker’s position within the network. It is important
to note that this paper solely concentrates on control plane
security and intentionally omits the discussion of TPAs and
the security of the topology discovery service. They also
present a summary of SDN architecture and its security
aspects. The document examines the overview of topology
discovery service within SDN, encompassing host tracking
and link discovery services, but the coverage is extremely
incomplete [21].

The proposed comprehensive review by Farris et al. [22]
focuses on analyzing security mechanisms based on SDN and
Network Functions Virtualization (NFV) for enhancing the
protection of IoT systems. It begins with a systematic explo-
ration of IoT security threats and the additional requirements
in IoT environments. The authors briefly cover traditional
security approaches for IoT, emphasizing authentication,
encryption, access control, and detection solutions. The
review then delves into an in-depth analysis of SDN
and NFV architectures and security mechanisms, providing
background information on these network paradigms and
their integration into IoT systems. Notably, this survey is the
first in the literature to systematically investigate the joint
use of SDN- and NFV-based security mechanisms in the
diverse landscape of IoT systems. Key security features are
identified, offering a comprehensive overview of SDN/NFV-
based security solutions and their application scenarios
in cloud, core, and access IoT networks. The analysis
includes a comparison with conventional security solutions,
highlighting advantages and complementarity in various
IoT environments and drawing lessons from experiences
gained [22].
This survey proposed by Dargahi et al. [23] comprises

an examination of recently introduced frameworks con-
cerning the stateful SDN data plane. First, an overview
of SDN architecture and its security is discussed. The
proposed paper includes an assessment of the vulnerabilities
present in existing stateful SDN data plane proposals. The
survey further provides a tangible illustration of potential
attacks on applications utilizing stateful SDN data plane
switches. The focus is on case studies extracted from

3414 VOLUME 5, 2024

diverse literature sources, strategically chosen to underscore
distinct vulnerabilities. Additionally, the survey discusses
the security implications inherited from traditional SDN
and the enhancements in security introduced by the stateful
SDN data plane. It engages in a discourse on potential
defence strategies and offers recommendations for designing
applications resilient to the aforementioned vulnerabilities.
The survey concludes with insights into possible future
research directions [23].
The survey paper proposed by Khan et al. [9] delves

into a comprehensive exploration of SDN, shedding light on
its layered architecture and the various threats it faces. A
significant focus is placed on topology discovery, empha-
sizing its crucial role in both traditional networks and SDN
environments. The paper goes on to establish a systematic
thematic taxonomy, categorizing topology discovery into
distinct groups, encompassing objectives, controller plat-
forms, dependent services, discovery entities, and controller
services. Furthermore, the survey discusses the landscape of
topology discovery threats, presenting a classification that
elucidates state-of-the-art security solutions. This includes
insights into attack entities, controller vulnerabilities, attack
types, and the occurrence of threats. The paper concludes
by paving the way for future research directions in the
realm of topology discovery within SDN, offering insights
into potential areas of exploration and recommendations
for plausible solutions [9]. However, it is essential to note
a limitation in the surveyed paper, published in 2016,
as it may not encompass the latest developments in the
field. Given the dynamic nature of technology and the
rapid evolution of SDN, there is a possibility that more
recent research and advancements in topology discovery
have emerged since the paper’s publication. Moreover, their
proposed paper does not include recent topology discovery
attacks and an updated taxonomy. Following the proposed
publication by Khan et al. [9], numerous countermeasures,
primarily leveraging machine learning, have been proposed.
It’s important to note that these advancements are not covered
in the surveyed paper, indicating a potential gap in addressing
the evolving landscape of SDN security.
In the article proposed by Scott-Hayward and col-

leagues [24], an examination of SDN and its security is
conducted, offering insights into advancements from both the
research community and industry. The article delves into the
challenges associated with safeguarding the network against
persistent attackers and outlines the need for a comprehensive
security architecture in the context of SDN. Furthermore,
the authors highlight future research directions crucial for
advancing network security in SDN [24]. However, it’s
important to highlight that the article does not cover TPAs
and the security of the topology discovery service. Our
survey addresses this gap for a more inclusive examination
of SDN security.
Ahmad et al. [25] aspire to furnish a thorough depiction

of SDN security by elucidating security issues and remedies
pertaining to each distinct SDN plane—the application plane,

control plane, and data plane. First, The paper examines the
SDN architecture and its security aspects. Their work encom-
passes the delineation of network-wide security solutions
and security development platforms within the SDN frame-
work. Furthermore, they categorize security solutions in
alignment with the International Telecommunication Union’s
Telecommunication (ITU-T) security recommendations and
provide a succinct overview of the costs associated with
diverse security architectures [25]. However, it is worth
noting that the paper offers a deficient overview of the
Topology Discovery Service in SDN, alongside host tracking
and link discovery services. Despite providing valuable
insights into network-wide security solutions and security
development platforms, the review lacks coverage of TPA
and the specific security considerations tied to the topology
discovery service.
In our thorough examination of related review and survey

papers, a noticeable gap emerged as none of them specif-
ically addressed the crucial topic of Security of Topology
Discovery Service in SDN, particularly in relation to
Topology Poisoning attacks. Moreover, a comprehensive and
up-to-date review of this critical aspect was conspicuously
absent from the existing literature. Recognizing this void, we
undertook the present survey to fill this gap and contribute to
the understanding and awareness of security challenges in the
realm of Topology Discovery Service within the context of
SDN. Our survey aims to shed light on potential threats and
vulnerabilities, providing a timely and thorough exploration
of this essential but often overlooked facet of SDN security.

B. OUR SCOPE AND CONTRIBUTIONS
In this paper, we provide an extensive view of the topology
discovery service in SDN, focusing on the security aspects.
We intend to deliver the following contributions in this paper,

• Our survey provides a comprehensive exploration of
the security landscape surrounding Topology Discovery
Services in SDN. We trace the evolution of these
services and analyze their vulnerabilities, with a par-
ticular emphasis on the emerging threat of topology
poisoning attacks. This dual perspective not only offers
a detailed tutorial on the subject but also paves the
way for a deeper understanding of the path towards
securing Topology Discovery Services in future SDN
environments.

• We offer a comprehensive taxonomy, systematically
categorizing TPAs. This classification considers various
parameters such as the attack objective, target entity
susceptibility, adversary’s location, and the communi-
cation channel type.

• Our survey thoroughly examines TPAs, assessing their
security implications. We also analyze state-of-the-art
measures against TPAs in SDN, discussing challenges,
and effective countermeasures, and evaluating detection
capabilities for various types of attacks.

• Conducting a thorough review of current literature and
ongoing research endeavours, our survey consolidates

VOLUME 5, 2024 3415

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

the existing knowledge base on the security aspects of
Topology Discovery Services in SDN, its vulnerabilities
and its countermeasures.

• Explored the practical implications of TPAs by
analyzing their manifestations in real-world scenar-
ios, including Software-Defined Industrial Networks,
Vehicular Networks, and Open RAN 5G environments,
providing valuable insights into the specific challenges
posed in these contexts.

• In addition to addressing current challenges, our paper
outlines open issues and suggests future research direc-
tions. This includes exploring the secure integration of
Topology Discovery Services with emerging technolo-
gies, emphasizing the role of machine learning and
Open RAN in the 6G SDN domain.

C. METHODOLOGICAL APPROACH
In this section, we elucidate our meticulous methodology for
selecting articles and conducting the survey. We commence
by detailing our comprehensive search strategy, leveraging
prominent online databases and crafting effective search
strings to ensure a thorough exploration of relevant literature.

1) SEARCH STRATEGY

Crafting an effective search strategy is crucial for conducting
a thorough survey. In our pursuit of vital research arti-
cles, we leveraged prominent online databases and digital
libraries such as IEEE Xplore, Google Scholar, ACM
Digital Library, Springer Link, Science Direct, Frontiers,
Wiley and MDPI. To streamline our search, we devised
multiple search strings and keywords. These included
terms like Topology Discovery Service, Software-Defined
Network, SDN, Security, Topology Poisoning Attack, TPA,
Link Fabrication Attack, and Identifier Binding Attack.
Furthermore, we employed Boolean logical operators to
enhance the precision and accuracy of our search results.
Below are some of the keywords and search strings utilized
in this survey.

2) INCLUSION AND EXCLUSION CRITERIA

The criteria for selecting research papers are clearly outlined
as follows,
1) Papers must be written and presented in English.
2) Focus should be on the SDN topology discovery

service and its security.
3) Papers should be published between 2011 and 2024.
4) Publications must appear in academic journals, con-

ference proceedings or letters.
Additionally, the following exclusion criteria were estab-

lished to refine the selection process.
1) Duplicate papers were eliminated by searching across

various online databases.
2) Papers with irrelevant titles were disregarded.
3) Papers lacking clear information were excluded.
4) Short papers containing fewer than 3 pages were not

considered.

5) Papers from unknown journals or conferences were
omitted.

6) Any papers not directly relevant to our topic were also
excluded.

3) QUALITY ASSESSMENT RULES

The final step in compiling the list of selected research
articles involves the application of Quality Assessment Rules
(QARs). These rules are utilized to assess the quality of
the chosen research articles. A set of 10 QARs has been
proposed, with each rule carrying a score out of 10. The
scoring criteria are as follows: a full answer earns 1 point,
an above-average response earns 0.75 points, an average
response earns 0.5 points, and a completely unanswered
question receives 0 points. The total score for each article is
determined by adding up the scores for all 10 QARs. Articles
scoring 7 or lower are excluded from the analysis. The
quality assessment rules employed to evaluate the articles
are as follows,
1) Is the paper well-organized?
2) Are the research article’s objectives clearly outlined?
3) Does the paper thoroughly explain the methodology

used for countermeasures?
4) Are the various sections of the article coherent?
5) Does the paper include relevant background

information?
6) Are the datasets utilized for training and testing clearly

identified?
7) Does the paper include experiments conducted on

diverse datasets?
8) Are the experiments conducted in a reasonable

manner?
9) Does the paper comprehensively identify and report

the results of experiments?
10) Ultimately, does the paper contribute value to the

research community?

4) DATA EXTRACTION

Our survey involved a meticulous data retrieval process
aimed at uncovering and assimilating insights from scholarly
articles pertaining to the security aspects of SDN topology
discovery services. Each chosen paper underwent rigorous
scrutiny to ensure alignment with our predefined inclu-
sion and exclusion criteria. Subsequently, we conducted a
thorough examination to extract relevant data essential for
this survey. Our focus encompassed various facets including
research objectives, study contexts, proposed attack vectors,
countermeasure architectures, algorithms employed, method-
ologies adopted, datasets utilized, and study outcomes. In the
concluding phase, we meticulously synthesized and analyzed
the amassed research data, furnishing a comprehensive
overview of existing literature and delineating potential
pathways for future research endeavours.
Fig. 2 illustrates the overview of our study selection

process. Initially, we conducted a systematic search across
various digital libraries and databases, yielding a total

3416 VOLUME 5, 2024

FIGURE 2. Methodological approach for article selection and survey conduct.

of 4557 research papers. Through a meticulous procedure
involving stringent inclusion and exclusion criteria, rigorous
quality assessments, and the elimination of duplicate papers,
we identified research papers that met our standards for
inclusion. These selected papers constitute a valuable and
diverse body of literature, offering a wide array of perspec-
tives, methodologies, and findings pertinent to our research
topic. The thorough scrutiny applied during the selection
process ensures that these selected papers possess the requi-
site quality and relevance to make substantial contributions
to our survey, thereby enhancing the depth and breadth of
our analysis. Moreover, all of these selected papers, sourced
from high-impact digital libraries, are highly reliable due
to their substantial number of citations and the esteemed
reputation of their authors within the research community.
Moreover, it is essential to note that we have incorporated
several technical specifications sourced from both the O-
RAN Alliance and 3GPP to delineate pivotal concepts within
our research framework. These specifications have been
rigorously verified and hold significant prominence in our
investigation.

III. SOFTWARE DEFINED NETWORKS
The advent of the SDN paradigm changed the network
methodology from node management to network man-
agement, simplifying the legacy network complexity and
reducing Capex/Opex costs in FCAPS (fault manage-
ment, configuration management, accounting management,
performance management, and security management) [26].
In this section, we delve into the intricate workings of SDN
and explore its various aspects. First, we thoroughly examine
SDN architecture and its underlying principles, delineating
its layers and operational mechanisms in Section III-A.
Following this, we shift our focus to recent advancements
and practical applications of SDN across diverse domains
in Section III-B, showcasing its transformative potential

TABLE 2. Summary of main abbreviations.

in network management and operations. Lastly, we shed
light on the critical role of the OpenFlow protocol in
Section III-C, providing an overview of its functionali-
ties and the communication protocols between the SDN
controller and OpenFlow-compliant switches. For conve-
nience, Table 2 refers to all abbreviations used in this
paper.

VOLUME 5, 2024 3417

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

FIGURE 3. Software Defined Network architecture.

A. SDN ARCHITECTURE
SDN architecture presents a promising solution to address
the limitations of traditional IP network architecture in terms
of control, scalability, and management. The fundamental
concept of SDN involves separating the control plane from
the data plane. In this approach, the control logic is extracted
from network hardware and centralized into a software-
based entity known as the SDN controller. This stands
in contrast to conventional IP networks, where routers
handle both packet forwarding (data plane) and execute
routing protocols to discover network paths and make routing
decisions (control plane). Illustrated in Fig. 3 is an overview
of the SDN architecture, consisting of three primary
layers.

• Data plane. The data plane, or infrastructure layer,
comprises a network of interconnected forwarding
elements, commonly referred to as SDN switches. These
switches can be either physical hardware devices or
software-based virtual switches, like Open vSwitch [27].
Unlike traditional IP networks, SDN switches lack the
capability to analyze incoming packets autonomously
and instead forward all packets to the control plane.
This simplification enables SDN switches to be more
straightforward and cost-effective compared to tradi-
tional routers, resulting in significant simplification of
network configuration and management.

• Control plane. The control layer encompasses a logi-
cally centralized, software-based SDN controller. This
controller is tasked with overseeing and setting up
the individual SDN switches by implementing the
necessary forwarding rules. A primary responsibility of
the controller is to establish and sustain a comprehensive
overview of the network. Topology discovery, which
is the main focus of this paper, is a crucial function
offered by the SDN control layer.

• Application plane. The application layer comprises a
collection of network management applications where
high-level network policy decisions are formulated and

executed. Through the installation of specific rules,
a controller application can instruct SDN switches
to carry out various functions, including routing,
switching, firewalling, network address translation, load
balancing, and more.

The connection between the control layer and the infras-
tructure layer, which is utilized for overseeing and setting
up the individual SDN switches, is commonly known as
South Bound Interfaces (SBI). The SDN controller employs
different SBIs through management and control protocols
like OpenFlow [28], NETCONF [29], and OpFlex [30].
OpenFlow stands out as the predominant standard for
southbound interfaces, extensively utilized and integrated
into SDN environments. Section III-C will delve further
into OpenFlow, offering relevant details for our subsequent
discussions in the paper.
SDN also empowers network application developers to

access a simplified representation of data plane hardware
and dynamically program the network as needed via stan-
dard Northbound Interfaces (NBI) like REST [31] and
OpenStack Neutron [32]. Orchestration software and network
applications, encompassing tasks such as routing, load bal-
ancing, security, and third-party applications, obtain essential
services from the controller using NBI [33]. This capability
has led to the widespread reference of the controller layer
as the Network Operation System (NOS) [34].

B. ADVANCEMENTS AND APPLICATIONS OF SDN
SDN significantly enhances network programmability, fos-
tering a culture of rapid innovation. Through an application
operating on the controller, new network services, appli-
cations, and policies can be easily implemented. This
application governs the data plane’s forwarding ele-
ments via appropriate abstractions and a well-defined
Northbound Interface (NBI) and Southbound Interface
(SBI). Furthermore, SDN’s ability to facilitate network
virtualization is crucial in various deployment scenarios,
especially in data centre applications, achieved through tools
like FlowVisor [35] or OpenVirteX [36]. Simultaneously,
Mininet [37] has gained prominence as a lightweight
virtualization-based simulator for emulating large-scale
SDNs. These advantages, among others, have spurred
significant industry interest, leading to a surge in SDN-
enabled switches and devices offered by both established
and emerging vendors, alongside a variety of SDN controller
platforms.
The transition from traditional infrastructure to SDN

is cost-effective and technically feasible. Consequently,
hybrid SDN has emerged as a preferred transitional solu-
tion for many organizations, blending the strengths of
traditional networking and SDN technology in a balanced
compromise [38]. Hybrid SDN integrates centralized and
decentralized approaches to configure, control, and manage
network behaviour. Unlike traditional switches that use
distributed algorithms such as Interior Gateway Protocol
(IGP) for traffic routing management, an SDN controller

3418 VOLUME 5, 2024

routes traffic based on a global perspective. This integration
results in a hybrid SDN architecture where some traffic
follows conventional routes while others are controlled by
the SDN controller. Google’s B4 project [39] exemplifies
this approach, where an SDN application is integrated with a
routing protocol to enable interaction between SDN switches
and traditional routing protocols like OSPF.

C. OPENFLOW PROTOCOL
OpenFlow [28] is an open standard protocol for controller-to-
switch communication, designed and developed by the Open
Networking Foundation (ONF) [40]. The SDN controller
uses the OpenFlow channel to pass the required instructions
and messages toward the OpenFlow switch. To provide
a secured communication channel, OpenFlow offers the
Transport Layer Security (TLS) [41] protocol to encrypt
all transmitted messages. OpenFlow permits a controller to
retrieve and adjust the forwarding rules of SDN switches,
granting control over the network’s traffic flow.

1) OPENFLOW SDN SWITCH

An OpenFlow switch needs to support a flow-table pipeline
in which every switch contains a chain of flow tables, starting
at zero. The switch installs received instructions as flow
table entries in the flow tables. Every entry in the flow table
includes three elements: rule, action, and statistics.
An OpenFlow switch must adhere to the fundamental

match-action model. This means that every incoming packet
is compared against a series of rules, and the action or
sequence of actions linked with the matching rule is carried
out. The matching process operates on a flow basis and is
relatively detailed. OpenFlow supports various match fields,
including the ingress port of the switch, different packet
header attributes like MAC source and destination addresses,
IP source and destination addresses, as well as UDP/TCP
source and destination port numbers, among others.
One of the primary functions of an OpenFlow switch is

to direct a packet to a specific port on the switch or to
discard the packet [42]. These forwarding rules not only
include physical ports but also encompass virtual ports such
as ALL (which sends the packet out through all physical
ports), CONTROLLER (sending it to the SDN controller
via an OpenFlow Packet-In message), and FLOOD (similar
to ALL but excluding the port where the packet entered).
When a switch receives data packets through any of its ports
that it cannot forward based on existing rules, it can send
them to the controller. This is achieved using an OpenFlow
Packet-In message (OFPT-PACKET-IN). For instance, this
mechanism is employed when a switch encounters a packet
that doesn’t match any forwarding rule. In such instances,
the default action is for the switch to send the packet to
the controller encapsulated within an OFPT-PACKET-IN
message.
After receiving the packet, the controller can determine

and implement the appropriate forwarding rules for the new
flow. Alternatively, sending packets to the controller can be

managed through specific rules established on the switch
itself. For instance, in the present SDN topology discovery
process, each switch comes with a pre-configured rule indi-
cating that all topology discovery packets (identified by their
EtherType 0x88cc) should be directed to the CONTROLLER
port. In addition to the Packet-In function, OpenFlow
also supports a Packet-Out message (OFPT-PACKET-OUT).
With this message, the controller can dispatch a data packet
to a switch along with instructions on how to handle it,
presented as a list of actions. For instance, the controller
might instruct the switch to forward the packet through
a designated port. Both OpenFlow Packet-In and Packet-
Out messages play crucial roles in the topology discovery
mechanisms elaborated in the subsequent sections.
Additionally, the SDN controller uses the OpenFlow chan-

nel to collect required network information from connected
switches. To query the switch capabilities and active port
identities, it uses the OFPT-FEATURES-REPLY message.
Traffic statistic measurements such as the total number
of sent or received packets can be reported using the
OFPT-STATS-REPLY message [42].

2) PACKET COMMUNICATION PROCESS

The OpenFlow switch examines the header fields of incom-
ing packets and checks them against entries in the flow table.
If there’s a match, the packet is forwarded as instructed.
Otherwise, it’s forwarded based on a default entry in the
table-miss. Typically, unmatched packets are sent to the con-
troller for further processing through OFPT-PACKET-IN
messages. Each application on the controller is respon-
sible for analyzing these messages, extracting pertinent
information, and making appropriate decisions.
In the network, there are two kinds of OFPT-PACKET-IN

messages depending on where they come from. One type
occurs when the switch initiates a forwarding action by
sending an OFPT-PACKET-IN message containing a data
frame to the controller. The other type involves the con-
troller triggering a message to the switch, resulting in an
OFPT-PACKET-IN message containing control packets.
After receiving OFPT-PACKET-IN messages, the con-

troller delegates them to the relevant applications for
handling. For link discovery within the network, the link
discovery application initiates the process by sending an
OFPT-PACKET-OUT message containing an LLDP packet
to the switch. Subsequently, it retrieves specific fields (like
DataPath ID and Inport) from the OFPT-PACKET-IN
messages sent by the switch to establish and maintain
links. Meanwhile, the topology application utilizes this link
information to create a comprehensive network topology
view. Additionally, the forwarding application monitors
OFPT-PACKET-IN messages triggered by data packets. It
extracts essential fields (such as source and destination IP
addresses) from these messages to determine the route for the
data flow. It then issues either an OFPT-FLOW-MOD mes-
sage (representing a flow rule) or an OFPT-PACKET-OUT

VOLUME 5, 2024 3419

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

message (representing a flood instruction) to facilitate packet
forwarding accordingly.

IV. TOPOLOGY DISCOVERY SERVICE
Topology discovery service in network environments refers
to the technology aimed at automatically identifying the
components of a network, such as routers and switches, and
establishing their relationships. This process is crucial for
effective network management, providing insights into the
network’s structure and connectivity. In the specific context
of SDN, the controller needs to maintain a consistent network
topology for the infrastructure layer to understand all
connected hosts, switches, and inter-link switch connections
to effectively manage the network.
In this section, we delve into the critical aspect of topology

discovery service within SDN and its significance in network
management and security. First, we highlight the paramount
importance of topology discovery in maintaining network
integrity and optimizing traffic flow. This foundational
understanding is further explored in Section IV-A, where
we underscore the fundamental role of topology discovery.
Following this, in Section IV-B, we trace the evolution
of topology discovery methods from traditional networks
to SDN environments, demonstrating how these methods
have adapted to meet the unique challenges posed by
SDN architectures. Sections IV-C–IV-E focus on switch,
host, and link discovery processes, respectively, essential for
effective network management. Section IV-F addresses the
dynamic nature of network topology in SDN environments
and the mechanisms used to update topology information in
real-time. Lastly, Section IV-G discusses security considera-
tions associated with topology discovery, ensuring network
integrity and resilience against potential threats.

A. IMPORTANCE OF TOPOLOGY DISCOVERY
Many topology-based applications and services within SDN,
including packet routing, mobility management, load balanc-
ing, and congestion management, depend on the controller’s
access to accurate network topology information. Therefore,
in SDN environments, a highly accurate and efficient
topology discovery service becomes essential. It serves as the
foundation for optimizing network configuration, identifying
bottlenecks, pinpointing faults, and uncovering potential
risks. Any inaccuracies or outdated information regarding
network topology within the SDN Controller can directly
impact the services and applications dependent on SDN.
Therefore, the topology discovery service within the SDN
Controller holds significant importance.

B. TOPOLOGY DISCOVERY IN TRADITIONAL
NETWORKS AND ITS ADAPTATION IN SDN
Topology discovery service in SDN leverages the founda-
tional principles of general network topology discovery while
introducing enhancements to accommodate the dynamic
and programmable nature of SDN environments. Thus, we
explore the main methods that exist for discovering and

understanding network topologies, which can be broadly
classified as discovery using Internet Control Message
Protocol (ICMP), Address Resolution Protocol (ARP),
Routing Information Protocol (RIP), Open Shortest Path
First (OSPF), Link-Layer method based on Simple Network
Management Protocol (SNMP) and Discovery using IP-
Layer method based on SNMP [43].

ICMP convey crucial information such as network and
router availability, and terminal reachability status, among
others, providing insights into the network’s current condi-
tion. Leveraging these attributes, ICMP proves valuable in
topology discovery. ARP is vital in networking, translating
IP addresses to physical addresses for message transmission.
Each network entity maintains an ARP cache. Consequently,
by referencing the ARP table of any switch or router,
all entities within the network can be identified. The RIP
exchange the route information between network nodes.
The RIP employs hop count as a routing metric. We can
deduce the connections between routers through the hop
counts. Thus, RIP can be used for topology discovery. OSPF
gathers link state information from available routers and
constructs a topology map of the network.OSPF detects
changes in the topology, such as link failures, very quickly
and converges on a new loop-free routing structure within
seconds. The topology of the network can be generated by
collecting the OSPF messages. The Link Layer Discovery
Protocol (LLDP) based on SNMP get the transmit table of
switches through SNMP protocol. The LLDP is introduced
through the IEEE802.lAB [44] standard developed by IEEE
in 2002. The transmit table is a Management Information
Base (MIB) table mapping the ports of switches to the
physical addresses of the entities that linked to the ports and
can be used in topology discovery. Using SNMP for IP-layer
discovery involves gathering data from the IPRouterTable,
which contains details like destination IP addresses, router
equipment, and the IP address of the next hop. This
information allows us to construct network topology.
The SDN topology discovery service improves above tra-

ditional discovery techniques to better suit the dynamic and
flexible characteristics of SDN environments. One notable
improvement involves the integration of the OpenFlow
Discovery Protocol (OFDP), which employs the LLDP
method for efficient link discovery within SDN networks.
SDN achieves network topology discovery through three

primary methods: Switch Discovery Service, HTS (Host
Tracking Service) and LDS (Link Discovery Service).

C. SWITCH DISCOVERY SERVICE
An OpenFlow-based switch is assumed to be configured
with the IP address and TCP port number of its controller.
On startup, a switch will contact its controller on the
corresponding IP address and TCP port, and establish a
TLS of the session to secure the connection. Consequently,
to enter the network, the Switch initiates a TCP session
through a three-way handshake (SYN, SYN/ACK, ACK) to
kickstart communication with the controller. Following this,

3420 VOLUME 5, 2024

FIGURE 4. Switch Discovery Service.

the controller dispatches an OFPT-Features-Request
message to the switch, soliciting its current setup such
as the MAC address and network interfaces. Subsequently,
the switch responds with an OFPT-Features-Reply
message containing the requested details. The controller
then stores and utilizes this data for subsequent network
management activities, including re-processing of topology
discovery. Fig. 4 illustrates the switch discovery process in
SDN.

D. HOST TRACKING SERVICE
A network node is specified based on various identifiers
which are related to the different network layers. The
identifiers address traffic flow from a source to destination(s).
They also impose network and security policies, such as
load balancing rules and an Access Control List (ACL). In
SDN, key identifiers are specified in network layers. Data
Path Identifier (DPID) and port number are defined for
each switch in the physical layer which is also referred to
as network location. Media Access Control (MAC) address
and Internet Protocol (IP) address are used in data link
and network layers, respectively, to route the flows between
switches. When the identifier is allocated to the network
node, it is bound to the current identifiers of the node. For
example, in an Address Resolution Protocol (ARP) request
message, the nodes’ IP address is bound to the received
MAC address. This process is called identifier binding
which associates identifiers of a node to each other. If the
binding results from a protocol such as ARP, Dynamic Host
Configuration Protocol (DHCP), or predefined configuration,
it is known as an explicit binding. However, if it is realized
from receiving network traffic in PACKET-INmessage, such
as binding MAC address to switch DPID and port in HTS, it
is called an implicit binding. The identifier binding process
is critical for the correct functioning of the network protocols
because the protocols use the mapping of identifiers to
deliver the packet from the source to the destination(s).
In a dynamic network, hosts might frequently join, migrate

or leave the network, impacting the network topology. To
keep track of the host’s location, HTS continuously monitors
the PACKET-IN message received from switches. When

FIGURE 5. LLDP packet frame.

a host joins the network, HTS creates a host profile and
inserts host location information extracted from the received
PACKET-IN message into the host profile. This data could
be a combination of IP address, MAC address, and location
information (associated switch DPID, switch port, and last
seen timestamp). A host might migrate between two switches
in the network, triggering the location update in the host
profile. In such a case, upon receiving the PACKET-IN
message, the HTS realizes that information elicited from the
PACKET-IN message is different from the corresponding
recorded data and subsequently updates the host profile with
the new location information. If a host leaves the network, the
corresponding switch sends a Port-down message toward
the controller. By receiving the message, HTS removes the
host profile and changes the status of the port to down. Apart
from the mentioned events, HTS regularly sends probing
Packet-In messages to query host location information
and keep the host profile information updated.

E. LINK DISCOVERY SERVICE
Link Discovery Service (LDS) plays a pivotal role in
maintaining an accurate and up-to-date view of the network
topology. This service is particularly crucial in environments
where network dynamics are pronounced, such as in data
centres or telecommunication networks. The controller uti-
lizes the OFDP to form the logical view of the network.
The OFDP involves periodic transmissions of the Link Layer
Discovery Protocol (LLDP) messages from the controller to
OpenFlow switches.
The process of link discovery involves the SDN con-

troller actively gathering information about links among
switches. It distinguishes between links within OpenFlow
switches as internal links, and those spanning Non-OpenFlow
switches as external links. More specifically, it identifies
internal links through the LLDP and external links through
Broadcast Domain Discovery Protocol (BDDP) packets. The
BDDP protocol is a special solution that is programmed in
open-source SDN controllers including OpenDayLight and
Floodlight to explore and discover the external links in a
hybrid OpenFlow network [45].

Fig. 5 exhibits Floodlight’s specification for LLDP packet
format, detailing a frame header with Dst MAC, Src
MAC, and Ether Type components. During internal link
discovery, the controller configures the destination MAC

VOLUME 5, 2024 3421

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

FIGURE 6. Illustration of the link discovery service. (a) OFDP for internal links,
(b) OFDP for external links.

address of LLDP packets to a fixed multicast address
(01:80:C2:00:00:0E). Simultaneously, it assigns the source
MAC address (Src MAC) to the switch port’s hardware
address, and sets the ether type to ‘0x88cc’. On the other
hand, BDDP packets follow a frame structure akin to
LLDP, differing primarily in the destination MAC address
(FF:FF:FF:FF:FF:FF) and ether type (‘0x8942’). The con-
troller harnesses the broadcast capability of BDDP packets
to facilitate transmission across Non-OpenFlow switches.
Within LLDP’s payload, the Link Layer Discovery Protocol
Data Unit (LLDPDU) comprises multiple Type-Length-Value
(TLV) structures. The controller utilizes mandatory TLVs
like Chassis ID, Port ID, and Time-To-Live (TTL) to identify
links. Optional TLVs, such as Controller ID, augment
LLDP’s functionality, while end TLVs mark the conclusion
of LLDP packets. The illustration in Fig. 6 showcases the
process of identifying both internal and external links within
the SDN network.

1) TWO OPENFLOW SWITCHES

In OFDP, the controller sends periodic LLDP messages to the
switches. The Cisco Discovery Protocol (CDP) [46] is a pro-
prietary alternative but less widely used. Fig. 6(a) presents a
network with an SDN controller and two OpenFlow switches,
namely, s1 and s2. The controller issues the LLDP packets,
and each switch provides a suitable response to the received
packet. Each LLDP response packet includes the DPID of
the switch with a Port ID. For example, the controller sends
LLDP packets to s1 (see Fig. 6(a)). By receiving LLDP
packets via a Packet-Out message, s1 distributes it to all
interfaces except the one connected to the controller. When
the destination switch s2 receives the LLDP from interface
port 1, i.e., p1, the switch encapsulates it as a PACKET-IN
message and sends it to the controller. Upon receiving LLDP,
the controller realizes an internal link between switch s1 and
switch s2 [47].

2) OPENFLOW SWITCH AND NON-OPENFLOW SWITCH

Moving from conventional network architecture to SDN
introduces hybrid SDN deployment, where legacy or Non-
OpenFlow switches coexist with OpenFlow switches in the
network [48]. The controller of the hybrid SDN network

cannot directly monitor and control the legacy section.
Therefore, LLDP protocol packets are transmitted between
switches to share the switch and its adjacents’ knowledge
in the legacy network. Whenever a Non-OpenFlow switch
catches an LLDP packet from its adjacent switch, it gathers
knowledge and discards the LLDP packet. Therefore, the
LLDP packet is able to wend only one hop in the link
layer. Accordingly, the SDN controller uses BDDP to
explore and discover the external link. Fig. 6(b) displays
an external link connecting switch s1 and switch s3 via a
legacy switch, s4. To start, the controller initiates internal
link discovery by sending an LLDP packet to switch s1.
However, when the Non-OpenFlow switch s2 receives this
packet, it disregards it due to the TTL value reaching 0.
Following this, the controller dispatches a BDDP packet
containing the broadcast destination MAC address to s1.
Subsequently, the packet traverses to switch s3, which in
turn encapsulates the BDDP packet within the Packet-In
message and forwards it to the controller. By analyzing these
Packet-In messages, the controller identifies the presence of
an external link between s1 and s3 [49].

F. TOPOLOGY UPDATE PROCESS
The process of determining the topology instance involves
several key stages. Firstly, it begins by identifying clusters
within the network. This entails categorizing ports connected
to external links or multiple internal links as broadcast
domain ports, while switches connected via non-broadcast
domain ports form distinct clusters. Within each cluster, the
controller proceeds with the second step by systematically
analyzing switch-linked connections. It identifies intra-
cluster links and categorizes the remaining links, such as
external connections, as inter-cluster links. Moving on, the
third step involves the identification of archipelagos. The
controller merges multiple clusters interconnected by inter-
cluster links into separate and isolated entities. Next, the
fourth stage includes calculating multiple paths between
switches within a given archipelago. Typically, the controller
computes three paths, selecting the shortest path as the
broadcast tree for that specific archipelago. Finally, the
fifth step focuses on determining broadcast ports for each
archipelago. These designated ports include switch link
ports connected to other switches within the broadcast tree,
as well as switch edge ports linked to terminal devices.
This meticulous approach optimizes topology navigation and
enhances the overall management of the network’s structure.

G. SECURITY IN TOPOLOGY DISCOVERY SERVICE
SDN architecture suffers from several security weaknesses,
increasing the risk of attacks due to malicious switches or
hosts. First, a host can easily direct a packet toward the
controller by triggering a table-miss entry on a switch and
initiating a PACKET-IN message. This feature provides a
malicious host with the opportunity to flood the switch with
packets not matching flow rules, thereby resulting in a denial
of service (DoS) attack [50] on the switch and controller.

3422 VOLUME 5, 2024

FIGURE 7. Taxonomy of Topology Poisoning Attack in SDN.

Consequently, it can cause network crashes and outages.
Second, the controller sends traffic routing instructions as
flow rules toward switches. It opens up the possibility for an
untrusted switch to re-route or hijack the traffic by modifying
the installed flow rules. It also allows a compromised host to
leak sensitive information about flow rules. Third, malicious
hosts and switches can inject forged or spoofed messages
into the network while the controller has no built-in detection
mechanism to raise security alarms.
TPA targets corrupting the perception of the SDN con-

troller on the connected devices (e.g., switches or hosts)
to the network and inter-switch link connections. It could
significantly impact the network’s forwarding policy by
changing the traffic path. The reasons are mainly attributed
to several security vulnerabilities in HTS and LDS modules
in the controller. The lack of LLDP verification in the LDS
module triggers a new group of attacks, called LFA. In
addition, HTS suffers from IBA which allows the adversary
to overtake the victim’s identifiers. Fig. 7 illustrates our
proposed taxonomy of existing TPA threats, categorized
based on the attack aim of poisoning the controller view.

V. LINK FABRICATION ATTACK AND SECURITY
COUNTERMEASURES
LFA is an example of the TPA in which the adversary
intends to add a fabricated link between two switches.
The traffic routed over the forged link can be intercepted,
manipulated, or dropped, thereby degrading the performance
of the network. It can even lead to a black hole if the traffic
traverses over a forged link directed toward the malicious
host. While different variants of LFA have been proposed
in the literature, their strategies to poison the perception of
the controller are categorized into two main parts, namely,
LLDP Relay-Based LFA and LLDP Forgery-Based LFA.
In LLDP Relay-Based LFA, the fabricated link is created

by relaying LLDP between two switches. Depending on

the physical distance between two switches, the adversary
can opt for an appropriate relaying channel. If the host
can be directly connected to two switches, a dual-homed
host topology [51] is used which implements a bridging
technique to forward LLDP (see Fig. 8(a)). When switches
have more distance, the adversary provides an out-of-band
communication channel, e.g., a direct ad-hoc link or wireless
connection between two hosts (see Fig. 8(b)). The third
possibility is utilizing an in-band connection between two
compromised hosts [52]. To this end, the adversary uses
internal network infrastructure, e,g., wireless access points
or routers, which could create a fabricated link between two
switches far from each other in a different part of the network
(see Fig. 8(d)). In LLDP Forgery-Based LFA, adversaries
tamper with LLDP frames, specifically by modifying TLVs
within these packets. By manipulating TLVs, attackers can
create fake links between switches, deceiving the SDN
controller about the actual network topology (see Fig. 8(e)).
While both LLDP Relay-Based LFA and LLDP Forgery-

Based LFA share the goal of misleading the SDN controller,
identifying relay-based attacks presents a notable challenge.
These attacks operate without altering the LLDP packet
itself, maintaining a stealthy profile that avoids triggering
any anomalies in the LLDP process. In contrast, forgery-
based attacks entail modifications to TLVs, potentially
altering the packet structure and thereby offering a slightly
more feasible detection pathway. In this section, we delve
into an exhaustive exploration of various forms of LFA,
elucidating their mechanisms, potential risks, and associated
countermeasures.

A. HOST-BASED LINK FABRICATION ATTACK
(RELAYING LLDP)
When a switch, i.e., s1 (see Fig. 8(b)) receives an LLDP
packet from the controller, it broadcasts the packet through

VOLUME 5, 2024 3423

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

FIGURE 8. Different attack strategies in launching LFA: (a). Bridging LLDP using
dual-homed compromised host, (b). Relaying LLDP using an out-of-band channel, (c).
Relaying LLDP using an in-band channel, (d). Injecting a fake LLDP, (e) Relaying LLDP
using a compromised switch.

all its ports. Hence, if a host or another switch is connected to
this switch, it will also receive the LLDP packet. In a normal
scenario, hosts ignore the receiving LLDP packet, and no
action has been triggered. However, in an attack scenario,
the adversary who controls two hosts, i.e., h1 and h2, does
not ignore the LLDP packet, and h1 relays the packet toward
the second switch, i.e., s2 by using an out-of-band channel.
The adversary could alternatively utilize an in-band channel
(see Fig. 8(d)) or duel-home host (see Fig. 8(a)) to relay
the received LLDP. When the second switch receives the
LLDP packet, it forwards the packet toward the controller,
where the LDS module is tricked into believing that there
is a link between these two switches, which are not really
connected [12].
Countermeasure: The problem of relay-based LFA lies in

that during the link discovery procedure, hosts could listen
to LLDP packets through its port which is connected to
a switch. To restrict the LLDP propagation path only to

the switch device, a real-time port verification solution is
proposed in TOPOGUARD [12] framework. In this solution,
a port classification technique is used and each switch port
is marked based on first-seen traffic. A port is labeled as
SWITCH if the LLDP is forwarded while it is tagged as
HOST if host traffic is generated. If no device is connected to
the port, it is nominated as ANY. By using this strategy, the
controller rejects the LLDP packet received from the ingress
port tagged with the HOST label. The main drawback of
TOPOGUARD is that the adversary can compromise a host
and pretend its label as a SWITCH by forwarding LLDP
messages.
The work in [53] also proposes a threshold-based defence

for this attack using statistical analysis of link latency
distribution. When a new link is added, it is initially
monitored for a specific duration, called the vetted period.
During the interval, the controller prevents normal traffic
to traverse over the newly added link. The vetted period
lasts till a specific number of link latency samples are
collected. By finishing the vetted period, collected link
latency values are compared against a predefined threshold.
The threshold is a baseline distribution of normal latency
values. However, while it offers a method to monitor and
detect fake links, its effectiveness heavily relies on predefined
thresholds and baseline latency values. Adversaries might
find ways to manipulate latency or create scenarios where
the threshold isn’t breached, thus evading detection, and
potentially compromising the system’s security.
To protect controllers from topology poisoning attacks,

SPHINX [14] develops a security framework as a middle
layer between the SDN controller and the data plane. It
intercepts and analyses four OpenFlow control messages,
including FLOW-MOD, PACKET-IN, STATS-REPLY and
FEATURES-REPLY, to learn network behaviour and meta-
data. Specifically, when the switch sends a PACKET-IN
message for the controller, SPHINX extracts all flow-specific
topology metadata, i.e., host IP-MAC and MAC-Port bind-
ings. When the controller originates a FLOW-MOD toward
the switches, flow path information, and rerouting updates
are extracted. Flow statistics data, such as the number of sent
or received packets, and switch configuration information,
such as all active ports, are also extracted on receipt of
STATS-REPLY and FEATURES-REPLY messages on the
controller, respectively.
SPHINX uses the extracted metadata from PACKET-IN

and FEATURES-REPLY to build and update an incremental
flow graph that models network topology, where edges repre-
sent the metadata and switches are nodes. While FLOW-MOD
and STATS-REPLY messages enable SPHINX to construct
the data plane forwarding part of the graph. Then, SPHINX

provides a policy verifier engine for validation of flow graphs
against collected metadata over time and pre-defined security
policies specified by the administrator (e.g., access control)
which are expressed in policy language. It continuously
monitors the flow graphs for permissible changes and raises
alerts if it identifies deviant behaviour. SPHINX validates

3424 VOLUME 5, 2024

topological metadata gleaned from malicious PACKET-IN
and FEATURES-REPLY messages against a set of policies,
such as permitting a port at a switch to have only one
single neighbour and allowing bidirectional links between
two switches. In case of any violation and deviant behaviour,
SPHINX flags a security incident.
Gao and Xu [54] have put forward an innovative approach

to addressing security issues in the process of discovering
network topologies in SDNs. Initially, they examine current
principles and threat models related to topology attacks. In
their proposed research, they introduced a new approach
to counteract topology poisoning attacks. They establish a
legal condition detection mechanism for host migration to
combat host hijacking attacks. Next, they develop LLDP
source check and integrity check methods to counter link
fabrication attacks. They also introduce a relay-type link
fabrication attack detection approach based on entropy
calculation for constructing LLDP frames. The defence
mechanisms discussed in this work are integrated within the
SDN controller itself. They operate autonomously from the
controller’s other functional modules. Lastly, they create an
SDN simulation environment using Mininet and Floodlight
controllers. The findings confirm the efficacy of their
solution against common topology attacks and demonstrate
its ability to offer thorough and comprehensive topology
security protection.

B. PORT AMNESIA ATTACK
Port amnesia attack [13] can bypass TOPOGUARD defence
by exploiting the port classification module. In this attack,
when the compromised host, i.e., h1 (see Fig. 8(b)), receives
the LLDP packet, it relays the packet toward the peer
compromised host, i.e., h2. In h2, before sending LLDP
toward the switch s2, the adversary disconnects and then
connects the h2 connection to the switch. This action triggers
a Port-down message toward the controller, causing the
resetting label of the port from HOST to ANY. When the
controller receives the LLDP from the port labelled with
ANY, verifies LLDP path legitimacy and announces the new
link. In the case of using an in-band channel (see Fig. 8(d))
to relay the LLDP packet, both compromised hosts, i.e., h1
and h2, need frequent context-switching between HOST and
SWITCH labels which imposes an extra complexity on the
attack. This is because compromised hosts need to have a
HOST label when they forward data-plane traffic while their
label must set SWITCH in case of using the fabricated link.
Countermeasure: TOPOGUARD+ [13] mitigates the risk of

port amnesia attack by adding two modules to TOPOGUARD,
namely Link Latency Inspector (LLI) and Control Message
Monitor (CMM). The former module detects the attack
if the adversary uses the out-of-band channels between
compromised hosts, while the latter protects the network
against in-band LFA. The strategy of LLI to detect a fake
link is the extra latency that the out-of-band channel imposes
on LLDP propagation duration. TOPOGUARD+ periodically
issues probe packets to measure the Round Trip Time (RTT)

FIGURE 9. RTT monitoring in TOPOGUARD+.

between the controller and switches. Upon receiving the
packet, each switch provides a suitable response to that
packet. Assume that we have two switches, namely, s1 and
s2, that are connected to a controller. Also, suppose that
Tp1 and Tp2 are the corresponding link latency of the probe
packets sent to s1 and s2. The LLI computes the inter-switch
link latency Tl using eq. (1).

Tl = TLLDP − Tp1 − Tp2 , (1)

where TLLDP indicates the propagation delay of the LLDP
packet. To calculate the TLLDP, the controller adds a times-
tamp to the issued LLDP packet toward the switches and
takes the difference when receiving it. The RTT monitoring
in TOPOGUARD+ is visually illustrated in Fig. 9, showcas-
ing LLI’s method for evaluating inter-switch link latency.
Moreover, LLI stores the values of inter-switch latency

based on received LLDP packets and calculates a latency
threshold as shown in eq. (2).

Th = q3 + 3 ∗ (q3 − q1), (2)

where q1 and q3 indicate the lower and upper quartiles of
stored latency values, respectively. By comparing latency
Tl and threshold Th, LLI verifies the validity of the link
and raises a security alarm in case of suspicious delay (i.e.,
Tl > Th).
The LLI module’s limitations include its vulnerability

to high false alarms, particularly when normal links are
removed during network peak hours. Additionally, the
LLI module could be bypassed if the adversary gradually
increases the latency of the threshold, i.e., Th. For this
purpose, the adversary overloads one switch in the network
during a long period to slightly grow the latency of the
LLDP packet in each propagation round [20]. Eventually,
this approach leads to a high value for the threshold which is
greater than the latency of the out-of-band channel. However,
it needs hours of preparation.
The CMM module aims to monitor abnormal port connec-

tions and disconnections during LLDP packet forwarding to
detect in-band port amnesia attacks. In in-band port amnesia,
the adversary frequently resets the adversary port to forward
both LLDP traffic and host-generated traffic without raising
labelling violations. This means that before sending host

VOLUME 5, 2024 3425

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

traffic, the port label should be set as HOST, while during
sending the LLDP packet, it should be set as SWITCH.
Hence, the CMM module monitors the frequency of port
down and up during the LLDP packet forwarding process and
in case of any abnormal port connection and disconnection, it
generates security alerts. Despite its focus on monitoring port
status changes during LLDP forwarding, the CMM module
may encounter difficulty in detecting sophisticated attacks.
Adversaries cleverly manipulate these alterations, staying
within expected frequency thresholds to avoid triggering
immediate alarms.
Deng et al. [55] conducted a thorough examination of

the match field within the OpenFlow protocol and exposed
vulnerabilities between applications and the data plane.
They identified commonly used sensitive match fields by
applications to construct functions. Through manipulation
of these fields, they proposed a sensitive field manipulation
attack aimed at overwhelming network bottlenecks. The
attacker begins by gathering operational information about
the application through the transmission of probing packets
and test streams containing various sensitive fields. By
exploiting timing disparities among probing packets, the
attacker floods the bottleneck with the most efficient test
streams, thereby preventing applications from receiving
responses from the data plane, and ultimately causing core
service crashes.
Additionally, the authors explored threats to SDN archi-

tecture by impeding the delivery of LLDP packets using
such attacks. In certain scenarios, this can corrupt network
topology, deplete controller computing resources, and disrupt
core services. To validate the feasibility of the sensitive field
manipulation attack, they conducted evaluations in a physical
setting. The findings demonstrated that the attack surpasses
previous methods in effectiveness and leads to extensive
consequences. To identify and counter such attacks, the
authors initially examined current defence systems and their
efficacy against such manipulative actions. They discovered
that existing systems are ineffective in thwarting attacks that
exploit sensitive fields to overwhelm network bottlenecks.
Given that attackers base their actions on probing out-

comes, the authors developed SFieldDefender to identify
malicious probes and test flows. This lightweight exten-
sion of the existing controller employs a combination
of machine learning model training and a multi-policy
mechanism for attack mitigation. Data is collected based
on constructed features and used to train multiple models.
The most efficient model for attack detection, determined
by latency and precision, is then selected. Additionally,
various defence strategies are devised for different types
of abnormal traffic. A prototype of SFieldDefender is
implemented within the Floodlight controller and evaluated
for its effectiveness. Experimental results demonstrate that
SFieldDefender adeptly detects sensitive field manipulation
attacks and safeguards network services.
The paper proposed by Deng et al. [56] reveals a

significant vulnerability found in widely used open-source

SDN controllers, which can be exploited by malicious
or compromised applications to launch different types of
attacks. The vulnerability stems from the testing features
commonly integrated into SDN controllers. These controllers
often employ testing applications to mimic the behaviour of
regular applications, ensuring consistency with the OpenFlow
protocol, the standard southbound protocol regularly updated
with new features. To ensure correctness during development,
controllers offer a special internal application interface
(API) to generate various crucial SDN messages (such as
Packet-In messages) without requiring permissions.
Unfortunately, this mechanism inadvertently allows

sophisticated attackers to create a backdoor for applications
to send spoofed malicious packets. Since SDN applica-
tions typically process data plane messages sequentially,
the spoofed message can be forwarded to all subsequent
benign applications. What’s more concerning is the absence
of an integrity-checking mechanism, meaning the falsified
messages could corrupt the entire network topology and
disrupt various services. Upon examining five mainstream
SDN controllers (like Floodlight, ONOS, OpenDaylight,
POX, and Ryu), it was discovered that all of them are
vulnerable to this newly disclosed exploit. They then proceed
to investigate the threats posed to various network services
by exploiting the previously mentioned vulnerability.
They introduced three types of attacks aimed at disrupting

the topology discovery and updating processes across differ-
ent layers. Specifically, they illustrate that by leveraging the
backdoor vulnerability to falsify network messages, attackers
can not only seize control of network communication among
hosts but also obstruct the operations of other applications by
fabricating host location data. Moreover, they demonstrate
that adversaries can clandestinely manipulate or invent
connections. Additionally, they introduce two novel attacks,
namely the archipelago division attack and the topology
freezing attack, designed to hinder the establishment of
a comprehensive global topology view. They carry out
experiments on real SDN testbeds with multiple switches to
assess the effectiveness of these attacks. Their results reveal
that a malicious application can intercept webpage traffic
between hosts, trigger information leaks, and launch various
denial-of-service attacks against both SDN applications and
hosts. Regrettably, current defence mechanisms from both
the data and application planes prove ineffective against their
attacks.

C. INVISIBLE ASSAILANT ATTACK
Kong and colleagues [57] introduced the Invisible Assailant
Attack (IAA), a sophisticated tactic capable of infiltrating
networks by injecting fake links, even when 12 differ-
ent defence mechanisms are active simultaneously. IAA
comprises 14 intricately planned phases employing various
strategies to disguise attack traffic as regular network activity.
By executing these phases methodically, attackers evade
existing defences step by step. To counter this threat, they
proposed the Route Path Verification (RPV) mechanism,

3426 VOLUME 5, 2024

FIGURE 10. The depiction of IAA. It’s important to note that each switch maintains a
separate connection with the controller. For simplicity, these connections are not
shown. This figure is the precise arrangement of the network. The arrows 1, 2, 3, and 4
depict the communication flow between host C and A.

FIGURE 11. The depiction of IAA. This figure shows the poisoned perspective of the
controller. It’s important to recognize that every switch is individually connected to the
controller, although these connections are not shown for simplicity.

which coordinates multiple defence strategies to identify
counterfeit links. Experimental results demonstrate that RPV
effectively detects IAA with minimal overhead, completing
detection within 1 millisecond and consuming only a small
amount of storage per flow [57].

IAA takes advantage of weaknesses in the link discovery
service to inject a fake link, a tactic similar to previous
research. However, what sets IAA apart is its ability to
camouflage its attack packets within the regular network
traffic, thus circumventing defensive measures. Fig. 10 shows
the real network topology, whereas Fig. 11 shows the
distorted view of the network that IAA aims for the controller
to perceive, known as the poisoned view. In Fig. 10, the
attack strategies employed by IAA are illustrated, involving
two compromised hosts. In this scenario, one attacker
(referred to as Alice, who has commandeered Host C) inserts
the fake link, while the other attacker (referred to as Bob,
who has compromised Host B) aids in maintaining the
deception by disguising the packets generated by Alice to
avoid detection.
In Fig. 10, Alice creates a false connection between

Switch B and Switch C by passing LLDP packets between
them (relaying LLDP), a technique previously employed in
other attacks. However, when Host C communicates with
other hosts, it inevitably sends packets indicating the first
hop. If these packets are intercepted by the controller on

an internal port, defence mechanisms will trigger alerts.
Attackers struggle to predict which packets might reveal
the false link, making it challenging for them to adjust
their strategies. This is why existing attacks struggle to
maintain false links for long periods. For instance, even
though ICMP queries from compromised hosts can uncover
the fake link, attackers are hesitant to discard them since
ICMP queries are commonly used in normal network
operations. Additionally, ARP packets and other standard
network traffic can also expose the fake link, making it
exceedingly difficult for attackers to anticipate the detection
methods employed. However, existing attack methods fail
to address this challenge, resulting in easily detectable fake
links. So, the challenge is figuring out how to sustain the
false connection once it’s been injected. Bob tackles this by
setting up Host B to act as a middleman, passing on messages
between Host C and other parties. This means Host C only
interacts with Host B. As illustrated in Fig. 10, in this setup,
Bob’s communication with other hosts won’t raise any red
flags. However, when Bob communicates with Alice, it’s
crucial to camouflage it as regular network activity to avoid
detection.
To establish covert communication between Alice and

Bob, the IAA process involves four key steps. Initially, before
initiating the attack, the attackers must predefine specific
parameters of the secret communication channel. This allows
them to differentiate their communication packets from
regular network traffic. Next, once the fake link is injected
successfully, Alice must identify a standard host as a
“springboard.” This host’s packets will be unwittingly used
to mask the communication between attackers. Subsequently,
Alice notifies Bob to verify whether the identified host meets
the criteria of a suitable springboard. Finally, Alice and Bob
can utilize the unwitting assistance of the springboard to
test if they can conceal their communication within normal
packet transmissions. Throughout this process, IAA must
also employ additional measures to counter various defence
strategies. For further details, please refer to paper [57].
Countermeasure: Kong and colleagues [57] developed a

new security measure called Route Path Verification (RPV),
which detects potential attackers by ensuring the integrity
of route paths. Experimental findings suggest that this
mechanism is proficient at identifying IAA.
RPV is a new approach developed from an interesting

discovery: whenever a regular packet is sent to the controller
due to Table-Miss, the controller can effectively track down
the original sender of that packet. Let’s illustrate this with
an example: if a switch (let’s call it switch n) notifies the
controller about a new flow (let’s call it f), the controller can
backtrack to its immediate previous hop (switch n - 1) by
analyzing the in-port on switch n. Then, the controller can
verify if flow f indeed arrived at switch n - 1 by querying the
stored flow rules. If the relevant rule is found, the controller
proceeds to trace back to switch n - 2 based on the in-port.
This iterative process continues until the controller reaches
the original source host of flow f. However, it’s important

VOLUME 5, 2024 3427

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

to note that this method doesn’t work for malicious packets
injected by IAA.
Kong et al. [57] describe this quality as the integrity

of route paths. From this insight, they developed RPV, a
security measure aimed at detecting attacks by ensuring the
integrity of route paths. RPV works by gathering topology
and flow data from the network and using it to reconstruct
the route path for each flow through the controller. When a
new packet arrives at the controller due to Table-Miss, RPV
checks the route path’s integrity to validate the packet. If the
packet passes the check, RPV logs it along with the current
switch to continue building the route path. If a host exits the
network or moves to a new switch, RPV removes all route
paths originating from that host.
To improve RPV’s effectiveness, two key scenarios must

be addressed. Firstly, when a host migrates, it can prompt the
controller to discard previous route paths linked to that host.
If malicious hosts trigger fake migrations, they could evade
route path verification. To counter this, RPV verifies hosts
upon network entry. Only authenticated hosts can initiate
route path construction. Thus, the authentication of hosts and
route path verification form a crucial verification chain. The
chain’s security hinges on host authentication, which has
been proven trustworthy. Hence, ensuring host authentication
guarantees the security of the entire verification process.
Another scenario involves Bob continually sending prob-

ing packets to Host D in order to keep related flow rules
active in switches, while Alice exploits these packets to
camouflage communication between attackers. Implementing
IAA can notably decrease the likelihood of triggering
Packet-In messages. Since probing packets aid not only
IAA but also various other attacks, RPV opts not to issue
flow rules for probing packets upon their reporting to the
controller. Consequently, the disguised packets produced
by IAA will unavoidably be reported to the controller,
ultimately exposing the attackers. RPV specifically targets
four common types of probing packets: ICMP echo requests,
TCP SYN packets, ICMP timestamp requests, and ARP
requests. It’s worth noting that ceasing the generation of
flow rules for these probing packets doesn’t impair network
performance, as they are typically “single-use” in normal
circumstances [57].

D. SWITCH-BASED LINK FABRICATION ATTACK
(RELAYING LLDP)
It is assumed that the adversary has control of a switch, i.e.,
s3 (see Fig. 8(f)). When the compromised switch receives
the LLDP packet from switch s1, instead of returning the
packet to the controller, it sends the packet to the s2. As
s2 has no awareness of the ongoing attack, send back the
LLDP toward the controller, which results in adding a fake
link between s1 and s2 [58].
Countermeasure: Stealthy Probing-Based Verification

(SPV) defence [59] is implemented in the application layer
to identify the fabricated links launched by the compromised
host(s) or switch(es). Particularly, SPV utilizes the probing

technique to verify the legitimacy of an inter-switch link.
For this purpose, SPV monitors LDS activities to track new
updates on the topology. Upon a new link is created in
the network, SPV is notified by the controller to initiate
the collection of some information about the newly added
link, and statistic data and flows of associated switches.
Based on collected data, SPV generates a probing packet.
Specifically, some techniques are used to create the probe
packet stealthily to prevent the adversary from distinguishing
the probe packet from the normal host-generated traffic.
Moreover, SPV utilizes a unique hash function value and
a timestamp per probe packet to authenticate it and drop
any forged ones. SPV also creates a flow to be installed
on the source switch to direct the probe packet toward the
destination switch. Upon sending the probe packet toward the
source switch, SPV sets a timer and waits for the response.
When the switch receives the probe packet, based on the
installed flow, it forwards the probe toward the destination
switch. In the normal scenario, the destination switch sends
the probe packet toward the controller. However, in an attack
scenario, the adversary which has control of the destination
switch, forwards the probe packet toward the next switch
and sends the prob toward the controller. Finally, when the
controller receives the probe packet, it checks the source
switch and destination switch ID to be matched with the
newly added link information. In case of any mismatch, the
link is considered a fabricated link.
Within the SPV mechanism, one of the notable challenges

arises from the intricacy involved in crafting probe packets.
These packets are meticulously designed to imitate normal
host-generated traffic, employing specific techniques to
conceal their identity from potential adversaries. Creating
these packets requires precision and stealth to prevent any
distinguishing factors that might reveal their probing nature,
demanding considerable effort and technical sophistication
to ensure successful deception. Another limitation of SPV
lies in the complexity of key sharing required between
administrators and the SPV component when encrypted com-
munication TLS is employed for securing data plane traffic.
If SPV were integrated directly into the SDN controller, this
key-sharing requirement would become redundant.

E. TOPOLOGY FREEZING ATTACK
The adversary, initially, creates two fabricated links where
the links originated from the same source switch and port
while they have different destination switches and ports [20].
When the controller identifies the multi-link port, it removes
the port and the associated links from the network topology
graph. The unusual behaviour is that after this moment, the
topology graph is not updated, even in the case of adding
or removing new links. In order words, the adversary froze
the network topology which significantly impacts topology-
based applications such as routing and load balancing. No
practical and detective solution has been proposed for this
attack yet.

3428 VOLUME 5, 2024

F. LINK LATENCY ATTACK
Soltani et al.’s proposed threat model [60] assumes that
an attacker compromises one or more hosts. The attacker
can use an out-of-band communication channel, present in
a wired or wireless connection between two compromised
hosts, to relay LLDP messages. This attack, known as the
Link Latency Attack (LLA), involves the adversary creating a
fake link between two switches by relaying LLDP messages
through the out-of-band channel. The attacker leverages end
hosts to inject unwanted traffic, such as ARP, to increase
the packet processing time of the switches. As a result,
the switches’ response time to controller packets, like probe
packets, is delayed. Exploiting this delay, the adversary can
relay LLDP messages among switches and insert a fabricated
link between them. This traffic manipulation negatively
impacts network performance, leading to a detour in traffic
and resulting in a lower quality of service (QoS) or quality
of experience (QoE).
Countermeasure: Soltani et al. [60] propose a system

known as Real-time Link Verification (RLV), which uti-
lizes machine learning (ML) techniques for detecting Link
Latency Attacks (LLA) and Link Fabrication Attacks (LFA)
in SDN. The following provides a detailed overview
of the RLV architecture, ML model configuration, and
implementation process. The system’s workflow unfolds as
follows: The SDN controller generates Link Layer Discovery
Protocol (LLDP) and probe packets at regular intervals.
Subsequently, these packets are transmitted to the data plane
switches. Upon receiving the LLDP packets, the switches
respond to each one and send the responses back to the
controller. The controller gathers these LLDP response
packets, extracts the necessary metrics, and vectorizes them
in batch format. Batching latency values from switches helps
verify their validity along with associated delays through
RLV, effectively reducing communication overhead. RLV
assesses each vector based on the ML classification model
and conveys its decision to the controller. Depending on
the outcome, the controller either discards the LLDP packet
or updates the topology database. Classification results and
new LLDP data are stored in a dataset managed using
InfluxDB. Human analysts play a vital role in monitoring
the dataset’s accuracy. RLV is deployed on a separate server
with high processing capacity to minimize the time needed
for link verification and model regeneration. However, this
deployment raises security concerns, including spoofing
and information leakage risks. To address these risks, a
mutual authentication mechanism is implemented between
the controller and the RLV server, verified by a Remote
Access Dial-In User Service (RADIUS) server using a
certificate-based approach. Additionally, the communication
channel between the controller and RLV server is encrypted
using SSL/TLS for enhanced security [60].

G. LINK FABRICATION ATTACK (FORGING LLDP)
When a compromised host, i.e., h2 (see Fig. 8(e)) receives
the LLDP packet from the connected switch s2, it captures

and manipulates the field of switch DPID and Port ID
inside the packet. By sending the modified LLDP toward
the switch s2, the controller announces a non-existing inter-
switch link between s1 and s2. The reason is that neither
LLDP integration nor authentication is guaranteed during the
OFDP process.
Countermeasure: TOPOGUARD [12] provides this assur-

ance by adding a key-Hash Message Authentication Code
(HMAC) [61] as a signed Type, Length, Value (TLV) inside
each LLDP packet. TLVs are structured data elements used
within the LLDP protocol to convey specific information. In
this case, the TLV contains a HMAC is generated using a
key, ensuring the integrity and authenticity of the transmitted
data within the LLDP packet. The HMAC is computed using
eq. (3).

HMAC(K,m) = h((K ⊕ opad)|h((K ⊕ ipad)|m)) (3)

where m represents TLV fields in LLDP, i.e., switch DPID
and PortID. Parameters of h and K indicate hash function and
secret key, respectively. Sign | and ⊕ represent concatenation
and XOR function. Also opad and ipad are considered
constant values [61]. Particularly, TOPOGUARD utilizes a
static secret key and SHA-256 hash function. Another
approach is to select a random dynamic secret key, i.e.,
Ki, j, where i is the LLDP packet number and j indicates
the topology discovery round. By using the dynamic secret
key, each LLDP has a unique HMAC value. Hence, the
adversary fails to use one instance of LLDP to create other
fake LLDPs. Upon receiving the LLDP, the controller verifies
the genuineness of the packet by checking the HMAC TLV.
The weakness of TOPOGUARD lies in its vulnerability to

replay attacks due to the absence of a mechanism ensuring
the freshness of its defence strategy. The cryptographic
protection mechanism employed by TOPOGUARD doesn’t
incorporate a robust system to ensure the uniqueness or
timeliness of the generated HMAC tags. As a result, when
the system fails to generate new and unique cryptographic
values for each transmission or session, it opens up the
possibility for adversaries to execute replay attacks. Without
this element of freshness, attackers can intercept previously
valid HMAC tags and retransmit them, exploiting the
system’s inability to distinguish between the original and
replayed data. This limitation compromises the effectiveness
of TOPOGUARD in preventing adversaries from successfully
sending forged LLDP packets, as replay attacks can bypass
its defence mechanism. Moreover, the implementation of
HMAC within each LLDP packet introduces computa-
tional overhead due to cryptographic operations, potentially
impacting network performance. Moreover, managing keys,
especially if they are dynamic, adds complexity to the
system, increasing the chance of mismanagement or errors.
The approach introduced in [62] aimed to ensure integrity

protection with freshness by implementing a strategy that
involves updating the cryptographic key within each LLDP
round. However, a critical constraint of this methodology is

VOLUME 5, 2024 3429

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

its reliance on the controller to meticulously manage and
monitor the keys utilized in every individual LLDP round.

H. REVERSE LOOP ATTACK
In OFDP, the controller utilizes the Link-Type field in
the LLDP packet to identify if there is a reversed link
between two switches, i.e., S1 and S2 (see Fig. 6(a)). To this
end, the controller sets the field to 0x01 value and sends it
toward switch S1. Upon receiving the LLDP from S2, the
controller set Link-Type to a 0x02 and resend it back to
switch S2. In addition, if the latency value of the received
LLDP changes, the controller updates the construction of
the network topology graph which is a highly resource-
consuming task.
The adversary leverages the mentioned two features to

launch a reverse loop attack [20]. To this aim, when switch
S2 receives the LLDP packet with Link-Type to 0x02,
the adversary manipulates two fields of the packet. First,
he changes the Link-Type value to 0x01. Second, he
modifies the timestamp field to slightly increase the LLDP
latency value. Then, the adversary resends the packet to the
controller. These malicious activities cause repeated LLDP
send and receive between the controller and switch S2, and
also a significant workload on the controller. The risk of
a reverse loop attack could be mitigated by ensuring the
integrity of LLDP packets.
Countermeasure: Securing the integrity of LLDP packets

is vital to thwart adversaries from transmitting counterfeit
LLDP data. As highlighted in Section V-G, TOPOGUARD

aimed to address this concern but lacked freshness in
its approach, leaving room for potential replay attacks.
To effectively counter such threats, the regular updating
of cryptographic keys is imperative. The work in [62]
proposed a solution aiming to preserve integrity with
freshness by updating the cryptographic key in every LLDP
round. However, this approach necessitates the controller to
meticulously track the keys utilized in each LLDP round,
constituting a notable limitation.
Addressing the shortcomings of prior methods, recent

work [20] introduces an innovative approach. This method
involves computing the HMAC tag over the DPID, port,
and time-stamp, employing a singular cryptographic key
rather than employing different keys in every LLDP round.
Leveraging the existing time-stamp field within LLDP
packets, this modification not only safeguards against
adversaries tampering with the DPID or port to execute
link fabrication attacks but also thwarts alterations to the
time-stamp field within LLDP packets. This enhancement
significantly fortifies the defence against potential attacks
aimed at undermining LLDP packet integrity.

I. CLUSTER SPLITTING ATTACK
The LDS dynamically recalculates the network’s structure
when it detects changes in the topology. Then, the controller
categorizes switches into clusters based on the presence of
broadcast domain ports between them. These clusters can

then merge into larger entities called archipelagos when
connected by inter-cluster links. The LDS utilizes this
clustering to divide the network into distinct parts, allowing
it to avoid computing paths between switches located in
separate parts, thereby saving storage and enhancing routing
efficiency. By recognizing broadcast domain ports, the SDN
controller identifies network segments where external links
or multiple internal links are attached to a switch port.
Unfortunately, the current controller lacks a mechanism to
verify the legitimacy of a broadcast domain port. This
gap poses a vulnerability as an adversary could fabricate
an additional link for a switch port, creating a false
broadcast domain port. Such manipulation could disrupt
the subsequent steps in computing a topology instance. A
potential vulnerability lies in the identification of clusters,
making it susceptible to a cluster-splitting attack [63] during
the initial step of computing the topology instance. This
attack is designed to fragment switches belonging to a single
cluster into multiple clusters. The adversary initiates the
attack by creating a fake link for a specific switch port
through the injection of LLDP packets. The controller, upon
detecting multiple internal links, erroneously categorizes the
port as a broadcast domain port. Consequently, during the
re-computation of the topology instance, the LDS is misled
into splitting the cluster. Furthermore, the LDS disregards the
links associated with the counterfeit broadcast domain port.
Eventually, the divided clusters amalgamate into different
archipelagos due to the absence of inter-cluster links. This
results in a substantial disruption of network communication,
rendering hosts within the same physical cluster unable to
communicate with each other.
Countermeasure: The countermeasure employed against

Cluster Splitting Attack is the LldpChecker [63], a compre-
hensive solution designed to mitigate both Cluster Splitting
Attack and another distinct threat, denoted as Cluster
Amnesia Attack. To facilitate a structured discussion, the
details of LldpChecker will be elucidated subsequent to the
exploration of Cluster Amnesia Attack (see Section V-J),
providing a comprehensive understanding of the strategic
measures implemented to address the security vulnerabilities
posed by Cluster Splitting Attack and Cluster Amnesia
Attack.

J. CLUSTER AMNESIA ATTACK
To enhance the efficiency of route computation, the LDS
employs the concept of archipelagos for network topology
management. Clusters are segregated into distinct archipela-
gos if no inter-cluster links exist; otherwise, they coalesce
into a single archipelago based on these links, typically
external. The LDS systematically examines each external
link, establishing or consolidating archipelagos depending on
the islands connected by each link. However, the controller
lacks a mechanism to authenticate external links, render-
ing it susceptible to adversarial manipulation. Adversaries
could fabricate external links for switches, disrupting
the archipelago merging process. Moreover, compromised

3430 VOLUME 5, 2024

archipelago information adversely impacts route computation
and the identification of broadcast domain ports [63].

Adversaries can exploit a vulnerability to execute a cluster
amnesia attack when the LDS is in the process of identifying
intra-links and archipelagos. This attack involves the LDS
neglecting certain clusters during archipelago identification
if there are no external links among them. The adversary
initiates the attack by generating a fictitious external link
within a cluster through the injection of a BDDP packet.
Subsequently, the controller merges the cluster with itself
into an archipelago and disregards clusters lacking external
links. Typically, after the controller divides the cluster,
there are no external links present. Consequently, the
LDS fails to account for scenarios where the source and
destination clusters of an archipelago are identical, leading to
a breakdown in logic during the cluster merging process. The
overlooked clusters remain unaffiliated with any archipelago,
resulting in communication failure and topology update
issues.
Countermeasure: The work in [63] introduced an effective

and lightweight countermeasure for the cluster split-
ting attack and cluster amnesia attack, known as the
LLDPCHECKER. This countermeasure operates in two dis-
tinct stages: LLDP verification and link validation.
Stage 1: LLDP verification: To thwart these attacks that

hinge on counterfeit LLDP packets, a robust defence strat-
egy involves authenticating LLDP packets. The controller
generates a distinct LLDP packet for each active port on
the switch. The Src MAC field in these LLDP packets is
configured to match the MAC address of the respective
switch port. Although the controller does not verify the
MAC address during LLDP packet processing, adversaries
exploit this vulnerability to craft a broadcast domain port and
disrupt the network topology. However, without management
authority, attackers cannot obtain MAC addresses of other
legitimate switch ports. Additionally, the Src MAC address
for each port is unique. Leveraging these insights, the
integrity of LLDP packets can be ensured by validating the
Src MAC field. It’s worth noting that the OpenFlow switch
in the Mininet simulation environment and certain hardware
OpenFlow switches support this feature, consistent with prior
research. To validate LLDP packet integrity, a mapping table
is established, binding each switch port to its corresponding
MAC address.
When the network service initiates, LLDPCHECKER cre-

ates an entry for the switch port and its associated MAC
address in the mapping table. Upon the shutdown of
a switch port, a Port-Status message is transmitted
to the controller. Upon receipt, LLDPCHECKER removes
the relevant entry from the mapping table. This approach
enables LLDPCHECKER to dynamically maintain real-time
information about the relationship between LLDP and switch
ports. Building on this foundation, LLDPCHECKER extracts
the datapath ID and port number from LLDP packets and
retrieves the MAC address from the mapping table based
on this information. Subsequently, LLDPCHECKER compares

these values with the Src MAC field of the LLDP packets
to validate consistency.
This process enables LLDPCHECKER to identify malicious

LLDP packets and prevent the creation of counterfeit
broadcast domain ports. During the link discovery pro-
cess, OpenFlow switches encapsulate LLDP packets into
Packet-In messages and transmit them to the controller.
LLDPCHECKER in the controller processes these messages
according to Algorithm 1. It initially extracts the remote
switch port from the LLDP packets. Legitimacy is confirmed
if the source MAC address retrieved from the PortMAC
mapping table does not align with the MAC address con-
tained in Packet-In messages. Otherwise, such messages
are deemed illicit and prevented from entering subsequent
applications.
Stage 2: link validation: Indeed, certain OpenFlow

switches, share the same Src MAC address across all
ports, creating a vulnerability where fake LLDP packets
can bypass the initial defence mechanism. To address this,
a more thorough validation stage is introduced before the
link discovery service identifies these links. In this phase,
LLDPCHECKER categorizes all ports into three groups based
on the connected device type: SWITCH, HOST, and NULL,
indicating connections to switches, hosts, and no devices,
respectively. When the controller receives a Packet-In
message containing an LLDP packet, LLDPCHECKER takes
different actions based on the device type of the remote
switch port. If the port is labelled as HOST, it discards the
LLDP packet from the host since a port connected to a host
cannot establish an external or internal link. For a remote
switch port labelled as SWITCH, LLDPCHECKER retrieves
the links associated with the port from the link library.
It then verifies whether the newly discovered links align
with the source and destination switch ports of these stored
links. If not, the LLDP packet is flagged as illegitimate.
LLDPCHECKER does not outright block LLDP packets on
ports labelled as HOST, as research [13] demonstrates that
prohibiting LLDP packets sent by a HOST-marked switch
port doesn’t thwart topology poisoning attacks. Attackers
can reset the port’s device type from HOST to NULL
temporarily by disabling the network interface. However, the
study finds that changes in attaching port status occur when
network links are added or removed. In contrast, injecting
or relaying LLDP packets enables adversaries to conduct a
topology attack without altering port status. Therefore, link
verification is performed through the remote switch port.
If Packet-In messages with LLDP packets pass the first
stage, the second phase of the inspection is initiated. The
Port-Links mapping table stores the link ports of all switches
and their corresponding links. LLDPCHECKER compares the
source and destination switch ports of newly discovered links
with these stored links. If inconsistencies are found, the
message is flagged as illegal. This way, LLDPCHECKER can
dynamically detect fake links in real-time.
Shrivastava and Kataoka [49] designed a new relay-based

link fabrication attack, Multi-hop Link (MHL) fabrication in

VOLUME 5, 2024 3431

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

order to inject a fake Multi-hop Link in the controller’s topol-
ogy view. In the presented Multi-hop Link fabrication attack,
an adversary needs the concise exploration of packets to drop
the LLDP messages while relaying the BDDP messages.
In the second step, they illustrate the deployment of the
proposed multi-hop link fabrication in order to elude basic
behaviour-based defence methods. The adversary imitates the
legacy switches and host traffic to impersonate the multi-hop
link’s actions in the represented attacking strategies over the
basic MHL’s fabrication attack. Then, they proposed a new
defence system for both basic and extended MHL fabrication
attacks. Shrivastava et al. proposed a defence and prevention
platform named “Hybrid-Shield” which is presented with
the Floodlight open-source controller. This proposed hybrid
shield can be comfortably deployed to many different types
of SDN controllers since it uses simple and fundamental
SDN functionalities. And finally, they conducted experiments
to evaluate and show the effectiveness of their proposed
Hybrid-Shield. The results show that Hybrid-Shield provides
quick detection and high accuracy of MHL verification [49].
Yuan et al. [64] introduced a method for formally

verifying potential attacks in SDN controllers automatically.
They delve into the commonalities among SDN controllers,
thoroughly examining the OpenFlow protocol, mainstream
controller implementations, and vulnerabilities within SDN
systems. Leveraging this understanding, they abstract core
components, their functions, and critical communications
within SDN systems. Additionally, they identified key
properties that, if compromised, could lead to catastrophic
outcomes, which are often exploited by attackers. The
authors then construct a formal description of SDN systems,
delineating the behaviours of various entities within the
system, including malicious and benign components, and
their interactions. This description serves as the system
model for analyzing potential attacks against SDN con-
trollers through formal verification using model-checking
techniques. Subsequently, they assessed counterexamples
generated during the analysis, filtering out those with prac-
tical exploit potential. Finally, they validated the feasibility
of these attack paths by applying them to real-world SDN
systems.

VI. IDENTIFIER BINDING ATTACK AND SECURITY
COUNTERMEASURES
Several attacks have been designed against identifier bindings
in SDN which allows the adversary to overtake the victim’s
identifiers, called Identifier Binding Attack (IBA). Three
critical attacks, namely Host Location Hijacking Attack,
Port Probing Attack, and Persona Hijacking Attack break
bindings between identifiers in different layers and assign
them to the adversary host. In this way, the adversary
deceives the controller into believing that the malicious
host is the legitimate owner of the victims’ identifiers. This
section provides a comprehensive analysis of diverse IBA,
explaining their operational mechanisms and corresponding
mitigation strategies.

A. HOST LOCATION HIJACKING ATTACK
This attack allows the adversary to take over the MAC
address from the victim host which leads to hijacking its
location information [12]. To this aim, the adversary first
finds the victim host’s MAC address and assigns it to its
Ethernet source address. The malicious host then sends
spoofed data plane packets (e.g., Internet Control Message
Protocol (ICMP), Hypertext Transfer Protocol (HTTP),
Domain Name System (DNS), etc.) to trigger PACKET-IN
messages toward the controller. As described in Section IV,
HTS continuously monitors PACKET-IN message to track
host mobility and updates the host profile based on host
motions. Upon receiving the packet, HTS indicates a mis-
match between extracted information (MAC address, switch
DPID and port number) from the PACKET-IN messages
and the corresponding entry of the host profile. The HTS
supposes that the victim has migrated to the new location and
updates the new information inside the host profile which
is the location of the adversary. By launching the attack, all
traffic for the victim host is hijacked toward the adversary
host. The attack lasts until the victim initiates any traffic
toward the controller which HTS can correct the host profile
entry to the victim location. To persist the attack over a large
timescale, the adversary could launch it on server targets
which typically work in passive mode (i.e., listen to the
received traffic on a specific port).
Countermeasure: The main reason behind the attack is that

the host identifiers are not authenticated and verified. The
first approach to mitigate the risk of the attack is to apply
cryptographic methods and utilize public and private keys
to authenticate the host in a migration event. However, the
technique could impose considerable computation overhead
for PACKET-IN message processing and require host
implementations. Another approach is presented in the
TOPOGUARD [12] in which HTS checks the legitimacy of
host migration by verifying the following two conditions;
(1) during the migration process, a Port-Down message
must be received from the source port (a precondition of the
host migration), (2) host reachability test must be failed to
the source port (postcondition of the host migration) after
finishing the migration.
In defence against this attack, SPHINX constructs a flow

graph that preserves IP/MAC associations for all hosts. In
addition, it stores a list of permitted switch ports that could be
assigned to hosts. Upon receiving an ARP spoofed message,
it validates against security policy rules and mentions
authorized binding. Any violation is raised as a security
alarm.

B. PORT PROBING ATTACK
The main weakness of the TOPOGUARD arises when the
victim host is in transit status between source and destination
switches. The adversary takes advantage of this weakness
to mount a port probing attack. In this attack, the adversary
periodically monitors and probes the victim port’s liveness
by using port probing tools such as ICMP, Transmission

3432 VOLUME 5, 2024

Control Protocol (TCP), and APR. Upon detecting that the
victim host is offline or starting the migration process, HTS
receives a Port-Down message from the source port which
satisfies the precondition of host migration. In addition, no
location address is bound to the victim host which meets
the requirement of postcondition. At this moment when the
migration process is still not finished by the victim host,
a malicious host could complete the migration process by
spoofing the victim’s identifier and sending a PACKET-IN
message to the controller.
Countermeasure: Port probing exploits a critical vulner-

ability tied to host migration—a race condition where the
first claiming end-host is recognized as the target by the
controller. This attack exploits the absence of authentication
around network identifiers like MAC and IP Addresses,
capitalizing on the ability to spoof these identifiers and
their associations. Conventional network access controls,
exemplified by IEEE 802.1x [44], rely on certificates or cryp-
tographic credentials to validate device authorization before
allowing traffic through the network port. Unfortunately,
802.1x lacks the cryptographic binding of network identifiers
(e.g., MAC address) to user credentials, making it inadequate
in preventing port probing attacks.
In response to this limitation, Secure Binder [65] extends

the protective scope of 802.1x across the entire identifier
hierarchy. This comprehensive approach effectively mitigates
port probing attacks by disallowing attackers from falsely
assuming the victim device’s identity without triggering
alerts. Further insights into Secure Binder will be detailed
in Section VI-D.

C. PERSONA HIJACKING ATTACK
In this attack, the adversary breaks two identifier bindings,
including MAC Address to Network Location, and also IP
Address to MAC address. It is supposed that a Dynamic Host
Configuration Protocol (DHCP) server has been configured
to assign and release IP addresses to/from the network node.
The attack operates in two phases. In the first phase, which is
referred to as IP takeover, the adversary leverages the DHCP
server to take over the IP address and hostname of the victim.
To this end, the adversary initiates a fake DHCP-RELEASE
message and requests for releasing the victim’s IP address.
This breaks the MAC-IP binding of the victim host. Then,
the adversary requests DHCP for an IP address. To bind
the released IP address (i.e., victim’s IP address) to the
MAC address of the malicious host, the adversary launches
a flooding attack against the DHCP server. To this end,
the adversary sends a huge number of DHCP-DISCOVER
messages to request a new IP address until the server offers
the IP address of the victim.
The second phase is addressed as the Flow Poisoning

Attack. Before re-assigning the released IP address to
the adversary, the DHCP server initiates an ARP probing
message to verify that the IP address is not currently used
by other nodes. Flow Poisoning Attack aims to blackhole
the victim’s claim in response to the ARP request. First,

the adversary breaks the binding between the MAC address
and network location in the DHCP server. To this aim, the
adversary sends a spoofed message from the DHCP server
toward the victim. Due to flow table miss, the PACKET-IN
message is directed toward the controller, leading to updating
the location of the DHCP server in HTS and adding a new
flow rule on the corresponding switch. As a result, all traffic
toward the DHCP is directed toward the adversary location.
Hence, when the DHCP server sends ARP probing to

verify the IP availability, the controller discovers the location
information of the legitimate DHCP server and applies a
new flow rule on the switch. The critical point is that due to
a delay in rule consistency in the switch and the controller,
the old flow rule is not removed from the switch. Hence, the
ARP reply from the victim is matched with the old rule and
consequently is directed toward the fake DHCP which is the
adversary location. As a result, because the real DHCP server
receives no claim for the released IP address, it allocates the
victim’s IP address to the adversary. The attack age depends
on the frequency of flow rule updating. In an extended case,
it will last till the victim’s DHCP lease expires.
Countermeasure: Several network weaknesses cause per-

sonal hijacking attacks. First, some protocols, such as ARP,
use an insecure broadcast domain and send its request with
no authentication. This empowers the adversary to listen to
the broadcast traffic and even respond to the request. Second,
identifier bindings are changed without consistency checking
and also considering their implications on other services.
Secure Binder [65] uses SDN functionality in separating
data and the control layer to provide a defense against port
probing and personal hijacking attacks.
To protect the IP address to MAC address binding, Secure

Binder sends all identifier-binding broadcast traffic toward
the controller, preventing the adversary from listening and
responding to a broadcast request. To this aim, Secure Binder
designs a binding mediator module in the controller to
separate the identifier binding control traffic from normal
data-plane traffic. Once a switch receives the explicit
identifier binding traffic (such as ARP, DHCP, and 802.1x),
sends it to the controller. The mediator validates receiving
binding messages by using a binding store database where
all authenticated bindings in all layers are stored. If receiving
traffic aims to change an existing binding, before updating
the database, the mediator checks the old binding to make
sure that it is no longer reachable.
For protecting MAC address to network location binding,

i.e., switch DPID and port, Secure Binder develops a port
control module in the controller to perform dynamic filtering
on source address. The module aims to prevent the adversary
from sending any spoofed messages toward the controller.
To this end, the module leverages the flow-table pipeline
feature to reserve the first table, i.e., Table 0, to install
egress filtering rules, separating the binding traffic from
the normal. Additionally, network ports are categorized
into four states, namely, Unknown, Edge, Internal, and
Quarantined. The initial value of a port is Unknown. The

VOLUME 5, 2024 3433

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

port state will turn to Internal if it receives any LLDP
message. In this case, incoming traffic will go to Table 1 for
forwarding. The port is set to Edge when it receives host-
generated traffic. In Edge port, based on the rule installed
in Table 0, packets with validating source addresses are
sent to Table 1 for forwarding, and other ones are sent
to the controller to log and drop. Any abnormal behaviour
changes the status of a port to Quarantined. Secure Binder
also leverages IEEE 802.1x [44] protocol to guarantee that a
unique mapping exists between a host and the corresponding
MAC address. IEEE 802.1x is a port-based access control
standard that initiates a cryptography authentication check
when a host joins the network. Secure Binder extends the
IEEE 802.1x protocol to validate a host’s MAC address
in the authentication process. To this end, it provides a
database located in the RADIUS authentication center which
contains records of mapping between the host’s certificate (or
password) and MAC address. If the incoming MAC address
and certificate match with existing mapping in the database,
the host is successfully authenticated. Then, Secure Binder
binds the MAC address to the associated port and inserts a
flow rule on the switch to allow the traffic with the MAC
address to be forwarded to the table with a higher ID.
Secure Binder faces potential overhead and latency issues

due to routing all identifier-binding broadcast traffic to
the controller. This approach could significantly increase
network latency and create additional overhead, particu-
larly problematic in expansive networks. The heightened
traffic load imposed on the controller might strain its
processing capabilities, potentially impeding the overall
network performance, especially in large-scale environ-
ments. Furthermore, while Secure Binder robustly combats
external threats, its limitations in countering insider attacks—
where authenticated users exploit their access privileges
maliciously—pose a concern. Binder’s vulnerability to
insider attacks underscores the need for a zero-trust mind-
set, where all users and devices—even those already
authenticated—should be continually scrutinized for poten-
tial threats or misuse of privileges.

D. ARP SPOOFING ATTACK
ARP spoofing is a critical tactic utilized by cyber adversaries
to launch DoS or MITM attacks, severely compromising
system performance and data integrity. Despite efforts to
thwart ARP spoofing using SDN-based intrusion detection
systems (IDSs), many existing approaches are ineffective due
to static thresholds and the absence of real-time information
during detection. To address these issues, a new deception-
based IDS is proposed in [67] to efficiently identify
attackers in SDN networks. This method tricks attackers into
gathering real-time data, enhancing detection capabilities.
Simulation results in the Mininet simulator demonstrate that
the proposed approach significantly outperforms existing
methods in mitigating ARP spoofing attacks. They suggest
a fresh approach to IDS that revolves around deception.
This technique tricks attackers into revealing real-time data

such as attack frequency and timing, thereby enhancing the
detection system. Their key contributions include introducing
a novel dynamic detection threshold derived from data gath-
ered from decoys and presenting an IDS that incorporates
deception and adapts to fluctuations in attack frequency
during detection.
In the following, we’ll explore ARP spoofing attack

scenarios. The attacker begins by conducting network recon-
naissance before executing ARP spoofing attacks. Network
reconnaissance involves gathering information, such as IP
and MAC addresses, services, etc., about a system using
tools like Nmap and Xprobe2. This gathered data helps the
attacker identify potential targets. Following reconnaissance,
the attacker proceeds to launch ARP spoofing attacks to
corrupt victims’ ARP caches. In this scenario, adversary X
focuses on host T and corrupts its ARP cache by pretending
to be host Y. As a result, any traffic from T that was meant
for Y is rerouted to X. A host is categorized as a non-
attacker if it’s recognized by a single IP-MAC pair within
the network.
Here are the attacker’s traits: 1. An attacker can send an

ARP packet to acquire multiple IP addresses for a single
MAC address or multiple MAC addresses for a single IP
address within the network. 2. The MAC address in the
header of an ARP packet sent by an attacker typically differs
from the MAC address at the data link layer. 3. Attackers
often send out more ARP requests than the number of ARP
responses they receive.
Countermeasure: Motivated by the challenges posed by

ARP spoofing and the necessity for reliable solutions, the
study [68] presents a thorough examination in their paper,
offering innovative strategies for safeguarding networks
within the SDN framework. Their research makes the
following significant contributions. They introduce a novel
and efficient ARP spoofing detection and mitigation scheme
based on deep learning, enhancing the network’s ability
to detect and thwart such attacks effectively. Their system
displays improved network throughput and CPU utilization,
even amidst ARP spoofing attacks, while also identifying
potentially risky situations through detailed packet analysis.
The proposed system undergoes thorough assessment across
various network sizes and traffic conditions, offering valuable
insights into its effectiveness and scalability.
The fundamental approach includes four key components:

First, their system gathers data on network traffic from
across the entire SDN network, including information on
network devices and their connections. This holistic network
perspective forms the basis for identifying any unusual
or suspicious behaviour and potential avenues of attack.
To effectively detect and counter ARP spoofing attacks,
they propose a state-of-the-art detection system that utilizes
advanced methods, including a DNN (Deep Neural Network)
model. This model is trained to recognize patterns indicative
of ARP spoofing, enabling real-time monitoring of MAC
addresses associated with each network device. Additionally,
the system cross-references ARP responses with a known

3434 VOLUME 5, 2024

TABLE 3. Summary of LFA and IBA attacks, description, attack root cause.

database of MAC addresses and IP pairings to spot any
inconsistencies. When an ARP spoofing attack is detected,
the system can respond immediately by isolating the offend-
ing device or notifying network administrators. Furthermore,
their system promptly alerts network administrators to detect
threats, empowering them to make swift and well-informed
decisions. It conducts thorough traffic analysis, distin-
guishing between normal network activity and potentially
malicious behaviour. Importantly, all network traffic data,
whether from attack incidents or normal operations, is stored
in CSV format, facilitating in-depth analysis and assisting
in the development of future threat mitigation strategies.

VII. EXPLORING SECURITY COUNTERMEASURES AND
TRADE-OFFS
This section offers a detailed exploration of security counter-
measures and trade-offs relevant to security countermeasures
against LFA and IBA. We commence with Section VII-A,
delving into the intricacies of Performance Evaluation, and
assessing the efficacy of the security measures. Subsequently,
in Section VII-B, we navigate the complexities of balancing
security requirements with operational efficiency in the
context of secure topology discovery for SDN environments.
Table 3 presents the summary of existing LFA and IBA

attacks and attack root cause analysis. This table is pivotal as
it provides a comprehensive overview, enabling a quick and
structured understanding of different attack scenarios and
their underlying causes within the context of the Topology
Poisoning Attack. It’s crucial to note that all LFA and IBA
scenarios operate under the assumption that the adversary
has compromised at least one host or switch. However, the
specific location of the attacker can significantly influence
the likelihood of a successful attack. In instances where
the assumption is that the attacker has compromised a host

and is situated within that host, the risk factor increases.
This is because even a relatively weak attacker with limited
capabilities could initiate the attack, thereby elevating the
overall likelihood of successful exploitation. It’s important
to recognize that this scenario raises the probability of an
attack occurrence. On the other hand, when the assumption
is that the attacker has compromised a switch, the feasibility
of the attack becomes more constrained. Initiating such an
attack from a compromised switch would typically require
a more sophisticated and potent adversary. Consequently,
this implies a lower likelihood of occurrence compared to
scenarios involving compromised hosts. However, despite the
lower likelihood, the impact and severity of the attack could
be equally significant.
In examining the landscape of threats posed by LFA and

IBA, it’s essential to comprehensively understand each attack
type and its associated countermeasures. Table 4 provides an
exhaustive analysis, offering a detailed breakdown of various
attacks, corresponding countermeasures, and their respective
advantages and disadvantages. This comprehensive compar-
ison facilitates a structured comprehension of the strengths
and limitations of each countermeasure in mitigating LFA
and IBA attacks within network infrastructures.

A. PERFORMANCE EVALUATION
The performance evaluation of main countermeasures for
LFA, outlined in Table 5, highlights varying effectiveness,
scalability, and compatibility across different defence meth-
ods.

1) EFFECTIVENESS

The effectiveness of the countermeasures is primarily
demonstrated by simulating various network topology

VOLUME 5, 2024 3435

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

TABLE 4. Security comparison on presented countermeasures against topology poisoning attack.

TABLE 5. Performance evaluation for main countermeasures for LFA.

poisoning attacks in the environment, such as the
Floodlight controller. The reactions of the SDN con-
troller equipped with the countermeasure are then observed

by monitoring its console output and security logs.
This method allows for a thorough assessment of how
well the countermeasures detect and respond to the

3436 VOLUME 5, 2024

simulated attacks, providing valuable insights into their
efficacy.
For each countermeasure, the effectiveness is evaluated

based on its ability to detect and mitigate fake links
introduced by various attacks. TopoGuard, for instance,
positively detects violations of a device type of particular
ports, showcasing its effectiveness in identifying abnormal
link behaviour. However, it is also noted that TopoGuard
can be bypassed by the Port Amnesia Attack, indicating a
limitation in its effectiveness against certain types of attacks.
Similarly, TopoGuard+ demonstrates effectiveness by detect-
ing all fake links through a comparison of measured link
latencies and computed thresholds. However, it is vulnerable
to being bypassed by the Link Latency Attack, which affects
its overall effectiveness. MLLG and RLV both leverage
machine learning models to detect fake links effectively,
showcasing their robustness in identifying abnormalities in
network behaviour. On the other hand, LldpChecker exhibits
effectiveness by detecting all fake links through two stages of
LLDP and Link validation, demonstrating a comprehensive
approach to link verification.

2) PERFORMANCE OVERHEAD

The performance overhead across most countermeasures
against LFA (Relay LLDP) primarily arises from two
main factors. Firstly, the extension of the LLDP protocol
with a timestamp TLV introduces additional delays in
the construction of LLDP packets. Secondly, there are
additional security inspections conducted on LLDP packets,
contributing further to the overhead. Unlike TOPOGUARD+,
MLLG, and RLV, the LLDPCHECKER does not extend the
LLDP protocol, resulting in no extra delay in LLDP packet
construction. Consequently, it exhibits less performance
overhead compared to the aforementioned countermea-
sures. The noteworthy aspect is that while each of these
countermeasures adds overhead to the SDN controller, it
remains negligible, with no impact on data plane flows.
Additionally, the overhead of LLDP packet construction with
the implementation strategy of computing the HMAC value
is considerable, accounting for 80.4% of the overall LLDP
construction time [12].
In addition, other countermeasures like SPV, which utilize

a probe message mechanism, incur additional overhead in
generating probes and installing new flows on switches. To
alleviate this, SPV employs a multi-threading approach. In
single-threading mode, the verification time for the largest
dataset with 96 data-plane links is 26.1 seconds. However,
leveraging the multi-threading mode significantly improves
the verification time, reducing it to 10.6 seconds.

3) SCALABILITY

In the context of network security countermeasures, scalabil-
ity is crucial for ensuring that the protection mechanisms can
effectively adapt to larger networks or increased traffic with-
out significant degradation in performance or efficiency. A
scalable countermeasure should be able to accommodate the

growing complexity and size of networks while remaining
effective in detecting and mitigating security threats.
For each countermeasure mentioned, scalability manifests

differently based on various factors such as processing over-
head, false alarm rates, and compatibility. Countermeasures
like RLV and LLDPCHECKER demonstrate efficient scala-
bility across different network sizes due to their optimized
processing methods and ability to adapt to various topologies.
On the other hand, countermeasures like TOPOGUARD
and TOPOGUARD+ show limited scalability due to their
reliance on controller overhead for LLDP processing and
construction, which can become a bottleneck as network size
increases. Compatibility also plays a role, with ML-based
approaches like MLLG and RLV being compatible with all
SDN controllers, offering scalability without being tied to
specific platforms. Overall, a balance between effectiveness,
performance overhead, and adaptability is essential for
ensuring scalability in network security countermeasures.

4) COMPATIBILITY

Compatibility refers to the ability of each countermea-
sure to seamlessly integrate with various SDN controllers
without requiring significant modifications or additional
programming efforts. Countermeasures that exhibit high
compatibility can be deployed across different controller
platforms with ease, enhancing their versatility and appli-
cability in diverse network environments. For example,
countermeasures like MLLG, RLV, and SPV are designed
to be compatible with all SDN controllers, allowing them
to be deployed without compatibility concerns or platform
limitations. This compatibility ensures that these counter-
measures can be readily integrated into existing network
infrastructures, regardless of the specific SDN controller
being used, thereby maximizing their utility and effectiveness
in safeguarding against LFA attacks.
Conversely, countermeasures with limited compatibility,

such as TOPOGUARD and TOPOGUARD+, are primarily
programmed for specific SDN controllers like Floodlight.
While effective within their designated environments, these
countermeasures may require additional programming or
adaptation efforts to function seamlessly with other SDN
controller platforms. This lack of compatibility can intro-
duce challenges in deploying these countermeasures in
heterogeneous network environments where multiple SDN
controllers are utilized. Thus, compatibility considerations
play a crucial role in determining the ease of deployment
and interoperability of network security countermeasures,
ultimately influencing their effectiveness in mitigating LFA
attacks and other security threats in SDN deployments.

B. NAVIGATING TRADE-OFFS IN SECURE TOPOLOGY
DISCOVERY FOR SDN ENVIRONMENTS
Each countermeasure offers unique advantages and disad-
vantages in mitigating topology poisoning attacks. Careful
consideration of these factors is crucial when selecting
and implementing countermeasures to ensure comprehensive

VOLUME 5, 2024 3437

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

protection for SDN environments. In SDN ensuring the secu-
rity of topology discovery techniques involves navigating a
complex landscape of trade-offs and challenges.
TopoGuard, employing a port classification technique

based on first-seen traffic, effectively restricts hosts in LLDP
propagation, which is advantageous for maintaining network
integrity. However, its effectiveness wanes in dynamic
environments due to its inability to adapt quickly to changing
network configurations. Additionally, vulnerability to Port
Amnesia attacks introduces a significant trade-off as it may
lead to false positives or negatives, compromising detection
accuracy and reliability. On the other hand, statistical
analysis, as employed by another countermeasure, offers a
more analytical approach but suffers from a high false alarm
rate during peak hours and reliance on a single threshold,
highlighting a trade-off between precision and performance.
Countermeasures like TopoGuard+ cover both in-band

and out-of-band attacks, providing comprehensive protection.
However, this broader coverage comes at the expense of
increased false alarms during peak hours and overhead asso-
ciated with port monitoring, indicating a trade-off between
coverage and operational efficiency. The reliance on a single
threshold further exacerbates this trade-off, as it may not
adequately account for variations in network conditions.
MLLG’s machine learning-based approach offers a high

attack detection rate and dynamic latency threshold, enhanc-
ing adaptability and accuracy in detecting topology poisoning
attempts. However, the overhead involved in training the
model and offline evaluation introduces scalability chal-
lenges, posing a trade-off between detection accuracy and
resource consumption. Similarly, RLV’s performance and
robustness in large-scale SDNs are commendable but come
at the cost of increased complexity due to model learning
and retraining requirements, highlighting a trade-off between
performance and computational overhead. MLLG is suitable
for environments with moderate to high traffic variability
and dynamic network conditions, such as large enterprise
networks. While RLV is ideal for large-scale SDN environ-
ments with complex network architectures, such as cloud
service provider networks or telecommunications networks.
For example, a cloud service provider managing a vast
infrastructure of virtualized resources could leverage RLV to
continuously monitor link latency and ensure the reliability
and performance of their services.
SPV’s method of verifying link legitimacy provides com-

prehensive security coverage by detecting both known and
unknown LFAs. However, the communication overhead and
complexity in key sharing introduce trade-offs in terms of
network performance and management overhead, balancing
security with operational efficiency. SPV is well-suited
for environments where network integrity and security are
paramount, such as critical infrastructure networks.
Countermeasures like HMAC over DPID and Port with

either a static or dynamic secret key aim to verify LLDP
integration and authorization. However, they suffer from
overhead in HMAC and LLDP verification, as well as

vulnerability to replay attacks. Additionally, LLDP integrity
protection with updated freshness in every LLDP round
helps prevent replay attacks but introduces key tracking
complexity. Countermeasures like LLDPChecker aim to
detect false broadcast domain ports and irregular LLDP,
respectively. While they offer real-time detection, they come
with the overhead of LLDP verification. The LLDPChecker
is suitable for environments where real-time detection of
malicious activities is critical, such as data centres or cloud
computing environments. For example, a data centre hosting
critical applications and services may deploy cluster splitting
and cluster amnesia attack detection mechanisms to promptly
identify and mitigate any anomalies in the network.
Cryptographic methods for host authentication and veri-

fication of pre and post-conditions of host migration help
protect the legitimacy of host migration. However, they may
introduce computation overhead in packet-in processing and
require implementation on hosts. The solution is suited for
environments where securing host migrations and ensuring
the integrity of host authentication are paramount such as
Cloud Computing Infrastructure and Data Centers.
SecureBinder separates identifier-binding traffic from nor-

mal traffic and enforces access control. However, it may
introduce potential overhead and latency and offer limited
protection against insider attacks. SecureBinder is well-
suited for environments where strict access control and data
confidentiality are essential, such as corporate networks.
One fundamental trade-off arises between scalability and

effectiveness. While robust security measures are essen-
tial for safeguarding against topology-based attacks, such
measures often introduce additional computational and com-
munication overhead, potentially impacting the scalability of
the network. Balancing the need for enhanced security with
the imperative of efficient network operation is therefore
crucial, especially in large-scale SDN environments where
the sheer volume of network traffic can pose signifi-
cant challenges. Countermeasures like TopoGuard, which
employs a port classification technique based on first-
seen traffic, effectively restrict hosts in LLDP propagation,
maintaining network integrity. However, its effectiveness
wanes in dynamic environments due to its inability to adapt
quickly to changing network configurations.
Moreover, the trade-off between overhead and detec-

tion accuracy presents a central challenge. Enhancing
the accuracy of topology discovery techniques typically
requires allocating more resources, leading to increased
overhead. This dilemma underscores the need to optimize
the balance between detection accuracy and resource con-
sumption to ensure that security measures do not unduly
burden network performance. Additionally, in dynamic
environments characterized by frequent topology changes,
maintaining stability while accommodating adaptability
poses a significant challenge. Security solutions must be agile
enough to dynamically adjust to evolving network conditions
without sacrificing stability or reliability. Countermeasures
like MLLG’s machine learning-based approach offer a

3438 VOLUME 5, 2024

high attack detection rate and dynamic latency threshold,
enhancing adaptability and accuracy in detecting topology
poisoning attempts. However, the overhead involved in train-
ing the model and offline evaluation introduces scalability
challenges, posing a trade-off between detection accuracy
and resource consumption.
Furthermore, the complexity of security measures often

presents a trade-off with manageability. Introducing sophis-
ticated security mechanisms can increase the complexity
of network management and configuration, potentially
overwhelming network administrators. Simplifying the man-
agement of security measures is therefore essential to ensure
that they remain manageable and maintainable, even as
the network grows in complexity. Additionally, allocating
resources for security purposes may divert them from other
critical network functions, creating a trade-off between
resource consumption and security assurance. Striking the
right balance between enhancing security assurance and
preserving network efficiency is thus a key challenge in SDN
environments. Countermeasures like SPV’s method of verify-
ing link legitimacy provide comprehensive security coverage
by detecting both known and unknown LFAs. However,
the communication overhead and complexity in key sharing
introduce trade-offs in terms of network performance and
management overhead, balancing security with operational
efficiency.
Lastly, the pursuit of adaptability in security measures

must be carefully managed to avoid inadvertently exposing
the network to new vulnerabilities. Implementing adaptive
security measures may introduce new attack vectors or weak-
nesses if not properly monitored and updated. Therefore, a
continuous cycle of monitoring, evaluation, and adaptation
is essential to address emerging threats and vulnerabilities
effectively. By addressing these trade-offs and challenges
through a holistic approach to secure topology discovery,
SDN environments can achieve a high level of protection
against topology-based attacks while maintaining efficient
network operation.

VIII. TOPOLOGY DISCOVERY PROTOCOL SECURITY
ENHANCEMENT
In the realm of safeguarding topology discovery services,
extensive efforts have been undertaken. Sections V and VI
have introduced defence mechanisms, and now, researchers
are delving into enhancing link discovery security through
OFDP modifications. However, while these endeavours shore
up certain vulnerabilities and refine topology accuracy, they
possess inherent limitations. Despite fortifying the correct-
ness of the topology view, these solutions often overlook
threats embedded in other construction phases. Moreover,
their integration extends the LLDP, leading to an inevitable
surge in network overhead. As we move ahead, related works
addressing these challenges will be explored in the upcoming
subsections.

A. SECURED DISCOVERY PROTOCOL
Ochoa-Aday et al. [69] introduced a new protocol designed
to uncover layer 2 infrastructures within extensive SDN
setups. Their proposed eTDP (enhanced Topology Discovery
Protocol) efficiently delegates discovery functions among
switches that support this protocol, creating a hierarchical
distribution. Unlike existing methods, this solution allows
for the automatic detection of network components without
relying on prior IP configurations or the controller’s prior
knowledge of the network. By employing this mechanism,
the SDN controller can seamlessly unveil the network’s
topology, constructing a comprehensive view without facing
scalability challenges and utilizing the most efficient control
paths to each switch. In experimental simulations using real-
world topologies, the researchers demonstrated that eTDP
offers an effective means of discovering network topology,
achieving discovery times of under 0.08 milliseconds in
the examined networks. The results indicate that increasing
the number of SDN controllers does not impact the overall
number of packets generated per switch. Additionally,
eTDP outperforms OpenFlow-based approaches, showcasing
significant improvements, especially when compared to the
current OFDP (OpenFlow Discovery Protocol).
Rojas et al. [70] proposed, implemented and evaluated

the Tree Exploration Discovery Protocol (TEDP), which is
an improved and advanced algorithm for topology service
without any additional messages in comparison with LLDP.
The proposed TEDP algorithm initiates the topology dis-
covery service at a single node with the help of flooding
a probe framework in order to discover the SDN network
and then, gather information. In contrast, other traditional
algorithms poll each device and collect the replies afterwards,
as in LLDP. Furthermore, they implemented their algorithm
in two various ways: a simple SDN network in which
the implementation inhabits the TEDP-S controller and a
hybrid network in which the service is implemented in a
shared status between the network switches and the SDN
controller. The results of their proposed algorithm seem very
promising since the number of control messages is decreased
significantly and also topology discovery service is improved
in order to provide latency-based paths more efficiently [70].
To accomplish the objective of minimizing the number

of LLDP PACKET-OUT messages to one per switch,
Pakzad et al. leverage two key features. Initially, when
an OpenFlow switch establishes a connection with the
controller, it conveys information about its ports, Port
IDs, and associated MAC addresses through an OpenFlow
OFPT FEATURES REQUEST message. This creates a direct
mapping of MAC addresses to Port IDs for each switch in
the controller. Additionally, they capitalize on the OpenFlow
switches’ capability to modify packet headers, commonly
used for tasks like updating TTL fields or implementing
Network Address Translation. Their proposed SDN topology
discovery method, labelled OFDPv2, introduces specific
changes to the existing version (OFDP):

VOLUME 5, 2024 3439

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

1) The controller’s behaviour is altered to restrict the
number of LLDP PACKET-OUT messages sent to each
switch to one. The Port ID TLV field in the LLDP
payload is set to 0 and disregarded.

2) A new rule is implemented on each switch, directing
that every LLDP packet received from the controller
should be forwarded to all available ports. The source
MAC address of the corresponding Ethernet frame is
then set to the address of the port through which it is
transmitted.

3) The PACKET-IN event handler on the controller,
responsible for processing incoming LLDP packets,
undergoes modification. Instead of parsing the Port ID
TLV in the LLDP payload, the handler now examines
the source MAC address of the Ethernet header. It
looks up the corresponding Port ID in the controller’s
database, which maintains a one-to-one mapping of
MAC addresses and switch Port IDs [71].

The primary concept behind sOFTD proposed by
Azzouni et al. [47] involves shifting a portion of the
discovery process from the controller to the switch while
making minimal adjustments to the OpenFlow switch design.
The key design features of sOFTD include:

• sOFTD introduces a port-liveness-detection mechanism
(BFD) to the switch.

• It utilizes OpenFlow FAST-FAILOVER groups (which
are optional in OpenFlow 1.1+) to monitor switch ports
for connection updates.

• sOFTD allows the switch to notify the controller about
changes in port connectivity.

• The switch is equipped with a rule (“drop lldp”) to
discard every LLDP packet, preventing LLDP flood
attacks.

• The controller sends encrypted LLDP packets only
when there is a switch-port connectivity update, and
these packets are directed solely to the relevant switches.

• LLDP packets are accompanied by rules (with a hard
timeout of 1 second) to redirect them back to the
controller. These rules take precedence over the “drop
lldp” rules.

Since sOFTD avoids sending periodic discovery packets,
initial results indicate significantly improved performance
compared to OFDP [47].
Azzouni et al. [72] built upon their earlier research

addressing limitations in OFDP. They introduced a new
topology discovery protocol for OpenFlow, known as
sOFTDP, which involves minimal modifications to the
OpenFlow switch design. Notably, their approach is inher-
ently more secure than previous solutions applied to
conventional OFDP. Additionally, through proof-of-concept
experiments, they demonstrated that their proposal sig-
nificantly outperforms both OFDP and OFDPv2 [71] by
several orders of magnitude. The fundamental concept
behind sOFTDP involves decentralizing a portion of the
discovery process from the controller to the switch. With

subtle adjustments to the OpenFlow switch design, sOFTDP
empowers the switch to independently identify link events
and communicate them to the controller. The controller is
then equipped with the necessary logic to manage these
switch notifications. The essential elements of sOFTDP’s
design include the utilization of Bidirectional Forwarding
Detection (BFD) as a mechanism for port liveness detection,
asynchronous notifications, a topology memory, FAST-
FAILOVER groups, “drop lldp” rules, and hashed LLDP
content [72].
Nehra and colleagues [73] introduced SLDP, a pioneer-

ing link discovery protocol tailored for SDN networks.
SLDP stands out with its three-tiered security levels and
lightweight design, achieved through a novel link discovery
packet structure. This protocol proves to be more efficient
by minimizing the generation and transmission of SLDP
packets. The design of SLDP encompasses key elements
such as the SLDP packet structure, system architecture, and
event sequence. Unlike traditional LLDP packets, SLDP
eliminates unnecessary Type-Length-Values (TLVs) like time
to live (TTL) and EndTLV, which are irrelevant in SDN.
SLDP introduces a fixed-length positional packet structure,
optimizing the use of bits and simplifying the packet format.
To bolster security, SLDP employs a token-based prevention
approach to thwart poison, replay, and flooding attacks. It
even introduces additional security levels, such as poison
detection with mitigation and flood detection with mitigation,
to address low-probability attacks. In the implementation, the
controller initially dispatches SLDP packets to every port of a
switch, but as iterations progress, certain ports are designated
as non-eligible. This strategic decision reduces the number
of SLDP packets generated and sent by the controller. The
researchers implemented SLDP in the Mininet environment
with the RYU controller, showcasing a significantly faster
process of link discovery packet creation and verification
compared to RYU’s original OFDP (OpenFlow Discovery
Protocol) implementation. SLDP’s topology discovery out-
performs OFDP due to its quick and targeted transmission of
lightweight packets, resulting in lower CPU and bandwidth
resource utilization [73].
Jia and colleagues introduce a novel probe frame structure

for Lightweight Automatic Discovery Protocol (LADP),
enhancing both traffic efficiency and security. The suggested
LADP discovery method gathers link information while con-
currently addressing injection, replay, and flooding attacks
in the discovery process. The LADP approach involves four
stages: Initialization; the second stage, where an LADP
frame is created and sent to the data plane by the control
plane; the third stage, where the LADP frame explores the
network; and finally, the controller computes the topology
information [74].

Chang et al. [75] introduced the inaugural delegation
function designed for topology discovery in SDN. This
method effectively reduces the delay associated with creating
and sending LLDP frames from the controller. The aim is to
expedite the detection of changes in network topology and

3440 VOLUME 5, 2024

enhance its accuracy. Through experimental findings, they
demonstrate that their approach not only attains excellent
scalability and responsiveness for topology discovery but also
does not impose additional CPU usage on switches. The sug-
gested approach for discovering network topology is applied
in both controllers and switches. Initially, LLDP-enabled
OpenFlow switches are deployed, capable of generating
LLDP frames and sending them to adjacent switches within
one hop. Each switch identifies directly connected switches
by receiving these LLDP frames. When a new neighbouring
switch is linked or an existing one is disconnected, switches
communicate these changes in topology to the controller.
Within the controller, a topology manager module is estab-
lished to collect reports of topology changes from switches
and construct an updated representation of the network
topology. This suggested mechanism seamlessly integrates
with the original OFDP, enabling the controller to implement
it selectively on chosen switches for various purposes. For
instance, a controller might opt to allow remote switches
to independently generate LLDP frames to promptly detect
changes in network topology. Alternatively, the controller
can delegate the synthesis of LLDP frames to all switches
before executing critical or intricate tasks. This approach
prevents the controller from consistently generating LLDP
frames for all switch ports, significantly cutting down on
both messaging and computational burdens. Moreover, the
traffic load associated with maintaining network topology is
substantially reduced, as switches only report updates to the
controller. Consequently, the controller can deliver quicker
response times for its applications [75].

Hauser et al. [76] proposed a novel scheme called
P4-MACsec, which automatically protects links between
switches with MACsec in P4-SDN. Their proposed scheme
shows a P4 data plane implementation for MACsec including
encryption and decryption. Their proposed new two-tier
control plane contains local controllers operating on all of
the P4 switches that are linked to a centralised controller.
This proposed control plane is responsible for leading
P4 switches. At the next stage, Hauser et al. proposed a
modern secure scheme for link discovery by using automatic
deployment of MACsec link protection and encrypted LLDP
packets. The proposed P4-MACsec removes the prior settings
efforts for MACsec [76].

B. SECURED DISCOVERY PROTOCOL IN HYBRID
NETWORKS
Alvarez-Horcajo and colleagues [77] introduced the Hybrid
Domain Discovery Protocol (HDDP), a groundbreaking pro-
tocol designed to efficiently uncover the complete network
topology in hybrid SDN domains, where both SDN and non-
SDN devices coexist. This protocol relies on an exploration
mechanism initiated by the control plane, which uses a
controlled flooding approach to reach all devices and
gather essential information from the hybrid network. Unlike
OFDP, their approach excels by discovering the entire
hybrid topology in a network domain comprising SDN and

non-SDN devices with a reduced number of exchanged
packets [77]. HDDP’s standout feature is its capability to
integrate non-SDN devices and their bidirectional links into
a comprehensive discovery of a hybrid SDN network. Given
that non-SDN devices lack direct links to SDN controllers,
they depend on SDN devices to relay their information.
This connection may not be direct but indirect through other
non-SDN devices. HDDP operates as a distributed protocol,
relying on the exchange of HDDP Requests and Reply
control messages to reveal the network topology. The struc-
ture of HDDP control messages is based on the minimum
length of Ethernet networks, chosen as the infrastructure
layer for HDDP implementation, although adaptability to
other infrastructures like wireless scenarios is possible. The
controller instructs its connected SDN devices to broadcast
an HDDP Request message, initiating network exploration.
Subsequently, all devices respond with corresponding HDDP
Reply messages. These messages contain information cru-
cial for the controller to attain a comprehensive view of
the underlying topology, combining various data subsets
extracted from these messages. The method by which HDDP
triggers these HDDP Reply messages varies based on the
nature of nodes, distinguishing between wired and wireless
nodes [77].
Martinez-Yelmo et al. [78] proposed Enhanced Hybrid

Domain Discovery Protocol (eHDDP) which is a new method
for collecting information from full-hybrid SDN topologies.
This proposed method is able to deal with wired/wireless links
and also explore hybrid SDN topologies with SDN and non-
SDNgadgets.upgraded theHybridDomainDiscoveryProtocol
(HDDP) header in the control messages in order to support
variouskindsofwirelessdevicesand interfaces.Moreover, they
proposed an improved version of the Mininet-WiFi program
which aims toworkwithwireless ad-Hoc networkswith a huge
number of gadgets that authorized to perform an assessment of
eHDDP [78].

A new layer 2 link discovery scheme is suggested
by Hussain et al. [79], accompanied by a fresh frame
format. This enables the controller to identify legacyâ“OF
and legacyâ“legacy links in an h-SDN. This not only
facilitates bidirectional topology discovery in the h-SDN
(except for nonterminal LSs) but also minimizes the need
for extra messages. The suggested approach identifies links
within the network through a solitary Pout message, elim-
inating the need for the one-way link detection typical
in state-of-the-art protocols. In order to streamline the
number of Pin messages, a lone packet sent from the
OFS to the controller triggers bidirectional updates to the
topology table. Experiments conducted in Mininet, based
on the number of detected ports and messages required
for topology retrieval within the network, demonstrate a
significant improvement. The results show a 34.6%–97.9%
increase in the number of detected ports and a reduction
in the number of Pin messages by about 25%-58.9%
compared to state-of-the-art protocols across diverse
topologies.

VOLUME 5, 2024 3441

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

The majority of existing protocols use a unidirectional
process initiated by the controller to discover links, but
they often miss important connections in certain network
scenarios. In the proposed hybrid SDN approach, a new
method is suggested to identify the global network topol-
ogy efficiently. This involves circulating a single frame
throughout the network, with each node appending relevant
information. The OFS then sends this information to the
controller, allowing for bidirectional topology optimization.
The proposed ICLF scheme reduces the number of

messages needed for topology detection. Additionally, a
novel frame format is introduced for this scheme. The
frame formats, LLDP and ICLF, share standard fields like
Preamble, Destination Address, Source Address, and Eth
Type. However, they differ in the destination field, where
LLDP uses a multicast address, and ICLF uses a broadcast
address. In ICLF, the frame contains the Root MAC address,
Source Port, and Destination Port, with the Root MAC
address serving a role similar to LLDP’s Chassis ID. Both
LLDP and ICLF involve a relationship between source and
destination addresses.
Unlike LLDP, ICLF includes both source and destination

port IDs to establish topology at the controller, accounting
for the lack of information on legacy port IDs. Before ICLF
operates, the controller establishes proactive rules in the
OFS. For Pin events, the OFS rule directs the packet to the
controller, while Pout events send packets to all active switch
interfaces. The Pin event rule in the OFS has a 5-second
idle timeout, notifying the controller when the flow entry is
removed. To prevent a broadcast storm, a port status variable
ensures frames are only broadcasted when its value is 0;
otherwise, no broadcast occurs [79].

IX. IMPORTANCE OF TOPOLOGY DISCOVERY SERVICE
IN REAL-WORLD USE CASES
In this section, we have delved into the crucial role
of SDN Topology Discovery Service within real-world
applications, emphasizing its significance across diverse
domains. Specifically, we explored its relevance within
Software-Defined Industrial Networks, where the dynamic
nature of industrial environments necessitates agile network
management facilitated by TDS. Additionally, we scrutinized
its pivotal role within Vehicular Networks, where the
seamless coordination of vehicular communication demands
accurate topology mapping provided by TDS. Furthermore,
our discussion extended to the realm of Open-RAN 5G
Networks, where the disaggregated architecture relies heav-
ily on TDS for efficient orchestration and optimization
of network resources. Through these varied contexts, the
importance of TDS emerges as a fundamental enabler of
network reliability, scalability, and adaptability, underscoring
its indispensable role in modern network infrastructures.

A. SOFTWARE-DEFINED INDUSTRIAL NETWORKS
Connecting various machines and industrial systems through
industrial networks can enhance productivity and cost

efficiency by integrating information technology (IT), opera-
tion technology (OT), and communication technology (CT).
Despite these benefits, traditional industrial networks face
challenges in adapting to new manufacturing methods like
flexible control and intelligent task scheduling. Manual
offline pre-configuration is time-consuming and prone to
errors, leading to scattered administration and coordination
issues. SDN addresses these issues by separating control and
data planes, enabling efficient networking, and offering a
global network view for centralized management. SDN’s uni-
fied interfaces enhance programmability and customizability,
making it a valuable solution for challenges in industrial
networks. Software-defined industrial networks (SDIN) have
gained attention and are being applied in various industrial
fields such as smart grids, vehicular networks, smart health-
care, and smart metering [80]. Wang et al. [80] studied
the attacks against SDIN and their propagation due to
multi-controller coordination. They also performed two types
of attacks (topology forgery attack and packet-in flooding
attack) in emulated distributed SDIN. Then, they illustrated
their propagation among different controllers and supply
more information related to the attack. Wang et al. [80]
also proposed an attack mitigation platform based on
reinforcement learning and deep Q-learning in order to
defend the distributed SDIN against the mentioned attacks.
This proposed reinforcement learning-based network can
adaptively adjust the switch takeover decisions by dealing
with the SDIN environment and exploring the arrival rate of
requests provided by industrial devices in order to separate
the attack source and endure the attack to some extent to
buy time for network maintenance [80].

B. VEHICULAR NETWORK
Wang et al. [81] implemented two types of Topology
Poisoning Attack (fake LLDP packet injection and LLDP
packet relay) in 4 mainstream controllers in the emulated
SDN-enabled vehicular edge network and then explored its
influence from the RSU layer, the application layer, the
controller layer and the vehicle layer. The proposed paper
by Wang et al. [81] is the first study on the topic of TPA in
the vehicular edge network which also introduced an attack
tolerance scheme based on deep reinforcement learning
algorithms in order to improve the vehicular edge network
with a certain grade of self-retrieval and solve the issue that
the TPA is complicated to be defended thoroughly [81].
The location hijacking attack was implemented on five

mainstream SDN control planes by Wang and Liu [82] in
the software-defined vehicular network emulator for the first
time. They also hijack the vehicle’s location in the popular
Ryu SDN controller. Their attempt to perform the location
hijacking attack upon the wireless terminal in SDN is done
for the first time. Subsequently, they attempt to illustrate
the importance of SDN security by summarizing more
detail about the attacks and inspecting the attack impacts
in three different layers: infrastructure layer, controller layer
and vehicle layer. Wang and Liu [82] also implemented a

3442 VOLUME 5, 2024

recovery program which was operating based on deep Q-
learning (DQL) and reinforcement learning algorithms in
order to deal with the location hijacking attacks upon servers
that consist of rigid consequences. They assumed two states
for attack recovery, there is/is not a secure data centre on
the ground that collects data from different services. The
service deployment of a software-defined spaceâ“air-ground
integrated vehicular network can be adaptively modified with
the help of exploration, and learning in the environment. The
influenced service can be transformed into a high-altitude
platform and there still will be access for the vehicles [82].
In addition, Wang et al. [83] have effectively compromised

four commonly used controllers in simulated SDN-enabled
vehicular networks by corrupting their topology views. They
present two methods for executing these attacks (LLDP
Packet Injection and LLDP Packet Relay) and compare
the implementation details across the controllers. They
segment the SDN-enabled vehicular network into four layers
(Application Layer, Controller Layer, RSU Layer, Vehicle
Layer) and assess the attack consequences in a hierarchical
manner, aiming to raise awareness about SDN controller
security. They also deliberate on countermeasures against
these attacks and provide recommendations for enhancing
security.

C. OPEN-RAN 5G NETWORK
O-RAN is a telecommunications network architecture that
aims to standardize and virtualize the radio access network
(RAN) elements in mobile communication systems. The
goal of O-RAN is to promote interoperability, flexibility,
and innovation in the development and deployment of RAN
components. Traditionally, RAN components were provided
by a single vendor, leading to closed and proprietary systems.
O-RAN seeks to break down this traditional approach by
defining open interfaces and standards, enabling different
vendors to supply compatible and interchangeable compo-
nents. This approach is expected to enhance competition,
reduce costs, and accelerate the deployment of new tech-
nologies, ultimately benefiting both network operators and
end-users in the mobile communication ecosystem.
There are significant similarities between SDN and,

conversely, the RIC within the O-RAN framework. It is
crucial to note that while SDN is a standalone paradigm,
the RIC is intricately integrated within the O-RAN frame-
work, highlighting the distinctive nature of their respective
roles and architectures. The RIC in O-RAN and SDN
both embrace centralized control and programmability for
enhanced network management. SDN separates the control
and data planes, enabling centralized control and dynamic
resource allocation, with a focus on open interfaces for
interoperability. Similarly, the RIC in O-RAN centralizes
control in the radio access network, offering a programmable
interface for optimizing radio resource allocation based on
real-time conditions. Both concepts contribute to network
flexibility, efficiency, and standardization, but SDN is a
broader networking paradigm, while RIC is specifically

designed for the radio access network within O-RAN
architectures [84].

In our discussion, we’ll explore the main components of
O-RAN, unravelling key concepts for a clearer understanding
of its architecture. O-RAN Central Unit–Control Plane (O-
CU-CP) is a virtual node responsible for hosting the Radio
Resource Control (RRC) and the control plane aspect of
the Packet Data Convergence Protocol (PDCP). O-RAN
Central Unit â“ User Plane (O-CU-UP) is a virtual node
designed to host the user plane component of the PDCP
and the Service Data Adaptation Protocol (SDAP). O-RAN
Distributed Unit (O-DU) functions as a virtual node that
accommodates the Radio Link Control (RLC), MAC, and
High-Physical layers based on a functional split at a lower
layer. The RIC is a network function within the O-RAN
architecture. It facilitates the control and optimization of
RAN elements and resources through detailed data collection
and actions performed over the E2 interface. The RIC
may incorporate AI/ML workflows, encompassing tasks
such as model training, inference, and updates. To gain a
deeper understanding of O-RAN architecture, readers are
encouraged to consult the relevant specifications in the
references [85], [86].
The paper referenced as [87] presents a new attack called

Bearer Migration Poisoning (BMP). This attack aims to
deceive the nRT RIC, leading to alterations in the user
plane traffic path and resulting in signalling overhead. An
interesting aspect of BMP is that it allows a relatively weak
adversary with just two compromised hosts to execute the
attack without compromising the RIC, RAN components, or
applications. The attack relies on two specific procedures
initiated by the RIC.

• Bearer context migration procedure: A bearer context
refers to a set of signalling data transmitted through
the E1 interface, linking the CU-CP and CU-UP. The
establishment of a bearer context involves coordinating
the necessary resources and information to enable
the transfer of user plane services between the CU-
UP, the corresponding DU, and the UE. To achieve
this, the CU-CP utilizes bearer context management
operations, which can be initiated by the nRT RIC
platform [85]. In this process, the CU-CP sends a
BEARER CONTEXT SETUP message to create a new
bearer context between the specified CU-UP and DU.
Subsequently, it signals the DU with a F1 BEARER
MODIFICATION message to adjust the configuration of
the F1 interface. Finally, the CU-CP issues a BEARER
CONTEXT RELEASE message to discard the previous
bearer context. This leads to the CU-CP transitioning the
bearer context from the original CU-UP to the intended
CU-UP for a specific DU. However, this functionality
exposes Open RAN to an expanded range of security
risks.

• Link discovery procedure: The RIC has the capability
to oversee the network topology of RAN elements
on the data plane via the E2 interface, involving the

VOLUME 5, 2024 3443

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

FIGURE 12. Bearer migration poisoning attack in Open RAN.

implementation of the link discovery protocol. Initially,
the controller creates and sends LLDP messages to each
node in the data plane. Subsequently, as each node
receives the LLDP packets, it disseminates them through
all of its ports. Following this, the node receiving these
packets forwards the LLDP information back to the
RIC. As a result, the controller can identify all the
existing links among the nodes in the data plane. This
systematic process is repeated at regular, predefined
intervals.

By utilizing the procedure for migrating bearer context
and the link discovery process, adversaries can strategically
deceive the RIC, initiating malicious actions that pose a
threat to the integrity of the network. In the subsequent
sections, we further elaborate to provide a more detailed
description of this potential threat.
Threat: The malicious actor aims to trick the RIC into

believing that initiating a bearer context migration procedure
is necessary. We illustrate the BMP attack using a simplified
O-RAN structure, comprising a single DU, two CU-UPs, a
pair of MEC servers acting as hosts, and multiple routers in
the mid-haul network, as depicted in Fig. 12. It is assumed
that the adversary has gained control over two MEC hosts,
specifically h1 and h2, connected to DU1 and CU-UP2
respectively. In this particular attack scenario:
1) The malicious attacker at h1 actively monitors the port

associated with DU1 (referred to as port 1 in this
illustration). During the process of link discovery, the
RIC sends out an LLDP packet toward DU1. Upon
receiving the LLDP packet, DU1 broadcasts it across
its ports. The adversary at h1 intercepts this packet and
redirects it to h2 through an alternate communication
channel. Subsequently, the compromised h2 forwards
the LLDP packet to CU − UP2, which then relays it
back to the RIC. The RIC, upon receiving the LLDP
packet from CU − UP2, is deceived into recording
a non-existent link between DU1 and CU − UP2,
as depicted by the dashed red line in Fig. 12. This
maneuver is based on the link fabrication strategy
outlined in [13], [66].

2) As the routing xApp is configured to receive updates
regarding the radio topology of the network, it receives
a Topology Update Report from the RIC, out-
lining the inclusion of the deceptive link. The routing
algorithm, typically reliant on determining the shortest
path, selects this new link as it perceives a more direct
connection between DU1 and CU−UP2. Consequently,
the xApp issues a Path Update Request to the
RIC, requesting the application of the updated routing
configuration.

3) Upon receiving the path update notification, the RIC
generates a RIC Control Request to prompt the
CU-CP to initiate modifications to the bearer context.
Subsequently, upon receiving the request from the RIC,
the CU-CP initiates the transition of CU-UP. This
involves terminating the current bearer context with
DU1 and CU − UP1 and establishing a new bearer
context with DU1 and CU − UP2.

The reconfiguration of the bearer context, redirecting
user traffic through the artificially established link between
CU − UP1 and CU − UP2, has detrimental effects on the
cell performance managed by the RU, as indicated by the
red arrows in Fig. 12. As evidenced by empirical data
and analyses presented in [87], a BMP attack can result
in two significant outcomes. In the initial phase, it can
significantly reduce both downlink and uplink throughput to
nearly 0Mbps, posing a severe threat to service quality and
user satisfaction. This, in turn, may lead to potential customer
and revenue loss for the operators. Secondly, the attack can
cause a substantial increase in signalling overhead, leading
to inflated network latency and the wastage of valuable
radio spectrum resources. The signalling cost experiences
an approximately tenfold increase due to the impact of the
BMP attack.

X. CHALLENGES, OPEN ISSUES & FUTURE RESEARCH
DIRECTIONS
In this section, we will delve into the limitations, challenges,
open issues, and future research directions in the field of
SDN security. We have categorized these aspects into three
main groups: (a) The integration of AI/ML in the security of
SDN topology discovery service security, (b) The integration
of SDN with new technologies like cloud computing, IoT,
and Open RAN, and (c) How the new digital twin technology
can be utilized to enhance the security of the SDN topology
discovery service.

A. ADVANCEMENTS IN MACHINE LEARNING
Given that machine learning and deep neural networks are
integral to ensuring the security of SDN, we are confident
that they hold the potential to address numerous outstanding
issues and influence forthcoming trajectories. We have
organized these challenges and future pathways into two
main categories: 1) Advancements in algorithms and models,
and 2) Improvements in dataset exploration.

3444 VOLUME 5, 2024

1) ALGORITHMS AND MODELS

The future of security in SDN topology discovery services
relies on advanced machine learning (ML) algorithms and
anomaly detection systems. As SDN environments evolve,
robust security measures are crucial for proactive threat
identification and mitigation. ML algorithms, including
unsupervised learning like clustering, autonomously identify
patterns and detect anomalies without labelled training data.
Semi-supervised learning combines labelled and unlabeled
data, enhancing adaptability for recognizing both known
and unknown threats. Deep learning models, such as neural
networks like CNNs and RNNs, extract intricate features to
understand SDN topology. Integrating these techniques into
SDN security frameworks enhances anomaly detection for
subtle and complex threats. Ensemble learning methodolo-
gies, combining multiple ML algorithms, ensure a robust
security framework with minimized risks of false positives
and negatives. In conclusion, the future of SDN security lies
in integrating unsupervised and semi-supervised ML tech-
niques, deep learning models, and ensemble methodologies
for proactive defence against evolving cyber threats.
Another possible future work in the area of topology

discovery service security could be the integration of
Reinforcement Learning (RL) into SDN controllers that
offers distinct advantages over other machine learning
approaches. RL enhances adaptive capabilities, enabling
dynamic policy adjustments in response to evolving threats.
Unlike traditional machine learning, RL excels in learning
optimal strategies through trial and error, making it well-
suited for addressing complex challenges like mitigating
topology poisoning attacks. Algorithms such as Q-learning
or Deep Q Networks (DQN) in RL provide a unique edge by
allowing agents to iteratively refine strategies, showcasing
the potential for groundbreaking advancements in network
security that surpass the capabilities of conventional machine
learning methods [88].
Exploring the application of autoencoders for anomaly

detection in the realm of security, particularly in the context
of topology discovery services and the mitigation of TPAs,
represents a potential future direction. Anomaly detection
in SDN security encounters a significant challenge due to
imbalanced datasets. In many cases, the occurrence of normal
network behaviour far outweighs the instances of anoma-
lous activities, leading to imbalanced data distributions.
Tackling imbalanced datasets is a crucial aspect of effective
anomaly detection. This prospective avenue of exploration
is suggested in the proposed paper by Soltani et al. [60].
If the computational load of the neural network can be
managed, autoencoders (AEs) have the potential to iden-
tify unsupervised anomalies [89]. AEs utilize compressed
encoding from input and decoding for data reconstruction.
Typically, normal input exhibits lower reconstruction errors,
as it closely aligns with the training data, while abnormal
input tends to result in higher reconstruction errors. However,
this assumption may not hold in the LLDP dataset proposed

by Soltani et al. [60], as it contains outliers and noise. As
the network size increases, the complexity of the LLDP data
grows, causing shared features, like TLLDP, between normal
and abnormal LLDPs, leading to mixed feature values. In
such cases, researchers may face challenges in properly
reconstructing data from both normal and anomalous LLDPs.
A potential solution is the use of denoising autoencoders,
but this approach necessitates a source of clean, noise-free
data for training, which is often unavailable in real-world
networks. In the absence of such data, the RLV model
proposed by Soltani et al. [60] might have to segregate noise
and outliers from input values before training the encoder.
However, this aspect is left for future research and remains
unexplored. These proposed future research directions aim
to provide a comprehensive roadmap for advancing the field
of SDN security through the integration of machine learning,
deep learning, and reinforcement learning techniques.

2) ENHANCEMENTS IN DATASET EXPLORATION

The future research direction titled Enhancing Topology
Discovery in SDN for Robust ML-Based Countermeasures
involves advancing the field by creating larger, real-world,
and synthetic datasets specifically tailored for the topology
discovery service in SDN. This strategic approach aims
to bolster Machine Learning (ML) based countermeasures
against topology poisoning attacks.

• Expanding Dataset Scale: Future research should focus
on developing larger datasets with diverse network
topologies, enhancing ML models’ ability to distinguish
normal behaviour from topology poisoning anoma-
lies [90].

• Incorporating Real-world Scenarios: Future research
should prioritize real-world datasets from SDN deploy-
ments, ensuring ML models are trained on diverse and
complex data, enhancing the robustness and practicality
of developed countermeasures [90].

• Synthetic Data Generation Exploration: Future research
should explore creating synthetic datasets to simu-
late diverse network conditions and potential topology
poisoning attacks. This allows researchers to systemat-
ically evaluate ML models under controlled conditions,
enabling the development of countermeasures effective
across various threat scenarios [90].

By prioritizing the development of larger, real-world,
and synthetic datasets for topology discovery services,
researchers bolster ML models with diverse training envi-
ronments. This strengthens ML-based countermeasures,
fortifying SDN against topology poisoning attacks in prac-
tical and challenging scenarios.

B. SYNERGIZING WITH EMERGING TECHNOLOGIES
One of the pivotal considerations in exploring limitations,
facing challenges, and outlining future research directions
lies in the synergy between SDN and emerging technologies.
This includes the integration of SDN with transformative

VOLUME 5, 2024 3445

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

innovations such as OPEN-RAN, Cloud Computing, and the
IoT. These intersections are poised to be a focal point of
discussion here, offering promising avenues for exploration
and development in the evolving landscape of networking
technologies.

1) THE INTEGRATION OF SDN AND OPEN-RAN

Future research directions in the integration of SDN and
Open RAN involve exploring SDN functionality atop the
Near Real-Time Radio Access Network Intelligent Controller
(Near RT RIC) within the Open RAN architecture. This
integration holds promise for enhancing network programma-
bility and resource optimization. However, as SDN operates
in this dynamic environment, potential challenges arise,
particularly in the security domain. The interaction between
the SDN Topology Discovery Service and the Open RAN
may introduce novel vulnerabilities, leading to concerns such
as topology poisoning attacks. Understanding and mitigating
these risks will be crucial for ensuring the robustness of
the integrated SDN and Open RAN system. Open RAN’s
disaggregated and modular architecture introduces a unique
nature that necessitates a closer examination of its security
aspects.
Notably, the security implications of Open RAN have

yet to be comprehensively addressed within the research
community, establishing a novel research area. The unique
nature of Open RAN can intricately impact SDN security,
amplifying the need for a focused exploration of poten-
tial vulnerabilities and risks. As the research community
delves into this uncharted territory, it becomes imperative
to unravel the interdependencies between Open RAN and
SDN, specifically addressing security concerns arising from
their integration. Understanding and addressing the security
challenges introduced by Open RAN not only contribute
to fortifying the Open RAN environment but also play a
pivotal role in enhancing the overall security posture of the
integrated SDN and Open RAN ecosystem. This underscores
the significance of comprehensive research endeavours to
establish robust security measures and frameworks tailored to
the nuanced characteristics of Open RAN within the broader
SDN context [91].

2) INTEGRATION OF SDN AND CLOUD

The integration of cloud computing environments with
the SDN paradigm offers an innovative opportunity to
seamlessly combine application provisioning in the cloud
with the network, utilizing programmable interfaces and
automation. However, challenges in evolving cloud networks
include ensuring application performance during migration,
enabling flexible deployment of appliances, addressing pol-
icy enforcement complexities and topology dependence, and
managing security and privacy concerns. The demand is
growing for a more programmable, flexible, and secure cloud
infrastructure. SDN, as a novel networking paradigm, plays
a key role in enhancing cloud manageability, scalability, con-
trollability, and dynamism by transforming traditional cloud

network backbones into robust service-delivery platforms.
Recent developments in SDN-based cloud indicate a new
type of cloud where SDN technology governs the network
infrastructure, providing Networking-as-a-Service (NaaS).
This evolution extends cloud computing beyond server and
storage centralization to include network centralization and
virtualization [92].

The integration of SDN with cloud computing indeed
offers substantial benefits, but it also introduces new security
challenges. One of the potential security risks involves the
topology discovery service. To the best of our information,
there currently isn’t any security research available on this
specific topic. Therefore, exploring the integration of SDN
with cloud computing, particularly focusing on the security
aspects of SDN topology discovery services integrated with
cloud platforms, represents a significant area for future
research. Identifying and addressing these research gaps
is imperative to guarantee the resilience of the combined
infrastructure and to proactively mitigate potential emerging
risks.

3) SECURING SDN AND IOT

The exploration of future research directions in the realm
of security within SDN integrated with the Internet of
Things (IoT) is a complex and evolving domain, with a
specific focus on the topology discovery service. In this
context, SDN serves as a paradigm that separates the control
plane from the data plane, providing centralized control
and programmability. IoT, on the other hand, involves a
myriad of interconnected devices generating vast amounts
of data. The integration of SDN and IoT poses unique
security challenges, necessitating a nuanced understanding
of topology discovery services. Topology discovery involves
the identification and mapping of network elements, and
in the SDN-IoT security landscape, it becomes crucial for
ensuring the integrity and confidentiality of communication.
Detailed technical considerations include the development
of secure and efficient algorithms for real-time topology
discovery, intrusion detection and prevention, the imple-
mentation of authentication mechanisms for devices in
the dynamic IoT environment, and the establishment of
secure communication channels between SDN controllers
and IoT devices. Addressing these intricacies requires a
comprehensive approach that considers not only the diversity
and scale of IoT deployments but also the dynamic nature of
SDN configurations, making it an intriguing area for future
research and innovation [22].

C. EMPOWERING TOPOLOGY DISCOVERY SERVICE IN
DIGITAL TWINS
The incorporation of Digital Twins (DTs) into SDN architec-
tures shows great promise in bolstering security measures.
DTs serve as highly accurate digital duplicates of physical
objects, offering valuable data and virtual prototypes for
diverse purposes. Operators depend on DTs to improve
preventive maintenance, spur innovation in business models,

3446 VOLUME 5, 2024

hasten product development, and optimize sustainability and
efficiency in real-world scenarios [93]. DTs provide a robust
platform for proactive security testing, assessment, and
risk mitigation. Security professionals can simulate various
Topology Poisoning Attacks (TPA) scenarios within the DT
environment, enabling the identification of vulnerabilities
and the development of robust security measures before
implementing them in the physical network. Through the
integration of DTs with SDN, organizations can further
enhance the security of the topology discovery service.
The SDN topology discovery service can leverage the

simulation and prediction capabilities of the DT to analyze
network behaviour, detect security vulnerabilities, and take
proactive security measures. Centralized monitoring and
management of security events within the DT environment
enable organizations to gain a comprehensive view of the
network and respond swiftly to security incidents affecting
the topology discovery service. Furthermore, DTs offer real-
time monitoring and analytics capabilities, allowing for the
detection of network anomalies and security threats. By
leveraging Machine Learning (ML) and analytics within the
DT environment, security professionals can gain valuable
insights into network behaviour, identify potential security
risks, and respond promptly to mitigate them. This proactive
approach to security, enabled by DTs, helps protect the
integrity and confidentiality of the topology discovery service
and the overall SDN infrastructure. It is imperative to
conduct further investigation and research to fully explore the
potential of integrating DTs into the SDN topology discovery
service and to address the specific security considerations in
this context.

XI. CONCLUSION
SDNs represent a revolutionary shift in network architecture,
providing unparalleled flexibility and programmability. At
the core of SDNs is the Topology Discovery Service,
a crucial element dynamically identifying and mapping
the network structure. Network topology discovery is the
process by which the controller learns about (i) the network
devices (e.g., switches), (ii) the links between switches
and (iii) the location of the hosts within the network.
Securing the Topology Discovery Service is imperative to
safeguard against unauthorized access and data manipulation,
preserving the integrity and reliability of SDNs. A holistic
approach to topology discovery and security is vital as SDNs
evolve, unlocking their full transformative potential.
In this paper, we have offered a thorough examination

of the security aspects pertaining to SDN architecture and
topology discovery services. Our study aims to contribute
to the understanding of topology poisoning attacks in
SDN by providing a detailed summary and technical root
cause analysis, building upon existing research in the field.
The topology discovery service is vulnerable to Topology
Poisoning Attacks. The reasons are mainly attributed to
several security vulnerabilities in the Host Tracking Service
and Link Discovery Service. First, we delved into the

intricacies of SDN architecture, followed by an exploration
of topology discovery services. Subsequently, we extensively
addressed the topic of topology poisoning attacks. We
reviewed and summarized the various types of scenarios in
the Link Fabrication Attack and Host Location Hijacking
attack. In addition to our in-depth analysis, we have also
established a comprehensive taxonomy for these attacks. We
categorize these security threats based on various parameters,
encompassing the attack’s objectives, the targeted vulnerable
entity, the adversary’s location, and the nature of the
communication channel involved. This taxonomy serves as
a structured framework to better understand and address the
multifaceted challenges posed by security in SDN topology
discovery services.
We also discussed the existing security countermeasures

along with analysing their potential security vulnerabilities.
Finally, we examined the limitations, challenges, open issues,
and proposed future research directions within the realm of
security in SDN topology discovery services. These insights
are anticipated to be invaluable for academia and industry,
providing a foundation for their work and contributing to
the advancement of this field.

REFERENCES
[1] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,

and S. Shenker, “Ethane: Taking control of the enterprise,” ACM
SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, 2007.

[2] M. Casado et al., “SANE: A protection architecture for Enterprise
networks,” in Proc. USENIX Security. Symp., 2006, p. 50.

[3] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An
intellectual history of programmable networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, 2014.

[4] (Res. Market, Dublin, Ireland). Global Software-Defined Networking
Market by Component (SDN Infrastructure, Services, Solutions), SDN
Types (Open SDN, SDN via API, SDN via Overlay), Organization
Size, End-User, Vertical-Forecast 2023-2030. (2023). [Online].
Available: https://www.researchandmarkets.com/reports/5639407/
global-software-defined-networking-market-by#src-pos-1

[5] (Ponemon Inst., Michigan, IN, USA). Cost of a
Data Breach Report 2023. 2023. [Online]. Available:
https://www.ibm.com/downloads/cas/E3G5JMBP

[6] (Ponemon Inst., Michigan, IN, USA). Cost of a Data Breach Report
2020. 2020. [Online]. Available: https://bit.ly/3l0AjR4

[7] Q. Long, Y. Chen, H. Zhang, and X. Lei, “Software defined 5G
and 6G networks: A survey,” Mobile Netw. Appl., vol. 27, no. 5,
pp. 1792–1812, 2022.

[8] B. Balasubramanian et al., “RIC: A RAN intelligent controller
platform for AI-enabled cellular networks,” IEEE Internet Comput.,
vol. 25, no. 2, pp. 7–17, Apr. 2021.

[9] S. Khan, A. Gani, A. W. A. Wahab, M. Guizani, and M. K. Khan,
“Topology discovery in software defined networks: Threats, taxonomy,
and state-of-the-art,” IEEE Commun. Surveys Tuts., vol. 19, no. 1,
pp. 303–324, 1st Quart., 2017.

[10] T. Arnold et al., “Beating BGP is harder than we thought,” in Proc.
18th ACM Workshop Hot Topics Netw., 2019, pp. 9–16.

[11] T.-H. Nguyen and M. Yoo, “Analysis of link discovery service attacks
in SDN controller,” in Proc. Int. Conf. Inf. Netw. (ICOIN), 2017,
pp. 259–261.

[12] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility
in software-defined networks: New attacks and countermeasures,” in
Proc. NDSS, 2015, pp. 8–11.

[13] R. Skowyra et al., “Effective topology tampering attacks and defenses
in software-defined networks,” in Proc. 48th Annu. IEEE/IFIP Int.
Conf. Depend. Syst. Netw. (DSN), 2018, pp. 374–385.

[14] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX:
Detecting security attacks in software-defined networks,” in Proc.
NDSS, 2015, pp. 8–11.

VOLUME 5, 2024 3447

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

[15] J. Kim et al., “Enhancing security in SDN: Systematizing attacks and
defenses from a penetration perspective,” Comput. Netw., vol. 241,
Mar. 2024, Art. no. 110203.

[16] Z. A. Bhuiyan, S. Islam, M. M. Islam, A. A. Ullah, F. Naz, and
M. S. Rahman, “On the (in)security of the control plane of SDN
architecture: A survey,” IEEE Access, vol. 11, pp. 91550–91582, 2023.

[17] M. Rahouti, K. Xiong, Y. Xin, S. K. Jagatheesaperumal, M. Ayyash,
and M. Shaheed, “SDN security review: Threat taxonomy, implica-
tions, and open challenges,” IEEE Access, vol. 10, pp. 45820–45854,
2022.

[18] M. B. Jimenez, D. Fernandez, J. E. Rivadeneira, L. Bellido, and
A. Cardenas, “A survey of the main security issues and solutions
for the SDN architecture,” IEEE Access, vol. 9, pp. 122016–122038,
2021.

[19] O. S. Al-Heety, Z. Zakaria, M. Ismail, M. M. Shakir, S. Alani,
and H. Alsariera, “A comprehensive survey: Benefits, services, recent
works, challenges, security, and use cases for SDN-VANET,” IEEE
Access, vol. 8, pp. 91028–91047, 2020.

[20] E. Marin, N. Bucciol, and M. Conti, “An in-depth look into
SDN topology discovery mechanisms: Novel attacks and practical
countermeasures,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2019, pp. 1101–1114.

[21] A. Abdou, P. C. van Oorschot, and T. Wan, “Comparative analysis
of control plane security of SDN and conventional networks,” IEEE
Commun. Surveys Tuts., vol. 20, no. 4, pp. 3542–3559, 4th Quart.,
2018.

[22] I. Farris, T. Taleb, Y. Khettab, and J. Song, “A survey on emerging
SDN and NFV security mechanisms for IoT systems,” IEEE Commun.
Surveys Tuts., vol. 21, no. 1, pp. 812–837, 1st Quart., 2019.

[23] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and M. Conti, “A
survey on the security of stateful SDN data planes,” IEEE Commun.
Surveys Tuts., vol. 19, no. 3, pp. 1701–1725, 3rd Quart., 2017.

[24] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security
in software defined networks,” IEEE Commun. Surveys Tuts., vol. 18,
no. 1, pp. 623–654, 1st Quart., 2015.

[25] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in
software defined networks: A survey,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 4, pp. 2317–2346, 4th Quart., 2015.

[26] J. H. Cox et al., “Advancing software-defined networks: A survey,”
IEEE Access, vol. 5, pp. 25487–25526, 2017.

[27] “A Linux Foundation Collaborative Project.” Open vSwitch. 2024.
[Online]. Available: http://openvswitch.org

[28] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[29] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder,
“Network configuration protocol (NETCONF),” Internet Res. Task
Force, RFC 6241, Jun. 2011. [Online]. Available: https://rfc-
editor.org/rfc/rfc6241.txt

[30] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg,
and N. Weidenbacher, “OpFlex control protocol,” Internet
Engineering Task Force, Internet-Draft draft-smith-
opflex-00, 2014, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-smith-opflex-00

[31] W. Zhou, L. Li, M. Luo, and W. Chou, “REST API design patterns
for SDN northbound API,” in Proc. 28th Int. Conf. Adv. Inf. Netw.
Appl. Workshops, 2014, pp. 358–365.

[32] “OpenStack neutron.” Accessed: 5 May 2024. [Online]. Available:
https://docs.openstack.org/neutron/latest/

[33] S. Ahmad and A. H. Mir, “Scalability, consistency, reliability and
security in SDN controllers: A survey of diverse SDN controllers,” J.
Netw. Syst. Manage., vol. 29, no. 1, pp. 1–59, 2021.

[34] N. Gude et al., “NOX: Towards an operating system for networks,”
ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110,
2008.

[35] R. Sherwood et al., “Flowvisor: A network virtualization layer,”
OpenFlow, Mesa, AZ, USA, Rep. TR-2009-1, 2009.

[36] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, W. Snow, and
G. Parulkar, OpenVirteX: A Network Hypervisor, Open Netw. Summit,
Newport, VIC, Australia, 2014.

[37] “An instant virtual network on your laptop (or other PC).” MININET.
[Online]. Available: http://mininet.org/

[38] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey
of existing approaches,” IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3259–3306, 4th Quart., 2018.

[39] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43,
no. 4, pp. 3–14, 2013.

[40] “Software-defined networking: The new norm for networks,” Open
Netw. Found., Palo Alto, CA, USA, White Paper, Apr. 2012.

[41] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS)
protocol version 1.2,” Internet Eng. Task Force, RFC 5246, Aug. 2008.
[Online]. Available: https://rfc-editor.org/rfc/rfc5246.txt

[42] “OpenFlow switch specification, Version 1.5.1,” Open Netw. Fund.,
Palo Alto, CA, USA, Rep. ONF TS-025, Mar. 2015.

[43] Y. Zhao, J. Yan, and H. Zou, “Study on network topology discovery
in IP networks,” in Proc. 3rd IEEE Int. Conf. Broadband Netw.
Multimedia Technol. (IC-BNMT), 2010, pp. 186–190.

[44] 802.1AB-2009 IEEE Standard for Local and Metropolitan Area
Networks–Station and Media Access Control Connectivity Discovery,
Corrigendum 2: Technical and Editorial Corrections, IEEE Standard
802.1AB-2009 (Revision of IEEE Std 802.1AB-2005), 2015.

[45] L. Ochoa Aday, C. Cervelló Pastor, and A. Fernández Fernández,
Current Trends of Topology Discovery in OpenFlow-Based Software
Defined Networks, UPCommons, Castelldefels, Spain, 2015.

[46] (Cisco, San Jose, CA, USA). Cisco Discovery Protocol Configuration
Guide, Cisco IOS Release 15M&T. 2016. [Online]. Available:
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/cdp/configuration/
15-mt/cdp-15-mt-book/nm-cdp-discover.html

[47] A. Azzouni, N. T. M. Trang, R. Boutaba, and G. Pujolle, “Limitations
of OpenFlow topology discovery protocol,” in Proc. 16th Annu.
Mediterr. Ad Hoc Netw. Workshop (Med-Hoc-Net), 2017, pp. 1–3.

[48] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, and S. Hu, “A
survey of deployment solutions and optimization strategies for hybrid
SDN networks,” IEEE Commun. Surveys Tuts., vol. 21, no. 2,
pp. 1483–1507, 2nd Quart., 2018.

[49] P. Shrivastava and K. Kataoka, “Topology poisoning attacks and
prevention in hybrid software-defined networks,” IEEE Trans. Netw.
Service Manag., vol. 19, no. 1, pp. 510–523, Mar. 2022.

[50] H. S. Abdulkarem and A. Dawod, “DDoS attack detection and
mitigation at SDN data plane layer,” in Proc. 2nd Global Power,
Energy Commun. Conf. (GPECOM), 2020, pp. 322–326.

[51] J. Abley, K. Lindqvist, E. Davies, B. Black, and V. Gill, “IPv4
multihoming practices and limitations,” Internet Eng. Task Force, RFC
4116, Jul. 2005.

[52] J. Hua, Z. Zhou, and S. Zhong, “Flow misleading: Worm-hole attack
in software-defined networking via building in-band covert channel,”
IEEE Trans. Inf. Forensics Security, vol. 16, pp. 1029–1043, 2020.

[53] D. Smyth, S. McSweeney, D. O’Shea, and V. Cionca, “Detecting link
fabrication attacks in software-defined networks,” in Proc. 26th Int.
Conf. Comput. Commun. Netw. (ICCCN), 2017, pp. 1–8.

[54] Y. Gao and M. Xu, “Defense against software-defined network
topology poisoning attacks,” Tsinghua Sci. Technol., vol. 28, no. 1,
pp. 39–46, 2022.

[55] S. Deng, L. Chen, and X. Gao, “Manipulating sensitive match fields
to poison applications in SDN,” IEEE Trans. Netw. Service Manag.,
vol. 21, no. 2, pp. 2413–2425, Apr. 2024.

[56] S. Deng, X. Qing, X. Li, X. Gao, and X. Gao, “SDN application
Backdoor: Disrupting the service via poisoning the topology,” in Proc.
IEEE INFOCOM Conf. Comput. Commun., 2023, pp. 1–10.

[57] D. Kong et al., “Combination attacks and defenses on SDN topology
discovery,” IEEE/ACM Trans. Netw., vol. 31, no. 2, pp. 904–919,
Apr. 2023.

[58] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network:
Attacking an SDN with a compromised OpenFlow switch,” in Proc.
Nordic Conf. Secure IT Syst., 2014, pp. 229–244.

[59] A. Alimohammadifar et al., “Stealthy probing-based verification
(SPV): An active approach to defending software defined networks
against topology poisoning attacks,” in Proc. Eur. Symp. Res. Comput.
Secur., 2018, pp. 463–484.

[60] S. Soltani, M. Shojafar, H. Mostafaei, and R. Tafazolli, “Real-time link
verification in software-defined networks,” IEEE Trans. Netw. Service
Manag., vol. 20, no. 3, pp. 3596–3611, Sep. 2023.

[61] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing for
message authentication,” Internet Eng. Task Force, RFC 2104, 1997.

3448 VOLUME 5, 2024

[62] T. Alharbi, M. Portmann, and F. Pakzad, “The (in)security of topology
discovery in software defined networks,” in Proc. IEEE 40th Conf.
Local Comput. Netw. (LCN), 2015, pp. 502–505.

[63] S. Deng, W. Dai, X. Qing, and X. Gao, “Vulnerabilities in SDN
topology discovery mechanism: Novel attacks and countermeasures,”
IEEE Trans. Depend. Secure Comput., early access, Sep. 11, 2023,
doi: 10.1109/TDSC.2023.3314111.

[64] B. Yuan et al., “Towards automated attack discovery
in SDN controllers through formal verification,” IEEE
Trans. Netw. Service Manag., early access, Apr. 10, 2024,
doi: 10.1109/TNSM.2024.3386404.

[65] S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow, “Identifier binding attacks and defenses in software-
defined networks,” in Proc. 26th USENIX Security. Symp. (USENIX
Secur. 17), 2017, pp. 415–432.

[66] S. Soltani, M. Shojafar, H. Mostafaei, Z. Pooranian, and R. Tafazolli,
“Link latency attack in software-defined networks,” in Proc. 17th Int.
Conf. Netw. Service Manage. (CNSM), 2021, pp. 187–193.

[67] F. Mvah, V. K. Tchendji, C. T. Djamegni, A. H. Anwar, D. K. Tosh,
and C. Kamhoua, “Deception-based IDS against ARP spoofing attacks
in software-defined networks,” in Proc. Workshop Comput., Netw.
Commun. (CNC), 2024, pp. 188–192.

[68] V. Hnamte and J. Hussain, “Enhancing security in software-defined
networks: An approach to efficient ARP spoofing attacks detec-
tion and mitigation,” Telemat. Informat. Rep., vol. 14, Jun. 2024,
Art. no. 100129.

[69] L. Ochoa-Aday, C. Cervelló-Pastor, and A. Fernández-Fernández,
“ETDP: Enhanced topology discovery protocol for software-defined
networks,” IEEE Access, vol. 7, pp. 23471–23487, 2019.

[70] E. Rojas, J. Alvarez-Horcajo, I. Martinez-Yelmo, J. A. Carral, and
J. M. Arco, “TEDP: An enhanced topology discovery service for
software-defined networking,” IEEE Commun. Lett., vol. 22, no. 8,
pp. 1540–1543, Aug. 2018.

[71] F. Pakzad, M. Portmann, W. L. Tan, and J. Indulska, “Efficient
topology discovery in software defined networks,” in Proc. 8th Int.
Conf. Signal Process. Commun. Syst. (ICSPCS), 2014, pp. 1–8.

[72] A. Azzouni, R. Boutaba, N. T. Mai Trang, and G. Pujolle, “sOFTDP:
Secure and efficient topology discovery protocol for SDN,” 2017,
arXiv:1705.04527.

[73] A. Nehra, M. Tripathi, M. S. Gaur, R. B. Battula, and C. Lal, “SLDP:
A secure and lightweight link discovery protocol for software defined
networking,” Comput. Netw., vol. 150, pp. 102–116, Feb. 2019.

[74] Y. Jia, L. Xu, Y. Yang, and X. Zhang, “Lightweight automatic
discovery protocol for OpenFlow-based software defined networking,”
IEEE Commun. Lett., vol. 24, no. 2, pp. 312–315, Feb. 2020.

[75] Y.-C. Chang, H.-T. Lin, H.-M. Chu, and P.-C. Wang, “Efficient
topology discovery for software-defined networks,” IEEE Trans. Netw.
Service Manag., vol. 18, no. 2, pp. 1375–1388, Jun. 2021.

[76] F. Hauser, M. Schmidt, M. Häberle, and M. Menth, “P4-MACsec:
Dynamic topology monitoring and data layer protection with MACsec
in P4-SDN,” 2019, arXiv:1904.07088.

[77] J. Alvarez-Horcajo, E. Rojas, I. Martinez-Yelmo, M. Savi, and
D. Lopez-Pajares, “HDDP: Hybrid domain discovery protocol for
heterogeneous devices in SDN,” IEEE Commun. Lett., vol. 24, no. 8,
pp. 1655–1659, Apr. 2020.

[78] I. Martinez-Yelmo, J. Alvarez-Horcajo, J. A. Carral, and
D. Lopez-Pajares, “eHDDP: Enhanced hybrid domain discovery
protocol for network topologies with both wired/wireless and
SDN/non-SDN devices,” Comput. Netw., vol. 191, May 2021,
Art. no. 107983.

[79] M. W. Hussain, K. H. K. Reddy, J. J. Rodrigues, and D. S. Roy, “An
indirect controller-legacy switch forwarding scheme for link discovery
in hybrid SDN,” IEEE Syst. J., vol. 15, no. 2, pp. 3142–3149,
Jun. 2021.

[80] J. Wang, J. Liu, H. Guo, and B. Mao, “Deep reinforcement learning for
securing software-defined industrial networks with distributed control
plane,” IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 4275–4285,
Jun. 2022.

[81] J. Wang, Y. Tan, and J. Liu, “Topology poisoning attacks and counter-
measures in SDN-enabled vehicular networks,” in Proc. GLOBECOM
IEEE Global Commun. Conf., 2020, pp. 1–6.

[82] J. Wang and J. Liu, “Location hijacking attack in software-defined
space-air-ground integrated vehicular network,” IEEE Internet Things
J., vol. 9, no. 8, pp. 5971–5981, Apr. 2022.

[83] J. Wang, Y. Tan, J. Liu, and Y. Zhang, “Topology poisoning attack in
SDN-enabled vehicular edge network,” IEEE Internet Things, vol. 7,
no. 10, pp. 9563–9574, Oct. 2020.

[84] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia,
“Understanding O-RAN: Architecture, interfaces, algorithms, security,
and research challenges,” IEEE Commun. Surveys Tuts., vol. 25, no. 2,
pp. 1376–1411, 2nd Quart., 2023.

[85] O-RAN Architecture Description, O-RAN Alliance, Version 11.00,
O-RAN Working Group, Washington, DC, USA, 2024.

[86] O-RAN Cloudification and Orchestration Use Cases and Requirements
for O-RAN Virtualized RAN, O-RAN Alliance, Version 09.00, O-RAN
Working Group, Washington, DC, USA, 2024.

[87] S. Soltani, M. Shojafar, A. Brighente, M. Conti, and R. Tafazolli,
“Poisoning bearer context migration in O-RAN 5G network,” IEEE
Wireless Commun. Lett., vol. 12, no. 3, pp. 401–405, Mar. 2023.

[88] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A
survey of networking applications applying the software defined
networking concept based on machine learning,” IEEE Access, vol. 7,
pp. 95397–95417, 2019.

[89] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust
deep autoencoders,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Min., 2017, pp. 665–674.

[90] J. Xie et al., “A survey of machine learning techniques applied to
software defined networking (SDN): Research issues and challenges,”
IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 393–430, 1st Quart.,
2019.

[91] A. S. Abdalla, P. S. Upadhyaya, V. K. Shah, and V. Marojevic, “Toward
next generation open radio access networks: What O-RAN can and
cannot do!” IEEE Netw., vol. 36, no. 6, pp. 206–213, Dec. 2022.

[92] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(SDN) and distributed denial of service (DDoS) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 602–622, 1st Quart.,
2016.

[93] L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-
twin-enabled 6G: Vision, architectural trends, and future directions,”
IEEE Commun. Mag., vol. 60, no. 1, pp. 74–80, Jan. 2022.

SANAZ SOLTANI received the master’s degree
in software engineering from the Amirkabir
University of Technology (Tehran Polytechnic),
Iran, 2014. She is a Ph.D. Researcher of
Information and Communication Systems with the
5GIC & 6GIC Innovation Centre, University of
Surrey, U.K. Before, she was a Network Specialist
with Huawei and MTN telecommunication com-
panies involved in 4G and LTE projects. Her
research interests include network softwarization,
Open RAN, network security, and privacy.

ALI AMANLOU recived the B.Sc. degree (Hons.)
in electrical engineering, specializing in telecom-
munications. He is a Visiting Researcher with
the 5GIC and 6GIC Innovation Centre, University
of Surrey, U.K. He has authored numerous
publications in peer-reviewed journals. He fre-
quently serves as a paper reviewer for esteemed
journals, such as IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS,
IEEE TRANSACTIONS ON MULTIMEDIA, IEEE
TRANSACTIONS ON IMAGE PROCESSING, and

IEEE ACCESS. His research interests encompass artificial intelligence, deep
learning, 5G/6G technology, network security, and open RAN.

VOLUME 5, 2024 3449

http://dx.doi.org/10.1109/TDSC.2023.3314111
http://dx.doi.org/10.1109/TNSM.2024.3386404

SOLTANI et al.: SECURITY OF TOPOLOGY DISCOVERY SERVICE IN SDN

MOHAMMAD SHOJAFAR (Senior Member, IEEE)
received the Ph.D. degree in ICT from the
Sapienza University of Rome, Rome, Italy, in
2016, with an “Excellent” degree. He is a
Senior Lecturer (Associate Professor) of Network
Security with the 5G and 6G Innovation Centre
(5G/6GIC), Institute for Communication Systems,
University of Surrey, U.K. He is an Intel
Innovator. Before joining 5G/6GIC, he was a
Senior Researcher and a Marie Curie Fellow
with the SPRITZ Security and Privacy Research

Group, University of Padua, Italy. He secured around £1.9M as PI in
various EU/U.K. projects, including ORAN-TWIN (funded by EPSRC/DSIT
CHEDDAR Hub U.K.; 2024), D-XPERT (funded by I-UK/U.K.; 2024),
5G MoDE (funded by DSIT/U.K.; 2023), 5G ONE4HDD (funded
by DSIT/U.K.; 2023), TRACE-V2X (funded by EU/MSCA-SE; 2023),
AUTOTRUST (funded by ESA/EU; 2021), PRISENODE (funded by
EU/MSCA-IF; 2019), and SDN-Sec (funded by Italian Government; 2018).
He was also a COI of various U.K./EU projects like 6G_SMART (funded
by CELTIC-NEXT; 2024), HiPER-RAN (funded by DSIT/U.K.; 2023),
APTd5G Project (funded by EPSRC/UKI-FNI; 2022), ESKMARALD
(funded by UK/NCSC; 2022), GAUChO, S2C, and SAMMClouds
(funded by Italian Government; 2016–2018). He is an Associate Editor
of IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, and
Computer Networks. He is a Professional ACM Member, an ACM
Distinguished Speaker, a Fellow of the Higher Education Academy, and a
Marie Curie Alumni.

RAHIM TAFAZOLLI (Senior Member, IEEE) is
the Regius Professor and a Professor of Mobile
and Satellite Communications. He is the Director
of ICS and the Founder and Director of the
world’s first 5G Innovation Centre, University of
Surrey, U.K. Many governments regularly invite
him for advice on mobile communications and, in
particular, 5G technologies. He has given many
interviews to International media in the form of
television, radio interviews, and articles in the
international press.

3450 VOLUME 5, 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

