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Decentralized Voltage Control of Boost Converters
in DC Microgrids: Feasibility Guarantees
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Abstract— This article deals with the design of a decentralized
dynamic control scheme to regulate the voltage of a direct current
(dc) microgrid composed of boost converters supplying unknown
loads. Moreover, the proposed control scheme guarantees that
physical system constraints are satisfied at each time instant.
Specifically, we guarantee that the voltages evolve in the positive
orthant and that the duty cycle of each boost converter remains
within specified bounds. The control design is based on Lyapunov
theory and, more precisely, we use a Krasovskii Lyapunov
function to estimate a feasible domain of attraction of the closed-
loop system. Then, we guarantee that for any initial condition
inside the estimated domain of attraction, the desired equilibrium
point is asymptotically stable and the physical constraints are
satisfied at each time instant. Finally, we assess the effectiveness
of the proposed control scheme through extensive and realistic
simulation scenarios.

Index Terms— Decentralized control, direct current (dc)
microgrids, Lyapunov methods, nonlinear systems, voltage
regulation.

I. INTRODUCTION

DRIVEN by economic, technological, and environmen-
tal factors, the key challenge in power grids currently

involves shifting from traditional power generation and
transmission systems to integrating smaller distributed gen-
eration units (DGUs) [1]. In addition, the escalating energy
demand and public concern over global warming have spurred
efforts toward adopting eco-friendly renewable energy sources
(RESs) [2], which are essential to reduce CO2 emissions
and decrease fossil fuel reliance, enhance energy efficiency
by minimizing power losses, and cut costs for electrifying
remote areas or increasing the capacity of existing grids to
meet the rising electricity demand. However, the adoption
and integration of DGUs necessitate substantial changes to
conventional power systems [3], which led to the notion and
development of the so-called microgrids, i.e., heterogeneous
clusters of DGUs, loads, and storage devices [4], [5].
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Although research on microgrids control has primarily
focused on alternating current (ac) power networks (see for
example [6], [7], [8], [9], [10] and the references therein), the
increasing use of RES as DGUs has led to the emergence of
direct current (dc) microgrids [11] since many devices such as
electric vehicles, electronic devices, batteries, and photovoltaic
panels can be directly linked to a dc network, avoiding
inefficient conversion stages and also the common frequency
and reactive power control issues [12], [13]. Examples of
dc microgrid applications encompass modern ships, mobile
military bases, trains, airplanes, and electric vehicle charging
stations. As a result, interest is growing in dc microgrid control
and, specifically, dc–dc power converters (see [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26]).

In this article, we investigate a dc–dc boost converter-based
dc microgrid, where the main control objective is to regu-
late the voltage at each node toward a desired level while
stabilizing all the other electric signals around the corre-
sponding operating point (see [14], [15], [17], [18], [19],
[21], [24], [25], [27], [28], [29], [30]). Moreover, besides
achieving voltage regulation, it is crucial for a safe and
resilient operation of the overall microgrid that predefined
physical constraints are satisfied. More precisely, it is generally
required that the voltages evolve in the positive orthant and the
duty cycle of each boost converter remains within specified
bounds (see [18], [24], [28], [29]). Although saturation
mechanisms are a solution to deal with the latter problem, they
might deteriorate the closed-loop performance or even lead to
instability [31]. Also, the type of information required by the
controller is remarkably effective on the system performance.
For example, requiring information on the system parameters
or time derivatives of the measured electric signals makes
the closed-loop system sensitive to uncertainties and noises,
affecting the closed-loop performance and stability. In this
article, we propose a fully decentralized dynamic control
scheme to regulate the voltage of a dc microgrid composed
of boost converters supplying unknown loads. We address
all the above-mentioned issues and also provide an estima-
tion of the feasible region of attraction for the closed-loop
system.

Before explaining in detail the contributions of our work,
we first review some of the most important existing results on
the control of boost converters.

A. Literature Review

First, we review some of the most important works on con-
trol design and stability analysis of a single boost converter;
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second we focus our attention on microgrids of boost
converters.

A robust passivity-based controller is designed in [14].
However, the voltage positiveness and control signal con-
straints are not guaranteed and the closed-loop system domain
of attraction is not estimated. A proportional-integral (PI)
passivity-based controller is designed in [32] to solve the
voltage regulation problem for a boost converter connected to a
fuel cell. In the case of a known load, global asymptotic stabil-
ity of the desired equilibrium is guaranteed. Then, to provide
robustness with respect to load uncertainty, an Immersion and
Invariance parameter estimator is designed together with an
adaptive PI passivity-based controller. However, only practical
stability can be ensured in this case and the feasibility of the
voltage and control signal is not guaranteed (the control signal
is limited in simulation by a saturation mechanism). Nonlinear
control laws are proposed in [18] and [29] to make the
desired equilibrium globally asymptotically stable. However,
the constraints on the duty cycles are satisfied by employing
a saturation mechanism, the positiveness of the voltage is
not analyzed, and information on some system parameters is
required. Positiveness of the voltage and constraints on the
duty cycle are ensured by the nonlinear controller proposed
in [24]. The control design and stability analysis is based on a
shifted Lyapunov candidate function and an estimation of the
closed-loop system domain of attraction is provided. How-
ever, information on the load parameters is required. In [27],
a PI-derivative (PID) passivity-based controller is proposed
to ensure the global exponential stability of the equilibrium.
However, the information on the first-time derivative of the
states is required to get satisfactory performance.

Concerning the control design for microgrids of boost
converters, in [15], [17], and [30] the design and analysis are
based on the linearization of the system around the desired
equilibrium point. For example, the controller in [17] is
based on sliding mode theory, while the one in [30] is an
H∞ controller based on linear matrix inequalities (LMIs).
However, boost converters have a nonlinear dynamic behavior
and thus using its linear approximation for control design
may deteriorate the closed-loop performance or even lead to
instability. Cucuzzella et al. develop a decentralized dynamic
controller based on the Krasovskii passivity property of the
boost converter (see [33], [34], [35], [36] for more details
about Krasovskii passivity). However, no guarantees on the
voltage positiveness and duty cycle boundedness are pro-
vided and information on the first-time derivative of the
states is required, making the control system sensitive to
noisy measurements. A plug-and-play (shifted) passivity-based
controller is proposed in [28], guaranteeing the asymptotic
stability of the desired equilibrium, while satisfying predefined
constraints on the duty-cycle through a saturation mechanism.
However, the control law for each DGU requires information
on the DGU parameters as well as the neighboring line
resistances and voltage references.

B. Contribution

Now, the main contributions of our work are listed as
follows.

C1: For control design and stability analysis we consider
the bilinear dynamics of the boost converter and also
the dynamics associated with resistive–inductive power
lines. This is a relevant contribution compared with those
works that linearize the boost converter dynamics around
an equilibrium point (see [15], [17], [30]) and/or neglect
the power line dynamics (see [17]).

C2: The proposed controller architecture is fully decentral-
ized and thus scalable, i.e., the controller complexity
does not increase with the network size. Indeed, the
controller requires only the local measurement of voltage
and current and does not need any information on
the load parameters or time derivative of the measure-
ments. This is a relevant contribution compared with
those controllers that require information on the sys-
tem parameters (see [18], [24], [27], [28], [29]) and/or
time derivative of voltage and current (see [19], [27]),
thus improving the robustness against uncertainties and
noises.

C3: An estimation of the system’s feasible domain of attrac-
tion is provided and it is shown that its size depends on
the controller gains. This is an essential result to estab-
lish the asymptotic stability of the desired equilibrium
point and also includes physical constraints.

C4: Compliance with predefined physical constraints,
i.e., voltage positiveness and control inputs boundedness,
is ensured for any initial condition contained in the
estimated feasible domain of attraction. This is a
relevant contribution compared with those controllers
that do not guarantee that physical constraints are
satisfied (see [14], [17]) or employ saturation schemes
(see [18], [28], [29], [32]), which might deteriorate the
closed-loop performance or even lead to instability [31].

C. Outline

In Section II, the model of a typical dc microgrid is
presented and the control problem of interest is formulated.
In Section III, an overview of the design and analysis of a
dynamic controller for dc microgrids based on differential
passivity is provided. Then, the design and analysis of the
proposed control scheme is presented. Then, in Section IV,
simulation results show the effectiveness of the proposed
control system. Finally, some conclusions and possible future
research directions are discussed in Section V.

D. Notation

The set of real numbers, nonnegative real numbers, and
positive real numbers are denoted by R, R≥0, and R>0,
respectively. For matrices A, B ∈ Rn×m , we write A ≤ B
(A < B) if and only if Ai, j ≤ Bi, j (Ai, j < Bi, j ) for all
i = 1, . . . , n and j = 1, . . . , m, where Ai, j denotes the
(i, j)th component of A. The n-dimensional vector whose all
components are 1 is denoted by 1n . For two given vectors
x, y ∈ Rn , the Hadamard product, denoted by (x◦y) ∈ Rn , is a
vector with elements (x◦y) j = x j y j for j = 1, . . . , n. Given a
vector x ∈ Rn , [x] ∈ Rn×n denotes the diagonal matrix whose
diagonal entries are the components of x . The Euclidean norm

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



NAZARI MONFARED et al.: DECENTRALIZED VOLTAGE CONTROL OF BOOST CONVERTERS IN DC MICROGRIDS 3

Fig. 1. Electrical scheme of nodes (DGUs) i and j interconnected through a power line k.

of a vector x ∈ Rq weighted by a matrix Q ∈ Rq×q is
denoted by ∥x∥Q := (x⊤Qx)1/2. Given x ∈ Rn, y ∈ Rm ,
we compactly denote (x, y) = (x⊤, y⊤)⊤.

II. PRELIMINARIES

This article focuses on a typical dc microgrid composed
of n DGUs supplying local loads and interconnected with
each other through m transmission power lines. First, for the
reader’s convenience, a brief introduction to the considered
dc microgrid along with its dynamics is presented. Then,
we formulate the control problem we solve in this work.

A. DC Microgrid Modeling

The dc network is represented by a connected and (ordered)
undirected graph G = (V, E), where V = {1, . . . , n} and
E = {1, . . . , m} indicate the nodes and edges set. Each
node i ∈ V represents a DGU consisting of a dc–dc boost
converter supplying a local load. Nodes are interconnected
with each other through resistive–inductive power lines and the
topology of the network is described by the incidence matrix
D associated with G. Fig. 1 shows the schematic electrical
diagram of two nodes interconnected through a power line k.

Each boost converter includes a voltage source Ei , an induc-
tor L i , and a capacitor Ci . The current through the inductor
and the voltage across the capacitor are denoted by x1,i (t)
and x2,i (t), respectively. Each load absorbs a current denoted
by IL i (x2,i ) and consists of the parallel combination of a
resistor Ri and a constant current Ii , i.e., IL i (x2,i ) = Ii +

R−1
i x2,i . Moreover, the current through the inductor L p,k of

the kth power line, with k ∈ E , is denoted by x3,k(t), while
the resistance Rp,k captures the distribution power losses.

By employing each boost converter with the pulse width
modulation (PWM) technique with a sufficiently high fre-
quency, the switching dynamics of each converter can be
approximated by its average behavior. Then, by applying the
Kirchhoff’s laws, the average dynamics of the node i can be
written as

L i ẋ1,i = − (1 − ui ) x2,i + Ei (1a)

Ci ẋ2,i = (1 − ui ) x1,i − Ii − R−1
i x2,i − x3,k (1b)

L p,k ẋ3,k =
(
x2,i − x2 j

)
− Rp,k x3,k (1c)

where ui denotes the so-called duty cycle of the converter and
satisfies ui (t) ∈ [0, 1] for all i ∈ V (see [37] for more details).

Then, system (1) can be written compactly for all nodes i ∈ V
as follows [19]:

Lẋ1 = − (1n − u) ◦ x2 + E (2a)

Cẋ2 = (1n − u) ◦ x1 − I − R−1x2 + Dx3 (2b)

L p ẋ3 = −D⊤x2 − Rpx3 (2c)

where x1 : R≥0 → Rn , x2 : R≥0 → Rn
>0, u : R≥0 → [0, 1]

n

denote the node current, voltage, and control input vectors,
respectively. The vector of the currents through the power lines
is denoted by x3 : R≥0 → Rm . Also, x := (x⊤

1 , x⊤

2 , x⊤

3 )⊤

denotes the system state vector. The matrices L , C ∈ Rn×n
>0

and Rp, L p ∈ Rm×m
>0 are diagonal with entries equal to the

corresponding values of the i th DGU or kth power line.
The vector E = (E1, . . . , En)⊤ denotes the voltage sources,
while the load parameters are denoted by the vector I =

(I1, . . . , In)⊤ and the diagonal matrix R, with both I and R
unknown.

The incidence matrix D ∈ Rn×m represents the topology
of the considered dc microgrid, where the ends of each edge
k are arbitrarily labeled with positive or negative signs. More
precisely, Dik = 1 if i is the positive end of k, Dik = −1 if i
is the negative end of k, and Dik = 0 otherwise. Now, we are
ready to formulate the control problem we solve in this article.

B. Problem Formulation

In this article, we focus on regulating the network voltage
toward a desired reference while satisfying physical con-
straints. Before formulating the control problem, we first show
that given a desired voltage reference x∗

2 ≥ E ∈ Rn
>0, the

equilibrium (x∗, u∗) of (2) is uniquely determined by

x∗

1 = [E]−1 [
x∗

2
] (

I + R−1x∗

2 + DR−1
p D⊤x∗

2
)

(3a)

x∗

3 = −R−1
p D⊤x∗

2 (3b)

u∗
= 1n −

[
x∗

2
]−1 E . (3c)

The value of the desired voltage x∗

2 is usually selected in
accordance with standards, and operational requirements, and
to ensure optimal performance and safety of the electrical
equipment (e.g., loads). Alternatively, it might be generated
by a higher-level control scheme by solving an optimization
problem aiming to guarantee optimal operation and efficiency
of the overall network (e.g., load sharing). In order to explain
the rationale of the control design approach that we propose in
Section III, it is worth emphasizing that the relation between
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u∗ and x∗

2 in (3c) does not require any information of the
topology of the network and load parameters.

Remark 1: From (3c), x∗

2 ≥ E ∈ Rn
>0 if and only if

u∗
∈ [0, 1)n , which implies that there are one-to-one corre-

spondences among u∗, x∗

2 , and (x∗, u∗). ◁
Then, as natural physical constraints, we require

x2(·) ∈ Rn
>0 and u(·) ∈ [0, 1]

n . The first constraint
implies that the voltages evolve in the positive orthant for all
the time, while the second one is required to guarantee the
proper functioning of each boost converter.

Now, we are ready to formulate the voltage regulation
problem for the considered dc microgrid (2).

Problem 1: Given a desired voltage reference x∗

2 ≥ E ∈

Rn
>0, stabilize the dc microgrid (2) at the equilibrium point

(x∗, u∗) given by (3), while satisfying the physical constraints
x2(t) ∈ Rn

>0 and u(t) ∈ [0, 1]
n for all t ≥ 0. ◁

Note that the simplest stabilizing controller is given by
u = u∗. However, it does not provide any possibility to
improve transient performance as will be shown through
simulations in Section IV. This is the main reason that
motivates us to design in Section III a dynamic feedback
controller solving Problem 1, which is, to the best of our
knowledge, a relevant contribution to the existing literature.
For example, in [17], the authors design a robust decentral-
ized control scheme based on a second-order sliding mode,
guaranteeing convergence to the desired voltage despite the
presence of model and load parameter uncertainties. However,
only local stability is ensured, physical constraints are not
guaranteed and an estimate of the region of attraction is not
provided. In [28], a shifted passivity-based control scheme is
designed to ensure global stability. However, each controller
requires information on the desired equilibrium point, i.e., load
parameters and resistance of the power lines interconnecting
neighboring nodes. The controller proposed in [19] is based
on Krasovskii passivity and thus the control scheme does not
require any information on either load parameters or resistance
of the power lines. However, the control law employs both
current and voltage time derivatives, which might deterio-
rate the closed-loop performance in the presence of noisy
measurements.

In the next section, we design a novel decentralized voltage
control scheme that solves Problem 1 without using any
information on the load parameters, power line resistances,
and time derivative of current and voltage.

III. MAIN RESULTS

In this section, we provide a dynamic stabilizing
state-feedback controller for the considered dc microgrid (2),
addressing the drawback of the shifted and Krasovskii passiv-
ity based controllers proposed in [19] and [28], respectively,
which require information of the load and other system param-
eters or time-derivatives of the state variables. The proposed
controller instead can be implemented by using information
only about the voltage source. To design such a controller,
we revisit the results in [19] from the perspective of differential
passivity [38], [39]. Then, we reveal that the drawback of the
controller proposed in [19] is caused by the integrability issue
of differential-passivity-based control. In this article we solve

this issue and, additionally, we characterize the set of initial
states ensuring that the corresponding closed-loop trajectories
fulfill predefined physical constraints.

A. Differential Passivity Analysis

We introduce now the notion of a variational system, which
is instrumental to analyzing later the differential passivity
property of the considered dc network (2).

Consider the nonlinear system

ẋ = f (x, u) (4)

where x : R≥0 → Rn and u : R≥0 → Rm are, respectively,
the state variables and control input vectors. The notion of
differential passivity is investigated for the so-called “pro-
longed system” (see [38]), which comprises the nonlinear
system (4) and the associated variational system along the
trajectory (x(t), u(t)), i.e.,

δ̇x =
∂ f (x, u)

∂x
δx +

∂ f (x, u)

∂u
δu (5)

where δx : R≥0 → Rn and δu : R≥0 → Rm represent,
respectively, the state variable and control input vectors of
the variational system [34]. More precisely, δx and δu denote
infinitesimal variations of (x, u) with respect to neighboring
solutions [40]. Now, we can analyze the differential passivity
property of the dc network (2).

To analyze the differential passivity of the dc network (2),
we consider its variational system, i.e.,

L δ̇x1 = δu ◦ x2 − (1n − u) ◦ δx2 (6a)

C δ̇x2 = −δu ◦ x1 + (1n − u) ◦ δx1

− R−1δx2 + Dδx3 (6b)

L p δ̇x3 = −D⊤δx2 − Rpδx3 (6c)

with the state (δx1, δx2, δx3) ∈ Rn
× Rn

× Rm and input
δu ∈ Rn .

System (6) is passive in the following sense.
Theorem 1: Consider a dc network (2) and its variational

system (6). Then, the variational system is passive with respect
to the supply rate δu⊤(δx1 ◦ x2 − x1 ◦ δx2) and the storage
function

S(x, δx) =
1
2

(
∥δx1∥

2
L + ∥δx2∥

2
C + ∥δx3∥

2
L p

)
(7)

for all (x, u), (δx, δu) ∈ (Rn
× Rn

× Rm) × Rn .
Proof: The storage function (7) satisfies

Ṡ(x, δx) = δx⊤

1 L δ̇x1 + δx⊤

2 C δ̇x2 + δx⊤

3 L p δ̇x3

= δu⊤(δx1 ◦ x2 − x1 ◦ δx2)

− ∥δx2∥
2
R−1 − ∥δx3∥

2
Rp

along the solutions of (6), which completes the proof.
The above passivity property is called differential passiv-

ity. As for standard passivity, one may expect a differential
passivity-based controller for stabilization of the following
form:

δu = −K1(δx1 ◦ x2 − x1 ◦ δx2) (8)
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where K1 ∈ Rn×n is a diagonal and positive definite matrix
with entries k1,i , i = 1, . . . , n. However, since δx1 ◦ x2 − x1 ◦

δx2 is not integrable, this is not directly helpful to design a
stabilizing controller for a dc network (2).

To address this issue, the concept of Krasovskii passiv-
ity [34] has been introduced based on the fact that (δx, δu) =

(ẋ, u̇) satisfies the dynamics of the variational system (6). This
yields the following dynamic controller [19], [33]:

u̇ = −K1(ẋ1 ◦ x2 − x1 ◦ ẋ2).

Moreover, based on the input shaping technique proposed
in [33], in order to specify the input reference u∗, the above
controller can be modified as follows:

u̇ = K2(u∗
− u) − K1(ẋ1 ◦ x2 − x1 ◦ ẋ2) (9)

where K2 ∈ Rn×n is a diagonal and positive definite matrix
with entries k2,i , i = 1, . . . , n. In fact, asymptotic stability of
the closed-loop system at (x∗, u∗) is shown by utilizing the
following Krasovskii Lyapunov function [19], [33]:

V (ẋ, u) :=
1
2

(
∥ẋ1∥

2
L + ∥ẋ2∥

2
C + ∥ẋ3∥

2
L p

+ ∥u − u∗
∥

2
K2 K −1

1

)
. (10)

However, neither in [19] nor in [33] guarantees are provided on
compliance with predefined physical constraints. Furthermore,
the controller (9) requires information on the time-derivatives
of the current x1 and voltage x2 of all nodes, which can
deteriorate the closed-loop performance in the case of noisy
measurements.

B. Dynamic Control Design

We first solve the integrability issue of the differential
passivity-based controller (8) by rewriting it in the following
decentralized way:

δui = −k1,i (x2,iδx1,i − x1,iδx2,i ), i = 1, . . . , n. (11)

Then, the right-hand side of (11) can be made integrable by
multiplying it by the integrating factor 1/x1,i x2,i . Based on
this, a static stabilizing controller is presented by [24]. How-
ever, its implementation requires information of x∗

1 , i.e., of
system parameters E , I , R, Rp, and D. Some of their values
are not easy to know in practice. To address this problem,
we modify each component of the Krasovskii passivity-based
controller (9) as follows:

u̇i =
1

x1,i x2,i

(
k2,i

(
u∗

i − ui
)
− k1,i

(
ẋ1,i x2,i − x1,i ẋ2,i

))
which can be rewritten as

ui = k1,i ln(x2,i/x1,i ) + vi

v̇i = k2,i
(
u∗

i − ui
) / (

x1,i x2,i
)

with k2,i > 0. The only system parameter required for its
implementation is u∗, i.e., the source voltage E . However,
since x2,i > 0, ui is not defined when x1,i ≤ 0.

To deal with this issue, we employ a switching structure for
ui leading to the following dynamic state-feedback controller:

ui =

{
sign

(
x1,i

) (
k1,i ln

(∣∣x2,i x−1
1,i

∣∣) + vi

)
; if

∣∣x1,i
∣∣ > εi

u∗

i ; if
∣∣x1,i

∣∣ ≤ εi
(12a)

v̇i = k2,i
(
u∗

i − ui
) / (

x1,i x2,i
)

(12b)

where vi ∈ R is the state of the controller dynamics,
k1,i , k2,i ∈ R>0 are tuning parameters, and εi ∈ R>0 is the
threshold that specifies the switching condition. For the sake
of closed-loop analysis, we define k1 := (k1,1, . . . , k1,n)⊤,
k2 := (k2,1, . . . , k2,n)⊤, and ε := (ε1, . . . , εn)⊤.

It is worth emphasizing that the dynamic controller (12) is
fully decentralized, i.e., each control input ui can be computed
by measuring only the local value of the current x1,i and
voltage x2,i of node i . Also, u∗

i = 1 − Ei/x∗

2,i depends only
on the local voltage source and reference.

As the main contribution of this article, we show that the
fully decentralized controller (12) asymptotically stabilizes
the equilibrium point of the closed-loop system. Moreover,
we estimate a region of attraction, which can be utilized to
characterize the set of initial states such that the corresponding
closed-loop trajectories fulfill predefined psychical constraints.

Theorem 2: Given x∗

2 ≥ E ∈ Rn
>0, consider the closed-loop

system consisting of a dc microgrid (2) and the decentralized
controller (12). Also, let �c denote the level set of the
Krasovskii Lyapunov function (10), i.e.,

�c :=
{
(x, u) ∈

(
Rn

× Rn
× Rm)

× Rn
: V (ẋ, u) ≤ c

}
.

(13)

Then, the following statements hold:
1) for any k1, k2, ε ∈ Rn

>0, the closed-loop system is
asymptotically stable at (x∗, u∗);

2) if �c is contained in (Rn
× Rn

>0 × Rm) × [0, 1)n , then
�c is a region of attraction;

3) �c is contained in (Rn
× Rn

>0 × Rm) × [0, 1)n if and
only if

c ≤ min
i∈V

{
k2,i

2k1,i

(
u∗

i
)2

}
, c < min

i∈V

{
E2

i
2L i

}
. (14)

Proof:
Proof of Items 1) and 2): Let V̄ (x, u) be the function

obtained by substituting ẋ given by (2) into the Krasovskii
Lyapunov function V (ẋ, u) in (10). Then, we have

V̄ (x, u)

=
1
2

(
∥ − (1n − u) ◦ x2 + E∥

2
L−1

+ ∥(1n − u) ◦ x1−I − R−1x2 + Dx3∥
2
C−1

+ ∥D⊤x2 + Rpx3∥
2
L−1

p
+ ∥u − u∗

∥
2
K2 K −1

1

)
. (15)

By Remark 1, V̄ (x, u) in (15), or equivalently V (ẋ, u) in (10),
is positive definite at (x∗, u∗) on (Rn

× Rn
× Rm) × [0, 1)n .

Thus, stability can be shown by taking the time-derivative
of V̄ (x, u), or equivalently V (ẋ, u), along the closed-loop
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trajectory. To this end, we calculate the time derivative of (2)
yielding

Lẍ1 = − (1n − u) ◦ ẋ2 + u̇ ◦ x2 (16a)

Cẍ2 = (1n − u) ◦ ẋ1 − u̇ ◦ x1 − R−1 ẋ2 + Dẋ3 (16b)

L p ẍ3 = −D⊤ ẋ2 − Rp ẋ3. (16c)

Also, from the controller (12), we have

u̇i =


−

k1,i sign
(
x1,i

)
x1,i x2,i

(
ẋ1,i x2,i − x1,i ẋ2,i

+ k−1
1,i k2,i

(
ui − u∗

i
))

; if
∣∣x1,i

∣∣ > εi

0; if
∣∣x1,i

∣∣ ≤ εi .

(17)

By using (16), the time-derivative of V (ẋ, u) along the
closed-loop trajectory is computed as

V̇ (ẋ, u)

= ẋ⊤

1 Lẍ1 + ẋ⊤

2 Cẍ2 + ẋ⊤

3 L p ẍ3 +
(
u − u∗

)⊤ K2 K −1
1 u̇

= ẋ⊤

1 (x2 ◦ u̇) − ẋ⊤

2 (x1 ◦ u̇) +
(
u − u∗

)⊤ K2 K −1
1 u̇

− ẋ⊤

2 R−1 ẋ2 − ẋ⊤

3 Rp ẋ3

= u̇⊤

(
ẋ1 ◦ x2 − x1 ◦ ẋ2 + K2 K −1

1
(
u − u∗

))
− ẋ⊤

2 R−1 ẋ2 − ẋ⊤

3 Rp ẋ3

where note that K2 K −1
1 is a diagonal matrix. By rewriting the

first term of the last equation element-wisely, we obtain

V̇ (ẋ, u) =

n∑
i=1

(
u̇i

(
ẋ1,i x2,i − x1,i ẋ2,i + k2,i k−1

1,i

(
ui − u∗

i
)))

− ẋ⊤

2 R−1 ẋ2 − ẋ⊤

3 Rp ẋ3. (18)

Without loss of generality, we suppose that x1,i > εi for
i = 1, . . . , h, x1, j < −ε j for j = h +1, . . . , q, and |x1,l | ≤ εl
for l = q + 1, . . . , n. Then, it follows from (17) and (18) that:

V̇ (ẋ, u) = −

h∑
i=1

k−1
1,i x1,i x2,i u̇2

i +

q∑
j=h+1

k−1
1, j x1, j x2, j u̇2

j

− ẋ⊤

2 R−1 ẋ2 − ẋ⊤

3 Rp ẋ3

< −

q∑
i=1

k−1
1,i εi x2,i u̇2

i − ẋ⊤

2 R−1 ẋ2 − ẋ⊤

3 Rp ẋ3. (19)

Thus, V̇ (ẋ, u) (equivalently ˙̄V (x, u)) is negative semi-definite
at (x∗, u∗) if x2 ∈ Rn

>0.
In summary, V (ẋ, u) and V̇ (ẋ, u) are, respectively, pos-

itive definite and negative semi-definite at (x∗, u∗) on
(Rn

× Rn
>0 × Rm) × [0, 1)n . Therefore, (x∗, u∗) is stable by

the Lyapunov stability theorem. Next, we show the asymptotic
stability of (x∗, u∗) by invoking LaSalle’s invariance principle
[41, Theorem 4.4].

Consider a level set �c of V (ẋ, u) given by (13) and let
c > 0 be such that �c ⊂ (Rn

× Rn
>0 × Rm) × [0, 1)n .

From V (ẋ, u) = V̄ (x, u) and (15), �c is compact because
of u < 1n . Also, from the above discussion, �c is positively
invariant.

Define ϒ := ϒ|x1|>ε ∪ ϒ|x1|≤ε, where

ϒ|x1|>ε :=
{
(x, u) ∈ �c : |x1| > ε, V̇ (ẋ, u) = 0

}
ϒ|x1|≤ε :=

{
(x, u) ∈ �c : |x1| ≤ ε, V̇ (ẋ, u) = 0

}
.

Recall that R and Rp are symmetric and positive definite
matrices. From (19) with x2 ∈ Rn

>0 on �c, we have

ϒ|x1|>ε = {(x, u) ∈ �c : |x1| > ε, ẋ2 = 0, ẋ3 = 0
u̇i = 0, i = 1, . . . , q}. (20)

Also, from (12a) and (19), we obtain

ϒ|x1|≤ε = {(x, u) ∈ �c : |x1| ≤ ε, ẋ2 = 0, ẋ3 = 0
ui = u∗

i , i = q + 1, . . . , n}. (21)

Let 8 be the largest invariant set contained in ϒ . This is con-
tained in ϒ ∩ {(x, u) ∈ �c : ẍ2 = 0}. From (16b), (20), (21),
and u ̸= 1n on ϒ , we have

8 ⊂ ϒ ∩ {(x, u) ∈ �c : ẍ2 = 0}

= ϒ ∩ {(x, u) ∈ �c : ẋ1 = 0}

= {(x, u) ∈ �c : |x1| > ε, ẋ = 0, u̇i = 0, i = 1, . . . , q}

∪ {(x, u) ∈ �c : |x1| ≤ ε, ẋ = 0,

ui = u∗

i , i = q + 1, . . . , n}.

Moreover, (17) and (20) imply

{(x, u) ∈ �c : |x1| > ε, ẋ = 0, u̇i = 0, i = 1, . . . , q}

= {(x, u) ∈ �c : |x1| > ε, ẋ = 0, ui = u∗

i , i = 1, . . . , q}.

Therefore, we have

8 ⊂ {(x, u) ∈ �c : ẋ = 0, u = u∗
}

and consequently, from Remark 1

{(x, u) ∈ �c : ẋ = 0, u = u∗
} = {(x∗, u∗)}.

Thus, the closed-loop systems is asymptotically stable at
(x∗, u∗), and the region of attraction contains �c.

Proof of Item 3): The idea behind the proof of this item
origins from geometric considerations. Specifically, the aim
is to obtain the tightest level set �c that is contained in the
region bounded by the lines x2,i = 0, ui = 1, and ui = 0,
without crossing the lines x2,i = 0 and ui = 1, for all i ∈ V .

Noting that V (ẋ, u) = V̄ (x, u), we use V̄ (x, u) in (15).
First, let �cx2,0,i denote the level set whose border is tangent
to the line x2,i = 0. This means that �cx2,0,i is the tightest
level set that is contained in the region bounded by the line
x2,i = 0 and does not cross such a line if and only if c < cx2,0,i
for all i ∈ V . Then, the set �cx2,0,i is tangent to the line
x2,i = 0 if and only if

cx2,0,i =
E2

i
2L i

which is obtained by substituting x2,i = 0 in (15) and
considering the quadratic form of V̄ (x, u), i.e.,

cx2,0,i = min
x1,x2,x3,u

{
V̄ (x, u)|x2,i =0

}
=

E2
i

2L i
.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



NAZARI MONFARED et al.: DECENTRALIZED VOLTAGE CONTROL OF BOOST CONVERTERS IN DC MICROGRIDS 7

Next, by repeating similar steps as above, the level set �cu,0,i

is tangent to the line ui = 0 if and only if

cu,0,i =
k2,i

2k1,i

(
u∗

i
)2

.

Finally, the level set �cu,1,i is tangent to the line ui = 1 if and
only if

cu,1,i =
E2

i
2L i

+
k2,i

2k1,i

(
1 − u∗

i
)2

.

Therefore, �c ⊂ (Rn
× Rn

>0 × Rm) × [0, 1)n if and only if
the following inequalities are satisfied:

c ≤ min
i∈V

{
k2,i

2k1,i

(
u∗

i
)2

}
c < min

i∈V

{
E2

i
2L i

,
E2

i
2L i

+
k2,i

2k1,i

(
1 − u∗

i
)2

}
= min

i∈V

{
E2

i
2L i

}
i.e., (14) holds.

Remark 2: Although (12) is a switching controller, (10) is
used as a common Lyapunov function for both controllers.
Therefore, we can guarantee the closed-loop stability. ◁

Remark 3: According to Theorem 2, any closed-loop tra-
jectory starting from �c converges to (x∗, u∗) while fulfilling
the physical constraints x2(·) ∈ Rn

>0 and u(·) ∈ [0, 1]
n if

c satisfies (14). Thus, we call �c with c satisfying (14) a
feasible region of attraction. From (14) and (15), it is evident
that the size of the feasible region of attraction �c depends
on the ratio of the tuning parameters, i.e., k2,i/k1,i . Since c is
upperbounded by E2

i /2L i [see (14)], then the largest feasible
region of attraction �c is obtained when k1,i and k2,i are
selected as

k2,i

k1,i
≥

E2
i

L i
(
1 − Ei

/
x∗

2,i

)2 , i = 1, . . . , n (22)

which follows from imposing (k2,i/2k1,i )(u∗

i )
2

≥ (E2
i /2L i )

and using (3c). In this case, �cl is a feasible region of
attraction for

cl = min
i∈V

{
E2

i
2L i

}
− εl (23)

where εl > 0 is allowed to be arbitrarily small. ◁
Now, in the following corollary, we extend the results

of Theorem 2 to the case of dc networks including the
so-called ZIP loads, i.e., nonlinear loads consisting of the
parallel combination of constant impedance (Z ), current (I ),
and power (P) components. Therefore, we consider now
also constant power loads (CPLs) in addition to the constant
resistance and current (ZI) loads considered in Theorem 2.
The current–voltage characteristic of such loads is given by
IL(x2) = R−1x2+I +[x2]

−1 P , where P =
(
P1, . . . , Pn

)⊤ and
Pi denotes the constant power absorbed by the CPL of node i
(see [19]). Before introducing the corollary, it is noteworthy to
emphasize that the structure of the controller in (12) remains
unchanged. Also, let us define the set R as

R =

{
x2,i ∈ R>0 : x2,i >

√
β1,iβ2,i , i ∈ V

}
(24)

where 0 ≤ Pi ≤ β1,i and 0 ≤ Ri ≤ β2,i , with β1,i and β2,i
being known positive constants for all i ∈ V .

Corollary 1: Given E ≤ x∗

2 ∈ Rn , consider a dc
microgrid (2) with ZIP loads and in closed-loop with the
controller (12). Then, the equilibrium point (x∗, u∗) is asymp-
totically stable with an estimated feasible region of attraction
�c that is contained in (Rn

× Rn
× Rm) × [0, 1)n . Further-

more, �c is contained in (Rn
× Rn

× Rm) × [0, 1)n if and
only if

c ≤ min
i∈V

{
k2,i

2k1,i

(
u∗

i
)2

}
(25a)

c < min
i∈V

{(
Ei −

(
1 − u∗

i
) √

β1,iβ2,i
)2

2L i

}
. (25b)

Proof: The proof is given in the Appendix.
Theorem 2 guarantees asymptotic stability of the desired

equilibrium for any positive value of the controller gains k1,i
and k2,i . However, we provide in the following remark some
insights for a finer tuning of these gains.

Remark 4: A careful inspection of u̇ in (17) reveals that
larger values of k2 result in a faster convergence of u toward
its desired value u∗. Second, from (19), it follows that the
convergence rate of V (ẋ, u) toward zero is influenced by k1.
Specifically, a smaller value for k1 increases the convergence
speed of V (ẋ, u) toward zero and, therefore, the convergence
to the desired equilibrium point. Given these general tuning
considerations, for the specific values of k1 and k2, a trial
and error procedure can be adopted based on the specific
requirements of the considered dc network. Furthermore, it is
worth noticing that the ratio k2,i/k1,i influences the shape and
size of the estimated feasible region of attraction, as outlined
in (14), (22), and (23). Therefore, obtaining the largest esti-
mation of the feasible region of attraction requires choosing
k1 and k2 satisfying (22). Finally, we emphasize that the
controller gains for each node can be tuned independently of
each other. ◁

IV. SIMULATIONS

In this section, in order to validate the theoretical results
discussed in Section III, we test in simulation the proposed
control scheme (12). First, in order to provide a better under-
standing of our analysis we consider the single-node and
two-node cases (see [17], [19], [42]). Then, we simulate a
more realistic dc network with four nodes in ring topology,
including ZIP loads.

A. Single-Node Case

In this section, we focus on a single boost converter by
selecting n = 1 and m = 0 in (2). Namely, we consider the
system

Lẋ1 = − (1−u) x2 + E

Cẋ2 = (1−u) x1−I − x2/R (26)

where each parameter and the desired voltage reference are
taken from a real microgrid (see [17], [19], [42]) and are
reported in Table I. We first validate items 1)–3) of Theorem 2.
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TABLE I
VALUES OF THE SYSTEM PARAMETERS

Fig. 2. Closed-loop trajectories for four different pairs of the controller
gains k1, k2.

Then, we observe the effects of the switching mechanism
employed in (12). Finally, we compare the proposed dynamic
controller with the “trivial” static controller u = u∗.

Let’s start by checking the validity of item 1) of Theo-
rem 2, i.e., asymptotic stability of the closed-loop system at
(x∗, u∗) for any positive controller gains k1 and k2. Fig. 2
shows the closed-loop trajectories with respect to four dif-
ferent pairs of k1 and k2. The threshold for the switching
condition is chosen as ε = 1 and the initial condition
is (x(0), u(0)) = ((131.37, 361), 0.2132). As expected, the
closed-loop trajectories converge to the equilibrium point
(x∗, u∗) = ((119.4286, 380), 0.2632).

Now, we choose the control design parameters as k1 = 0.1,
k2 = 6.06 × 106, ε = 1, and check items 2) and 3) of
Theorem 2. The condition (14) for a level set �c is

c ≤
k2

2k1
(u∗)2

= 2.1 × 106, c <
E2

2L
= 35 × 106.

Let ĉ = min{2.1 × 106, 35 × 106
}, then �ĉ ⊂ (Rn

× Rn
>0) ×

[0, 1)n is a feasible region of attraction. Note however that,
according to Remark 3, cl = 35 × 106

− εl gives a larger
feasible region of attraction �cl for any sufficiently small
εl > 0; we select in simulation εl = 10−3. As can be
observed from Figs. 3 and 4, both �ĉ and �cl are contained in
(Rn

× Rn
>0) × [0, 1)n , which validates item 3) of Theorem 2.

In particular, Fig. 3 shows that �cl is bounded by the surfaces
u = 0 and u = 1. Fig. 4 shows the projection of �ĉ and �cl on
the x1–x2 plane. One can note that for any c (slightly) larger
than cl , the level set �c would cross the surface x2 = 0,
i.e., the surface on which the voltage is equal to zero. This

Fig. 3. Feasible regions of attraction �ĉ and �cl and closed-loop trajectories
starting from �ĉ .

Fig. 4. Projection of �ĉ , �cl and the closed-loop trajectories on the x1–x2
(current–voltage) plane.

validates the necessity and sufficiency of item 3) in Theorem 2.
Next, we check the validity of item 2) of Theorem 2 by
focusing on �ĉ. As shown in Figs. 3 and 4, all the trajectories
starting from �ĉ remain in �ĉ and converge to (x∗, u∗).

Now, in order to show the validity of the tuning rule
provided in Remark 3, we repeat the simulation in Figs. 3
and 4 with the controller gains k1 and k2 satisfying (22),
i.e., k1 = 0.1 and k2 = 10.1 × 107. This implies ĉ =

cl = 35 × 106
− εl , εl = 10−3. The projection of the level

set �ĉ and the trajectories of the closed-loop system on the
x1–x2 plane are shown in Fig. 5. The trajectories start from
six different initial conditions contained in �ĉ and converge
to (x∗, u∗), remaining inside �ĉ all the time.

Now, we have a close look at the switching mechanism
employed in the proposed control scheme (12). Fig. 6 shows
the closed-loop trajectories starting from four different initial
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Fig. 5. Projection of �ĉ and the closed-loop trajectories on the x1–x2
(current–voltage) plane, with the controller gains satisfying (22).

Fig. 6. Time evolution of the currents and control signals, with visualization
of the switching mechanism effects.

conditions in �ĉ, which are selected in order to cross the
switching region. It can be observed that the switching mech-
anism is triggered whenever the current trajectories cross the
switching lines x1 = ε or x1 = −ε.

Finally, we compare the performance of the proposed
dynamic controller (12) with the “trivial” static controller
u = u∗. Fig. 7 shows the closed-loop trajectories obtained with
both controllers starting from two different initial conditions.
Regardless of the initial condition, the closed-loop system with
u = u∗ suffers from many more oscillations than when using
the proposed controller.

B. Two-Node Case

We consider now a dc microgrid with two boost convert-
ers interconnected through a resistive–inductive power line

Fig. 7. Closed-loop trajectories with the proposed dynamic control
scheme (black and red) and the “trivial” static controller u = u∗ (green
and orange). a) (x(0), u(0)) = (−0.59, 399, 0.2632), b) (x(0), u(0)) =

(118.23, 381.9, 0.2632).

(see [17], [19], [42]), i.e., we consider the microgrid model (2)
with n = 2 and m = 1. Note that, for the sake of notation
simplicity, we consider two identical boost converters, and
all the values of the system parameters are given in Table I.
Namely, we consider the system

Lẋ1,1 = − (1 − u1) x2,1 + E1

Lẋ1,2 = − (1 − u2) x2,2 + E2

Cẋ2,1 = (1 − u1) x1,1 − I1 − x2,1/R1 − x3

Cẋ2,2 = (1 − u2) x1,2 − I2 − x2,2/R2 + x3

L p ẋ3 =
(
x2,1 − x2,2

)
− Rpx3. (27)

As in the previous section, we first check the validity of
the items 1)–3) of Theorem 2 in the network case and
then evaluate the closed-loop performance by considering two
different scenarios based on the experimental tests in [17]
and [19].

First, we show the asymptotic stability of the closed-loop
system at the desired equilibrium point (x∗, u∗) for any
positive gains k1,i and k2,i , i = 1, 2. Specifically, Fig. 8 shows
the closed-loop trajectories with the control gains selected as

(k1,1, k2,1) = (0.1, 6.06 × 106)

(k1,2, k2,2) = (1, 5 × 107).

These values have been chosen through a trial and error
procedure to get both a large feasible region of attraction
and desired transient performance. More precisely, the feasible
region of attraction is �ĉ, with ĉ = 1.7313 × 106 satisfy-
ing (14). The switching condition is defined by the thresholds
ε1 = ε2 = 1 and the initial conditions are(

x1,1 (0) , x2,1 (0) , u1 (0)
)

= (95.542, 383.8, 0.1632))(
x1,2 (0) , x2,2 (0) , u2 (0)

)
= (143.314, 380, 0.2632)

x3 (0) = 0.
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Fig. 8. Closed-loop trajectories starting from a feasible region of
attraction �ĉ .

Fig. 9. Time evolution of the Lyapunov function (15).

As expected, the closed-loop trajectories converge to the
desired equilibrium point, i.e.,(

x∗

1,1, x∗

2,1, u∗

1
)

= (119.42, 380, 0.2632)(
x∗

1,2, x∗

2,2, u∗

2
)

= (119.42, 380, 0.2632)

x∗

3 = 0.

Moreover, since the above initial conditions belong to �ĉ,
as expected, the closed-loop trajectories converge to the
desired equilibrium point (x∗, u∗) while fulfilling the physical
constraints, i.e., voltages are positive and the control sig-
nals belong to the interval [0, 1) all the time (see Fig. 8).
Fig. 9 shows the time evolution of the Lyapunov function
V (x(t), u(t)) in (15), which satisfies V (x(t), u(t)) ≤ ĉ for
all t ≥ 0. Furthermore, V (x(t), u(t)) converges to 0, and thus
�ĉ is a feasible region of attraction.

Fig. 10. Closed-loop trajectories considering a step variation of 20 kW in
node 1.

Now, we further assess the performance of the proposed
controller (12) considering two different scenarios as in [17]
and [19].

Scenario I: In this scenario, we evaluate the closed-loop per-
formance when a step variation occurs in the power absorbed
by the load or the power generated, e.g., by a photovoltaic
plant, i.e., we consider step variations of the current IL ,i =

Ii + x2,i/Ri , i = 1, 2. Let each node of the dc microgrid (27)
represent for instance a battery regulating its output voltage
toward the desired reference x∗

2,i = 380 V. Specifically, let the
power demand in node 1 increase by 20 kW at the time instant
t = 1 s until the time instant t = 5 s. As shown in Fig. 10,
the proposed dynamic controller asymptotically stabilizes the
dc microgrid at the desired equilibrium point (x∗, u∗) after a
short transient during which the voltage deviation is about 4%
of the desired value, thus satisfying, for example, the standards
for dc networks used for powering of telecommunication
applications [43], where tolerance of 10% (with respect to
the desired values) is considered acceptable. This shows the
robustness of the proposed controller with respect to unknown
loads. This scenario is repeated by considering a step variation
of 20 kW in the power generated, e.g., by a photovoltaic plant,
which is simulated by implementing a negative variation of the
current IL ,1. The results are shown in Fig. 11 and comments
similar to the ones above hold. In addition, we would like to
remark that the amplitude of the overshoots and undershoots
at the time instants t = 1 s and t = 5 s in Figs. 10 and 11
depends on the amplitude of the load variations.

Scenario II: In this scenario, we evaluate the closed-loop
performance by considering step changes of the desired volt-
age. At the time instant t = 1 s, the desired voltage for node 1
changes from x∗

2,1 = 380 V to x∗

2,1 = 375 V. Then, after 4 s,
also the desired voltage for node 2 changes from x∗

2,2 = 380 V
to x∗

2,2 = 375 V. As shown in Fig. 12, the proposed control
scheme tracks the voltage reference, and the dc microgrid is
stabilized at the desired equilibrium point (x∗, u∗).

C. Multinode DC Network

To show the performance of the proposed controller (12) in
a more realistic scenario, we consider a dc network consisting
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Fig. 11. Closed-loop trajectories considering a step variation of −20 kW in
node 1.

Fig. 12. Closed-loop trajectories considering step variations of the voltage
reference.

of four nodes in a ring configuration with ZIP loads, i.e.,

Lẋ1 = − (1n − u) ◦ x2 + E (28a)

Cẋ2 = (1n − u) ◦ x1 − I − R−1x2 − [x2]−1 P + Dx3
(28b)

L p ẋ3 = −D⊤x2 − Rpx3 (28c)

where the incidence matrix D ∈ R4×4 is as follows:

D =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1

 .

The values of the system parameters are given in Table I, while
the CPLs are selected as P = (2, 2, 5, 0) kW. We consider the

Fig. 13. Closed-loop trajectories of a multinode dc network.

following equilibrium points:(
x∗

1,1, x∗

2,1, u∗

1
)

= (300.56, 380, 0.2632)(
x∗

1,2, x∗

2,2, u∗

2
)

= (−219.07, 375, 0.2533)(
x∗

1,3, x∗

2,3, u∗

3
)

= (311.27, 380, 0.2632)(
x∗

1,4, x∗

2,4, u∗

4
)

= (119.42, 380, 0.2632)

where the reference voltages are not identical for all the nodes.
Then, by setting the controller gains as

(k1,1, k2,1) = (0.1, 6.06 × 106), (k1,2, k2,2) = (1, 5 × 107)

(k1,3, k2,3) = (0.1, 6.06 × 106), (k1,4, k2,4) = (1, 5 × 107)

the level set �c, with c = 1.6 × 106 satisfying (25), is the
estimated feasible domain of attraction.

Consider the following initial conditions:

(x1,1(0), x2,1(0), u1(0)) = (270.50, 380, 0.2632)

(x1,2(0), x2,2(0), u2(0)) = (−219.07, 370, 0.2533)

(x1,3(0), x2,3(0), u3(0)) = (342.40, 375, 0.2632)

(x1,4(0), x2,4(0), u4(0)) = (119.42, 385, 0.2632).

Then, the time evolution of the voltages and control signals
are depicted in Fig. 13, showing that all trajectories converge
to the desired equilibrium point while satisfying the physical
constraints of the network.

V. CONCLUSION AND FUTURE RESEARCH

In this article, we design a fully decentralized dynamic con-
trol system to regulate the voltage in a boost converter-based
dc microgrid. We use a Krasovskii Lyapunov function and
analyze its level sets to ensure the asymptotic stability of a
desired equilibrium point while satisfying predefined physical
constraints. In other words, we provide an estimation of the
microgrid’s feasible region of attraction. Finally, we assess
in simulation the proposed control scheme to validate the
established theoretical results.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
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The proposed controller is designed by integrating a dif-
ferential passivity-based controller. We are generalizing the
proposed approach to differentially passive systems with inte-
grable differentially passive outputs, which is an interesting
research direction and will be explored in future work. Another
interesting future research directions include investigating dif-
ferent candidate Lyapunov functions to get a less conservative
estimation of the feasible domain of attraction. Moreover,
to improve the robustness features of the control system,
we are also interested in including in the control law an
integral action on the voltage error and finding a suitable Lya-
punov function to establish asymptotic stability of the desired
equilibrium point. Finally, we are interested in extending the
proposed controller to achieve also load sharing, in addition
to voltage regulation.

APPENDIX
PROOF OF COROLLARY 1

Proof: The dynamics of a dc microgrid (2) with ZIP loads
read as follows:

Lẋ1 = − (1n − u) ◦ x2 + E (29a)

Cẋ2 = (1n − u) ◦ x1 − I − R−1x2 − [x2]−1 P + Dx3
(29b)

L p ẋ3 = −D⊤x2 − Rpx3. (29c)

For a given E ≤ x∗

2 ∈ R, where the set R is defined
in (24), the equilibrium point corresponding to dynamics (29)
is denoted by x∗

= (x∗

1
⊤, x∗

2
⊤, x∗

3
⊤)⊤. Now, let us consider

the Lyapunov function V (ẋ, u) given in (10). The time deriva-
tive of V (ẋ, u) along the trajectories of the system (29) in
closed-loop with the controller (12) satisfies the following
inequality:

V̇ (ẋ, u) < −

q∑
i=1

k−1
1,i εi x2,i u̇2

i

− ẋ⊤

2

(
R−1

− [x2]−2 P
)

ẋ2 − ẋ⊤

3 Rp ẋ3 (30)

which is negative semi-definite at (x∗, u∗) on the set
(Rn

× Rn
× Rm) × [0, 1)n . Hence, the stability of the

equilibrium point (x∗, u∗) is proved. To show the asymptotic
stability of (x∗, u∗), we invoke LaSalle’s invariance principle
on the compact set �c defined in (13) for a suitable c > 0 such
that �c ⊂ (Rn

× Rn
× Rm) × [0, 1)n . Therefore, also the

asymptotic stability of the equilibrium point is proved with
the set �c being the estimated feasible domain of attraction
of the desired equilibrium point.

In order to estimate a feasible region of attraction, we notice
that the inequality (25a) is identical to the first inequality
in (14). Therefore, the proof to show the correctness of (25a) is
the same as the proof of Theorem 2. For the inequality (25b),
we follow the same steps as in the proof of Theorem 2, i.e., we
aim to obtain the tightest level set �c contained in the region
bounded by the line x2,i = (β1,iβ2,i )

1/2. From the quadratic
structure of V (ẋ, u), it follows that the set �cx2,(β1,i β2,i )

1/2,i

is tangent to the line x2,i = (β1,iβ2,i )
1/2 if and only if the

inequality (25b) holds. Finally, we observe that for ZI loads,

since β1,i = 0 for all i ∈ V , then the inequality (25b) becomes
identical to the second inequality in (14).
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